Trends in glyphosate herbicide use in the United States

Environmental Sciences Europe 28, 3 DOI: 10.1186/s12302-016-0070-0

Citation Report

#	Article	IF	CITATIONS
1	Hypothetical adjustment of the acceptable daily intake and correction of the underrated risk: A case study of glyphosate-based herbicides. Journal of Toxicology and Environmental Health Sciences, 2016, 8, 57-67.	0.4	2
2	Temperature-Dependence of Glyphosate-Based Herbicide's Effects on Egg and Tadpole Growth of Common Toads. Frontiers in Environmental Science, 2016, 4, .	3.3	32
3	Enhancements Needed in GE Crop and Food Regulation in the U.S Frontiers in Public Health, 2016, 4, 59.	2.7	9
4	América Latina fumigada y crisis de las commodities. El caso del glifosato de Monsanto. Ciencia PolÃtica, 2016, 11, .	0.1	4
5	Changing agricultural practices: potential consequences to aquatic organisms. Environmental Monitoring and Assessment, 2016, 188, 672.	2.7	13
6	Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health, 2016, 15, 19.	4.0	610
7	Advances in breeding and biotechnology of legume crops. Plant Cell, Tissue and Organ Culture, 2016, 127, 561-584.	2.3	36
8	Glyphosate: Too Much of a Good Thing?. Frontiers in Environmental Science, 2016, 4, .	3.3	68
9	Functionalized iron oxide/SBA-15 sorbent: investigation of adsorption performance towards glyphosate herbicide. Environmental Science and Pollution Research, 2016, 23, 21682-21691.	5.3	37
10	Interactions between Bt crops and aquatic ecosystems: A review. Environmental Toxicology and Chemistry, 2016, 35, 2891-2902.	4.3	28
11	Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environmental Science and Pollution Research, 2016, 23, 23959-23971.	5.3	33
12	Environmental Injustice in Argentina: Struggles against Genetically Modified Soy. Journal of Agrarian Change, 2016, 16, 684-692.	1.8	36
13	Field and Laboratory Dissipation of the Herbicide Fomesafen in the Southern Atlantic Coastal Plain (USA). Journal of Agricultural and Food Chemistry, 2016, 64, 5156-5163.	5.2	6
14	Changes in rhizosphere bacterial gene expression following glyphosate treatment. Science of the Total Environment, 2016, 553, 32-41.	8.0	90
15	Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 2016, 28, 3.	5.5	1,178
16	Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide. Scientific Reports, 2017, 7, 39328.	3.3	143
17	Possible health impacts of Bt toxins and residues from spraying with complementary herbicides in genetically engineered soybeans and risk assessment as performed by the European Food Safety Authority EFSA. Environmental Sciences Europe, 2017, 29, 1.	5.5	19
18	New temperature-assisted ionic liquid-based dispersive liquid–liquid microextraction method for the determination of glyphosate and aminomethylphosphonic acid in water samples. Journal of Liquid Chromatography and Related Technologies, 2017, 40, 147-155.	1.0	14

#	ARTICLE	IF	CITATIONS
19	Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days. Marine Pollution Bulletin, 2017, 117, 348-358.	5.0	20
20	Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize. Environmental Sciences Europe, 2017, 29, 6.	5.5	10
21	Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environmental Sciences Europe, 2017, 29, 5.	5.5	140
22	Biological Limitations on Glyphosate Biodegradation. , 2017, , 179-201.		7
23	Long-term trends in the intensity and relative toxicity of herbicide use. Nature Communications, 2017, 8, 14865.	12.8	174
24	The rise of glyphosate and new opportunities for biosentinel earlyâ€warning studies. Conservation Biology, 2017, 31, 1293-1300.	4.7	21
25	The Herbicide Revolution in Developing Countries: Patterns, Causes, and Implications. European Journal of Development Research, 2017, 29, 533-559.	2.3	50
26	Pesticides, environment, and food safety. Food and Energy Security, 2017, 6, 48-60.	4.3	1,028
27	Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 2017, 593-594, 787-795.	8.0	87
28	Is it time to reassess current safety standards for glyphosate-based herbicides?. Journal of Epidemiology and Community Health, 2017, 71, 613-618.	3.7	146
29	Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food Chemistry, 2017, 230, 524-531.	8.2	75
30	Environmental impacts of genetically modified plants: A review. Environmental Research, 2017, 156, 818-833.	7.5	103
31	Open Controversies: Beesâ \in ™ Health, Glyphosate and Endocrine Disruption. , 2017, , 77-104.		1
32	AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Research, 2017, 117, 187-197.	11.3	171
33	Predicting Both Obvious and Obscure Effects of Pesticides on Bees. , 2017, , 39-59.		2
34	Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha). Bulletin of Environmental Contamination and Toxicology, 2017, 99, 595-600.	2.7	5
35	Impacts of Repeated Glyphosate Use on Wheat-Associated Bacteria Are Small and Depend on Glyphosate Use History. Applied and Environmental Microbiology, 2017, 83, .	3.1	42
36	Agriculture and biodiversity: a review. Biodiversity, 2017, 18, 45-49.	1.1	256

#	Article	IF	CITATIONS
37	Neonatal exposure to a glyphosate-based herbicide alters uterine decidualization in rats. Reproductive Toxicology, 2017, 73, 87-95.	2.9	30
38	The Glyphosate-Based Herbicide Roundup Does Not Elevate Genome-Wide Mutagenesis of <i>Escherichia coli</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3331-3335.	1.8	14
39	Glyphosate and AMPA passive sampling in freshwater using a microporous polyethylene diffusion sampler. Chemosphere, 2017, 188, 241-248.	8.2	30
40	Response of glyphosate-resistant horseweed [Conyza canadensis (L.) Cronq.] to a premix of atrazine, bicyclopyrone, mesotrione, and S-metolachlor. Canadian Journal of Plant Science, 0, , .	0.9	4
41	Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquatic Toxicology, 2017, 193, 210-216.	4.0	35
42	Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food and Chemical Toxicology, 2017, 108, 30-42.	3.6	111
43	Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environmental Science and Pollution Research, 2017, 24, 1588-1596.	5.3	118
44	Global research production in glyphosate intoxication from 1978 to 2015: A bibliometric analysis. Human and Experimental Toxicology, 2017, 36, 997-1006.	2.2	24
45	Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. Science of the Total Environment, 2017, 579, 149-158.	8.0	92
47	Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms. Environmental Science and Pollution Research, 2017, 24, 24364-24375.	5.3	11
48	Evaluation of a Commercially Available Enzyme‣inked Immunosorbent Assay and a Liquid Chromatography–Tandem Mass Spectrometric Method for the Analysis of Glyphosate in Wheat, Oats, Barley, Malt, and Lentils. Cereal Chemistry, 2017, 94, 1028-1036.	2.2	11
49	Nucleotide Diversity at Site 106 of EPSPS in Lolium perenne L. ssp. multiflorum from California Indicates Multiple Evolutionary Origins of Herbicide Resistance. Frontiers in Plant Science, 2017, 8, 777.	3.6	18
50	Facts and Fallacies in the Debate on Glyphosate Toxicity. Frontiers in Public Health, 2017, 5, 316.	2.7	80
51	The Risks Associated with Glyphosate-Based Herbicide Use in Planted Forests. Forests, 2017, 8, 208.	2.1	35
52	Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?. Frontiers in Environmental Science, 2017, 5, .	3.3	7
53	Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Current Genomics, 2017, 19, 36-49.	1.6	10
54	Presence of DDT and Lindane in a Karstic Groundwater Aquifer in Yucatan, Mexico. Ground Water Monitoring and Remediation, 2018, 38, 68-78.	0.8	10
55	Multicommutated Flow System for the Determination of Glyphosate Based on Its Quenching Effect on CdTe-Quantum Dots Fluorescence. Food Analytical Methods, 2018, 11, 1840-1848.	2.6	14

#	Article	IF	CITATIONS
56	An Effective Machine Learning Approach for Identifying the Glyphosate Poisoning Status in Rats Using Blood Routine Test. IEEE Access, 2018, 6, 15653-15662.	4.2	15
57	Some aspects of the adsorption of glyphosate and its degradation products on montmorillonite. Environmental Science and Pollution Research, 2018, 25, 18138-18146.	5.3	12
58	Antecedent and Post-Application Rain Events Trigger Glyphosate Transport from Runoff-Prone Soils. Environmental Science and Technology Letters, 2018, 5, 249-254.	8.7	11
59	Impacts of glyphosate-based herbicides on disease resistance and health of crops: a review. Environmental Sciences Europe, 2018, 30, 2.	5.5	70
60	Effect of glyphosate and a commercial formulation on soil functionality assessed by substrate induced respiration and enzyme activity. European Journal of Soil Biology, 2018, 85, 64-72.	3.2	17
61	Direct determination of glyphosate and aminomethyl phosphonic acid in honeybees. Hellenic Plant Protection Journal, 2018, 11, 40-46.	0.4	2
62	Wheat preharvest herbicide application, wholeâ€grain flour properties, yeast activity and the degradation of glyphosate in bread. International Journal of Food Science and Technology, 2018, 53, 1597-1602.	2.7	25
63	Environmental Factors Moderate Glyphosate-induced Antagonism of POST Herbicides on the Rapid Response Biotype of Glyphosate-Resistant Giant Ragweed (<i>Ambrosia trifida</i>). Weed Science, 2018, 66, 301-309.	1.5	3
64	Glyphosate Use and Cancer Incidence in the Agricultural Health Study: An Epidemiologic Perspective. Journal of the National Cancer Institute, 2018, 110, 446-447.	6.3	15
65	Genetically Engineered Herbicide-Resistant Crops and Herbicide-Resistant Weed Evolution in the United States. Weed Science, 2018, 66, 260-273.	1.5	63
66	Succession of Fungal and Oomycete Communities in Glyphosate-Killed Wheat Roots. Phytopathology, 2018, 108, 582-594.	2.2	10
67	Sex-dependent impact of Roundup on the rat gut microbiome. Toxicology Reports, 2018, 5, 96-107.	3.3	91
68	Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes $\hat{a} \in \hat{A}$ flume experiment. Environmental Pollution, 2018, 234, 1011-1020.	7.5	20
69	Comparative Metabolomic Analyses of <i>Ipomoea lacunosa</i> Biotypes with Contrasting Glyphosate Tolerance Captures Herbicide-Induced Differential Perturbations in Cellular Physiology. Journal of Agricultural and Food Chemistry, 2018, 66, 2027-2039.	5.2	11
70	Glyphosate residues in Swiss market foods: monitoring and risk evaluation. Food Additives and Contaminants: Part B Surveillance, 2018, 11, 83-91.	2.8	97
71	Glyphosate, a chelating agent—relevant for ecological risk assessment?. Environmental Science and Pollution Research, 2018, 25, 5298-5317.	5.3	139
72	Location, Root Proximity, and Glyphosate-Use History Modulate the Effects of Glyphosate on Fungal Community Networks of Wheat. Microbial Ecology, 2018, 76, 240-257.	2.8	27
73	Quantitative analysis of glyphosate, glufosinate and AMPA in irrigation water by <i>in situ</i> derivatization–dispersive liquid–liquid microextraction combined with UPLC-MS/MS. Analytical Methods, 2018, 10, 554-561.	2.7	29

#	Article	IF	CITATIONS
74	Evaluation of glyphosate drift and anthropogenic atmospheric trace elements contamination by means of lichen transplants in a southern Italian agricultural district. Air Quality, Atmosphere and Health, 2018, 11, 325-339.	3.3	22
75	A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis. Aquatic Toxicology, 2018, 195, 103-113.	4.0	42
76	A glyphosate-based herbicide reduces fertility, embryonic upper thermal tolerance and alters embryonic diapause of the threatened annual fish Austrolebias nigrofasciatus. Chemosphere, 2018, 196, 260-269.	8.2	39
77	Occurrence of glyphosate in beer from the Latvian market. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1767-1775.	2.3	19
78	In vivo NMR investigations of glyphosate influences on plant metabolism. Journal of Magnetic Resonance, 2018, 292, 59-72.	2.1	10
79	Patterns of pre-crop glyphosate use and in-crop selective herbicide intensities in Northern Germany. European Journal of Agronomy, 2018, 97, 20-27.	4.1	10
80	Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: Transcriptional responses in the mussel Mytilus galloprovincialis. Environmental Pollution, 2018, 237, 442-451.	7.5	52
81	Seasonal Dynamics of Glyphosate and AMPA in Lake Greifensee: Rapid Microbial Degradation in the Epilimnion During Summer. Environmental Science & Technology, 2018, 52, 4641-4649.	10.0	48
82	Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environmental Science and Pollution Research, 2018, 25, 15120-15132.	5.3	64
83	Effects of glyphosate and its commercial formulation, Roundup® Ultramax, on liver histology of tadpoles of the neotropical frog, Leptodactylus latrans (amphibia: Anura). Chemosphere, 2018, 202, 289-297.	8.2	66
84	The rise and future of glyphosate and glyphosateâ€resistant crops. Pest Management Science, 2018, 74, 1035-1039.	3.4	87
85	Monarchs in decline: a collateral landscapeâ€level effect of modern agriculture. Insect Science, 2018, 25, 528-541.	3.0	107
86	Interactions of glyphosate use with farm characteristics and cropping patterns in Central Europe. Pest Management Science, 2018, 74, 1155-1165.	3.4	16
87	Clyphosate analysis using sensors and electromigration separation techniques as alternatives to gas or liquid chromatography. Analytical and Bioanalytical Chemistry, 2018, 410, 725-746.	3.7	24
88	Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly. Annual Review of Entomology, 2018, 63, 277-302.	11.8	83
89	Analysis of glyphosate degradation in a soil microcosm. Environmental Pollution, 2018, 233, 201-207.	7.5	61
90	Comparative impact of two glyphosate-based formulations in interaction with Limnoperna fortunei on freshwater phytoplankton. Ecological Indicators, 2018, 85, 575-584.	6.3	17
91	UV–Vis Spectrophotometric Analysis and Quantification of Glyphosate for an Interdisciplinary Undergraduate Laboratory. Journal of Chemical Education, 2018, 95, 136-140.	2.3	29

#	ARTICLE	IF	CITATIONS
92 93	Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application. Plant and Soil, 2018, 422, 455-465.	3.7	17
94	Phosphate and glyphosate sorption in soils following long-term phosphate applications. Geoderma, 2018, 313, 146-153.	5.1	34
95	Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. Journal of Applied Phycology, 2018, 30, 299-309.	2.8	25
96	European Court of Justice ruling regarding new genetic engineering methods scientifically justified: a commentary on the biased reporting about the recent ruling. Environmental Sciences Europe, 2018, 30, 52.	5.5	22
97	Selective signalling of glyphosate in water using europium luminescence. Dalton Transactions, 2018, 47, 16145-16154.	3.3	18
98	OBSOLETE: Round-up ready! Glyphosate and the current controversy over the world's leading herbicide , 2018, , .		0
99	Endophytes: The Other Maize Genome. Compendium of Plant Genomes, 2018, , 213-246.	0.5	11
100	Survey of Nebraska Farmers' Adoption of Dicamba-Resistant Soybean Technology and Dicamba Off-Target Movement. Weed Technology, 2018, 32, 754-761.	0.9	47
101	Insecticide Seed Treatments Partially Safen Rice to Low Rates of Clyphosate and Imazethapyr. Weed Technology, 2018, 32, 520-525.	0.9	2
102	Synthesis, Characterization and Herbicidal Activity of Amide Derivatives of Glyphosate. Oriental Journal of Chemistry, 2018, 34, 2378-2383.	0.3	5
103	A Statewide Survey of Stakeholders to Assess the Problem Weeds and Weed Management Practices in Nebraska. Weed Technology, 2018, 32, 642-655.	0.9	37
104	Low-dose stimulation of growth of the harmful alga, Prymnesium parvum, by glyphosate and glyphosate-based herbicides. Harmful Algae, 2018, 80, 130-139.	4.8	25
105	Using Polymer Hydrogels for Glyphosate Sequestration from Aqueous Solutions: Molecular Theory Study of Adsorption to Polyallylamine Films. Langmuir, 2018, 34, 12560-12568.	3.5	7
106	Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. Journal of Environmental Studies and Sciences, 2018, 8, 416-434.	2.0	98
107	Magic Bullets II, Genetic Engineering and Technological Pragmatism. The International Library of Environmental, Agricultural and Food Ethics, 2018, , 59-78.	0.1	0
108	Bacterial Microbiota Response in <i>Graptemys pseudogeographica</i> to Captivity and Roundup [®] Exposure. Copeia, 2018, 106, 580-588.	1.3	7
109	Glyphosate Determination by Coupling an Immuno-Magnetic Assay with Electrochemical Sensors. Sensors, 2018, 18, 2965.	3.8	43

#	Article	IF	CITATIONS
110	Natural Resistance of Sri Lankan Rice (Oryza sativa L.) Varieties to Broad-Spectrum Herbicides (Glyphosate and Glufosinate). , 2018, , .		0
111	Effects of the herbicide Roundup® on the metabolic activity of Gammarus fossarum Koch, 1836 (Crustacea; Amphipoda). Ecotoxicology, 2018, 27, 1249-1260.	2.4	11
112	The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environmental Pollution, 2018, 243, 1106-1112.	7.5	202
113	Detection of glyphosate residues in companion animal feeds. Environmental Pollution, 2018, 243, 1113-1118.	7.5	42
114	First Case of Conyza canadensis from Hungary with Multiple Resistance to Glyphosate and Flazasulfuron. Agronomy, 2018, 8, 157.	3.0	11
115	Monitoring of glyphosate and AMPA in soil samples from two olive cultivation areas in Greece: aspects related to spray operators activities. Environmental Monitoring and Assessment, 2018, 190, 361.	2.7	16
116	Decision-making in a storm of discontent. Science, 2018, 360, 958-960.	12.6	18
117	Cantilever Functionalization Using Peroxidase Extract of Low Cost for Glyphosate Detection. Applied Biochemistry and Biotechnology, 2018, 186, 1061-1073.	2.9	21
118	Roundup Ready! Glyphosate and the Current Controversy Over the World's Leading Herbicide. , 2018, , 149-153.		1
119	Bulk Phosphorus-Doped Graphitic Carbon. Chemistry of Materials, 2018, 30, 4580-4589.	6.7	15
120	Why Regulators Lost Track and Control of Pesticide Risks: Lessons From the Case of Glyphosate-Based Herbicides and Genetically Engineered-Crop Technology. Current Environmental Health Reports, 2018, 5, 387-395.	6.7	15
121	Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis, 2018, 39, 1207-1215.	2.8	81
122	Population Genetic Structure in Glyphosate-Resistant and -Susceptible Palmer Amaranth (Amaranthus) Tj ETQq0	0 Q rgBT /	Overlock 10
123	Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Frontiers in Public Health, 2017, 5, 361.	2.7	185
124	The need for independent research on the health effects of glyphosate-based herbicides. Environmental Health, 2018, 17, 51.	4.0	54
125	Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy. Frontiers in Neurology, 2018, 9, 166.	2.4	12
126	Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Science of the Total Environment, 2018, 645, 89-96.	8.0	106
127	Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes, 2018, 9, 214.	2.4	9

#	Article	IF	CITATIONS
128	On the degradation pathway of glyphosate and glycine. Environmental Sciences: Processes and Impacts, 2018, 20, 1148-1157.	3.5	20
129	Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Medical Sciences (Basel, Switzerland), 2018, 6, 29.	2.9	52
130	Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature, 2018, 559, 415-418.	27.8	182
131	High Levels of Glyphosate Resistance in Conyza canadensis from Agricultural and Non-Agricultural Sites in Ohio and Iowa. Scientific Reports, 2018, 8, 10483.	3.3	14
132	Organic versus Conventional Cropping Sustainability: A Comparative System Analysis. Sustainability, 2018, 10, 272.	3.2	67
133	The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome. Environmental Health, 2018, 17, 50.	4.0	87
134	Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study. Environmental Health, 2018, 17, 23.	4.0	120
135	Effects of herbicide and nitrogen fertilizer on non-target plant reproduction and indirect effects on pollination in Tanacetum vulgare (Asteraceae). Agriculture, Ecosystems and Environment, 2018, 262, 76-82.	5.3	31
136	The Role and Future of Genetic Modification in Weed Science. , 2018, , 511-533.		1
137	Postnatal exposure to a glyphosate-based herbicide modifies mammary gland growth and development in Wistar male rats. Food and Chemical Toxicology, 2018, 118, 111-118.	3.6	34
138	Effects of a glyphosate-based herbicide on Fucus virsoides (Fucales, Ochrophyta) photosynthetic efficiency. Environmental Pollution, 2018, 243, 912-918.	7.5	18
139	Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line. Toxicology Reports, 2018, 5, 819-826.	3.3	29
140	The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: study design and first in-life endpoints evaluation. Environmental Health, 2018, 17, 52.	4.0	33
141	Re-registration Challenges of Glyphosate in the European Union. Frontiers in Environmental Science, 2018, 6, .	3.3	81
142	Glyphosate-based herbicide enhances the uterine sensitivity to estradiol in rats. Journal of Endocrinology, 2018, 239, 197-213.	2.6	22
143	Effects of Roundup Herbicide and Increase in Water Temperature on the Parameters of Peripheral Blood Cells in Amur Sleeper Perccottus glenii Dybowski. Inland Water Biology, 2018, 11, 207-213.	0.8	3
144	Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats. Archives of Toxicology, 2018, 92, 2629-2643.	4.2	67
145	Selective and contextâ€dependent effects of chemical stress across trophic levels at the basis of marine food webs. Ecological Applications, 2018, 28, 1342-1353.	3.8	6

ARTICLE IF CITATIONS A commercial RoundupÂ[®] formulation induced male germ cell apoptosis by promoting the expression 146 0.8 14 of XAF1 in adult mice. Toxicology Letters, 2018, 296, 163-172. The Gendered Dimensions of Resource Extractivism in Argentina's Soy Boom. Latin American 147 0.8 24 Perspectives, 2019, 46, 199-216. Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells. BMC 148 1.4 17 Research Notes, 2019, 12, 494. Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicide. Nature 149 Communications, 2019, 10, 3704. RoundupA®, but Not Roundup-ReadyA® Corn, Increases Mortality of Drosophila melanogaster. Toxics, 150 3.7 5 2019, 7, 38. Impact of Agriculture on Food Supply: A History. ACS Symposium Series, 2019, , 29-46. The Growth, Apoptosis and Oxidative Stress in Microcystis viridis Exposed to Glyphosate. Bulletin of 152 2.7 11 Environmental Contamination and Toxicology, 2019, 103, 585-589. Toxic Chemical Governance Failure in the United States: Key Lessons and Paths Forward. BioScience, 2019, 69, 615-630. Single and joint effects of chronic exposure to chlorpyrifos and glyphosate based pesticides on 154 8.2 28 structural biomarkers in Cnesterodon decemmaculatus. Chemosphere, 2019, 236, 124311. Why are monarch butterflies declining in the West? Understanding the importance of multiple 3.8 correlated drivers. Ecological Applications, 2019, 29, e01975. Effects of egg exposure to atrazine and/or glyphosate on bone development in Podocnemis unifilis 156 6.0 14 (Testudines, Podocnemididae). Ecotoxicology and Environmental Safety, 2019, 182, 109400. Evaluation of selected buffers for simultaneous determination of ionic and acidic pesticides including glyphosate using anion exchange chromatography with mass spectrometric detection. 2.5 Journal of Separation Science, 2019, 42, 3077-3085. Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active 158 7.5 27 ingredient only. Environmental Pollution, 2019, 252, 1854-1862. Soil and crop management to save food and enhance food security., 2019, 33-87. 159 160 The diet, health, and environment trilemma., 2019, , 3-25. 1 Comparative cyto- and genotoxicity assessment of glyphosate and glyphosate-based herbicides in human peripheral white blood cells. Environmental Research, 2019, 179, 108851. 36 Metabolic switch in energy metabolism mediates the sublethal effects induced by glyphosate-based 162 herbicide on tadpoles of a farmland frog Microhyla fissipes. Ecotoxicology and Environmental Safety, 6.0 29 2019, 186, 109794. Glyphosate sensitivity of selected weed species commonly found in maize fields. Weed Science, 2019, 67, 1.5 633-641.

