Selective labelling and eradication of antibiotic-toleran Pseudomonas aeruginosa biofilms

Nature Communications 7, 10750 DOI: 10.1038/ncomms10750

Citation Report

#	Article	IF	CITATIONS
1	Sub-Optimal Treatment of Bacterial Biofilms. Antibiotics, 2016, 5, 23.	1.5	42
2	Unravelling postâ€ŧranscriptional PrmCâ€dependent regulatory mechanisms in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2016, 18, 3583-3592.	1.8	6
3	What's New in Musculoskeletal Infection: Update on Biofilms. Journal of Bone and Joint Surgery - Series A, 2016, 98, 1226-1234.	1.4	38
4	Antimicrobial Activity of Silver Nanoparticles in Polycaprolactone Nanofibers against Gram-Positive and Gram-Negative Bacteria. Industrial & Engineering Chemistry Research, 2016, 55, 12532-12538.	1.8	89
5	Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biology, 2016, 6, 160162.	1.5	62
6	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of an LpxC Inhibitor, CHIR-090, Alone or Combined with Colistin against Pseudomonas aeruginosa Biofilm. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	12
7	In Vitro Tolerance of Drug-Naive Staphylococcus aureus Strain FDA209P to Vancomycin. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	15
8	Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 2017, 41, 276-301.	3.9	1,062
9	Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms. Chemical Communications, 2017, 53, 3330-3333.	2.2	38
10	Selective Proteomic Analysis of Antibiotic-Tolerant Cellular Subpopulations in <i>Pseudomonas aeruginosa</i> Biofilms. MBio, 2017, 8, .	1.8	40
11	Exploring New Mechanisms for Effective Antimicrobial Materials: Electric Contact-Killing Based on Multiple Schottky Barriers. ACS Applied Materials & Interfaces, 2017, 9, 26219-26225.	4.0	16
12	Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosensors and Bioelectronics, 2017, 98, 338-344.	5.3	50
13	Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiology Reviews, 2017, 41, 219-251.	3.9	291
14	Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms. Journal of Antimicrobial Chemotherapy, 2017, 72, 3357-3365.	1.3	25
15	Pseudomonas aeruginosa Psl Exopolysaccharide Interacts with the Antimicrobial Peptide LG21. Water (Switzerland), 2017, 9, 681.	1.2	4
16	Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 2017, 7, 451.	1.8	61
17	Effects of <i>Bacillus</i> Serine Proteases on the Bacterial Biofilms. BioMed Research International, 2017, 2017, 1-10.	0.9	37
18	ICBS 2017 in Shanghai—Illuminating Life with Chemical Innovation. ACS Chemical Biology, 2018, 13,	1.6	3

#	Article	IF	CITATIONS
19	Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resistance Updates, 2018, 38, 12-26.	6.5	167
20	A programmable lipid-polymer hybrid nanoparticle system for localized, sustained antibiotic delivery to Gram-positive and Gram-negative bacterial biofilms. Nanoscale Horizons, 2018, 3, 305-311.	4.1	29
21	<i>Pseudomonas aeruginosa</i> Biofilms: Host Response and Clinical Implications in Lung Infections. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 428-439.	1.4	237
22	Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends in Microbiology, 2018, 26, 296-312.	3.5	14
23	Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	12
24	Mechanisms and Targeted Therapies for <i>Pseudomonas aeruginosa</i> Lung Infection. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 708-727.	2.5	116
25	Use of Whole-Cell Bioassays for Screening Quorum Signaling, Quorum Interference, and Biofilm Dispersion. Methods in Molecular Biology, 2018, 1673, 3-24.	0.4	5
26	Heterogeneous Colistin-Resistance Phenotypes Coexisting in Stenotrophomonas maltophilia Isolates Influence Colistin Susceptibility Testing. Frontiers in Microbiology, 2018, 9, 2871.	1.5	29
27	Understanding the Bacterial Biofilm Resistance to Antibiotics and Immune Evasion. , 2018, , 369-381.		7
28	Breaking the Vicious Cycle of Antibiotic Killing and Regrowth of Biofilm-Residing <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	23
29	The drug tolerant persisters of Riemerella anatipestifer can be eradicated by a combination of two or three antibiotics. BMC Microbiology, 2018, 18, 137.	1.3	6
31	Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. Npj Biofilms and Microbiomes, 2018, 4, 13.	2.9	119
32	Environmental proteomic studies: closer step to understand bacterial biofilms. World Journal of Microbiology and Biotechnology, 2018, 34, 120.	1.7	8
33	Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Communications Biology, 2018, 1, 57.	2.0	29
34	Proteomics approach to understand bacterial antibiotic resistance strategies. Expert Review of Proteomics, 2019, 16, 829-839.	1.3	38
35	Big data in yeast systems biology. FEMS Yeast Research, 2019, 19, .	1.1	15
36	Biofilm Disruption Utilizing αlβ Chimeric Polypeptide Molecular Brushes. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1105-1112.	2.0	24
37	Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Frontiers in Microbiology, 2019, 10, 1908.	1.5	28

