Toward a More Holistic Framework for Solvent Selectio

Organic Process Research and Development 20, 760-773 DOI: 10.1021/acs.oprd.6b00015

Citation Report

#	Article	IF	CITATIONS
1	Integrating a Biorefinery into an Operating Kraft Mill. BioResources, 2016, 11, .	0.5	13
2	Nickel atalyzed Crossâ€Electrophile Coupling with Organic Reductants in Nonâ€Amide Solvents. Chemistry - A European Journal, 2016, 22, 11564-11567.	1.7	79
3	Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4, .	2.3	837
4	Updating and further expanding GSK's solvent sustainability guide. Green Chemistry, 2016, 18, 3879-3890.	4.6	656
6	Searching for novel reusable biomass-derived solvents: furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide–alkyne cycloaddition. Green Chemistry, 2016, 18, 6380-6386.	4.6	36
7	Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chemistry, 2017, 19, 1601-1612.	4.6	169
8	Bio-Based Molecular Solvents. , 2017, , 91-110.		9
9	The Enabling Technologies Consortium (ETC): Fostering Precompetitive Collaborations on New Enabling Technologies for Pharmaceutical Research and Development. Organic Process Research and Development, 2017, 21, 414-419.	1.3	23
10	Exploiting intramolecular hydrogen bonding for the highly (Z)-selective & metal free synthesis of amide substituted β-aminoenones. Green Chemistry, 2017, 19, 2541-2545.	4.6	11
11	Recent Advances in Nonaqueous Extraction of Bitumen from Mineable Oil Sands: A Review. Organic Process Research and Development, 2017, 21, 492-510.	1.3	46
12	Methodology for Replacing Dipolar Aprotic Solvents Used in API Processing with Safe Hydrogen-Bond Donor and Acceptor Solvent-Pair Mixtures. Organic Process Research and Development, 2017, 21, 114-124.	1.3	42
13	Mass Efficiency of Alkene Syntheses with Tri- and Tetrasubstituted Double Bonds. ACS Sustainable Chemistry and Engineering, 2017, 5, 10459-10473.	3.2	34
14	Driving toward greener chemistry in the pharmaceutical industry. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 56-59.	3.2	19
15	Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products. Molecules, 2017, 22, 1474.	1.7	114
16	2â€Methyltetrahydrofuran: A Green Solvent for Iron atalyzed Cross oupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	3.6	44
17	New Methodology of Solvent Selection for the Regeneration of Waste Lubricant Oil Using Greenness Criteria. ACS Sustainable Chemistry and Engineering, 2018, 6, 6820-6828.	3.2	12
18	Cyrene as a bio-based solvent for HATU mediated amide coupling. Organic and Biomolecular Chemistry, 2018, 16, 2851-2854.	1.5	59
21	Useful Tools for the Next Quarter Century of Green Chemistry Practice: A Dictionary of Terms and a Data Set of Parameters for High Value Industrial Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 3206-3214.	3.2	24