#	Article	IF	CITATIONS
164	Effects of the Herbicide Glyphosate on Honey Bee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive. Insects, 2019, 10, 354.	2.2	76
165	Heterogeneous photocatalysis of Tordon 2,4-D herbicide using the phase mixture of TiO2. Journal of Environmental Chemical Engineering, 2019, 7, 103501.	6.7	25
166	Detect and re-assess impact of chemicals on health and environment during post-market evaluation. Environmental Research, 2019, 178, 108728.	7.5	5
167	Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 2019, 1, 1.	2.9	863
168	Effect of in ovo glyphosate injection on embryonic development, serum biochemistry, antioxidant status and histopathological changes in newly hatched chicks. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1776-1784.	2.2	15
169	Biotechnological Potential of LSD1, EDS1, and PAD4 in the Improvement of Crops and Industrial Plants. Plants, 2019, 8, 290.	3.5	10
170	Effect of Roundup Herbicide on the Temperature Characteristics of Maltase of the Intestinal Mucosa in Juvenile Fish. Inland Water Biology, 2019, 12, 248-253.	0.8	1
171	Physiological–Biochemical Status of Fish under the Effect of Glyphosate-Containing Herbicides (Review). Inland Water Biology, 2019, 12, 84-94.	0.8	1
172	Influence of electrolyte composition and pH on glyphosate sorption by cow-dung amended soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 758-769.	1.5	2
173	Influence of cow-dung amendment on glyphosate mobility in soil. Toxicological and Environmental Chemistry, 2019, 101, 265-280.	1.2	0
174	Glyphosate: The European Controversy – A Review of Civil Society Struggles and Regulatory Failures. Business and Human Rights Journal, 2019, 4, 351-356.	1.2	1
175	Applications of the 12 Principles of Green Chemistry in the Crop Protection Industry. Organic Process Research and Development, 2019, 23, 2109-2121.	2.7	30
176	A mixed-methods approach to determine how conservation management programs and techniques have affected herbicide use and distribution in the environment over time. Science of the Total Environment, 2019, 660, 145-157.	8.0	11
177	Identification of the first glyphosate transporter by genomic adaptation. Environmental Microbiology, 2019, 21, 1287-1305.	3.8	36
178	The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquatic Toxicology, 2019, 209, 70-80.	4.0	40
179	Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Nature Communications, 2019, 10, 545.	12.8	53
180	Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3006-3011.	7.1	53
181	Effect of glyphosate on X-ray diffraction of copper films prepared by electrochemical deposition. RSC Advances, 2019, 9, 14016-14023.	3.6	15

CITATION REPORT ARTICLE IF CITATIONS Rhizobacteria Mediate the Phytotoxicity of a Range of Biorefineryâ€Relevant Compounds. Environmental 4.3 7 Toxicology and Chemistry, 2019, 38, 1911-1922. Glyphosate contamination in grains and foods: An overview. Food Control, 2019, 106, 106710. 5.5 100 A spatial approach to identify priority areas for pesticide pollution mitigation. Journal of 7.8 24 Environmental Management, 2019, 246, 583-593. Maternal glyphosate-based herbicide exposure alters antioxidant-related genes in the brain and serum metabolites of male rat offspring. NeuroToxicology, 2019, 74, 121-131. Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples. 1.3 17 Chromatographia, 2019, 82, 1121-1138. Herbicide Resistance Management: Recent Developments and Trends. Plants, 2019, 8, 161. 3.5 Feasibility of Using Bacterial-Microalgal Consortium for the Bioremediation of Organic Pesticides: 5 Application Constraints and Future Prospects., 2019, , 341-362. Acute in vitro exposure to environmentally relevant atrazine levels perturbs bovine preimplantation embryo metabolism and cell number. Reproductive Toxicology, 2019, 87, 87-96. Construction of a combined soil quality indicator to assess the effect of glyphosate application. 8.0 11 Science of the Total Environment, 2019, 682, 639-649. Roundup® confers cytotoxicity through DNA damage and Mitochondria-Associated apoptosis 24 induction. Environmental Pollution, 2019, 252, 917-923. Chronic Kidney Disease in Agricultural Communities. American Journal of Medicine, 2019, 132, e727-e732. 7 1.5 Neurotoxicity of pesticides. Acta Neuropathologica, 2019, 138, 343-362. 265 Analysing the importance of glyphosate as part of agricultural strategies: A discrete choice 5.6 11 experiment. Land Use Policy, 2019, 86, 189-207. Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. Trends in Chemistry, 2019, 1, 8.5 147 304-317. Glyphosate and glyphosateâ€based herbicide exposure during the peripartum period affects maternal 2.6 69 brain plasticity, maternal behaviour and microbiome. Journal of Neuroendocrinology, 2019, 31, e12731. Can Indirect Herbicide Exposure Modify the Response of the Colorado Potato Beetle to an 1.8 Organophosphate Insecticide?. Journal of Economic Entomology, 2019, 112, 2316-2323. Enhanced diuron remediation by microorganism-immobilized silkworm excrement composites and 12.4 35 their impact on soil microbial communities. Journal of Hazardous Materials, 2019, 376, 29-36.

199	Minimum Inhibitory Concentration of Glyphosate and of a Glyphosate-Containing Herbicide Formulation for Escherichia coli Isolates – Differences Between Pathogenicand Non-pathogenic Isolates and Between Host Species. Frontiers in Microbiology, 2019, 10, 932.	3.5	18
-----	---	-----	----

182

184

186

188

190

192

194

196

#	Article	IF	CITATIONS
200	Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes. Toxicological Sciences, 2019, 170, 452-461.	3.1	20
201	Historical evidence of glyphosate exposure from a US agricultural cohort. Environmental Health, 2019, 18, 42.	4.0	25
202	Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Scientific Reports, 2019, 9, 6372.	3.3	143
203	Spectrophotometric Detection of Glyphosate in Water by Complex Formation between Bis 5-Phenyldipyrrinate of Nickel (II) and Glyphosate. Water (Switzerland), 2019, 11, 719.	2.7	16
204	Development and Application of the Dispersive Solid-Phase Extraction Method Based on Molecular Imprinted Polymers for Removal of Matrix Components of Bivalve Shellfish Extracts in the GC–MS/MS Analysis of Amide/Dinitroaniline/Substituted Urea Herbicides. Chromatographia, 2019, 82, 961-970.	1.3	13
205	The Toxic Effect of Herbicidal Ionic Liquids on Biogas-Producing Microbial Community. International Journal of Environmental Research and Public Health, 2019, 16, 916.	2.6	6
206	Glyphosate in yam from Ghana. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 231-235.	2.8	9
207	Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE, 2019, 14, e0215466.	2.5	105
208	Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe(III) and Cu(II) ions. Journal of Environmental Chemical Engineering, 2019, 7, 103098.	6.7	72
209	Microbial Turnover of Glyphosate to Biomass: Utilization as Nutrient Source and Formation of AMPA and Biogenic NER in an OECD 308 Test. Environmental Science & Technology, 2019, 53, 5838-5847.	10.0	23
210	Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology Letters, 2019, 312, 72-97.	0.8	106
211	Molecular theory of glyphosate adsorption to pH-responsive polymer layers. Adsorption, 2019, 25, 1307-1316.	3.0	6
212	Pesticides and autism. BMJ: British Medical Journal, 2019, 364, l1149.	2.3	7
213	Glyphosate runoff and its occurrence in rainwater and subsurface soil in the nearby area of agricultural fields in Argentina Chemosphere, 2019, 225, 906-914.	8.2	76
214	Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: A critical review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1476-1514.	12.8	54
215	Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. New Phytologist, 2019, 223, 1584-1594.	7.3	32
216	Histopathological and ultrastructural indices for the assessment of glyphosate-based herbicide cytotoxicity in decapod crustacean hepatopancreas. Aquatic Toxicology, 2019, 210, 207-214.	4.0	35
217	Monitoring of Glyphosate, Glufosinate-ammonium, and (Aminomethyl)phosphonic acid in ambient air of Provence-Alpes-Côte-d'Azur Region, France. Atmospheric Environment, 2019, 204, 102-109.	4.1	22

#	Article	IF	CITATIONS
218	Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 434-446.	2.3	42
219	N-phosphonomethylglycine utilization by the psychrotolerant yeast Solicoccozyma terricola M 3.1.4 Bioorganic Chemistry, 2019, 93, 102866.	4.1	32
220	Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. International Journal of Environmental Science and Technology, 2019, 16, 7673-7682.	3.5	18
221	Are current EU policies on GMOs justified?. Transgenic Research, 2019, 28, 267-286.	2.4	12
222	The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: effects on development and endocrine system. Environmental Health, 2019, 18, 15.	4.0	64
223	Foliar Roundup application has minor effects on the compositional and functional diversity of soil microorganisms in a short-term greenhouse experiment. Ecotoxicology and Environmental Safety, 2019, 174, 506-513.	6.0	16
224	Sensitive, rapid and non-derivatized determination of glyphosate, glufosinate, bialaphos and metabolites in surface water by LC–MS/MS. SN Applied Sciences, 2019, 1, 1.	2.9	10
225	Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology. Chemosphere, 2019, 227, 533-540.	8.2	67
226	Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production. Agricultural Systems, 2019, 173, 378-392.	6.1	48
227	Potâ€, Atom―and Stepâ€Economic (PASE) Multicomponent Approach to the 5â€(Dialkylphosphonate)â€Substituted 2,4â€Diaminoâ€5 <i>H</i> â€chromeno[2,3â€ <i>b</i>]pyridine Scaffold. European Journal of Organic Chemistry, 2019, 2019, 4171-4178.	2.4	23
228	Insights into the Glyphosate Adsorption Behavior and Mechanism by a MnFe ₂ O ₄ @Cellulose-Activated Carbon Magnetic Hybrid. ACS Applied Materials & Interfaces, 2019, 11, 15478-15488.	8.0	83
229	Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food and Agriculture, 2019, 5, 1601544.	1.4	87
230	Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutation Research - Reviews in Mutation Research, 2019, 781, 186-206.	5.5	213
231	Perinatal Exposure to Glyphosate and a Glyphosate-Based Herbicide Affect Spermatogenesis in Mice. Toxicological Sciences, 2019, 169, 260-271.	3.1	62
232	Glyphosate as a Tool for the Incorporation of New Herbicide Options in Integrated Weed Management in Maize: A Weed Dynamics Evaluation. Agronomy, 2019, 9, 876.	3.0	6
233	Examining German Media Coverage of the Re-Evaluation of Glyphosate. Sustainability, 2019, 11, 1910.	3.2	12
234	No evidence for early fitness penalty in glyphosateâ€resistant biotypes of <i>Conyza canadensis</i> : Common garden experiments in the absence of glyphosate. Ecology and Evolution, 2019, 9, 13678-13689.	1.9	4
235	Insufficient risk assessment of herbicide-tolerant genetically engineered soybeans intended for import into the EU. Environmental Sciences Europe, 2019, 31, .	5.5	14

#	Article	IF	CITATIONS
236	Effect of a glyphosate-containing herbicide on Escherichia coli and Salmonella ser. Typhimurium in an in vitro rumen simulation system. European Journal of Microbiology and Immunology, 2019, 9, 94-99.	2.8	9
237	Acute thiamethoxam toxicity in honeybees is not enhanced by common fungicide and herbicide and lacks stress-induced changes in mRNA splicing. Scientific Reports, 2019, 9, 19196.	3.3	14
238	A Planetary Health Approach to Study Links Between Pollution and Human Health. Current Pollution Reports, 2019, 5, 394-406.	6.6	9
239	Submarine Groundwater Discharge and Stream Baseflow Sustain Pesticide and Nutrient Fluxes in Faga'alu Bay, American Samoa. Frontiers in Environmental Science, 2019, 7, .	3.3	17
240	Effects of Roundup Herbicide at Low Concentration and of Thermal Stress on Physiological and Biochemical Parameters in Amur Sleeper Perccottus glenii Dybowski Juveniles. Inland Water Biology, 2019, 12, 462-469.	0.8	1
241	Pesticides With Potential Thyroid Hormone-Disrupting Effects: A Review of Recent Data. Frontiers in Endocrinology, 2019, 10, 743.	3.5	120
242	The Introduction of Thousands of Tonnes of Glyphosate in the food Chain—An Evaluation of Glyphosate Tolerant Soybeans. Foods, 2019, 8, 669.	4.3	30
243	Improved Sensitivity and Selectivity of Direct Localized Surface Plasmon Resonance Sensor Using Gold Nanobipyramids for Glyphosate Detection. IEEE Sensors Journal, 2020, 20, 2378-2389.	4.7	23
244	Effect of temperature, pH and total organic carbon variations on microbial turnover of 13C315N-glyphosate in agricultural soil. Science of the Total Environment, 2019, 658, 697-707.	8.0	42
245	Microcosm experiments and kinetic modeling of glyphosate biodegradation in soils and sediments. Science of the Total Environment, 2019, 658, 105-115.	8.0	39
246	Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate. Fish and Shellfish Immunology, 2019, 86, 840-845.	3.6	60
247	Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Molecular and Cellular Endocrinology, 2019, 482, 45-56.	3.2	34
248	Re: Glyphosate Use and Cancer Incidence in the Agricultural Health Study. Journal of the National Cancer Institute, 2019, 111, 214-215.	6.3	7
249	Epigenetic disruption of estrogen receptor alpha is induced by a glyphosate-based herbicide in the preimplantation uterus of rats. Molecular and Cellular Endocrinology, 2019, 480, 133-141.	3.2	31
250	Male mammary gland development and methylation status of estrogen receptor alpha in Wistar rats are modified by the developmental exposure to a glyphosate-based herbicide. Molecular and Cellular Endocrinology, 2019, 481, 14-25.	3.2	25
251	Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance?. Science of the Total Environment, 2019, 654, 177-189.	8.0	97
252	Oxidation of N-isopropyl phosphonomethyl glycine with hydrogen peroxide catalyzed by carbon-supported gold nanoparticles. Catalysis Communications, 2019, 121, 57-61.	3.3	6
253	The evidence of human exposure to glyphosate: a review. Environmental Health, 2019, 18, 2.	4.0	229

#	Article	IF	CITATIONS
254	How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides?. Environmental Sciences Europe, 2019, 31, .	5.5	114
255	Palmer Amaranth (<i>Amaranthus palmeri</i>) and Velvetleaf (<i>Abutilon theophrasti</i>) Control in No-Tillage Conventional (Non–genetically engineered) Soybean Using Overlapping Residual Herbicide Programs. Weed Technology, 2019, 33, 95-105.	0.9	30
256	Interactions among Glyphosate and Phosphate in Soils: Laboratory Retention and Transport Studies. Journal of Environmental Quality, 2019, 48, 156-163.	2.0	14
257	Dynamics of glyphosate and AMPA in the soil surface layer of glyphosate-resistant crop cultivations in the loess Pampas of Argentina. Environmental Pollution, 2019, 244, 323-331.	7.5	44
258	A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors. Science of the Total Environment, 2019, 651, 2247-2268.	8.0	152
259	A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples. Analytical and Bioanalytical Chemistry, 2019, 411, 715-724.	3.7	46
260	The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment, 2019, 17, 48-56.	4.0	97
261	Exploring the half-life of glyphosate in human urine samples. International Journal of Hygiene and Environmental Health, 2019, 222, 205-210.	4.3	72
262	Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. Science of the Total Environment, 2020, 700, 134452.	8.0	31
263	Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. Water Research, 2020, 168, 115139.	11.3	61
264	Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees. Food Control, 2020, 109, 106859.	5.5	22
265	Acclimation alters glyphosate temperature-dependent toxicity: Implications for risk assessment under climate change. Journal of Hazardous Materials, 2020, 385, 121512.	12.4	18
266	Field evidence supports former experimental claims on the stimulatory effect of glyphosate on picocyanobacteria communities. Science of the Total Environment, 2020, 701, 134601.	8.0	20
267	Distribution of herbicide-resistant waterhemp (<i>Amaranthus tuberculatus</i>) across row crop production systems in Texas. Weed Technology, 2020, 34, 129-139.	0.9	8
268	Rapid and reliable detection of glyphosate in pome fruits, berries, pulses and cereals by flow injection – Mass spectrometry. Food Chemistry, 2020, 310, 125813.	8.2	19
269	Biocatalytic asymmetric synthesis of l-phosphinothricin using a one-pot three enzyme system and a continuous substrate fed-batch strategy. Applied Catalysis A: General, 2020, 589, 117239.	4.3	13
270	Transcriptome profiling of the fungus Aspergillus nidulans exposed to a commercial glyphosate-based herbicide under conditions of apparent herbicide tolerance. Environmental Research, 2020, 182, 109116.	7.5	17
271	Environmental behavior of glyphosate in soils. Advances in Agronomy, 2020, , 1-34.	5.2	17

			_
#	ARTICLE	IF	CITATIONS
272	Modulation of antioxidant gene expressions by Roundup® exposure in the decapod Macrobrachium potiuna. Ecotoxicology and Environmental Safety, 2020, 190, 110086.	6.0	13
273	Female Preference and Adverse Developmental Effects of Glyphosate-Based Herbicides on Ecologically Relevant Traits in Japanese Quails. Environmental Science & Technology, 2020, 54, 1128-1135.	10.0	27
274	Preharvest Glyphosate Application during Wheat Cultivation: Effects on Wheat Starch Physicochemical Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 503-511.	5.2	6
275	Sorption-desorption isotherms and biodegradation of glyphosate in two tropical soils aged with eucalyptus biochar. Archives of Agronomy and Soil Science, 2020, 66, 1651-1667.	2.6	9
276	Glyphosate-based herbicide induces hyperplastic ducts in the mammary gland of aging Wistar rats. Molecular and Cellular Endocrinology, 2020, 501, 110658.	3.2	21
277	Honeybee and consumer's exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Science of the Total Environment, 2020, 704, 135312.	8.0	44
278	Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network. Information Processing in Agriculture, 2020, 7, 535-545.	4.1	65
279	Glyphosate spraying and earthworm Lumbricus terrestris L. activity: Evaluating short-term impact in a glasshouse experiment simulating cereal post-harvest. European Journal of Soil Biology, 2020, 96, 103148.	3.2	6
280	Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Science of the Total Environment, 2020, 707, 136008.	8.0	61
281	Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH. Environmental Pollution, 2020, 259, 113767.	7.5	24
282	May agricultural water sources containing mixtures of agrochemicals cause hormonal disturbances?. Science of the Total Environment, 2020, 711, 134862.	8.0	5
283	Glyphosate affects methylation in the promoter regions of selected tumor suppressors as well as expression of major cell cycle and apoptosis drivers in PBMCs (in vitro study). Toxicology in Vitro, 2020, 63, 104736.	2.4	31
284	Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Science of the Total Environment, 2020, 705, 135808.	8.0	95
285	Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics. Applied and Environmental Microbiology, 2020, 86	3.1	8
286	Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits. International Journal of Environmental Research and Public Health, 2020, 17, 7102.	2.6	24
287	ElectrochemSENSE: A platform towards field deployable direct on-produce glyphosate detection. Biosensors and Bioelectronics, 2020, 170, 112609.	10.1	30
288	Gene expression response of the alga Fucus virsoides (Fucales, Ochrophyta) to glyphosate solution exposure. Environmental Pollution, 2020, 267, 115483.	7.5	5
289	Glyphosate and AMPA occurrence in agricultural watershed: the case of ParanÃ; Basin 3, Brazil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 909-920.	1.5	9