ARTICLE IF CITATIONS # The MapZ-Mediated Methylation of Chemoreceptors Contributes to Pathogenicity of Pseudomonas 38 1.5 8 aeruginosa. Frontiers in Microbiology, 2019, 10, 67. Glutathione Activates Type III Secretion System Through Vfr in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 2019, 9, 164. 1.8 40 Stress-Induced MazF-Mediated Proteins in Escherichia coli. MBio, 2019, 10, . 1.8 17 High-Throughput Proteomics Identifies Proteins With Importance to Postantibiotic Recovery in Depolarized Persister Cells. Frontiers in Microbiology, 2019, 10, 378. Effect of Subtilisin-like Proteinase of Bacillus pumilus 3â€"19 on Pseudomonas aeruginosa Biofilms. 42 1.5 3 BioNanoScience, 2019, 9, 515-520. Temperature-responsive tungsten doped vanadium dioxide thin film starves bacteria to death. Materials Today, 2019, 22, 35-49. 8.3 44 <p>Sputum Exosomal microRNAs Profiling Reveals Critical Pathways Modulated By Pseudomonas aeruginosa Colonization In Bronchiectasis</p>. International Journal of COPD, 2019, Volume 14, 44 0.9 7 2563-2573. Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier 64 function. Nature Microbiology, 2019, 4, 2136-2145. Improved SILAC method for double labeling of bacterial proteome. Journal of Proteomics, 2019, 194, 1.2 5 46 89-98. Itaconimides as Novel Quorum Sensing Inhibitors of Pseudomonas aeruginosa. Frontiers in Cellular 1.8 and Infection Microbiology, 2018, 8, 443. Molecular insights into the master regulator CysBâ€mediated bacterial virulence in <i>Pseudomonas 48 10 1.2 aeruginosa (/i>. Molecular Microbiology, 2019, 111, 1195-1210. Genetic and Transcriptomic Analyses of Ciprofloxacin-Tolerant <i>Staphylococcus aureus</i> Isolated by the Replica Plating Tolerance Isolation System (REPTIS). Antimicrobial Agents and 49 1.4 Chemothérapy, 2019, 63, . How to Identify the "LIVE/DEAD―States of Microbes Related to Biosensing. ACS Sensors, 2020, 5, 50 4.0 9 258-264. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Critical Reviews in Microbiology, 2020, 46, 759-778. 2.7 Treatment strategies targeting persister cell formation in bacterial pathogens. Critical Reviews in 52 2.7 30 Microbiology, 2020, 46, 665-688. An <i>In Vitro</i> Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic 1.4 Levitation. Applied and Environmental Microbiology, 2020, 86, . Vanillin inhibits PqsR-mediated virulence in <i>Pseudomonas aeruginosa</i>. Food and Function, 2020, 54 2.133 11, 6496-6508. An on-demand nanoplatform for enhanced elimination of drug-resistant bacteria. Biomaterials Science, 2020, 8, 6912-6919.