#	Article	IF	CITATIONS
290	The dietary risk index system: a tool to track pesticide dietary risks. Environmental Health, 2020, 19, 103.	4.0	18
291	Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-visiting insects. Agriculture, Ecosystems and Environment, 2020, 304, 107141.	5.3	29
292	The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars (Brassica napus L.). Genes, 2020, 11, 1161.	2.4	12
293	Sensitive and selective quantification of glyphosate and aminomethylphosphonic acid (AMPA) in urine of the general population by gas chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1158, 122348.	2.3	27
294	Analysis of glyphosate, aminomethylphosphonic acid, and glufosinate from human urine by HRAM LC-MS. Analytical and Bioanalytical Chemistry, 2020, 412, 8313-8324.	3.7	17
295	Environmental behavior and influencing factors of glyphosate in peach orchard ecosystem. Ecotoxicology and Environmental Safety, 2020, 206, 111209.	6.0	9
296	Glyphosate and its formulation Roundup impair pig oocyte maturation. Scientific Reports, 2020, 10, 12007.	3.3	14
297	Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Science of the Total Environment, 2020, 744, 140819.	8.0	39
298	Effect of Roundup on the Activities of Glycosidase in the Intestines of Typical and Facultative Ichthyophages as a Function of Temperature and pH. Inland Water Biology, 2020, 13, 291-296.	0.8	0
299	Soil toxicants that potentially affect children's health. Current Problems in Pediatric and Adolescent Health Care, 2020, 50, 100741.	1.7	9
300	The glyphosate formulation Roundup® LB plus influences the global metabolome of pig gut microbiota in vitro. Science of the Total Environment, 2020, 745, 140932.	8.0	22
301	Can the growing of transgenic maize threaten protected Lepidoptera in Europe?. Insect Science, 2020, 28, 1159-1168.	3.0	1
302	Biotech Crops, Input Use and Landslides Case Study of Herbicide Tolerant Corn in the Philippine Highlands. Ecological Economics, 2020, 177, 106773.	5.7	2
303	Multiple Resistance to Glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and Alternative Control Solutions. Agronomy, 2020, 10, 1735.	3.0	6
304	Chronic Atrazine Exposure Beginning Prenatally Impacts Liver Function and Sperm Concentration With Multi-Generational Consequences in Mice. Frontiers in Endocrinology, 2020, 11, 580124.	3.5	18
305	Risk Assessment of Glyphosate Exposures from Pilot Study with Simulated Heavy Residential Consumer Application of Roundup ® using a Margin of Safety (MOS) Approach. Risk Analysis, 2020, 41, 1693-1715.	2.7	0
306	Positive Correlation between Pesticide Consumption and Longevity in Solitary Bees: Are We Overlooking Fitness Trade-Offs?. Insects, 2020, 11, 819.	2.2	11
307	Technologies Employed in the Treatment of Water Contaminated with Glyphosate: A Review. Molecules, 2020, 25, 5550.	3.8	39

#	Article	IF	CITATIONS
308	Update on human exposure to glyphosate, with a complete review of exposure in children. Environmental Health, 2020, 19, 115.	4.0	14
309	Organic diet intervention significantly reduces urinary glyphosate levels in U.S. children and adults. Environmental Research, 2020, 189, 109898.	7.5	34
310	Monsanto's Roundup verdicts portend liability for some pesticide health damages. Agronomy Journal, 2020, 112, 4519-4528.	1.8	3
311	Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicology and Environmental Safety, 2020, 203, 111013.	6.0	54
312	Effects of glyphosate on microcystin-LR production and release from Microcystis aeruginosa at different temperatures. Environmental Science and Pollution Research, 2020, 27, 41961-41969.	5.3	3
313	Glyphosate Use in the European Agricultural Sector and a Framework for Its Further Monitoring. Sustainability, 2020, 12, 5682.	3.2	73
314	Ecotoxicological Assessment of a Glyphosate-Based Herbicide in Cover Plants: Medicago sativa L. as a Model Species. Applied Sciences (Switzerland), 2020, 10, 5098.	2.5	13
315	Seasonal glyphosate and AMPA levels in urine of children and adolescents living in rural regions of Northeastern Slovenia. Environment International, 2020, 143, 105985.	10.0	38
316	Glyphosate in Portuguese Adults – A Pilot Study. Environmental Toxicology and Pharmacology, 2020, 80, 103462.	4.0	16
317	Association Between Pesticide Use and Incidence of Diffuse Large B-Cell Lymphoma. Anticancer Research, 2020, 40, 5423-5426.	1.1	3
318	Simple, Effective, and Ecofriendly Strategy to Inhibit Droplet Bouncing on Hydrophobic Weed Leaves. ACS Applied Materials & Interfaces, 2020, 12, 50126-50134.	8.0	31
319	The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry. Scientific Reports, 2020, 10, 16696.	3.3	18
320	Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicology and Environmental Safety, 2020, 204, 111108.	6.0	36
321	Effects of Glyphosate-Based and Derived Products on Sea Urchin Larval Development. Journal of Marine Science and Engineering, 2020, 8, 661.	2.6	13
322	Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. Toxics, 2020, 8, 60.	3.7	60
323	The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. Journal of Immunotoxicology, 2020, 17, 163-174.	1.7	137
324	Pesticides and Environmental Contaminants in Organic Honeys According to Their Different Productive Areas toward Food Safety Protection. Foods, 2020, 9, 1863.	4.3	20
325	Epigenome-wide association study for glyphosate induced transgenerational sperm DNA methylation and histone retention epigenetic biomarkers for disease. Epigenetics, 2021, 16, 1150-1167.	2.7	29

#	Article	IF	CITATIONS
326	Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions. Insects, 2020, 11, 664.	2.2	19
327	Separating the Empirical Wheat From the Pseudoscientific Chaff: A Critical Review of the Literature Surrounding Glyphosate, Dysbiosis and Wheat-Sensitivity. Frontiers in Microbiology, 2020, 11, 556729.	3.5	12
328	Pesticide monitoring of agricultural soil pollution. E3S Web of Conferences, 2020, 193, 01068.	0.5	5
329	Chitosan-Based Nanocomposites for Glyphosate Detection Using Surface Plasmon Resonance Sensor. Sensors, 2020, 20, 5942.	3.8	11
330	Roundup® disrupts chitinolytic enzyme activity and ecdysteroid concentration in Macrobrachium potiuna. Environmental Science and Pollution Research, 2020, 27, 43396-43402.	5.3	4
331	Buffelgrass invasion and glyphosate effects on desert soil microbiome communities. Biological Invasions, 2020, 22, 2587-2597.	2.4	17
332	Integrating cover crops for weed management in the semiarid U.S. Great Plains: opportunities and challenges. Weed Science, 2020, 68, 311-323.	1.5	39
333	Molecular and biochemical responses of vitellogenin in the mussel Mytilus galloprovincialis exposed to the glyphosate-based herbicide Roundup® Power 2.0. Environmental Science and Pollution Research, 2020, 27, 26543-26553.	5.3	2
334	The selected epigenetic effects of aminomethylphosphonic acid, a primary metabolite of glyphosate on human peripheral blood mononuclear cells (in vitro). Toxicology in Vitro, 2020, 66, 104878.	2.4	9
335	Exposure to a Glyphosate-based Herbicide Alters the Expression of Key Regulators of Mammary Gland Development on Pre-pubertal Male Rats. Toxicology, 2020, 439, 152477.	4.2	8
336	Glyphosate: environmental fate and impact. Weed Science, 2020, 68, 201-207.	1.5	50
337	Interactions between crop sequences, weed populations and herbicide use in Western Australian broadacre farms: findings of a six-year survey. Crop and Pasture Science, 2020, 71, 491.	1.5	16
338	Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control, 2020, 115, 107289.	5.5	19
339	Glyphosate, the herbicide that become a nightmare and the Precautionary Principle. International Journal of Environmental Studies, 2020, 77, 1012-1023.	1.6	2
340	Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Analytical and Bioanalytical Chemistry, 2020, 412, 4967-4983.	3.7	24
341	Effects of glyphosate on germination, photosynthesis and chloroplast morphology in tomato. Chemosphere, 2020, 258, 127350.	8.2	22
342	Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy, 2020, 10, 791.	3.0	31
343	The Effects of Glyphosate and Its Commercial Formulations to Marine Invertebrates: A Review. Journal of Marine Science and Engineering, 2020, 8, 399.	2.6	64

#	Δρτιςι ε	IF	CITATIONS
π	Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal		CHAHONS
344	ewe lambs. Environmental Pollution, 2020, 265, 114874.	7.5	13
345	Preâ€harvest glyphosate application and effects on wheat starch chemistry: Analysis from application to harvest. Journal of Food Biochemistry, 2020, 44, e13330.	2.9	8
346	Chemicals: pesticides. , 2020, , 203-220.		0
347	Invasive species versus pollutants: Potential of Limnoperna fortunei to degrade glyphosate-based commercial formulations. Ecotoxicology and Environmental Safety, 2020, 201, 110794.	6.0	9
348	Cytotoxicity and hormonal activity of glyphosate-based herbicides. Environmental Pollution, 2020, 265, 115027.	7.5	18
349	Detection of Glyamifop residues in rice and its environment by the QuEChERS method combined with HPLC–MS. Microchemical Journal, 2020, 158, 105157.	4.5	17
350	Colorimetric detection of glyphosate: towards a handmade and portable analyzer. Pure and Applied Chemistry, 2020, 92, 601-616.	1.9	10
351	Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward. , 2020, , 55-99.		24
352	Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?. Environmental Pollution, 2020, 263, 114372.	7.5	116
353	Disruption of cytochrome P450 enzymes in the liver and small intestine in chicken embryos in ovo exposed to glyphosate. Environmental Science and Pollution Research, 2020, 27, 16865-16875.	5.3	21
354	New findings on the effect of glyphosate on autotrophic and heterotrophic picoplankton structure: A microcosm approach. Aquatic Toxicology, 2020, 222, 105463.	4.0	7
355	Yield effects associated with glyphosate use in non-GMO arable farming: A review. Crop Protection, 2020, 134, 105148.	2.1	3
356	Exposure during embryonic development to Roundup® Power 2.0 affects lateralization, level of activity and growth, but not defensive behaviour of marsh frog tadpoles. Environmental Pollution, 2020, 263, 114395.	7.5	10
357	A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environmental Sciences: Processes and Impacts, 2020, 22, 1315-1346.	3.5	187
358	Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: results of the cross-sectional KarMeN study in Germany. Archives of Toxicology, 2020, 94, 1575-1584.	4.2	59
359	Commercial glyphosate-based herbicides effects on springtails (Collembola) differ from those of their respective active ingredients and vary with soil organic matter content. Environmental Science and Pollution Research, 2020, 27, 17280-17289.	5.3	13
360	Relationship between agrochemical compounds and mammary gland development and breast cancer. Molecular and Cellular Endocrinology, 2020, 508, 110789.	3.2	33
361	Effects of pre-harvest glyphosate use on protein composition and shikimic acid accumulation in spring wheat. Food Chemistry, 2020, 332, 127422.	8.2	8

#	Article	IF	CITATIONS
362	Glyphosate-based herbicide formulations and reproductive toxicity in animals. Veterinary and Animal Science, 2020, 10, 100126.	1.5	41
363	Sleep in honey bees is affected by the herbicide glyphosate. Scientific Reports, 2020, 10, 10516.	3.3	31
364	Eucalyptus Are Unlikely to Escape Plantations and Invade Surrounding Forests Managed with Prescribed Fire in Southeastern US. Forests, 2020, 11, 694.	2.1	4
365	Impact of fieldâ€realistic doses of glyphosate and nutritional stress on mosquito life history traits and susceptibility to malaria parasite infection. Ecology and Evolution, 2020, 10, 5079-5088.	1.9	7
366	Monoammonium Phosphate Effects on Glyphosate in Soils: Mobilization, Phytotoxicity, and Alteration of the Microbial Community. Eurasian Soil Science, 2020, 53, 787-797.	1.6	3
367	Ovarian mitochondrial and oxidative stress proteins are altered by glyphosate exposure in mice. Toxicology and Applied Pharmacology, 2020, 402, 115116.	2.8	18
368	Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. Environmental Pollution, 2020, 266, 115108.	7.5	55
369	Perinatal exposure to glyphosate or a glyphosate-based formulation disrupts hormonal and uterine milieu during the receptive state in rats. Food and Chemical Toxicology, 2020, 143, 111560.	3.6	20
370	Isolation of culturable mycota from Argentinean soils exposed or not-exposed to pesticides and determination of glyphosate tolerance of fungal species in media supplied with the herbicide. Revista Argentina De Microbiologia, 2020, 52, 221-230.	0.7	6
371	Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility?. Molecular and Cellular Endocrinology, 2020, 518, 110934.	3.2	54
372	Current and future scenarios of glyphosate use in Europe: Are there alternatives?. Advances in Agronomy, 2020, 163, 219-278.	5.2	47
373	Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, 2020, 742, 140559.	8.0	78
374	Transgenic Cotton (Gossypium hirsutum L.) to Combat Weed Vagaries: Utility of an Apical Meristem-Targeted in planta Transformation Strategy to Introgress a Modified CP4-EPSPS Gene for Glyphosate Tolerance. Frontiers in Plant Science, 2020, 11, 768.	3.6	23
375	Determination of glyphosate and glufosinate in corn using multi-walled carbon nanotubes followed by ultra high performance liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography A, 2020, 1619, 460939.	3.7	20
376	Decyl glucoside surfactant Triton CG-110 does not significantly affect the environmental fate of glyphosate in the soil at environmentally relevant concentrations. Journal of Hazardous Materials, 2020, 388, 122111.	12.4	4
377	The global environmental hazard of glyphosate use. Science of the Total Environment, 2020, 717, 137167.	8.0	165
378	Fast, sensitive and selective determination of herbicide glyphosate in water samples with a White Light Reflectance Spectroscopy immunosensor. Talanta, 2020, 214, 120854.	5.5	24
379	Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology and Evolution, 2020, 4, 578-588.	7.8	45

#	Article	IF	CITATIONS
380	Glyphosate influences cell proliferation in vitro. International Journal of Transgender Health, 2020, 13, 54-65.	2.3	5
381	Adjuvant contributes Roundup's unexpected effects on A549 cells. Environmental Research, 2020, 184, 109306.	7.5	19
382	Interaction between glyphosate and dissolved phosphorus on bacterial and eukaryotic communities from river biofilms. Science of the Total Environment, 2020, 719, 137463.	8.0	17
383	Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study. Environmental Pollution, 2020, 261, 114148.	7.5	36
384	A comprehensive analysis of the animal carcinogenicity data for glyphosate from chronic exposure rodent carcinogenicity studies. Environmental Health, 2020, 19, 18.	4.0	42
385	Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environmental Chemistry Letters, 2020, 18, 663-702.	16.2	113
386	Developmental and lethal effects of glyphosate and a glyphosate-based product on Xenopus laevis embryos and tadpoles. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 173-179.	2.7	17
387	Support Austria's glyphosate ban. Science, 2020, 367, 257-258.	12.6	23
388	The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells. Environmental Pollution, 2020, 260, 113949.	7.5	24
389	Farming without Glyphosate?. Plants, 2020, 9, 96.	3.5	74
390	An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations. Journal of Proteomics, 2020, 217, 103647.	2.4	12
391	Surface-enhanced Raman scattering of glyphosate on dispersed silver nanoparticles: A reinterpretation based on model molecules. Vibrational Spectroscopy, 2020, 108, 103061.	2.2	14
392	Glyphosate induces lymphocyte cell dysfunction and apoptosis via regulation of miR-203 targeting of PIK3R1 in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2020, 101, 51-57.	3.6	52
393	Coevolutionary Governance of Antibiotic and Pesticide Resistance. Trends in Ecology and Evolution, 2020, 35, 484-494.	8.7	41
394	Soil Microbial Communities in Diverse Agroecosystems Exposed to the Herbicide Glyphosate. Applied and Environmental Microbiology, 2020, 86, .	3.1	33
395	Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Current Research in Toxicology, 2020, 1, 25-33.	2.7	50
396	Glyphosate Induces Metaphase II Oocyte Deterioration and Embryo Damage by Zinc Depletion and Overproduction of Reactive Oxygen Species. Toxicology, 2020, 439, 152466.	4.2	22
397	Effects of parental exposure to glyphosate-based herbicides on embryonic development and oxidative status: a long-term experiment in a bird model. Scientific Reports, 2020, 10, 6349.	3.3	34

#	Article	IF	CITATIONS
398	The global challenge of field crop production with limited herbicides: An Australian perspective. Weed Research, 2021, 61, 88-91.	1.7	2
399	Glyphosate—A love story. Ordinary thoughtlessness and responseâ€∎bility in industrial farming. Journal of Agrarian Change, 2021, 21, 160-179.	1.8	25
400	Ecotoxicology of glyphosate and recent advances in its mitigation by adsorption. Environmental Science and Pollution Research, 2021, 28, 2655-2668.	5.3	32
401	Decreased bioavailability of aminomethylphosphonic acid (AMPA) in genetically modified corn with activated carbon or calcium montmorillonite clay inclusion in soil. Journal of Environmental Sciences, 2021, 100, 131-143.	6.1	22
402	Pesticide residue in grainâ€based food: Effects on health, grain quality, and chemical properties of biomacromolecules. Cereal Chemistry, 2021, 98, 8-16.	2.2	7
403	Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. Chemosphere, 2021, 273, 128475.	8.2	12
404	Using benchmark dose modeling for the quantitative risk assessment: Carbon nanotubes, asbestos, glyphosate. Journal of Applied Toxicology, 2021, 41, 148-160.	2.8	5
405	Risk in the circular food economy: Glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Science of the Total Environment, 2021, 750, 141422.	8.0	30
406	Glyphosate Toxicity to Native Nontarget Macrophytes Following Three Different Routes of Incidental Exposure. Integrated Environmental Assessment and Management, 2021, 17, 597-613.	2.9	19
407	Box–Behnken optimization of glyphosate adsorption on to biofabricated calcium hydroxyapatite: kinetic, isotherm, thermodynamic studies. Applied Nanoscience (Switzerland), 2021, 11, 687-697.	3.1	15
408	Invasive Johnsongrass, a threat to native grasslands and agriculture. Biologia (Poland), 2021, 76, 413-420.	1.5	11
409	Herbicides glyphosate and glufosinate ammonium negatively affect human sperm mitochondria respiration efficiency. Reproductive Toxicology, 2021, 99, 48-55.	2.9	28
410	Multigenerational Toxic Effects on <i>Daphnia magna</i> Induced by Silver Nanoparticles and Glyphosate Mixture. Environmental Toxicology and Chemistry, 2021, 40, 1123-1131.	4.3	12
411	Structural damage in liver, gonads, and reduction in spawning performance and alteration in the haematological parameter of <i>Anabas testudineus</i> by glyphosate―a herbicide. Aquaculture Research, 2021, 52, 1150-1159.	1.8	14
412	PRE herbicides influence critical time of weed removal in glyphosate-resistant corn. Weed Technology, 2021, 35, 271-278.	0.9	4
413	Effects of glyphosate-based herbicide on royal jelly production of <i>Apis mellifera</i> (Hymenoptera:) Tj ETQq1	l 0. <u>7</u> 8431	4 rgBT /Ove
414	Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. Science of the Total Environment, 2021, 757, 143829.	8.0	25
415	Ecologies of drug war and more-than-human health: The case of a chemical at war with a plant. International Journal of Drug Policy, 2021, 89, 103067.	3.3	9

#	Article	IF	CITATIONS
416	Bioconcentration of glyphosate in wetland biofilms. Science of the Total Environment, 2021, 756, 143993.	8.0	25
417	Fate of glyphosate in wheat during milling and bread production. Cereal Chemistry, 2021, 98, 100-108.	2.2	3
418	The carbon stable isotope compositions of glyphosate and aminomethylphosphonic acid (AMPA): Improved analytical sensitivity and first application to environmental water matrices. Rapid Communications in Mass Spectrometry, 2021, 35, e9017.	1.5	3
419	Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). Environmental Toxicology and Pharmacology, 2021, 81, 103521.	4.0	26
420	Glyphosate commercial formulation negatively affects the reproductive success of solitary wild bees in a Pampean agroecosystem. Apidologie, 2021, 52, 272-281.	2.0	12
421	Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nature Chemical Biology, 2021, 17, 205-212.	8.0	77
422	Determination of glyphosate and AMPA in oat products for the selection of candidate reference materials. Food Chemistry, 2021, 342, 128213.	8.2	8
423	Title: Low concentrations of glyphosate in water and sediment after direct over-water application to control an invasive aquatic plant. Water Research, 2021, 188, 116573.	11.3	16
424	Assessment of crop and weed management strategies prior to introduction of auxin-resistant crops in Brazil. Weed Technology, 2021, 35, 155-165.	0.9	8
425	Patent network analysis in agriculture: a case study of the development and protection of biotechnologies. Economics of Innovation and New Technology, 2021, 30, 111-133.	3.4	9
426	Zebrafish as a suitable model for studying the mode of action and harmfulness of organophosphate pesticides. E3S Web of Conferences, 2021, 280, 11005.	0.5	1
427	Multicomponent design of chromeno[2,3-b]pyridine systems. Russian Chemical Reviews, 2021, 90, 94-115.	6.5	25
428	Pesticides: Types, Toxicity and Recent Updates on Bioremediation Strategies. Environmental Challenges and Solutions, 2021, , 531-568.	0.9	0
429	Combinatorial Sensors: An Integrated Approach to Lifestyle Management andÂEnvironmental Surveillance. , 2023, , 505-525.		2
431	Molecular triggers of non-celiac wheat sensitivity. , 2021, , 25-44.		1
432	Efficient synthesis and characterization of non-toxic glyphosate derivatives as eco-friendly herbicides. Current Research in Green and Sustainable Chemistry, 2021, 4, 100100.	5.6	5
433	Detection of glyphosate with a copper(<scp>ii</scp>)-pyrocatechol violet based GlyPKit. Analytical Methods, 2021, 13, 4354-4360.	2.7	8
434	Socio-Ethical Aspect of Genetically Modified Organisms: A Critical Analysis. , 2021, , 421-450.		0