CITATION REPORT

		CITATION REPORT	
#	Article	IF	CITATION
56	The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals, 2020, 13, 214.	1.7	25
57	Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influe Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Frontiers Microbiology, 2020, 11, 1160.	ence in 1.5	22
58	Pulsed SILAM Reveals In Vivo Dynamics of Murine Brain Protein Translation. ACS Omega, 202 13528-13540.	0, 5, 1.6	3
59	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm Infection on Bone Implant. ACS Na 14, 8157-8170.	ano, 2020, 7.3	133
60	Weak acids as an alternative anti-microbial therapy. Biofilm, 2020, 2, 100019.	1.5	34
61	Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudo aeruginosa. Journal of Antimicrobial Chemotherapy, 2020, 75, 917-924.	monas 1.3	26
62	Inhibitory effects of novel 1,4-disubstituted 1,2,3-triazole compounds on quorum-sensing of aeruginosa PAO1. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 4	P. 0, 373-379. 1.3	6
63	The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Mc of Gac/Rsm System and c-di-GMP Signaling Pathway. Infection and Immunity, 2021, 89, .	dulation 1.0	5
64	Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress. Frontiers in Microbiology, 2020, 11, 588884.	1.5	17
65	Studying Bacterial Persistence: Established Methods and Current Advances. Methods in Mole Biology, 2021, 2357, 3-20.	cular 0.4	2
66	From Life-Saving to Life-Threatening: A Mathematical Model to Simulate Bacterial Infections i Surgical Procedures. SIAM Journal on Applied Mathematics, 2021, 81, 1226-1247.	n 0.8	0
67	Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics, 2021, 10, 175.	1.5	45
68	The Pseudomonas aeruginosa substrate-binding protein Ttg2D functions as a general glycerophospholipid transporter across the periplasm. Communications Biology, 2021, 4, 44	3. 2.0	15
69	Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprint Nature Communications, 2021, 12, 3146.	ing. 5.8	20
70	In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings une 808-nm light irradiation. Rare Metals, 2022, 41, 540-545.	der 3.6	17
71	Sialic Acids as Receptors for Pathogens. Biomolecules, 2021, 11, 831.	1.8	27
72	Phenotypic heterogeneity in persisters: a novel â€ [~] hunker' theory of persistence. FEMS N Reviews, 2022, 46, .	licrobiology 3.9	25
73	Proteome Dynamics during Antibiotic Persistence and Resuscitation. MSystems, 2021, 6, e00)54921. <u>1.7</u>	4

#	Article	IF	CITATIONS
74	Contribution of single-cell omics to microbial ecology. Trends in Ecology and Evolution, 2022, 37, 67-78.	4.2	8
75	Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiology, 2021, 16, 1003-1021.	1.0	32
76	Label-free biosensor of phagocytosis for diagnosing bacterial infections. Biosensors and Bioelectronics, 2021, 191, 113412.	5.3	16
77	Biofilm and Antimicrobial Resistance. , 2019, , 285-298.		2
78	Molecular and Systems Biology Approaches for Analyzing Drug-Tolerant Bacterial Persister Cells. Sustainable Agriculture Reviews, 2020, , 109-128.	0.6	1
79	Improved effect of amikacin-loaded poly(D,L-lactide-co-glycolide) nanoparticles against planktonic and biofilm cells of Pseudomonas aeruginosa. Journal of Medical Microbiology, 2017, 66, 137-148.	0.7	22
81	Biofilm Formation Assay in Pseudomonas syringae. Bio-protocol, 2019, 9, e3237.	0.2	16
82	Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. Biocatalysis and Agricultural Biotechnology, 2021, 37, 102183.	1.5	14
83	Proteomics Approaches to Uncover the Drug Resistance Mechanisms of Microbial Biofilms. , 2017, , 129-162.		0
85	Evaluation of the Effect of Zinc Oxide Nanoparticles on the Inhibition of Biofilm formation of standard Pathogenic Bacteria and Comparison with Drug Resistant Isolates. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2019, 27, 138-149.	0.1	0
87	Formation of Persisters in Clinical Isolates of <i>K.pneumoniae</i> Induced with Meropenem, Amikacin, and Their Combination. Antibiotiki I Khimioterapiya, 2020, 65, 27-32.	0.1	1
88	Real-time monitoring of∢i>Pseudomonas aeruginosabiofilm growth dynamics and persister cells' eradication. Emerging Microbes and Infections, 2021, 10, 2062-2075.	3.0	21
90	NIRâ€Responsive TiO ₂ Biometasurfaces: Toward In Situ Photodynamic Antibacterial Therapy for Biomedical Implants. Advanced Materials, 2022, 34, e2106314.	11.1	51
91	Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens, 2022, 11, 300.	1.2	97
92	The Role of Mass Spectrometry in the Discovery of Antibiotics and Bacterial Resistance Mechanisms: Proteomics and Metabolomics Approaches. Current Medicinal Chemistry, 2023, 30, 30-58.	1.2	1
93	Biofilms de Pseudomonas aeruginosa como mecanismos de resistencia y tolerancia a antibióticos. Revisión narrativa. Revista De La Facultad De Ciencias De La Salud, 2021, 23, 47-57.	0.2	1
106	Chimeric Ligands of Pili and Lectin A Inhibit Tolerance, Persistence, and Virulence Factors of <i>Pseudomonas aeruginosa</i> over a Wide Range of Phenotypes. ACS Infectious Diseases, 0, , .	1.8	0
107	Meta-Analysis for the Global Prevalence of Foodborne Pathogens Exhibiting Antibiotic Resistance and Biofilm Formation. Frontiers in Microbiology, 0, 13, .	1.5	9