#	Article	IF	CITATIONS
435	Nanoscale imaging of the simultaneous occlusion of nanoplastics and glyphosate within soil minerals. Environmental Science: Nano, 2021, 8, 2855-2865.	4.3	11
436	Generic, growing, green?: The changing political economy of the global pesticide complex. Journal of Peasant Studies, 2021, 48, 231-253.	4.5	42
437	A minimum data set for tracking changes in pesticide use. , 2021, , 21-39.		4
438	Study of muscle fibers of the extensor digitorium longus and soleus muscles of C57BL/6 females exposed to glyphosate during pregnancy and lactation. Einstein (Sao Paulo, Brazil), 2021, 19, eAO5657.	0.7	2
439	The EU endocrine disruptors' regulation and the glyphosate controversy. Toxicology Reports, 2021, 8, 1193-1199.	3.3	23
440	Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. Environmental Health Perspectives, 2021, 129, 17005.	6.0	99
441	Glyphosate-based herbicides and oxidative stress. , 2021, , 79-90.		3
442	Mammalian toxicity of herbicides used in intensive GM crop farming. , 2021, , 143-180.		4
443	Cardiovascular damage associated with subchronic exposure to the glyphosate herbicide in Wistar rats. Toxicology and Industrial Health, 2021, 37, 210-218.	1.4	2
444	Regulating Droplet Impact and Wetting Behaviors on Hydrophobic Weed Leaves by a Double-Chain Cationic Surfactant. ACS Sustainable Chemistry and Engineering, 2021, 9, 2891-2901.	6.7	24
445	Understanding the origins of herbicides metabolites in an agricultural watershed through their spatial and seasonal variations. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56, 313-332.	1.5	1
446	Lost opportunities for cancer prevention: historical evidence on early warnings with emphasis on radiofrequency radiation. Reviews on Environmental Health, 2021, 36, 585-597.	2.4	12
447	Phytoremediation of Heavy Metals in Tropical Soils an Overview. Sustainability, 2021, 13, 2574.	3.2	24
448	Application of ZnO Nanocrystals as a Surface-Enhancer FTIR for Glyphosate Detection. Nanomaterials, 2021, 11, 509.	4.1	8
449	Effects of glyphosate on soil fungal communities: A field study. Revista Argentina De Microbiologia, 2021, 53, 349-358.	0.7	16
450	Melatonin rescues the reproductive toxicity of lowâ€dose glyphosateâ€based herbicide during mouse oocyte maturation via the GPER signaling pathway. Journal of Pineal Research, 2021, 70, e12718.	7.4	21
451	Efficiency of formation and functioning of the symbiotic soybean system with glyphosate treatment. Biological Systems Theory and Innovation, 2021, 12, .	0.1	0
452	Determining the presence of glyphosate and glyphosate-tolerant events in maize and soybean food products in South Africa. Food Additives and Contaminants: Part B Surveillance, 2021, 14, 91-97.	2.8	2

ARTICLE IF CITATIONS Growth performance and reproductive function impairment of glyphosateâ€based herbicide in male 453 15 1.6 guinea pig (<i>Cavia porcellus</i>). Veterinary Medicine and Science, 2021, 7, 1047-1055. Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction 454 3.3 with gut microbiota. Scientific Reports, 2021, 11, 3265. Antibiotic resistance lessons for the herbicide resistance crisis. Pest Management Science, 2021, 77, 455 9 3.4 3807-3814. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. Chemosphere, 2021, 456 267, 128986. Glyphosate and AMPA Induce Alterations in Expression of Genes Involved in Chromatin Architecture in Human Peripheral Blood Mononuclear Cells (In Vitro). International Journal of Molecular Sciences, 457 4.1 12 2021, 22, 2966. Plant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification. Agriculture (Switzerland), 2021, 11, 222. 3.1 Explaining Growing Glyphosate Use: The Political Economy of Herbicide-Dependent Agriculture. Global 459 7.8 65 Environmental Change, 2021, 67, 102239. Controversies on Endocrine and Reproductive Effects of Glyphosate and Glyphosate-Based Herbicides: 460 3.5 28 A Mini-Review. Frontiers in Endocrinology, 2021, 12, 627210. Facile Colorimetric Nanozyme Sheet for the Rapid Detection of Glyphosate in Agricultural Products 461 Based on Inhibiting Peroxidase-Like Catalytic Activity of Porous Co₃O₄ 5.2 69 Nanoplates. Journal of Agricultural and Food Chemistry, 2021, 69, 3537-3547. Profiles of wheat rhizobacterial communities in response to repeated glyphosate applications, crop 1.2 rotation, and tillage. Canadian Journal of Soil Science, 2021, 101, 157-167. Low Doses of Glyphosate/Roundup Alter Blood–Testis Barrier Integrity in Juvenile Rats. Frontiers in 463 12 3.5 Endocrinology, 2021, 12, 615678. Impact of Chronic Exposure to Sublethal Doses of Glyphosate on Honey Bee Immunity, Gut Microbiota 464 3.6 and Infection by Pathogens. Microorganisms, 2021, 9, 845. Restoration management of cattle resting place in mountain grassland. PLoS ONE, 2021, 16, e0249445. 465 2.5 1 Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration 5.5 24 and glyphosate leaching are influenced by soil properties. Environmental Sciences Europe, 2021, 33, . Evaluating efficacy of preemergence soybean herbicides using field treated soil in greenhouse 467 0.9 13 bioassays. Weed Technology, 2021, 35, 830-837. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape?. Science of the Total Environment, 2021, 765, 144271. Land cover does not affect microbial and plant response to glyphosate and nitrogen application in the 471 4.3 3 Pampas (Argentina). Applied Soil Ecology, 2021, 160, 103863. Impact of glyphosate applied preharvest on oat kernel quality. Cereal Chemistry, 2021, 98, 866-877. 2.2

#	Article	IF	CITATIONS
473	Effects of Low Doses of Herbicides on Different Endpoints in the Life Cycle of Nontarget Terrestrial Plants. Environmental Toxicology and Chemistry, 2021, 40, 1389-1404.	4.3	4
474	China en América del Sur: patentes, herbicidas y cultivos genéticamente modificados. Estudios De Asia Y Africa, 2021, 56, 347.	0.1	0
475	Roundup causes high levels of mortality following contact exposure in bumble bees. Journal of Applied Ecology, 2021, 58, 1167-1176.	4.0	55
476	Occupational exposure to glyphosate and risk of lymphoma:results of an Italian multicenter case-control study. Environmental Health, 2021, 20, 49.	4.0	8
477	Effects of commercial formulations of glyphosate on marine crustaceans and implications for risk assessment under temperature changes. Ecotoxicology and Environmental Safety, 2021, 213, 112068.	6.0	18
478	Glyphosate and AMPA binding by two polyamino-phenolic ligands and their dinuclear Zn(II) complexes. Inorganica Chimica Acta, 2021, 519, 120261.	2.4	7
479	Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 2021, 286, 112141.	7.8	24
480	The Clyphosate Assemblage: Herbicides, Uneven Development, and Chemical Geographies of Ubiquity. Annals of the American Association of Geographers, 2022, 112, 19-35.	2.2	15
481	The contribution of land cover change to the decline of honey yields in the Northern Great Plains. Environmental Research Letters, 2021, 16, 064050.	5.2	11
482	Analysis of Biomechanical Parameters of Muscle Soleus Contraction and Blood Biochemical Parameters in Rat with Chronic Glyphosate Intoxication and Therapeutic Use of C60 Fullerene. International Journal of Molecular Sciences, 2021, 22, 4977.	4.1	15
483	Cycling of reduced phosphorus compounds in soil and potential impacts of climate change. European Journal of Soil Science, 2021, 72, 2517-2537.	3.9	13
484	Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biology, 2021, 19, e3001182.	5.6	38
485	Glyphosate ban in <scp>Mexico</scp> : potential impacts on agriculture and weed management. Pest Management Science, 2021, 77, 3820-3831.	3.4	26
486	Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 2021, 409, 124927.	12.4	101
487	Is glyphosate toxic to bees? A meta-analytical review. Science of the Total Environment, 2021, 767, 145397.	8.0	54
488	Associations between pesticide mixtures applied near home during pregnancy and early childhood with adolescent behavioral and emotional problems in the CHAMACOS study. Environmental Epidemiology, 2021, 5, e150.	3.0	16
489	Comparative Evaluation of the Cytotoxicity of Glyphosate-Based Herbicides and Glycine in L929 and Caco2 Cells. Frontiers in Public Health, 2021, 9, 643898.	2.7	9
490	Effect of row spacing and herbicide programs for control of glyphosate-resistant Palmer amaranth (<i>Amaranthus palmeri</i>) in dicamba/glyphosate-resistant soybean. Weed Technology, 2021, 35, 790-801.	0.9	5

#	Article	IF	CITATIONS
491	Pesticides in a case study on no-tillage farming systems and surrounding forest patches in Brazil. Scientific Reports, 2021, 11, 9839.	3.3	11
492	Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides. Enzyme and Microbial Technology, 2021, 146, 109766.	3.2	12
493	Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case–Control Study in the PROTECT Cohort (Puerto Rico). Environmental Health Perspectives, 2021, 129, 57011.	6.0	33
494	Trends in science on glyphosate toxicity: a scientometric study. Environmental Science and Pollution Research, 2021, 28, 56432-56448.	5.3	8
495	Temperature and Aging Affect Glyphosate Toxicity and Fatty Acid Composition in Allonychiurus kimi (Lee) (Collembola). Toxics, 2021, 9, 126.	3.7	4
496	Pilot study on the urinary excretion of the glyphosate metabolite aminomethylphosphonic acid and breast cancer risk: The Multiethnic Cohort study. Environmental Pollution, 2021, 277, 116848.	7.5	17
497	The key role of inter-row vegetation and ants on predation in Mediterranean organic vineyards. Agriculture, Ecosystems and Environment, 2021, 311, 107327.	5.3	18
498	Glyphosate concentrations in global freshwaters: are aquatic organisms at risk?. Environmental Science and Pollution Research, 2021, 28, 60635-60648.	5.3	47
499	Evaluation of hemato-biochemical, antioxidant enzymes as biochemical biomarkers and genotoxic potential of glyphosate in freshwater fish (<i>Labeo rohita</i>). Chemistry and Ecology, 2021, 37, 646-667.	1.6	19
500	Influence of PRE-emergence herbicides on soybean development, root nodulation and symbiotic nitrogen fixation. Crop Protection, 2021, 144, 105576.	2.1	7
502	Molecular mechanisms underlying glyphosate resistance in bacteria. Environmental Microbiology, 2021, 23, 2891-2905.	3.8	24
503	Glyphosate: A Review on the Current Environmental Impacts from a Brazilian Perspective. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 385-397.	2.7	10
504	Seeking justice, eating toxics: overlooked contaminants in urban community gardens. Agriculture and Human Values, 2022, 39, 165-184.	3.0	11
505	Subchronic exposure to a glyphosate-based herbicide causes dysplasia in the digestive tract of Wistar rats. Environmental Science and Pollution Research, 2021, 28, 61477-61496.	5.3	5
507	Electrochemical Sensor System for Glyphosate Detection. , 2021, , .		1
508	Urinary excretion of herbicide co-formulants after oral exposure to roundup MON 52276 in rats. Environmental Research, 2021, 197, 111103.	7.5	13
510	A lognormal model for evaluating maximum residue levels of pesticides in crops. Environmental Pollution, 2021, 278, 116832.	7.5	9
511	Organic Farming Lessens Reliance on Pesticides and Promotes Public Health by Lowering Dietary Risks. Agronomy, 2021, 11, 1266.	3.0	26

#	Article	IF	CITATIONS
512	Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS Omega, 2021, 6, 14848-14857.	3.5	3
513	Chronic exposure to glyphosate in Florida manatee. Environment International, 2021, 152, 106493.	10.0	17
514	The Herbicide Atrazine Potentiates Angiotensin II-Induced Aldosterone Synthesis and Release From Adrenal Cells. Frontiers in Endocrinology, 2021, 12, 697505.	3.5	6
515	Analysis of biased language in peer-reviewed scientific literature on genetically modified crops. Environmental Research Letters, 2021, 16, 084035.	5.2	0
516	Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Frontiers in Endocrinology, 2021, 12, 672532.	3.5	28
517	Electrochemical Microsensor for Microfluidic Glyphosate Monitoring in Water Using MIP-Based Concentrators. ACS Sensors, 2021, 6, 2738-2746.	7.8	24
518	Establishment of a HPLC–MS/MS Detection Method for Glyphosate, Glufosinate-Ammonium, and Aminomethyl Phosphoric Acid in Tea and Its Use for Risk Exposure Assessment. Journal of Agricultural and Food Chemistry, 2021, 69, 7969-7978.	5.2	23
519	Glyphosate-based herbicides: Evidence of immune-endocrine alteration. Toxicology, 2021, 459, 152851.	4.2	24
520	Changes in climate drive recent monarch butterfly dynamics. Nature Ecology and Evolution, 2021, 5, 1441-1452.	7.8	37
521	One-step purification/extraction method to access glyphosate, glufosinate, and their metabolites in natural waters. Journal of Chromatography A, 2021, 1649, 462188.	3.7	9
522	Synergistic effects of contaminants in Lombardy waters. Scientific Reports, 2021, 11, 13888.	3.3	6
523	Exposure to multiple pesticides and neurobehavioral outcomes among smallholder farmers in Uganda. Environment International, 2021, 152, 106477.	10.0	40
524	Maternal urinary levels of glyphosate during pregnancy and anogenital distance in newborns in a US multicenter pregnancy cohort. Environmental Pollution, 2021, 280, 117002.	7.5	33
525	Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy. Environments - MDPI, 2021, 8, 62.	3.3	10
526	Effective removal of the herbicide glyphosate by the kelp Saccharina japonica female gametophytes from saline waters and its mechanism elucidation. Chemosphere, 2021, 274, 129826.	8.2	3
527	Influence of Herbicide Exposure and Ranavirus Infection on Growth and Survival of Juvenile Red-Eared Slider Turtles (Trachemys scripta elegans). Viruses, 2021, 13, 1440.	3.3	3
528	Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. Ecotoxicology and Environmental Safety, 2021, 217, 112258.	6.0	14
529	Commentary: Novel strategies and new tools to curtail the health effects of pesticides. Environmental Health, 2021, 20, 87.	4.0	9

#	Article	IF	CITATIONS
530	Residues of glyphosate in food and dietary exposure. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5226-5257.	11.7	37
531	Involvement of mitochondrial fission in renal tubular pyroptosis in mice exposed to high and environmental levels of glyphosate combined with hard water. Environmental Pollution, 2021, 283, 117082.	7.5	15
532	Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment. Molecular Ecology, 2021, 30, 4771-4788.	3.9	12
533	Reconciling biodiversity with timber production and revenue via an intensive forest management experiment. Ecological Applications, 2021, 31, e02441.	3.8	6
534	Pulmonary inflammatory response from co-exposure to LPS and glyphosate. Environmental Toxicology and Pharmacology, 2021, 86, 103651.	4.0	10
535	Developmental effect of parental or direct chronic exposure to environmental concentration of glyphosate on the larvae of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 2021, 237, 105894.	4.0	12
536	Phytotoxicity of glyphosate-based herbicide to Typha angustifolia and Vetiveria zizanioides and its effect on rhizosphere bacteria. Nanotechnology for Environmental Engineering, 2021, 6, 1.	3.3	0
538	Response of the nuclear xenobiotic receptors to alleviate glyphosate-based herbicide-induced nephrotoxicity in weaned piglets. Environmental Science and Pollution Research, 2021, , 1.	5.3	2
539	Glyphosate-remediation potential of selected plant species in artificial wetlands. Science of the Total Environment, 2021, 781, 146812.	8.0	13
540	Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environmental Challenges, 2021, 4, 100149.	4.2	46
541	Earthworm casts restrained the accumulation and phytotoxicity of soil glyphosate to cowpea (Vigna) Tj ETQq0 C	0 ggBT /O	veglock 10 Tf
542	RegulationsÂMatter: Epistemic Monopoly, Domination,ÂPatents, and the Public Interest. Philosophy and Technology, 0, , 1.	4.3	2
543	A Review and Update with Perspective of Evidence that the Herbicide Glyphosate (Roundup) is a Cause of Non-Hodgkin Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 621-630.	0.4	18
544	Excretion of Heavy Metals and Glyphosate in Urine and Hair Before and After Long-Term Fasting in Humans. Frontiers in Nutrition, 2021, 8, 708069.	3.7	8
545	A Glyphosate-Based Formulation but Not Glyphosate Alone Alters Human Placental Integrity. Toxics, 2021, 9, 220.	3.7	9
546	Exposure to glyphosate and tetrachlorvinphos induces cytotoxicity and global DNA methylation in human cells. Toxicology and Industrial Health, 2021, 37, 074823372110331.	1.4	2
547	UV and temperature effects on chloroacetanilide and triazine herbicides degradation and cytotoxicity. Heliyon, 2021, 7, e08010.	3.2	1
549	Impact of Glyphosate-Roundup® in the Ileal Structure of Male and Female Rats: A Morphological and Immunohistochemical Study. Microscopy and Microanalysis, 2021, , 1-17.	0.4	1

		CITATION REPORT	
#	Article	IF	CITATIONS
550	Dynamics of Glyphosate and Aminomethylphosphonic Acid in Soil Under Conventional and Conservation Tillage. International Journal of Environmental Research, 2021, 15, 1037-1055.	2.3	18
551	NPA-Cu2+ Complex as a Fluorescent Sensing Platform for the Selective and Sensitive Detectio Glyphosate. International Journal of Molecular Sciences, 2021, 22, 9816.	n of 4.1	16
552	Response of broadleaf and grass cover crop species to soil residues of glyphosate and aminomethylphosphonic acid (AMPA). Weed Technology, 2021, 35, 1038-1044.	0.9	2
553	Performance and mineral status of weaning pigs fed diets with different levels of glyphosate a tryptophan. Livestock Science, 2021, 252, 104681.	nd 1.6	4
554	Repeated annual application of glyphosate reduces the abundance and alters the community s of soil culturable pseudomonads in a temperate grassland. Agriculture, Ecosystems and Enviro 2021, 319, 107503.	tructure nment, 5.3	12
555	Jekyll and Hyde: nuclear receptors ignite and extinguish hepatic oxidative milieu. Trends in Endocrinology and Metabolism, 2021, 32, 790-802.	7.1	4
556	Reproductive toxicity due to herbicide exposure in freshwater organisms. Comparative Biocher and Physiology Part - C: Toxicology and Pharmacology, 2021, 248, 109103.	nistry 2.6	20
557	Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal o Hazardous Materials, 2021, 420, 126651.	f 12.4	35
558	Short exposure to glyphosate induces locomotor, craniofacial, and bone disorders in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 2021, 87, 103700.	4.0	16
559	Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: Linked with gut mic and microRNAs?. Environmental Pollution, 2021, 286, 117685.	robiota 7.5	52
560	Improving screening model of pesticide risk assessment in surface soils: Considering degradati metabolites. Ecotoxicology and Environmental Safety, 2021, 222, 112490.	on 6.0	11
561	Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition. Science of the Total Environment, 2021, 793, 148496.	8.0	31
562	The effect of Roundup on embryonic development, early foxr1 and hsp70 gene expression and of common carp (Cyprinus carpio L.). Theriogenology, 2021, 175, 163-169.	hatching 2.1	4
563	Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Cycle Assessment. Renewable and Sustainable Energy Reviews, 2021, 151, 111604.	d Life 16.4	20
564	Synergetic toxicity of silver nanoparticle and glyphosate on wheat (Triticum aestivum L.). Scier the Total Environment, 2021, 797, 149200.	1ce of 8.0	20
565	Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in C $\hat{a} \in Human$ biomonitoring results of the German Environmental Survey 2014 $\hat{a} \in 2017$ (GerES Environment International, 2021, 156, 106769.	ermany J). 10.0	49
566	Generational effects of a chronic exposure to a low environmentally relevant concentration of glyphosate on rainbow trout, Oncorhynchus mykiss. Science of the Total Environment, 2021, 3 149462.	301, 8.0	12
567	AMPA-15N – Synthesis and application as standard compound in traceable degradation stud glyphosate. Ecotoxicology and Environmental Safety, 2021, 225, 112768.	lies of 6.0	1

ARTICLE IF CITATIONS First evaluation of the periphyton recovery after glyphosate exposure. Environmental Pollution, 2021, 568 7.5 8 290, 117998. Multigeneration toxicity of Geunsami® (a glyphosate-based herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels. Environmental Pollution, 2021, 291, 118172. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact 570 6.1 19 and plasmid transfer. Journal of Environmental Sciences, 2022, 115, 363-373. Recent pesticide exposure affects sleep: A cross-sectional study among smallholder farmers in 571 Uganda. Environment International, 2022, 158, 106878. Glyphosate applied at a hormetic dose improves ripening without impairing sugarcane productivity 572 8.0 12 and ratoon sprouting. Science of the Total Environment, 2022, 806, 150503. Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats. Science of 8.0 the Total Environment, 2022, 805, 150368. Urinary glyphosate concentration in pregnant women in relation to length of gestation. 574 7.5 25 Environmental Research, 2022, 203, 111811. Occupational pesticide exposure, cancer and chronic neurological disorders: A systematic review of 20 epidemiological studies in greenspace workers. Environmental Research, 2022, 203, 111822. Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture?. Pathogens, 2021, 576 2.8 9 10, 133. Implementation of multi-terrain mechanism for weed killing rover. AIP Conference Proceedings, 2021, , 577 0.4 Year-round pesticide contamination of public sites near intensively managed agricultural areas in 578 41 5.5South Tyrol. Environmental Sciences Europe, 2021, 33, . 579 Organic agriculture: impact on the environment and food quality., 2021, , 31-58. Impact of agrochemical application in sustainable agriculture., 2021, , 15-24. 580 12 Residues of glyphosate and aminomethylphosphonic acid (AMPA) in genetically modified glyphosate tolerant soybean, corn and cotton crops. Ciencia Rural, 2021, 51, . Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, 583 and Effects on Non-target Plants and Agricultural Microbes. Reviews of Environmental 1.3 18 Contamination and Toxicology, 2020, 255, 1-65. Use of Biochar in Sustainable Agriculture., 2019,, 501-528. 584 Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. 585 1.7 7 Sustainable Development and Biodiversity, 2019, , 11-44. Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 111-129.

#	Article	IF	CITATIONS
587	Plant Genetic Engineering and GM Crops: Merits and Demerits. , 2019, , 155-229.		4
588	Impact of pesticide exposure on adipose tissue development and function. Biochemical Journal, 2020, 477, 2639-2653.	3.7	22
595	Age matters: Submersion period shapes community composition of lake biofilms under glyphosate stress. Facets, 2018, 3, 934-951.	2.4	13
596	Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR. PLoS ONE, 2017, 12, e0180794.	2.5	27
597	Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS ONE, 2018, 13, e0192008.	2.5	47
598	Acute toxicity effect of glyphosate on survival rate of common carp, Cyprinus carpio. Environmental Health Engineering and Management, 2018, 5, 61-66.	0.7	16
599	From silent spring to silent night: Agrochemicals and the anthropocene. Elementa, 2017, 5, .	3.2	49
600	Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 2019, 9, 591-597.	0.6	15
601	Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regulatory Mechanisms in Biosystems, 2019, 10, 228-232.	0.6	12
602	Autoimmune Disease: Budget-buster or Enlightened Solutions? (The coming epidemic and the new) Tj ETQq1 1 0.7	784314 rg 0.2	BT /Overloo
603	Hygienic assessment of pesticides and chemical fertilizers use in agriculture of the Republic of Tatarstan. Kazan Medical Journal, 2017, 98, 116-121.	0.2	2
604	Efficacy and Nontarget Effects of Glyphosate and Two Organic Herbicides for Invasive Woody Vine Control. Natural Areas Journal, 2020, 40, 129.	0.5	4
605	Inégalités environnementales dans la pampa humide argentineÂ: méthodologies qualitative et quantitative pour évaluer l'exposition aux pesticides des élÃ∵ves d'une ©cole rurale. L'Ordinaire Des Amériques, 2019, , .	0.1	2
606	Cotton Textiles and Human Health Challenges. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2019, , 199-222.	0.1	2
607	Can glyphosate's disruption of the gut microbiome and induction of sulfate deficiency explain the epidemic in gout and associated diseases in the industrialized world?. Journal of Biological Physics and Chemistry, 2017, 17, 53-76.	0.1	5
608	Evolution of glyphosate resistance is the rhizosphere microbiome a key factor?. Journal of Biological Physics and Chemistry, 2018, 18, 78-93.	0.1	7
609	Glyphosate-based herbicide: a risk factor for demyelinating conditions of the peripheral nervous system?. Neural Regeneration Research, 2019, 14, 2079.	3.0	8
610	Glyphosate Residues in Soil and Air: An Integrated Review. , 0, , .		11

	CITATION	Report	
#	Article	IF	CITATIONS
611	Glyphosate: To Use or Not to Use. Modern Concepts & Developments in Agronomy, 2021, 8, .	0.1	0
612	New Fluorescent Probes for the Sensitive Determination of Glyphosate in Food and Environmental Samples. Journal of Agricultural and Food Chemistry, 2021, 69, 12661-12673.	5.2	45
613	The Influence of Herbicides to Marine Organisms Aliivibrio fischeri and Artemia salina. Toxics, 2021, 9, 275.	3.7	0
614	Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. Journal of Chromatography A, 2022, 1661, 462612.	3.7	18
615	Indirect Effects of the Herbicide Glyphosate on Plant, Animal and Human Health Through its Effects on Microbial Communities. Frontiers in Environmental Science, 2021, 9, .	3.3	45
616	Evaluation of Behavioral Changes and Tissue Damages in Common Carp (Cyprinus carpio) after Exposure to the Herbicide Clyphosate. Veterinary Sciences, 2021, 8, 218.	1.7	31
617	Transmission electron microscopic analysis of glyphosate induced cytotoxicity and its attenuation by <i>N</i> -acetyl-L-cysteine in caprine testicular germ cells in vitro. Ultrastructural Pathology, 2021, 45, 407-413.	0.9	2
618	Improving screening model of pesticide risk assessment in surface soils: Addressing regional specific human exposure risks and regulatory management. Ecotoxicology and Environmental Safety, 2021, 227, 112894.	6.0	12
620	Toxicological evaluation of the herbicide glyphosate in the cultured oysterÂCrassostrea gasar. Journal of Aquaculture & Marine Biology, 2018, 7, 343-350.	0.4	1
622	HEMATOLOGICAL AND BIOCHEMICAL CHANGES INDUCED BY CHLORPYRIFOSE AND GLYPHOSATE IN MALE ALBINO RAT'S AND AMELIORATIVE EFFECT OF VITAMIN C. Al-Azhar Bulletin of Science, 2018, 29, 15-24.	0.1	1
625	Weed Management for Healthy Crop Production. , 2019, , 225-256.		25
626	On the Regulation of the Joint Use of Growth Stimulants and Pesticides in Forest Growing. Ecology and Industry of Russia, 2019, 23, 66-71.	0.4	0
627	L'acide aminométhylphosphonique (AMPA) dans les eaux naturelles et les filières de traitement : origines, comportement et devenir. Techniques - Sciences - Methodes, 2019, , 45-58.	0.0	1
628	Identificación de cepas bacterianas tolerantes a pesticidas aisladas de suelos agrÃeolas. Mexican Journal of Biotechnology, 2019, 4, 57-66.	0.3	0
630	Improving Efficiency of Crop Protection Measures. A Technical Contribution for Better Weed Control, Less Pesticide Use and Decreasing Soil Tillage Intensity in Dry Farming Regions Exposed to Wind Erosion. Innovations in Landscape Research, 2020, , 393-406.	0.4	1
631	Eco-Social and Economic Profile of the Herbicide Glyphosate. Pannoniana, 2019, 3, 276-284.	0.1	0
633	What Is the Problem? Pesticides in Our Everyday Life. , 2020, , 1-125.		0
634	The glyphosate controversy: an update. Arquivos Do Instituto Biologico, 0, 87, .	0.4	2

#	Article	IF	CITATIONS
636	Soils. Vacuum and Surface Science, 2020, 63, 159-164.	0.1	0
637	Comparative acute toxicity of glyphosate-based herbicide (GBH) to <i>Daphnia magna</i> , <i>Tisbe longicornis</i> , and <i>Emerita analoga</i> . Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 646-654.	1.5	3
638	Effect of herbicides and doses on short―and longâ€ŧerm control of <i>Eleusine tristachya</i> . Weed Research, 2020, 60, 259-268.	1.7	2
640	WATER HARDNESS AND pH IN THE EFFECTIVENESS OF GLYPHOSATE FORMULATIONS. Engenharia Agricola, 2020, 40, 555-560.	0.7	1
641	Herbisit Stres Korumasında Putresin: Buğdayda Genomik Kararsızlığı Azaltma ve DNA Metilasyon DeÄŸiÅŸiklikleri. European Journal of Science and Technology, 0, , 442-448.	0.5	1
642	Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review. Toxicology, 2022, 465, 153017.	4.2	31
643	Occurrence of Pesticides Associated with an Agricultural Drainage System in a Mediterranean Environment. Applied Sciences (Switzerland), 2021, 11, 10212.	2.5	4
644	Modulation of Physiological Stress Response of Triticum aestivum L. to Glyphosate by Brassinosteroid Application. Life, 2021, 11, 1156.	2.4	16
645	Influence of planting date, row spacing, and reduced herbicide inputs on peanut canopy and sicklepod growth. Agronomy Journal, 2022, 114, 717-726.	1.8	3
646	Defence by duplication: The relation between phenotypic glyphosate resistance and <i>EPSPS</i> gene copy number variation in <i>Amaranthus palmeri</i> . Molecular Ecology, 2021, 30, 5328-5342.	3.9	5
647	Characterizing human health and ecological impacts of chemicals from multiple emission sectors: A simple integrated approach. Journal of Environmental Chemical Engineering, 2021, 9, 106687.	6.7	2
649	Reforestar en áreas agrÃcola-ganaderas: un estudio de caso evaluando el desempeño de dos especies nativas del Espinal. Boletin De La Sociedad Argentina De Botanica, 2020, 55, 605-617.	0.3	2
650	A Review of the Analytical Methods Based on Chromatography for Analyzing Glyphosate in Foods. , 0, ,		5
651	Glyphosate and Non-Hodgkin Lymphoma. Asian Journal of Organic & Medicinal Chemistry, 2021, 5, 340-347.	0.0	1
652	Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renewable and Sustainable Energy Reviews, 2022, 153, 111791.	16.4	78
653	Rethinking the term "glyphosate effect―through the evaluation of different glyphosate-based herbicide effects over aquatic microbial communities. Environmental Pollution, 2022, 292, 118382.	7.5	8
654	Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials, 2022, 424, 127494.	12.4	113
655	A reaction-based system for the colorimetric detection of glyphosate in real samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120501.	3.9	18

# 656	ARTICLE The Roots of the Soy Model. , 2020, , 29-58.	IF	CITATIONS 0
658	Controlling Weeds. , 2020, , 11-18.		0
659	The Elephant in the Field. , 2020, , 92-111.		0
660	Against the Grain. , 2020, , 112-137.		Ο
661	Pesticides Bring the War on Nature to the Chesapeake Bay. Estuaries of the World, 2020, , 199-217.	0.1	2
663	Pesticide Retention, Degradation, and Transport Off-Farm. , 2020, , 281-297.		2
664	Where Are the Solutions to the Pesticide Problem?. , 2020, , 223-295.		0
665	Revolution in the Pampas. , 2020, , 59-91.		ο
666	Risiken der pflanzlichen Gentechnik. , 2020, , 233-257.		0
667	Quels enseignements tirer du retrait de l'atrazine dans le cadre de l'interdiction prévue du glyphosate ?. Cahiers Agricultures, 2020, 29, 29.	0.9	3
669	: Resistance Development and. Topics in Biodiversity and Conservation, 2020, , 35-68.	1.0	2
672	Pesticide Impacts on the Environment and Humans. , 2020, , 127-221.		6
673	Impact of a <i>G2-EPSPS</i> & <i>GAT</i> Dual Transgenic Glyphosate-Resistant Soybean Line on the Soil Microbial Community under Field Conditions Affected by Glyphosate Application. Microbes and Environments, 2020, 35, n/a.	1.6	8
674	A Research on Acute Toxic Effects of Some Herbicides on Guppies. Journal of Anatolian Environmental and Animal Sciences, 2020, 5, 106-114.	0.7	Ο
675	Profitability prospects, risk aversion and time preferences of soybean producers in the region of Santarém, Brazilian Amazon: perspectives for an ecological transition. Renewable Agriculture and Food Systems, 2021, 36, 290-298.	1.8	0
676	A simple method for the determination of glyphosate, glufosinate and their metabolites in biological specimen by liquid chromatography/tandem mass spectrometry: an application for forensic toxicology. Nagoya Journal of Medical Science, 2021, 83, 567-587.	0.3	0
679	Draw me Science. Scientometrics, 2022, 127, 545-575.	3.0	8

Biodegradation of Organophosphorus Pollutants by Soil Bacteria: Biochemical Aspects and Unsolved Problems. Applied Biochemistry and Microbiology, 2021, 57, 836-844.

#	Article	IF	Citations
681	Microbial activity and community level physiological profiles (CLPP) of soil under the cultivation of spring rape with the Roundup 360 SL herbicide. Journal of Environmental Health Science & Engineering, 2021, 19, 2013-2026.	3.0	4
682	Effects of Phosphonate Herbicides on the Secretions of Plant-Beneficial Compounds by Two Plant Growth-Promoting Soil Bacteria: A Metabolomics Investigation. ACS Environmental Au, 2022, 2, 136-149.	7.0	2
683	Glyphosate Use, Toxicity and Occurrence in Food. Foods, 2021, 10, 2785.	4.3	45
684	Inflammatory, Oxidative Stress, and Apoptosis Effects in Zebrafish Larvae after Rapid Exposure to a Commercial Glyphosate Formulation. Biomedicines, 2021, 9, 1784.	3.2	22
685	Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats. Toxicological Sciences, 2022, 186, 83-101.	3.1	27
686	Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. International Journal of Molecular Sciences, 2021, 22, 12606.	4.1	22
687	Phosphonate herbicide interactions with quartz, montmorillonite, and quartzâ€enriched agricultural soil. Soil Science Society of America Journal, 2022, 86, 209-223.	2.2	4
688	Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms, 2021, 9, 2322.	3.6	16
689	Effects of Glyphosate Exposure on Reproductive Health: A Systematic Review of Human, Animal and In-Vitro Studies. Exposure and Health, 0, , 1.	4.9	1
690	No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees. PeerJ, 2021, 9, e12486.	2.0	8
691	Disruption of developmental programming with long-term consequences after exposure to a glyphosate-based herbicide in a rat model. Food and Chemical Toxicology, 2022, 159, 112695.	3.6	4
693	Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects. Animal Reproduction Science, 2022, 246, 106896.	1.5	10
694	Low concentrations of glyphosate alone affect the pubertal male rat meiotic step: An in vitro study. Toxicology in Vitro, 2022, 79, 105291.	2.4	4
695	A comparative evaluation of dietary exposure to glyphosate resulting from recommended U.S. diets. Food and Chemical Toxicology, 2021, 158, 112670.	3.6	9
696	Physiological and productive traits of soybean with metsulfuron-methyl application at early desiccation. Pesquisa Agropecuaria Brasileira, 0, 56, .	0.9	0
697	Modulation of the Non-Target Phytotoxicity of Glyphosate by Soil Organic Matter in Tomato () Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
698	Food Security and Agrochemicals: Rise and Fall of Glyphosate as Holy Grail of Agriculture Production in the European Union. SSRN Electronic Journal, 0, , .	0.4	1
699	Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment. Environmental Pollution, 2022, 296, 118742.	7.5	11

			_
#	Article	IF	CITATIONS
700	Microbial community composition and glyphosate degraders of two soils under the influence of temperature, total organic carbon and pH. Environmental Pollution, 2022, 297, 118790.	7.5	16
701	Glyphosate and AMPA exposure in relation to markers of biological aging in an adult population-based study. International Journal of Hygiene and Environmental Health, 2022, 240, 113895.	4.3	8
702	Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate. Chemosphere, 2022, 292, 133334.	8.2	7
703	Monitoring and Modeling Glyphosate Transport in the Belize River Watershed. , 2020, , .		1
704	Gift im Bier: A Context-sensitive Analysis of Culturally-rooted Messages and Humor in Risk Communication on Glyphosate in Germany. Journal of International Crisis and Risk Communication Research, 2021, 4, 579-604.	1.3	0
705	DISTRIBUTION OF TRANSGENIC PLANTS IN UKRAINE – CURRENT STATE. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology, 2021, 22, 225-229.	0.1	1
706	CoAl-LDHs@Fe ₃ O ₄ decorated with cobalt nanowires and cobalt nanoparticles for a heterogeneous electro-Fenton process to degrade 1-hydroxyethane-1,1-diphosphonic acid and glyphosate. RSC Advances, 2022, 12, 2623-2631.	3.6	9
707	Multiple evolutionary origins of glyphosate resistance in <i>Lolium multiflorum</i> . Evolutionary Applications, 2022, 15, 316-329.	3.1	8
708	Copper porphyrin metal-organic framework modified carbon paper for electrochemical sensing of glyphosate. Sensors and Actuators B: Chemical, 2022, 358, 131492.	7.8	32
709	Enlist volunteer corn affects the crop development and seed quality of Enlist soybean. Bragantia, 0, 81, .	1.3	Ο
710	Capillary electrophoresis applied for the determination of acidity constants and limiting electrophoretic mobilities of ionizable herbicides including glyphosate and its metabolites and for their simultaneous separation. Journal of Separation Science, 2022, 45, 1128-1139.	2.5	7
711	Alterations at biochemical, proteomic and transcriptomic levels in liver of tilapia (Oreochromis) Tj ETQq1 1 0.784 2022, 294, 133818.	314 rgBT 8.2	Overlock 10 16
712	Inhibiting DHN- and DOPA-melanin biosynthesis pathway increased the therapeutic value of itraconazole in <i>Madurella mycetomatis</i> infected <i>Galleria mellonella</i> . Medical Mycology, 2022, 60, .	0.7	9
713	New Methods for Testing/Determining the Environmental Exposure to Glyphosate in Sunflower (Helianthus annuus L.) Plants. Sustainability, 2022, 14, 588.	3.2	3
714	Glyphosate vs. Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity. Journal of Xenobiotics, 2022, 12, 21-40.	6.7	46
715	Highly Efficient and Low ost Clayâ€Based Adsorbent for Glyphosate Removal from Contaminated Water. Chemical Engineering and Technology, 2022, 45, 340-347.	1.5	5
716	Toxicological effects of active and inert ingredients of imazethapyr formulation Verosil® against Scenedesmus vacuolatus (Chlorophyta). Environmental Science and Pollution Research, 2022, , 1.	5.3	0
717	Deep Learning Algorithm for Atomization Characterization using Shadowgraph Images. , 2022, , .		0

#	Article	IF	CITATIONS
718	Application of Genetically Modified Organism (GMO) crop technology and its implications in modern agriculture. International Journal of Agricultural Science and Food Technology, 2022, 8, 014-020.	0.4	4
719	Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection. Green Chemistry, 2022, 24, 585-613.	9.0	19
720	The toxicity of the glyphosate herbicide for Pardosa spiders' predatory activity depends on the formulation of theAglyphosate product. Environmental Chemistry Letters, 2022, 20, 983-990.	16.2	6
721	Global drivers of herbicideâ€resistant weed richness in major cereal crops worldwide. Pest Management Science, 2022, 78, 1824-1832.	3.4	12
722	Determination of glyphosate exposure in the Iberian hare: A potential focal species associated to agrosystems. Science of the Total Environment, 2022, 823, 153677.	8.0	9
723	Metabolism of glyphosate by the human fecal microbiota. Toxicology Letters, 2022, 358, 1-5.	0.8	10
724	The shikimate pathway regulates programmed cell death. Journal of Genetics and Genomics, 2022, 49, 943-951.	3.9	5
725	Dissipation and effect of glyphosate during composting of organic wastes. Journal of Environmental Quality, 2022, 51, 399-410.	2.0	4
727	Control of common weeds in Wisconsin soybean cropping systems with preâ€emergence herbicides. Crop, Forage and Turfgrass Management, 2022, 8, .	0.6	2
728	Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the National Health and Nutrition Examination Survey, 2001–2014. Environmental Health, 2022, 21, 23.	4.0	21
729	Spatial bet hedging, thermal trade-offs and glyphosate: crickets integrate multivariate information during oviposition. Animal Behaviour, 2022, 185, 105-112.	1.9	6
730	The association between urinary glyphosate and aminomethyl phosphonic acid with biomarkers of oxidative stress among pregnant women in the PROTECT birth cohort study. Ecotoxicology and Environmental Safety, 2022, 233, 113300.	6.0	15
732	Atrazine Leaching from Contrasting Low-Carbon Topsoils and Implications for Management. SSRN Electronic Journal, 0, , .	0.4	0
733	Exposure of pigs to glyphosate affects gene-specific DNA methylation and gene expression. Toxicology Reports, 2022, 9, 298-310.	3.3	4
734	Atrazine Leaching from Contrasting Low-Carbon Topsoils and Implications for Management. SSRN Electronic Journal, 0, , .	0.4	0
735	Transgene Flow: Challenges to the On-Farm Conservation of Maize Landraces in the Brazilian Semi-Arid Region. Plants, 2022, 11, 603.	3.5	6
736	Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture (Switzerland), 2022, 12, 289.	3.1	61
738	Opportunities for Microbiome Suppression of Weeds Using Regenerative Agricultural Technologies. Frontiers in Soil Science, 2022, 2, .	2.2	5

#	Article	IF	CITATIONS
739	Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection. Chemosensors, 2022, 10, 99.	3.6	5
740	Hyperspectral plant sensing for differentiating <scp>glyphosateâ€resistant</scp> and <scp>glyphosateâ€susceptible</scp> johnsongrass through machine learning algorithms. Pest Management Science, 2022, , .	3.4	2
741	Direct Effects of Glyphosate on In Vitro T Helper Cell Differentiation and Cytokine Production. Frontiers in Immunology, 2022, 13, 854837.	4.8	8
742	Time to kill the beast – Importance of taxa, concentration and timing during application of glyphosate to knotweeds. Weed Research, 2022, 62, 215-223.	1.7	4
743	A Glyphosate-Based Herbicide Cross-Selects for Antibiotic Resistance Genes in Bacterioplankton Communities. MSystems, 2022, 7, e0148221.	3.8	12
744	Synthesis, Herbicidal Activity and Toxicity Evaluation of Secondary Ammonium Salts from Turpentine Oil for Sustainable Weed Control. Chemistry and Biodiversity, 2022, , e202100746.	2.1	0
745	Natural and anthropogenic influences on benthic cyanobacteria in streams of the northeastern United States. Science of the Total Environment, 2022, 826, 154241.	8.0	2
746	Glyphosateâ€based herbicides induces autophagy in <scp>IPECâ€J2</scp> cells and the intervention of Nâ€acetylcysteine. Environmental Toxicology, 2022, 37, 1878-1890.	4.0	9
747	Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. Environmental Health Perspectives, 2022, 130, 47001.	6.0	9
748	Herbicide residues in Australian grain cropping soils at sowing and their relevance to crop growth. Science of the Total Environment, 2022, 833, 155105.	8.0	13
749	Obesity II: Establishing causal links between chemical exposures and obesity. Biochemical Pharmacology, 2022, 199, 115015.	4.4	62
750	Phosphate addition enhances alkaline extraction of glyphosate from highly sorptive soils and aquatic sediments. Pest Management Science, 2022, 78, 2550-2559.	3.4	6
751	Harnessing phosphonate antibiotics argolaphos biosynthesis enables a synthetic biology-based green synthesis of glyphosate. Nature Communications, 2022, 13, 1736.	12.8	10
752	Effect of graphene oxide-glyphosate nanocomposite on wheat and rape seedlings: Growth, photosynthesis performance, and oxidative stress response. Environmental Technology and Innovation, 2022, 27, 102527.	6.1	8
753	Screening safe pesticide application rates in crop fields for protecting consumer health: A backward model for interim recommended rates. Integrated Environmental Assessment and Management, 2023, 19, 126-138.	2.9	0
754	Temporal trend and cross-sectional characterization of urinary concentrations of glyphosate in Japanese children from 2006 to 2015. International Journal of Hygiene and Environmental Health, 2022, 242, 113963.	4.3	9
755	Endocrine, immune and renal toxicity in male largemouth bass after chronic exposure to glyphosate and Rodeo®. Aquatic Toxicology, 2022, 246, 106142.	4.0	8
756	The study of human serum metabolome on the health effects of glyphosate and early warning of potential damage. Chemosphere, 2022, 298, 134308.	8.2	14