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
108	Innovations in point-of-care electrochemical detection of pyocyanin. Journal of Electroanalytical Chemistry, 2022, 921, 116649.	1.9	5
109	A novel phenolic derivative inhibits AHL-dependent quorum sensing signaling in Pseudomonas aeruginosa. Frontiers in Pharmacology, 0, 13, .	1.6	6
111	Mass spectrometry profiling of single bacterial cells reveals metabolic regulation during antibiotics induced bacterial filamentation. Chinese Chemical Letters, 2023, 34, 107938.	4.8	3
112	pSILAC-Based Determination of Cellular Protein Sorting into Extracellular Vesicles. Methods in Molecular Biology, 2023, , 43-58.	0.4	0
113	Infection Microenvironmentâ€Sensitive Photothermal Nanotherapeutic Platform to Inhibit Methicillinâ€Resistant <i>Staphylococcus aureus</i> Infection. Macromolecular Bioscience, 2023, 23, .	2.1	1
114	Acquisition of T6SS Effector TseL Contributes to the Emerging of Novel Epidemic Strains of Pseudomonas aeruginosa. Microbiology Spectrum, 2023, 11, .	1.2	3
115	Auranofin inhibits virulence pathways in Pseudomonas aeruginosa. Bioorganic and Medicinal Chemistry, 2023, 79, 117167.	1.4	5
116	Mid-Infrared Photothermal–Fluorescence In Situ Hybridization for Functional Analysis and Genetic Identification of Single Cells. Analytical Chemistry, 2023, 95, 2398-2405.	3.2	4
117	Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life, 2023, 13, 503.	1.1	6
118	N, O-dual coordination regulation directs the design of active sites on nanoclusters for highly efficient catalytic water purification. Applied Catalysis B: Environmental, 2023, 328, 122510.	10.8	5
119	Oxidative stress induced by Etoposide anti-cancer chemotherapy drives the emergence of tumor-associated bacteria resistance to fluoroquinolones. Journal of Advanced Research, 2024, 55, 33-44.	4.4	2
120	Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics, 2023, 12, 499.	1.5	3
121	Cell division factor ZapE regulates <i>Pseudomonas aeruginosa</i> biofilm formation by impacting the <i>pqs</i> quorum sensing system. , 2023, 2, 28-42.		0
129	Proteomics Analysis for Identification and Antimicrobial Resistance Analysis of Bacteria. , 2023, , 125-153.		0
134	Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. Journal of Natural Medicines, 0, , .	1.1	1