#	Article	IF	CITATIONS
757	Weed response in winter wheat fields on a gradient of glyphosate use in the recent past. Agriculture, Ecosystems and Environment, 2022, 333, 107977.	5.3	3
758	Deep Learning Algorithm for Atomization Characterization using Shadowgraph Images. , 2021, , .		0
759	Case Study: Characterizing the Response of Young Glyphosate-Susceptible and Glyphosate-Resistant Amaranthus palmeri (Palmer Amaranth) after Being Sprayed with a Ten Percent Acetic Acid Solution to Control Growth. , 2021, 11, .		0
760	Herbicide Efficacy of Spot Spraying Systems in Fallow and Postharvest in the Pacific Northwest Dryland Wheat Production Region. Plants, 2021, 10, 2725.	3.5	2
762	Glyphosate-Based Herbicides and Public Health: Making Sense of the Science. Journal of Agricultural and Environmental Ethics, 2022, 35, 1.	1.7	2
763	The mechanism of different cyanobacterial responses to glyphosate. Journal of Environmental Sciences, 2023, 125, 258-265.	6.1	15
764	Cytotoxic effects of Roundup Classic and its components on NE-4C and MC3T3-E1 cell lines determined by biochemical and flow cytometric assays. Toxicology Reports, 2022, 9, 914-926.	3.3	8
765	Impact of Soil Characteristics and Weed Management Practices on Glyphosate and AMPA Persistence in Field Crops Soils from the St. Lawrence Lowlands (Quebec, Canada). Agronomy, 2022, 12, 992.	3.0	3
766	Dinitramine induces implantation failure by cell cycle arrest and mitochondrial dysfunction in porcine trophectoderm and luminal epithelial cells. Journal of Hazardous Materials, 2022, 435, 128927.	12.4	14
767	A Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid, and Glufosinate in Human Urine Using Liquid Chromatography-Tandem Mass Spectrometry. International Journal of Environmental Research and Public Health, 2022, 19, 4966.	2.6	11
772	The effects of low-toxic herbicide Roundup and glyphosate on mitochondria EXCLI Journal, 2022, 21, 183-196.	0.7	6
774	Bioreactivity of a novel poly(epsilon-caprolactone) nanocapsule containing atrazine with human lung alveolar epithelial cells. Environmental Science: Nano, 0, , .	4.3	2
775	Metabolomic analysis of honey bee (<i>Apis mellifera</i> L.) response to glyphosate exposure. Molecular Omics, 2022, 18, 635-642.	2.8	7
776	Clyphosateâ€based herbicide induces longâ€lasting impairment in neuronal and glial differentiation. Environmental Toxicology, 2022, 37, 2044-2057.	4.0	5
777	Effects of Different Formulations of Glyphosate on Rumen Microbial Metabolism and Bacterial Community Composition in the Rumen Simulation Technique System. Frontiers in Microbiology, 2022, 13, 873101.	3.5	0
778	Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds. Environmental Sciences Europe, 2022, 34, .	5.5	15
779	In Vivo Estimation of the Biological Effects of Endocrine Disruptors in Rabbits after Combined and Long-Term Exposure: Study Protocol. Toxics, 2022, 10, 246.	3.7	7
780	Diazotized reagent for spectrophotometric determination of glyphosate pesticide in environmental and agricultural samples. Journal of the Indian Chemical Society, 2022, 99, 100483.	2.8	5

#	Article	IF	CITATIONS
781	Glyphosate, AMPA and glufosinate in soils and earthworms in a French arable landscape. Chemosphere, 2022, 301, 134672.	8.2	19
782	Developmental and behavioral toxicity assessment of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in zebrafish embryos/larvae. Environmental Toxicology and Pharmacology, 2022, 93, 103873.	4.0	18
783	Air, land, and water variables associated with the first appearance and current spatial distribution of toxic Prymnesium parvum blooms in reservoirs of the Southern Great Plains, USA. Science of the Total Environment, 2022, 836, 155567.	8.0	5
784	Ecological risk assessment and environment carrying capacity of soil pesticide residues in vegetable ecosystem in the Three Gorges Reservoir Area. Journal of Hazardous Materials, 2022, 435, 128987.	12.4	32
785	Health of greenspace workers: Morbidity and mortality data from the AGRICAN cohort. Environmental Research, 2022, 212, 113375.	7.5	3
786	Antigenotoxic Effect of Ascorbic Acid and Resveratrol in Erythrocytes of Ambystoma mexicanum, Oreochromis niloticus and Human Lymphocytes Exposed to Glyphosate. Current Issues in Molecular Biology, 2022, 44, 2230-2242.	2.4	3
787	Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. Applied Sciences (Switzerland), 2022, 12, 5135.	2.5	7
788	The Cardiotoxic Effect of Roundup® is not Induced by Glyphosate: A Non-specific Blockade of Human CaV1.2 Channels. Cardiovascular Toxicology, 0, , .	2.7	0
789	Systematic literature review of the epidemiology of glyphosate and neurological outcomes. International Archives of Occupational and Environmental Health, 2023, 96, 1-26.	2.3	9
790	Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages. Environmental Pollution, 2022, 307, 119508.	7.5	10
791	Effects of macrophyte species and biochar on the performance of treatment wetlands for the removal of glyphosate from agricultural runoff. Science of the Total Environment, 2022, 838, 156061.	8.0	4
792	Hotspots of Soil Pollution: Possible Risks of Glyphosate and Aminomethylphosphonic Acid on Terrestrial Ecosystems and Human Health?. SSRN Electronic Journal, 0, , .	0.4	0
793	Effects of glyphosate on the growth, development, and physiological functions of silkworm, <i>Bombyx mori</i> . Archives of Insect Biochemistry and Physiology, 0, , .	1.5	1
794	Hidden impacts of environmental stressors on freshwater communities could be revealed at lower concentrations by correlation of abundances network analyses: An example with herbicides glyphosate, 2, <scp>4â€D</scp> , and their mixtures. Austral Ecology, 2022, 47, 1144-1153.	1.5	2
795	Identifying novel drugs with new modes of action for neglected tropical fungal skin diseases (fungal) Tj ETQq0 0 641-659.	0 rgBT /Ov 5.0	verlock 10 Tf 6
796	Physiological and Metabolic Response of Arthrospira maxima to Organophosphates. Microorganisms, 2022, 10, 1063.	3.6	2
797	Glyphosate impairs collective thermoregulation in bumblebees. Science, 2022, 376, 1122-1126.	12.6	49
798	Glyphosate impairs bee thermoregulation. Science, 2022, 376, 1051-1052.	12.6	3

#	Article	IF	CITATIONS
799	Overview of Environmental and Health Effects Related to Clyphosate Usage. Sustainability, 2022, 14, 6868.	3.2	15
801	Glyphosate and neurological outcomes: A systematic literature review of animal studies. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2022, 25, 162-209.	6.5	7

6 Glyphosate-based herbicide exposure: effects on gill microbiota of rainbow trout (<i>Oncorhynchus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

803	Development of a nanocopper-decorated laser-scribed sensor for organophosphorus pesticide monitoring in aqueous samples. Mikrochimica Acta, 2022, 189, .	5.0	4
804	A nursing socioâ€environmental approach for acute pesticide poisoning: A qualitative focus group study. Journal of Advanced Nursing, 2023, 79, 1754-1764.	3.3	0
805	Airborne polar pesticides in rural and mountain sites of North-Eastern Italy: An emerging air quality issue. Environmental Pollution, 2022, 308, 119657.	7.5	11
806	Two novel enzyme-free colorimetric sensors for the detection of glyphosate in real samples. Journal of Food Composition and Analysis, 2022, 112, 104674.	3.9	4
807	How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases?. Chemosphere, 2022, 303, 135260.	8.2	6
808	Territórios SaudÃįveis e SustentÃįveis (TSS) no Distrito Federal: agroecologia e impacto dos agrotóxicos. Saúde Em Debate, 2022, 46, 249-261.	0.5	1
809	Magnetic Micromixing for Highly Sensitive Detection of Glyphosate in Tap Water by Colorimetric Immunosensor. SSRN Electronic Journal, 0, , .	0.4	0
810	LC-MS/MS Analysis of Glyphosate, Aminomethylphosphonic acid and Glufosinate in Honey. Asian Journal of Chemistry, 2022, 34, 2128-2132.	0.3	2
811	Nitrous Oxide Emission and Denitrifier Abundance Following Glyphosate Application to Signal Grass Grown in Highly Weathered Tropical Soils. SSRN Electronic Journal, 0, , .	0.4	0
813	Tracking pesticide residues and risk levels in individual samples—insights and applications. Environmental Sciences Europe, 2022, 34, .	5.5	5
814	Comparative analysis of detection techniques for glyphosate in urine and in water. Environmental Sciences Europe, 2022, 34, .	5.5	6
815	Microbial Remediation: A Promising Tool for Reclamation of Contaminated Sites with Special Emphasis on Heavy Metal and Pesticide Pollution: A Review. Processes, 2022, 10, 1358.	2.8	36
816	Effects of Anthropic Pollutants Identified in Pampas Lakes on the Development and Reproduction of Pejerrey Fish Odontesthes bonariensis. Frontiers in Physiology, 0, 13,	2.8	2
817	Glyphosate exposure deteriorates oocyte meiotic maturation via induction of organelle dysfunctions in pigs. Journal of Animal Science and Biotechnology, 2022, 13, .	5.3	4
818	Effects of glyphosate on cladocera: A synthetic review. Aquatic Toxicology, 2022, 249, 106232.	4.0	10

#	Article	IF	CITATIONS
819	Melatonin ameliorates renal dysfunction in glyphosate- and hard water-treated mice. Ecotoxicology and Environmental Safety, 2022, 241, 113803.	6.0	8
821	A critical physical geography of noâ€ŧill agriculture: Linking degraded environmental quality to conservation policies in an Oregon watershed. Canadian Geographer / Geographie Canadien, 2023, 67, 74-91.	1.5	2
822	Reciprocal interactions between anthropogenic stressors and insect microbiota. Environmental Science and Pollution Research, 2022, 29, 64469-64488.	5.3	7
823	Characterization of glyphosate and AMPA concentrations in the urine of Australian and New Zealand populations. Science of the Total Environment, 2022, 847, 157585.	8.0	9
824	Enzymatic Laserâ€Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate. Global Challenges, 2022, 6, .	3.6	10
825	Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: implications for neurodegenerative disorders. Journal of Neuroinflammation, 2022, 19, .	7.2	26
826	Protective role of <i>Spirulina platensis</i> against glyphosate induced toxicity in marine mussel <i>Mytilus galloprovincialis</i> . Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2021, 39, 373-387.	0.7	1
827	Effects of Glyphosate-Based Herbicide on Primary Production and Physiological Fitness of the Macroalgae Ulva lactuca. Toxics, 2022, 10, 430.	3.7	4
828	Three strategies of transgenic manipulation for crop improvement. Frontiers in Plant Science, 0, 13, .	3.6	5
829	Fluorescent molecularly imprinted polymer particles for glyphosate detection using phase transfer agents. Scientific Reports, 2022, 12, .	3.3	8
830	Nanomaterial-Based Sensors for the Detection of Glyphosate. Water (Switzerland), 2022, 14, 2436.	2.7	9
831	Glyphosate and aminomethyphosphonic (AMPA) contents in Brazilian field crops soils. Agronomy Science and Biotechnology, 0, 8, 1-18.	0.3	2
832	A Review on the Syntheses and Applications of the 5H-chromeno[2,3- b]pyridines. Letters in Organic Chemistry, 2023, 20, 28-53.	0.5	2
833	Targeted timing of hairy vetch cover crop termination with roller crimper can eliminate glyphosate requirements in no-till sunflower. Agronomy for Sustainable Development, 2022, 42, .	5.3	8
834	Ecotoxicological effects of conventional herbicides and a natural herbicide on freshwater fish (<i>Danio rerio</i>). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 812-820.	1.5	7
835	Glyphosate disturbs various epigenetic processes in vitro and in vivo – A mini review. Science of the Total Environment, 2022, 851, 158259.	8.0	13
836	Effects of the nanoherbicide made up of atrazine-chitosan on the primary events of photosynthesis. Journal of Photochemistry and Photobiology, 2022, 12, 100144.	2.5	5
837	Trehalose prevents glyphosate-induced testicular damage in roosters via its antioxidative properties. Research in Veterinary Science, 2022, 152, 314-322.	1.9	1

#	Article	IF	CITATIONS
838	Magnetic micromixing for highly sensitive detection of glyphosate in tap water by colorimetric immunosensor. Talanta, 2023, 253, 123937.	5.5	7
839	A portable smartphone-based detection of glyphosate based on inhibiting peroxidase-like activity of heptanoic acid/Prussian blue decorated Fe ₃ O ₄ nanoparticles. RSC Advances, 2022, 12, 25060-25067.	3.6	3
840	Determination of glyphosate in breast milk of lactating women in a rural area from Paraná state, Brazil. Brazilian Journal of Medical and Biological Research, 0, 55, .	1.5	5
841	A Roundup Herbicide Causes High Mortality and Impairs Development of Chrysoperla Carnea (Stephens) (Neuroptera: Chrysopidae). SSRN Electronic Journal, 0, , .	0.4	0
842	First Hydrological Seasonality Occurrence of Clyphosate, Glufosinate, and Their Metabolites in the Red River System, North Vietnam. SSRN Electronic Journal, 0, , .	0.4	0
843	Comparative Assessment of Individual and Mixture Chronic Toxicity of Glyphosate and Glufosinate Ammonium on Amphibian Tadpoles: A Multibiomarker Approach. SSRN Electronic Journal, 0, , .	0.4	0
844	Degradation of glyphosate along coffee roasting: Do residue levels in green beans mirror exposure derived from coffee consumption?. Food Chemistry, 2023, 403, 134355.	8.2	0
845	Capturing In Situ Glyphosate (De)sorption Kinetics in Floodplain Aquifer Sediment Columns: Geophysical Measurements and Reactive Transport Modeling. Environmental Science & Technology, 2022, 56, 12955-12964.	10.0	0
846	Pre-Conceptional Exposure to Glyphosate Affects the Maternal Hepatic and Ovarian Proteome. Toxicological Sciences, 2022, 190, 204-214.	3.1	2
847	Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. Environmental Toxicology and Chemistry, 2023, 42, 340-366.	4.3	3
848	Rhizospheric Microbiome Responses to Cover Crop Suppression Methods. Agronomy, 2022, 12, 2246.	3.0	1
849	Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays. Environmental Science and Pollution Research, 2023, 30, 11417-11430.	5.3	4
850	A SWMM-Based Screening Model for Estimating Wastewater Treatment Burden of Pesticides on the Urban Scale. Environmental Management, 2023, 71, 785-794.	2.7	1
851	Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. Environmental Health Perspectives, 2022, 130, .	6.0	27
852	Effects of glyphosate on zebrafish: a systematic review and meta-analysis. Ecotoxicology, 2022, 31, 1189-1204.	2.4	11
853	Transcriptomic signaling in zebrafish (<i>Danio rerio</i>) embryos exposed to environmental concentrations of glyphosate. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 775-785.	1.5	4
854	Quizalofop-Resistant Rice Response to Quizalofop when Exposed to Low Rates of Glyphosate and Imazethapyr. Weed Technology, 0, , 1-27.	0.9	0
855	Review of Glyphosate-Based Herbicide and Aminomethylphosphonic Acid (AMPA): Environmental and Health Impacts. Applied Sciences (Switzerland), 2022, 12, 8789.	2.5	12

#	Article	IF	CITATIONS
856	Glyphosate and its formulations Roundup Bioflow and RangerPro alter bacterial and fungal community composition in the rat caecum microbiome. Frontiers in Microbiology, 0, 13, .	3.5	15
857	Occurrence of glyphosate in surface and drinking water sources in Cúcuta, Norte de Santander, and its removal using membrane technology. Frontiers in Environmental Science, 0, 10, .	3.3	6
858	Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees. Science of the Total Environment, 2023, 857, 159298.	8.0	10
859	Herbicide use in farming and other jobs in relation to non-Hodgkin's lymphoma (NHL) risk. Occupational and Environmental Medicine, 2022, 79, 795-806.	2.8	6
861	Influence of glyphosate and its metabolite aminomethylphosphonic acid on aquatic plants in different ecological niches. Ecotoxicology and Environmental Safety, 2022, 246, 114155.	6.0	9
862	Removal of chlorpyrifos from water using biosorbents derived from cassava peel, crambe meal, and pinus bark. Chemical Engineering Research and Design, 2022, 188, 142-165.	5.6	6
863	Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. Chemosphere, 2022, 309, 136554.	8.2	6
864	Mitigating effect of L-carnitine against atrazine-induced hepatotoxicity: histopathological and biochemical analyses in albino rats. Environmental Science and Pollution Research, 2023, 30, 22034-22045.	5.3	5
865	Actual problems of hygiene and toxicology of pesticides based on glyphosate. Gigiena I Sanitariia, 2022, 101, 1233-1239.	0.5	0
866	Intra-specific variation in sensitivity of Bombus terrestris and Osmia bicornis to three pesticides. Scientific Reports, 2022, 12, .	3.3	6
867	Physiological and Transcriptomic Analysis of Arabidopsis thaliana Responses to Ailanthone, a Potential Bio-Herbicide. International Journal of Molecular Sciences, 2022, 23, 11854.	4.1	3
868	Glyphosate exposure in early pregnancy and reduced fetal growth: a prospective observational study of high-risk pregnancies. Environmental Health, 2022, 21, .	4.0	9
869	Exploring the complexity of smallholders' intense use of glyphosate in maize crops from South Mexico: Remarks for an ongoing agroecological transition. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	2
870	Exposure to glyphosate in the United States: Data from the 2013–2014 National Health and Nutrition Examination Survey. Environment International, 2022, 170, 107620.	10.0	22
871	Direct determination of glyphosate, aminomethylphosphonic acid and glufosinate in food samples with ion chromatography coupled to electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 2023, 1687, 463631.	3.7	5
872	The degradation of glyphosate is enhanced in a microbial fuel cell: Electrochemical performance, degradation efficiency, and analysis of the anodic microbial community. Sustainable Energy Technologies and Assessments, 2022, 54, 102805.	2.7	3
873	Can calcite play a role in the adsorption of glyphosate? A comparative study with a new challenge. Chemosphere, 2023, 311, 136922.	8.2	2
874	Reversibility of glyphosate sorption in pampean loess-derived soil profiles of central Argentina. Chemosphere, 2023, 312, 137143.	8.2	2

#	Article	IF	CITATIONS
875	A Human Biomonitoring Study Assessing Glyphosate and Aminomethylphosphonic Acid (AMPA) Exposures among Farm and Non-Farm Families. Toxics, 2022, 10, 690.	3.7	5
876	Glyphosate mimics 17β-estradiol effects promoting estrogen receptor alpha activity in breast cancer cells. Chemosphere, 2023, 313, 137201.	8.2	7
877	A review of the effects of agricultural intensification and the use of pesticides on honey bees and their products and possible palliatives. Spanish Journal of Agricultural Research, 2022, 20, e03R02.	0.6	2
878	Glyphosate Sensor Based on Nanostructured Water-Gated CuO Field-Effect Transistor. Sensors, 2022, 22, 8744.	3.8	1
879	Glyphosate pollution of surface runoff, stream water, and drinking water resources in Southeast Brazil. Environmental Science and Pollution Research, 2023, 30, 27030-27040.	5.3	11
880	Multi-and transgenerational synergistic effects of glyphosate and chlorpyrifos at environmentally relevant concentrations in the estuarine rotifer Proales similis. Environmental Pollution, 2023, 318, 120708.	7.5	6
881	Urinary concentrations and determinants of glyphosate and glufosinate in pregnant Canadian participants in the MIREC study. Environmental Research, 2023, 217, 114842.	7.5	11
882	Exposure of children to glyphosate in Morocco: Urinary levels and predictors of exposure. Environmental Research, 2023, 217, 114868.	7.5	5
883	Can ionic liquids exist in the soil environment? Effect of quaternary ammonium cations on glyphosate sorption, mobility and toxicity in the selected herbicidal ionic liquids. Journal of Molecular Liquids, 2023, 370, 120981.	4.9	6
884	Glyphosate-based herbicide (GBH) causes damage in embryo-larval stages of zebrafish (Danio rerio). Neurotoxicology and Teratology, 2023, 95, 107147.	2.4	4
885	There is glory in prevention! Regional spatio-temporal agrochemical runoff into aquatic ecosystems and its potential mitigation using multifunctional buffers. Journal of Hydrology: Regional Studies, 2023, 45, 101283.	2.4	1
886	Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. Science of the Total Environment, 2023, 862, 160839.	8.0	7
887	Modulation of the non-target phytotoxicity of glyphosate by soil organic matter in tomato (Solanum) Tj ETQq0 0	0 rgBT /C	verlock 10 Tf
888	Effects of glyphosate on nodulation and nitrogen fixation of transgenic glyphosate-tolerant soybean. Advances in Weed Science, 2022, 40, .	1.2	0
889	The role of surface activity on the amyloid fibrillation pathway of bovine serum albumin upon interaction with glyphosate. International Journal of Biological Macromolecules, 2023, 226, 1166-1177.	7.5	5
890	Characterization of the antagonistic potential of the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 strain against the plant pathogenic bacterium Agrobacterium tumefaciens. Frontiers in Plant Science, 0, 13, .	3.6	0
891	Disturbance of cellular calcium homeostasis plays a pivotal role in glyphosate-based herbicide-induced oxidative stress. Environmental Science and Pollution Research, 2023, 30, 9082-9102.	5.3	3
892	Treatment with Glyphosate Induces Tolerance of Citrus Pathogens to Glyphosate and Fungicides but Not to 1,8-Cineole. Molecules, 2022, 27, 8300.	3.8	4

#	Article	IF	CITATIONS
893	The Occurrence of Glyphosate and its Degradation Products in the Urban Stormwater: A Short Review. Water, Air, and Soil Pollution, 2022, 233, .	2.4	3
894	A Simple Method to Estimate Weed Control Threshold by Using RGB Images from Drones. Applied Sciences (Switzerland), 2022, 12, 11935.	2.5	2
895	Molecular toxicity study on glyphosate, Roundup MON 52276 and a low-dose pesticide mixture administered to adult Female rats for 90 days. International Journal of Transgender Health, 2022, 15, 1273-1275.	2.3	0
896	Adequacy of glyphosate doses in the <i>Merremia cissoides</i> (Lam.) Hallier f. control as a function of light intensity in the growth environments. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 960-969.	1.5	2
897	Glyphosate Becomes an Activist. , 2022, , 114-129.		0
898	Lethal and sublethal effects of five common herbicides on the wolf spider, Pardosa milvina (Araneae:) Tj ETQq1 1	0.784314 2.4	rgJBT /Overlo
899	Consensuses, Academic Capitalism & amp; the Swirl. , 2022, , 97-113.		0
900	Metal–Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS Omega, 2022, 7, 45910-45934.	3.5	12
902	Root biomass and cumulative yield increase with mowing height in Festuca pratensis irrespective of Epichloë symbiosis. Scientific Reports, 2022, 12, .	3.3	1
903	Ontological Multiplicity & Glyphosate's Safety. , 2022, , 37-50.		0
904	From Blossoms. , 2022, , 1-15.		0
905	The effects of glyphosate exposure on gene transcription and immune function of the silkworm, <i>Bombyx mori</i> . Archives of Insect Biochemistry and Physiology, 2023, 112, .	1.5	2
906	Investigating the effects of glyphosate on the bumblebee proteome and microbiota. Science of the Total Environment, 2023, 864, 161074.	8.0	15
908	Glyphosate Effects on Earthworms: Active Ingredients vs. Commercial Herbicides at Different Temperature and Soil Organic Matter Levels. , 2023, 2, 1-16.		10
909	Conducting evaluations of evidence that are transparent, timely and can lead to health-protective actions. Environmental Health, 2022, 21, .	4.0	4
910	Glyphosate used as desiccant contaminates plant pollen and nectar of non-target plant species. Heliyon, 2022, 8, e12179.	3.2	9
911	Bovine serum albumin-stabilized gold nanoclusters as fluorescent probe for enzyme-free detection of glyphosate. Chemical Papers, 2023, 77, 2183-2192.	2.2	2
912	Behavioral and neuroinflammatory changes caused by glyphosate: Base herbicide in mice offspring. Birth Defects Research, 2023, 115, 488-497.	1.5	7

#	Article	IF	CITATIONS
913	Chemicals as Agents of Care. , 2022, , 130-137.		0
914	Building the Food Chemosphere. , 2022, , 16-36.		0
915	The Scientific Consensus & amp; the Counterfactual. , 2022, , 73-96.		0
916	Chemical Life, Clinical Encounters. , 2022, , 51-72.		0
917	Pesticide Prioritization by Potential Biological Effects in Tributaries of the Laurentian Great Lakes. Environmental Toxicology and Chemistry, 2023, 42, 367-384.	4.3	3
918	A Roundup herbicide causes high mortality and impairs development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Science of the Total Environment, 2023, 865, 161158.	8.0	5
919	Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. Catalysis Communications, 2023, 174, 106599.	3.3	4
920	A Novel Fluorescent Sensor Based on Aptamer and qPCR for Determination of Glyphosate in Tap Water. Sensors, 2023, 23, 649.	3.8	0
921	Glyphosate-based herbicide use affects individual microbial taxa in strawberry endosphere but not the microbial community composition. Journal of Applied Microbiology, 2023, 134, .	3.1	3
922	Addressing systemic problems with exposure assessments to protect the public's health. Environmental Health, 2023, 21, .	4.0	15
923	Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides. , 2023, 2, 47-68.		5
924	Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme. Separations, 2023, 10, 44.	2.4	2
925	Insights into the effects of sublethal doses of pesticides glufosinate-ammonium and sulfoxaflor on honey bee health. Science of the Total Environment, 2023, 868, 161331.	8.0	3
926	Glyphosate versus glyphosate based ionic liquids: Effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation. Chemosphere, 2023, 316, 137717.	8.2	5
927	Investigations into differential glyphosate sensitivity between two horseweed (<i>Conyza) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10	Tf 50 182 Td
928	Glyphosate exposure and urinary oxidative stress biomarkers in the Agricultural Health Study. Journal of the National Cancer Institute, 2023, 115, 394-404.	6.3	7
929	The role of funding on research and science: The impact of glyphosate herbicides on health and the environment. Journal of Policy Modeling, 2023, 45, 103-120.	3.1	3
930	Reducing tillage does not affect the long-term profitability of organic or conventional field crop systems. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	1

#	Article	IF	CITATIONS
931	Glyphosate based-herbicide disrupts energy metabolism and activates inflammatory response through oxidative stress in mice liver. Chemosphere, 2023, 315, 137751.	8.2	6
932	Weed resistance to different herbicide modes of action is driven by agricultural intensification. Field Crops Research, 2023, 292, 108819.	5.1	10
933	Perinatal exposure to high concentration glyphosate-based herbicides induces intestinal apoptosis by activating endoplasmic reticulum stress in offspring. Science of the Total Environment, 2023, 865, 161223.	8.0	7
934	Adverse impacts of Roundup on soil bacteria, soil chemistry and mycorrhizal fungi during restoration of a Colorado grassland. Applied Soil Ecology, 2023, 185, 104778.	4.3	4
936	Alterations in cell viability, reactive oxygen species production, and modulation of gene expression involved in mitogen–activated protein kinase/extracellular regulating kinase signaling pathway by glyphosate and its commercial formulation in hepatocellular carcinoma cells. Toxicology and Industrial Health, 2023, 39, 81-93.	1.4	3
937	Use of the concept â€~environmentally relevant level' in linking the results of pesticide toxicity studies to public health outcomes. International Journal of Transgender Health, 2023, 16, .	2.3	3
938	Prairie Agroecosystems: Interconnected Microbiomes of Livestock, Soil and Insects. Agriculture (Switzerland), 2023, 13, 326.	3.1	0
939	Agroecological transition increases arthropod diversity and decreases herbivore abundance on field margins. Agricultural and Forest Entomology, 2023, 25, 404-415.	1.3	0
940	Effect of glyphosate and ciprofloxacin exposure on enteric bacteria of tadpoles. Revista Argentina De Microbiologia, 2023, 55, 120-128.	0.7	3
941	Metabolism of guarana (<i>Paullinia cupana</i> Kunth var. <i>sorbilis</i>) plants and fruit production subjected to glyphosate doses. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 0, , 1-11.	1.5	0
943	Glyphosate and AMPA dynamics during the transition towards conservation agriculture: Drivers under shallow groundwater conditions. Soil and Tillage Research, 2023, 229, 105659.	5.6	1
944	Herbicide Effects on Nontarget Organisms, Biodiversity and Ecosystem Functions. , 2024, , 239-257.		1
945	Glyphosate residue in honey and impacts on Africanized bee hives under field conditions. , 2023, 1, .		0
946	Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. Journal of Hazardous Materials, 2023, 447, 130847.	12.4	9
947	Can Glyphosate and Temperature Affect the Nutritional Lipid Quality in the Mussel Mytilus galloprovincialis?. Foods, 2023, 12, 1595.	4.3	1
948	Discrepancies in rhizobacterial assembly caused by glyphosate application and herbicide-tolerant soybean Co-expressing GAT and EPSPS. Journal of Hazardous Materials, 2023, 450, 131053.	12.4	2
949	Danger is just a click away–A survey on online shopping for glyphosate-based pesticides for gardening/horticulture. Environmental Science and Policy, 2023, 143, 35-43.	4.9	1
950	A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. Journal of Environmental Management, 2023, 334, 117532.	7.8	44

#	Article	IF	CITATIONS
951	The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities. Science of the Total Environment, 2023, 872, 162102.	8.0	11
952	Prepubertal to adulthood exposure to low doses of glyphosate-based herbicide increases the expression of the Havcr1 (Kim1) biomarker and causes mild kidney alterations. Toxicology and Applied Pharmacology, 2023, 467, 116496.	2.8	2
953	Bioremediation of the herbicide glyphosate in polluted soils by plant-associated microbes. Current Opinion in Microbiology, 2023, 73, 102290.	5.1	9
954	A 90-day rodent feeding study with grain for genetically modified maize L4 conferring insect resistance and glyphosate tolerance. Food and Chemical Toxicology, 2023, 176, 113733.	3.6	2
955	Sensing of organophosphorus pesticides by fluorescent complexes based on purine-hydrazone receptor and copper (II) and its application in living-cells imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 296, 122676.	3.9	5
956	Continuous glyphosate applications affect plant development of mangrove species from coastal wetlands: Rhizophora mangle and Pachira aquatica. Aquatic Botany, 2023, 187, 103658.	1.6	0
957	The politics of expertise in assessing alternatives to glyphosate in France. Environmental Science and Policy, 2023, 145, 60-72.	4.9	3
958	Residue and dietary risk assessment of glyphosate, glufosinate-ammonium, and their metabolites in maize and soybean. Journal of Food Composition and Analysis, 2023, 120, 105298.	3.9	1
959	Glyphosate in house dust and risk of childhood acute lymphoblastic leukemia in California. Environment International, 2023, 172, 107777.	10.0	3
960	Paper-based analytical device coupled with Bi-MOF: Electric field amplification and fluorescence sensing of glyphosate. Analytica Chimica Acta, 2023, 1248, 340930.	5.4	3
961	Impact of glyphosate residues in sow diets on neonatal piglets: tail kinks, stillborn and diarrhoea. Livestock Science, 2023, 269, 105172.	1.6	1
962	Down the River: Glyphosate Use in Agriculture and Birth Outcomes of Surrounding Populations. Review of Economic Studies, 2023, 90, 2943-2981.	5.4	4
963	Toxicity of herbicide glyphosate to planarian Dugesia japonica and its potential molecular mechanisms. Aquatic Toxicology, 2023, 256, 106425.	4.0	3
964	Glyphosate exposure and preterm birth: A nested case-control pilot study. Reproductive Toxicology, 2023, 117, 108350.	2.9	4
965	Glyphosate–Exonuclease Interactions: Reduced Enzymatic Activity as a Route to Glyphosate Biosensing. Macromolecular Bioscience, 2023, 23, .	4.1	4
966	Simultaneous determination of glyphosate, glufosinate, and their metabolites in honey using liquid chromatography-tandem mass spectrometry and solid-phase extraction. Analytical Sciences, 2023, 39, 1023-1031.	1.6	4
967	A New Family of Macrocyclic Polyamino Biphenolic Ligands: Acid-Base Study, Zn(II) Coordination and Glyphosate/AMPA Binding. Molecules, 2023, 28, 2031.	3.8	2
968	Responses of signal crayfish Pacifastacus leniusculus to single short-term pulse exposure of pesticides at environmentally relevant concentrations. Environmental Science and Pollution Research, 2023, 30, 51740-51748	5.3	0

#	Article	IF	CITATIONS
969	Glyphosate toxicity: <i>in vivo, in vitro</i> , and epidemiological evidence. Toxicological Sciences, 2023, 192, 131-140.	3.1	17
970	Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. Environmental Health Perspectives, 2023, 131, .	6.0	11
971	Contrasting effects of fungicide and herbicide active ingredients and their formulations on bumblebee learning and behaviour. Journal of Experimental Biology, 2023, 226, .	1.7	4
972	Pathways of glyphosate effects on litter decomposition in grasslands. Functional Ecology, 2023, 37, 1377-1389.	3.6	Ο
973	Glyphosate affects persistence and tolerance but not antibiotic resistance. BMC Microbiology, 2023, 23, .	3.3	1
974	Evaluation of the herbicide glyphosate, (aminomethyl)phosphonic acid, and <scp>glyphosateâ€based</scp> formulations for genotoxic activity using in vitro assays. Environmental and Molecular Mutagenesis, 2023, 64, 202-233.	2.2	4
975	Reduced Glyphosate Movement and Mutation of the <i>EPSPS</i> Gene (Pro106Ser) Endow Resistance in <i>Conyza canadensis</i> Harvested in Mexico. Journal of Agricultural and Food Chemistry, 2023, 71, 4477-4487.	5.2	1
976	Effect of soaking conditions on glyphosate absorption in selected pulses: understanding solvent behaviour and morphological changes. International Journal of Environmental Analytical Chemistry, 0, , 1-16.	3.3	1
977	Parasite and Pesticide Impacts on the Bumblebee (Bombus terrestris) Haemolymph Proteome. International Journal of Molecular Sciences, 2023, 24, 5384.	4.1	2
978	Adsorption of glyphosate and metabolite aminomethylphosphonic acid (AMPA) from water by polymer-based spherical activated carbon (PBSAC). Journal of Hazardous Materials, 2023, 454, 131211.	12.4	6
979	Oilseed Rape, Wheat, and Barley Grain Contamination as Affected by Different Glyphosate Usage. Plants, 2023, 12, 1335.	3.5	2
980	The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles. Journal of Insect Physiology, 2023, 146, 104503.	2.0	2
981	Exposure to phenoxyacetic acids and glyphosate as risk factors for non-Hodgkin lymphoma– pooled analysis of three Swedish case-control studies including the sub-type hairy cell leukemia. Leukemia and Lymphoma, 2023, 64, 997-1004.	1.3	2
982	Is glyphosate an underlying cause of increased dissolved reactive phosphorus loading in the Western Lake Erie basin?. Journal of Great Lakes Research, 2023, , .	1.9	0
983	Low detection of glyphosate in rivers following application in forestry. Pest Management Science, 0, ,	3.4	1
984	Impacts of glyphosate-based herbicide on leaf stomatal density and biomass production of transgenic soybean (Glycine max [L.] Merr.) and corn (Zea mays L.). Acta Physiologiae Plantarum, 2023, 45, .	2.1	1
985	Controlling <scp>highâ€speed</scp> droplet splashing and superspreading behavior on anisotropic superhydrophobic leaf surfaces by ecofriendly Pseudogemini surfactants. Pest Management Science, 2023, 79, 3090-3102.	3.4	1
989	Meta-analysis of metal nanoparticles degrading pesticides: what parameters are relevant?. Environmental Science and Pollution Research, 2023, 30, 60168-60179.	5.3	2

ARTICLE IF CITATIONS Introduction to Green Chemistry in practice., 2023, , 1-33. 990 0 Adhesion Molecules in Lung Inflammation from Repeated Glyphosate Exposures. International Journal of Environmental Research and Public Health, 2023, 20, 5484. 2.6 Evaluation of perinatal exposure of glyphosate and its mixture with 2,4-D and dicamba οn liver redox 992 2 7.5 status in Wistar rats. Environmental Research, 2023, 228, 115906. Improved Chromatography and MS-Based Detection of Glyphosate and Aminomethylphosphonic Acid 994 2.8 Using iTrEnDi. Journal of the American Society for Mass Spectrometry, 2023, 34, 948-957. Investigating the Role of Soil Legacy Effects in the Management of Lespedeza cuneata, an Invasive 995 0.5 0 Legume. Natural Areas Journal, 2023, 43, . Phytoremediation: A green and low-cost technology to remediate herbicides in the environment. Chemosphere, 2023, 334, 138943. 996 8.2 Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice. Cellular and 997 7.0 8 Molecular Biology Letters, 2023, 28, . Integrated metabolomics and transcriptomics reveal glyphosate basedâ€herbicide induced reproductive toxicity through disturbing energy and nucleotide metabolism in mice testes. Environmental Toxicology, 2023, 38, 1811-1823 Occurrence and exposure assessment of glyphosate in the environment and its impact on human beings. Environmental Research, 2023, 231, 116201. 999 7.5 2 Maternal pre-conceptional glyphosate exposure impacts the offspring hepatic and ovarian proteome. 3.1 Toxicological Sciences, 2023, 194, 23-37 Effects of Herbicides and the Chytrid Fungus Batrachochytrium dendrobatidis on the growth, development and survival of Larval American Toads (Anaxyrus americanus). Ecotoxicology and 1001 0 6.0 Environmental Safety, 2023, 259, 115021. On-Site Detection of Neonicotinoid Pesticides Using Functionalized Gold Nanoparticles and Halogen 5.0 Bonding. ACS Applied Nano Materials, 2023, 6, 8367-8381. 1003 Review: Purchased agricultural input quality and small farms. Food Policy, 2023, 116, 102424. 6.0 5 Fifty Years of Fungicide Development, Deployment, and Future Use. Phytopathology, 2023, 113, 694-706. 1004 2.2 Occurrence and environmental risk assessment of 22 pesticides in Brazilian freshwaters. Aquatic 1005 4.0 5 Toxicology, 2023, 260, 106566. Looking beyond Cancer: Glyphosate and Liver, Metabolic Diseases in Youth. Environmental Health Perspectives, 2023, 131, . Impact of Combined Exposure to Glyphosate and Diquat on Microbial Community Structure and 1007 3.20 Diversity in Lateritic Paddy Soil. Sustainability, 2023, 15, 8497. Convergent Adaptation of Multiple Herbicide Resistance to Auxin Mimics and ALS- and EPSPS-Inhibitors in Brassica rapa from North and South America. Plants, 2023, 12, 2119.

#	Article	IF	CITATIONS
1009	Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil. Agriculture (Switzerland), 2023, 13, 1131.	3.1	0
1010	Dissolved Organic Matter from Earthworm Casts Restrained the Phytotoxicity of Soil Glyphosate to Citrus (Poncirus trifoliata (L.) Raf.) Plants. Agriculture (Switzerland), 2023, 13, 1148.	3.1	0
1011	Early Abortions and Congenital Malformations. Journal of Occupational and Environmental Medicine, 2023, 65, 820-825.	1.7	0
1012	No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Scientific Reports, 2023, 13, .	3.3	5
1013	Removal of Glyphosate from water through adsorption onto Goethite Nanoparticles. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100839.	2.9	0
1014	Yeast of Eden: microbial resistance to glyphosate from a yeast perspective. Current Genetics, 2023, 69, 203-212.	1.7	1
1015	Detection and differentiation of herbicide stresses in roses by Raman spectroscopy. Frontiers in Plant Science, 0, 14, .	3.6	0
1016	Herbicide Resistance: Managing Weeds in a Changing World. Agronomy, 2023, 13, 1595.	3.0	16
1017	Review—Environmental Biosensors for Agro-Safety Based on Electrochemical Sensing Mechanism with an Emphasis on Pesticide Screening. , 2023, 2, 024601.		2
1019	A relational approach to pesticide use: Farmers, herbicides, nutsedge, and the weedy path to pesticide use reduction objectives. Journal of Rural Studies, 2023, 101, 103046.	4.7	3
1020	Glyphosate and a glyphosate-based herbicide affect bumblebee gut microbiota. FEMS Microbiology Ecology, 2023, 99, .	2.7	2
1021	A comparative review and computational assessment of acetochlor toxicity in fish: A novel endocrine disruptor?. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2023, 271, 109685.	2.6	2
1022	SERS-active substrates using DVD-R coated in silver thin films: A preliminary study for detection of commercial glyphosate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 302, 123017.	3.9	1
1023	Elucidating the spectroscopic and physicochemical properties for a pH-dependent glyphosate structure from a computational perspective. Computational and Theoretical Chemistry, 2023, 1226, 114209.	2.5	0
1024	Changes in the morphology and cell ultrastructure of a microalgal community exposed to a commercial glyphosate formulation and a toxigenic cyanobacterium. Frontiers in Microbiology, 0, 14, .	3.5	1
1025	Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. Environmental Science & amp; Technology, 2023, 57, 9898-9924.	10.0	6
1026	Influences of Glyphosate Contaminations and Concentrate Feed on Performance, Blood Parameters, Blood Cell Functionality and DNA Damage Properties in Fattening Bulls. Animals, 2023, 13, 1499.	2.3	0
1027	Development of a Disposable Aptasensor Using Carboxymethyl Cellulose and Hydroxyapatite Nanoparticles for Voltammetric Detection of Glyphosate. Journal of the Electrochemical Society, 2023, 170, 056508.	2.9	0

#	Article	IF	CITATIONS
1028	First hydrological study on the seasonal occurrence of glyphosate, glufosinate, and their metabolites in the Red River system, North Vietnam. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100833.	2.9	0
1029	Global pesticide use and trade database (GloPUT): New estimates show pesticide use trends in low-income countries substantially underestimated. Global Environmental Change, 2023, 81, 102693.	7.8	12
1031	Seed reserve mobilization and seedling morphology of genetically modified soybean treated with glyphosate. Pesquisa Agropecuaria Brasileira, 0, 58, .	0.9	0
1033	Urinary glyphosate and AMPA levels in a cross-sectional study of postmenopausal women: Associations with organic eating behavior and dietary intake. International Journal of Hygiene and Environmental Health, 2023, 252, 114211.	4.3	1
1034	Sparked ZnO nanoparticles-based electrochemical sensor for onsite determination of glyphosate residues. Nanotechnology, 2023, 34, 415501.	2.6	2
1035	Photodegradation of glyphosate in water and stimulation of by-products on algae growth. Ecotoxicology and Environmental Safety, 2023, 263, 115211.	6.0	1
1036	Glyphosate-based herbicide (GBH) challenged thermoregulation in lizards (Eremias argus), compensatory warming could mitigate this effect. Science of the Total Environment, 2023, 897, 165287.	8.0	1
1037	Terrestrial ecotoxicity of glyphosate, its formulations, and co-formulants: evidence from 2010–2023. Environmental Sciences Europe, 2023, 35, .	11.0	6
1038	A novel dual-signals peptide-based probe for highly selective detection of Cu(II) and glyphosate and its applications in smartphone-assisted test strips sensing system. Microchemical Journal, 2023, 193, 109084.	4.5	5
1039	The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa. , 2023, 2, 367-408.		3
1040	Glyphosate impairs aversive learning in bumblebees. Science of the Total Environment, 2023, 898, 165527.	8.0	2
1041	Effects of the debate on glyphosate's carcinogenic risk on pesticide producers' share prices. Ecological Economics, 2023, 212, 107925.	5.7	0
1042	Evaluating chemometric techniques for non-destructive detection of glyphosate residues in single pulse grains by using FTIR spectroscopy. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 0,	1.4	0
1043	Glyphosate affects larval gut microbiota and metamorphosis of honey bees with differences between rearing procedures. Environmental Pollution, 2023, 334, 122200.	7.5	2
1044	Mapping the key characteristics of carcinogens for glyphosate and its formulations: A systematic review. Chemosphere, 2023, , 139572.	8.2	3
1045	The effects of glyphosate-based herbicide on the hypothalamic-pituitary thyroid axis are tissue-specific and dependent on age exposure. Environmental Pollution, 2023, 334, 122216.	7.5	2
1046	Association between Glyphosate Exposure and Erythrograms in a Representative Sample of US Adults: NHANES 2013–2014. Environmental Science and Pollution Research, 2023, 30, 91207-91215.	5.3	1
1047	Identifying sustainability assessment parameters for genetically engineered agrifoods. Plants People Planet, 2024, 6, 29-43.	3.3	3

#	Article	IF	CITATIONS
1048	A simulated heat wave—but not herbicide exposure—alters resource investment strategy in an insect. Journal of Thermal Biology, 2023, 116, 103670.	2.5	1
1049	Urinary Glyphosate Concentrations among Pregnant Participants in a Randomized, Crossover Trial of Organic and Conventional Diets. Environmental Health Perspectives, 2023, 131, .	6.0	3
1050	Activation of spent coffee ground for the removal of glyphosate in aqueous solution. E3S Web of Conferences, 2023, 405, 01002.	0.5	0
1051	Invited Perspective: The Continuing Debate—Is Glyphosate a Problem, and Can an Organic Diet Protect Us from Exposures?. Environmental Health Perspectives, 2023, 131, .	6.0	2
1053	A novel Cu(II)-assisted peptide fluorescent probe for highly sensitive detection of glyphosate in real samples: real application in test strips and smartphone. Analytical and Bioanalytical Chemistry, 2023, 415, 5985-5996.	3.7	5
1054	Synthesis and application of a dual-functional fluorescent probe for sequential recognition of Zn2+and glyphosate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 303, 123221.	3.9	1
1055	Soybean Tolerance to ultra-low doses of dicamba: Hormesis or not. Crop Protection, 2023, 173, 106356.	2.1	3
1056	Toxic Algae in Inland Waters of the Conterminous United States—A Review and Synthesis. Water (Switzerland), 2023, 15, 2808.	2.7	3
1057	Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication. Environmental Science & amp; Technology, 2023, 57, 11767-11778.	10.0	3
1058	Triple-transgenic soybean in conjunction with glyphosate drive patterns in the rhizosphere microbial community assembly. Environmental Pollution, 2023, 335, 122337.	7.5	1
1059	Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. Science of the Total Environment, 2023, 903, 166097.	8.0	1
1060	Association between glyphosate exposure and cognitive function, depression, and neurological diseases in a representative sample of US adults: NHANES 2013–2014 analysis. Environmental Research, 2023, 237, 116860.	7.5	4
1061	Assessment of the impact of glyphosate and 2,4-D herbicides on the kidney injury and transcriptome changes in obese mice fed a Western diet. Toxicology Letters, 2023, 385, 1-11.	0.8	2
1062	Effect of Glyphosate on the Generation Parent and Four Successive Generations to <i>Daphnia magna</i> . Toxicology International, 0, , 317-325.	0.1	0
1063	Agroecological management of spontaneous vegetation in Bachajón's Tseltal Maya milpa: a preventive focus. Agriculture and Human Values, 2024, 41, 331-344.	3.0	0
1064	Glyphosate Removal from Water Using Biochar Based Coffee Husk Loaded Fe3O4. Water (Switzerland), 2023, 15, 2945.	2.7	1
1065	Why current agroecology rhetoric stands to protract farmer poverty in the developing world. Outlook on Agriculture, 0, , .	3.4	0
1066	GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico Chemosphere, 2023, 340, 139810.	8.2	0

#	Article	IF	CITATIONS
1067	Effects of glyphosate-based herbicides and glyphosate exposure on sex hormones and the reproductive system: From epidemiological evidence to mechanistic insights. Environmental Toxicology and Pharmacology, 2023, 102, 104252.	4.0	1
1068	Exposure to Roundup and Antibiotics Alters Gut Microbial Communities, Growth, and Behavior in Rana berlandieri Tadpoles. Biology, 2023, 12, 1171.	2.8	0
1069	Biomarkers of pollution by glyphosate in the lichens, Parmotrema tinctorium and Usnea barbata. Brazilian Journal of Biology, 0, 83, .	0.9	0
1070	Changes in soil microbial community structure by Allonychiurus kimi (Collembola) and their interactive effects on glyphosate degradation. Applied Soil Ecology, 2024, 193, 105112.	4.3	0
1071	Pesticides and Cancer. , 2023, , 177-211.		0
1072	Association between urinary glyphosate levels and serum neurofilament light chain in a representative sample of US adults: NHANES 2013–2014. Journal of Exposure Science and Environmental Epidemiology, 0, , .	3.9	2
1073	Meta-Analysis of Herbicide Non-Target Effects on Pest Natural Enemies. Insects, 2023, 14, 787.	2.2	0
1074	Food Safety and Agrochemicals: Risk Assessment and Food Security Implications. Sustainable Development and Biodiversity, 2023, , 301-333.	1.7	1
1075	The survival and flight capacity of commercial honeybees and endangered stingless bees are impaired by common agrochemicals. Ecotoxicology, 2023, 32, 937-947.	2.4	0
1076	How Benthic Sediment Microbial Communities Respond to Glyphosate and Its Metabolite: a Microcosm Experiment. Microbial Ecology, 2023, 86, 2949-2958.	2.8	1
1077	The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules, 2023, 28, 6863.	3.8	2
1078	User-friendly one-step disposable signal-on bioassay for glyphosate detection in water samples. Biosensors and Bioelectronics, 2023, 241, 115689.	10.1	1
1079	Glyphosate uses, adverse effects and alternatives: focus on the current scenario in Brazil. Environmental Geochemistry and Health, 0, , .	3.4	0
1080	A mixture of glyphosate and 2, <scp>4â€D</scp> herbicides enhances the deleterious reproductive outcomes induced by Western diet in obese male mice. Environmental Toxicology, 2024, 39, 31-43.	4.0	1
1081	A new critical social science research agenda on pesticides. Agriculture and Human Values, 0, , .	3.0	5
1082	Hotspots of soil pollution: Possible glyphosate and aminomethylphosphonic acid risks on terrestrial ecosystems and human health. Environment International, 2023, 179, 108135.	10.0	1
1083	Influence of Glyphosate Herbicide on the Functional State of the Poultry Intestine Microbiome. Smart Innovation, Systems and Technologies, 2023, , 151-160.	0.6	0
1084	Determination of glyphosate and aminomethylphosphonic acid residues in Finnish soils by ultraâ€high performance liquid chromatography–tandem mass spectrometry. MethodsX, 2023, 11, 102397.	1.6	0

			0
#	ARTICLE	IF	CITATIONS
1085	and Locomotor Effects. Archives of Environmental Contamination and Toxicology, 0, , .	4.1	0
1086	Food Quality and Agrochemical Use: Integrated Monitoring, Assessment, and Management Policies. Sustainable Development and Biodiversity, 2023, , 411-440.	1.7	0
1087	Agrochemical Use and Emerging Human and Animal Diseases. Sustainable Development and Biodiversity, 2023, , 53-76.	1.7	0
1088	Sulfoxaflor effects depend on the interaction with other pesticides and Nosema ceranae infection in the honey bee (Apis mellifera). Ecotoxicology and Environmental Safety, 2023, 264, 115427.	6.0	0
1089	Adsorption Mechanisms of Glyphosate on Ferrihydrite: Effects of Al Substitution and Aggregation State. Environmental Science & amp; Technology, 2023, 57, 14384-14395.	10.0	0
1090	Toxicity assessment and DNA repair kinetics in HEK293 cells exposed to environmentally relevant concentrations of Glyphosate (Roundup® Control Max). Toxicology Research, 0, , .	2.1	0
1091	Seasonal variations in the levels of glyphosate in soil, water and crops from three farm settlements in Oyo state, Nigeria. Heliyon, 2023, 9, e20324.	3.2	0
1092	Glyphosate effect on biofilms formation, mutagenesis and stress response of E. Ñoli. Journal of Hazardous Materials, 2024, 461, 132574.	12.4	2
1093	Capability of phytoremediation of glyphosate in environment by Vulpia myuros. Ecotoxicology and Environmental Safety, 2023, 265, 115511.	6.0	0
1094	Phosphorus and Glyphosate Adsorption and Desorption Trends across Different Depths in Sandy Soil. , 2023, 2, 503-516.		1
1095	Effects of glyphosate exposure on western diet-induced non-alcoholic fatty liver disease in mice. Environmental Toxicology and Pharmacology, 2023, 104, 104286.	4.0	0
1096	Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes, 2023, 15, .	9.8	3
1097	Detection of the pesticide glyphosate in feed and ways to reduce its content for poultry. Pharmacy Formulas, 0, , .	0.2	0
1098	Assessing the Effect of Clyphosate Toxicity on Lemna minor in Different Temperature Regimes. Pollutants, 2023, 3, 451-460.	2.1	1
1099	The Kinetics and Mechanism of Inhibition of Horseradish Peroxidase Activity by N-(Phosphonomethyl)glycine. Biophysics (Russian Federation), 2023, 68, 347-355.	0.7	0
1100	Fate of glyphosate in lakes with varying trophic levels and its modification by root exudates of submerged macrophytes. Journal of Hazardous Materials, 2024, 462, 132757.	12.4	0
1101	Urinary Glyphosate, 2,4-D and DEET Biomarkers in Relation to Neurobehavioral Performance in Ecuadorian Adolescents in the ESPINA Cohort. Environmental Health Perspectives, 2023, 131, .	6.0	1
1102	Herbicides may threaten advances in biological control of diseases and pests. Environmental Science and Pollution Research, 0, , .	5.3	1

#	Article	IF	CITATIONS
1103	Association of glyphosate exposure with multiple adverse outcomes and potential mediators. Chemosphere, 2023, 345, 140477.	8.2	0
1104	Biomonitoring of glyphosate and aminomethylphosphonic acid: Current insights and future perspectives. Journal of Hazardous Materials, 2024, 463, 132814.	12.4	2
1106	Recent technologies for glyphosate removal from aqueous environment: A critical review. Environmental Research, 2024, 240, 117477.	7.5	1
1108	The politics of glyphosate regulation: lessons from Sri Lanka's short-lived ban. Globalization and Health, 2023, 19, .	4.9	2
1109	Microbial activity, community composition and degraders in the glyphosate-spiked soil are driven by glycine formation. Science of the Total Environment, 2024, 907, 168206.	8.0	0
1110	Mutagenic effects of a commercial glyphosate-based herbicide formulation on the soil filamentous fungus Aspergillus nidulans depending on the mode of exposure. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2023, 892, 503708.	1.7	0
1111	Validation of a Liquid Chromatography Coupled to Mass Spectrometry Method for Glyphosate and Aminomethylphosphonic Acid in Urine for Human Biomonitoring Using Combined Hybrid Anion-Exchange and Hydrophilic Interaction Liquid Chromatography. Separations, 2023, 10, 576.	2.4	0
1112	Oxidative Stress and Cytotoxicity Induced by Co-Formulants of Glyphosate-Based Herbicides in Human Mononuclear White Blood Cells. Toxics, 2023, 11, 976.	3.7	1
1113	Glyphosate in the environment: interactions and fate in complex soil and water settings, and (phyto) remediation strategies. International Journal of Phytoremediation, 0, , 1-22.	3.1	0
1114	Perinatal health effects of herbicides exposures in the United States: the Heartland Study, a Midwestern birth cohort study. BMC Public Health, 2023, 23, .	2.9	1
1115	Herbicide resistance evolution, fitness cost, and the fear of the superweeds. Plant Science, 2024, 339, 111934.	3.6	0
1116	Modifying effects of 2,4-D and Glyphosate exposures on gut-liver-adipose tissue axis of diet-induced non-alcoholic fatty liver disease in mice. Ecotoxicology and Environmental Safety, 2023, 268, 115688.	6.0	0
1117	The silver bullet that wasn't: Rapid agronomic weed adaptations to glyphosate in North America. , 2023, 2, .		0
1118	A perspective on how glyphosate and 2,4-D in wetlands may impact climate change. Frontiers in Environmental Science, 0, 11, .	3.3	0
1119	Citrus phosphorus uptake dynamics with glyphosate under greenhouse conditions. Journal of Plant Nutrition, 2024, 47, 776-785.	1.9	0
1120	The combination of multiple environmental stressors strongly alters microbial community assembly in aquatic ecosystems. Journal of Environmental Management, 2024, 350, 119594.	7.8	3
1121	Association of urine glyphosate levels with renal injury biomarkers in children living close to major vegetable-producing regions in China. Science of the Total Environment, 2024, 912, 168677.	8.0	0
1122	Urinary glyphosate levels and association with mortality in the 2013–16 National Health and Nutrition Examination Survey. Carcinogenesis, 0, , .	2.8	1

#	Article	IF	Citations
1123	The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. Environmental Health Perspectives, 2023, 131, .	6.0	0
1124	Glyphosate Use and Mosaic Loss of Chromosome Y among Male Farmers in the Agricultural Health Study. Environmental Health Perspectives, 2023, 131, .	6.0	1
1126	Invited Perspective: Important New Evidence for Glyphosate Hazard Assessment. Environmental Health Perspectives, 2023, 131, .	6.0	0
1127	Direct Electrochemical Determination of Glyphosate Herbicide Using a Screen-Printed Carbon Electrode Modified with Carbon Black and Niobium Nanoparticles. Journal of Analysis and Testing, 2023, 7, 425-434.	5.1	1
1128	Use of Genetically Modified Organism (GMO)-Containing Food Products in Children. Pediatrics, 0, , .	2.1	0
1130	Occurrence of Glyphosate and Other Polar Pesticides in Honey from Lombardy and Emilia-Romagna Regions in Italy: Three-Year Monitoring Results. Foods, 2023, 12, 4448.	4.3	0
1131	Removal of glyphosate (GLY) and aminomethylphosphonic acid (AMPA) by ultrafiltration with permeate-side polymer-based spherical activated carbon (UF–PBSAC). Water Research, 2024, 250, 121021.	11.3	0
1132	Transcriptomic and behavioral analyses reveal unique target tissues and molecular pathways associated with embryonic exposure to low level glyphosate and metal mixtures in zebrafish. Science of the Total Environment, 2024, 912, 169271.	8.0	0
1133	Measuring herbicide (73.3Â% glyphosate) exposure response in Halophila ovalis (previously johnsonii) and Halodule wrightii seagrass. Marine Pollution Bulletin, 2024, 198, 115885.	5.0	0
1136	Trimethylation Enhancement Using Diazomethane (TrEnDi) Enables Enhanced Detection of Glufosinate and 3-(Methylphosphinico)propionic Acid from Complex Canola Samples. Journal of the American Society for Mass Spectrometry, 0, , .	2.8	0
1137	Detection of glyphosate residues in agricultural products using liquid-crystal-based sensor exploiting competitive binding of glyphosate and Cu2+ at the aqueous/LC interface and capillary tube test strip. Colloids and Surfaces B: Biointerfaces, 2024, 234, 113726.	5.0	0
1138	Dissolution kinetics of copper oxide nanoparticles in presence of glyphosate. NanoImpact, 2024, 33, 100492.	4.5	0
1139	Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. Ecotoxicology and Environmental Safety, 2024, 271, 115965.	6.0	0
1140	Effect of glyphosate contamination on surface charge change and nutrients of degraded Inceptisols ameliorated with sub-bituminous coal. Journal of Degraded and Mining Lands Management, 2024, 11, 5135-5145.	0.5	0
1141	Editorial: One Health—Anatomy of a Fractured Vision. Development, 2023, 66, 161-164.	1.0	0
1142	Developmental effects of zebrafish (Danio rerio) embryos after exposure to glyphosate and lead mixtures. Ecotoxicology and Environmental Safety, 2024, 271, 115886.	6.0	0
1143	Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide. Metabolites, 2024, 14, 50.	2.9	1
1146	Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS Omega, 2024, 9, 6165-6183.	3.5	0

#	Article	IF	CITATIONS
1147	Amino acid modified graphene oxide for the simultaneous capture and electrochemical detection of glyphosate. Materials Today Chemistry, 2024, 36, 101936.	3.5	0
1148	The Catalytic Role of Superparamagnetic Iron Oxide Nanoparticles as a Support Material for TiO2 and ZnO on Chlorpyrifos Photodegradation in an Aqueous Solution. Nanomaterials, 2024, 14, 299.	4.1	0
1149	Degradation of atrazine, glyphosate, and 2,4-D in soils collected from two contrasting crop rotations in Southwest Chaco, Argentina. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2024, 59, 98-111.	1.5	0
1150	Effects of glyphosate and glyphosateâ€based herbicide on learning and memory of the buffâ€ŧailed bumblebee (<i>BombusÂterrestris</i>). Entomologia Experimentalis Et Applicata, 2024, 172, 324-333.	1.4	0
1151	Aquatic ecotoxicity of glyphosate, its formulations, and co-formulants: evidence from 2010 to 2023. Environmental Sciences Europe, 2024, 36, .	11.0	1
1152	Nitrogen-fertilizer addition to an agricultural soil enhances biogenic non-extractable residue formation from 2-13C,15N-glyphosate. Science of the Total Environment, 2024, 918, 170643.	8.0	0
1153	Glyphosate-based restoration of a degraded grassland threatens soil health and the diversity of nematode communities. Soil Biology and Biochemistry, 2024, 191, 109350.	8.8	0
1154	Statistical physics modelling and density functional theory calculations for glyphosate adsorption using zinc oxide-doped activated carbon. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
1155	RNA-based detection of genetically modified plants via current-voltage characteristic measurement. Journal of Biotechnology, 2024, 383, 27-38.	3.8	0
1156	Development of a rapid aptamer-chemiluminescence sensor for detecting glyphosate pesticide residue in soybeans. Talanta, 2024, 272, 125741.	5.5	0
1157	Data-Augmented Few-Shot Object Detection for Efficient Identification of Invasive Weed Seedlings. , 2023, , .		0
1158	Pesticide exposure in greenspaces: Comparing field measurement of dermal contamination with values predicted by registration models. Science of the Total Environment, 2024, 919, 170816.	8.0	0
1159	Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022). , 2024, 3, 42-56.		0
1160	Glyphosate- and aminomethylphosphonic acid (AMPA)-induced mortality and residues in juvenile brown trout (Salmo trutta f. fario) exposed at different temperatures. Environmental Sciences Europe, 2024, 36, .	11.0	0
1161	Elucidation of the role of metals in the adsorption and photodegradation of herbicides by metal-organic frameworks. Nature Communications, 2024, 15, .	12.8	0
1162	Association between urinary glyphosate levels and hand grip strength in a representative sample of US adults: NHANES 2013–2014. Frontiers in Public Health, 0, 12, .	2.7	0
1163	The Role and Future of Genetic Modification in Weed Science. , 2024, , 395-412.		0
1164	Impact of chronic exposure to field level glyphosate on the food consumption, survival, gene expression, gut microbiota, and metabolomic profiles of honeybees. Environmental Research, 2024, 250, 118509.	7.5	0

#	Article	IF	CITATIONS
1165	Impact of a glyphosate-based herbicide on the longevity, fertility, and transgenerational effects on Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). Environmental Science and Pollution Research, 2024, 31, 21845-21856.	5.3	0
1166	Sustainable golden nanoflowers grafted food-waste derived biotemplate for the direct SERS-detection of carcinogenic herbicides from agro-farms. Materials Today Chemistry, 2024, 36, 101985.	3.5	0
1167	A review of organophosphonates, their natural and anthropogenic sources, environmental fate and impact on microbial greenhouse gases emissions – Identifying knowledge gaps. Journal of Environmental Management, 2024, 355, 120453.	7.8	0
1168	Pathways of financial capital in the Brazilian agrarian space: elements for the debate on water conflicts in Mato Grosso, Brazil. Revista Brasileira De Estudos Urbanos E Regionais, 0, , 1-29.	0.2	0
1169	Analysis of the association between urinary glyphosate exposure and fatty liver index: a study for US adults. BMC Public Health, 2024, 24, .	2.9	0
1170	Widespread agrochemicals differentially affect zooplankton biomass and community structure: Comment. Ecological Applications, 2024, 34, .	3.8	0
1171	Glyphosate exposure, muscular health and functional limitations in middle-aged and older adults. Environmental Research, 2024, 251, 118547.	7.5	0
1172	Life as Aftermath: Social Theory for an Age of Anthropogenic Biology. Science Technology and Human Values, 0, , .	3.1	0
1173	Toxicity of glyphosate to animals: A meta-analytical approach. Environmental Pollution, 2024, 347, 123669.	7.5	0
1174	Introduction: Technology and Sustainability in Food and Water Systems. , 2024, , .		0
1175	Impact of glyphosate-based herbicide exposure through maternal milk on offspring's antioxidant status, neurodevelopment, and behavior. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	3.0	0
1176	Subtle microbial community changes despite rapid glyphosate degradation in microcosms with four German agricultural soils. Applied Soil Ecology, 2024, 198, 105381.	4.3	0
1177	Melatonin alleviates glyphosate-induced testosterone synthesis inhibition via targeting mitochondrial function in roosters. Environmental Pollution, 2024, 348, 123828.	7.5	0
1178	THE ABILITY OF PHOTOCHEMICAL DECOMPOSITION PRODUCTS OF THE ROUNDUP TO INDUCE OXIDATIVE STRESS IN BACTERIAL CELLS. Ecological Genetics, 0, , .	0.5	0