TATION REDO

		CITATION R	EPORT	
# 22	ARTICLE Green and Sustainable Solvents in Chemical Processes. Chemical Reviews, 2018, 118, 747-	-800	IF 23.0	CITATIONS
	Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis			
23	technology. Pure and Applied Chemistry, 2018, 90, 21-33.		0.9	30
24	Waste-minimised copper-catalysed azide–alkyne cycloaddition in Polarclean as a reusabl reaction medium. Green Chemistry, 2018, 20, 183-187.	e and safe	4.6	37
25	Cyrene as a Bio-Based Solvent for the Suzuki–Miyaura Cross-Coupling. Synlett, 2018, 29	, 650-654.	1.0	53
26	Benchmarking Green Chemistry Adoption by the Global Pharmaceutical Supply Chain. ACS Chemistry and Engineering, 2018, 6, 2-14.	Sustainable	3.2	33
27	Strategies for using hydrogen-bond donor/acceptor solvent pairs in developing green chen processes with supercritical fluids. Journal of Supercritical Fluids, 2018, 141, 182-197.	nical	1.6	21
28	Dimethylisosorbide (DMI) as a Bio-Derived Solvent for Pd-Catalyzed Cross-Coupling Reaction 2018, 29, 2293-2297.	ons. Synlett,	1.0	21
30	Recent Advances on the Use of 2-methyltetrahydrofuran (2-MeTHF) in Biotransformations. Green Chemistry, 2018, 5, 86-103.	Current	0.7	63
31	Diarylmethane synthesis through Re ₂ O ₇ -catalyzed bimolecular o Friedel–Crafts reactions. Chemical Science, 2018, 9, 8528-8534.	Jehydrative	3.7	32
32	Towards environmentally friendlier Suzuki–Miyaura reactions with precursors of Pd-NHC	(NHC =) Tj ETQq1 1 (0.784314 t 4.6	rgBT /Overlo
33	A continuous flow approach for the C–H functionalization of 1,2,3-triazoles in γ-valerola biomass-derived medium. Green Chemistry, 2018, 20, 2888-2893.	ictone as a	4.6	63
34	Phase Equilibria for Systems Containing Refined Soybean Oil plus Cosolvents at Different Temperatures. Journal of Chemical & Engineering Data, 2018, 63, 1937-1945.		1.0	9
35	Particle engineering of needle shaped crystals by wet milling and temperature cycling: Opt for roller compaction. Powder Technology, 2018, 339, 641-650.	imisation	2.1	28
36	Innovative process development and production concepts for small-molecule API manufact Computer Aided Chemical Engineering, 2018, , 67-84.	turing.	0.3	3
37	Solubility Correlations of Common Organic Solvents. Organic Process Research and Develo 2018, 22, 829-835.	opment,	1.3	22
38	1-Butanol as a Solvent for Efficient Extraction of Polar Compounds from Aqueous Medium: Theoretical and Practical Aspects. Journal of Physical Chemistry B, 2018, 122, 6975-6988.		1.2	24
39	A Method of Calculating the Kamlet–Abboud–Taft Solvatochromic Parameters Using 0 Molecules, 2019, 24, 2209.	COSMO-RS.	1.7	23
40	Improved Synthesis of the Nav1.7 Inhibitor GDC-0276 via a Highly Regioselective S _{N Reaction. Organic Process Research and Development, 2019, 23, 1829-1840.}	Ar	1.3	11

#	Article	IF	CITATIONS
41	The Discovery of the Nav1.7 Inhibitor GDC-0276 and Development of an Efficient Large-Scale Synthesis. ACS Symposium Series, 2019, , 107-123.	0.5	1
42	Investigation of the [1,5]-hydride shift as a route to nitro-Mannich cyclisations. Tetrahedron, 2019, 75, 130663.	1.0	4
43	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ^'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ^'C/Oâ^'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	2.1	37
44	One-Pot Two-Step Synthesis of 2-Aryl benzimidazole N-oxides Using Microwave Heating as a Tool. Molecules, 2019, 24, 3639.	1.7	4
45	A Green Chemistry Continuum for a Robust and Sustainable Active Pharmaceutical Ingredient Supply Chain. ACS Sustainable Chemistry and Engineering, 2019, 7, 16937-16951.	3.2	37
46	Rapid route design of AZD7594. Reaction Chemistry and Engineering, 2019, 4, 1658-1673.	1.9	12
47	Realistic interplays between data science and chemical engineering in the first quarter of the 21st century: Facts and a vision. Chemical Engineering Research and Design, 2019, 147, 668-675.	2.7	16
48	Reaching Green: Heterocycle Synthesis by Transition Metalâ€Catalyzed Câ^'H Functionalization in Sustainable Medium. Chemistry - A European Journal, 2019, 25, 9366-9384.	1.7	52
49	Development of an Efficient and Scalable Asymmetric Synthesis of Eliglustat via Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation. Organic Process Research and Development, 2019, 23, 1204-1212.	1.3	18
50	Solvent impact assessment for the "One-Flow Functional Solvent Factory― Chemical Engineering Science: X, 2019, 3, 100024.	1.5	3
52	Solvent Selection Methods and Tool. Organic Process Research and Development, 2019, 23, 998-1016.	1.3	20
53	Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies. ACS Catalysis, 2019, 9, 3228-3241.	5.5	77
54	Solvent and substituent effects in hydrogenation of aromatic ketones over Ru/polymer catalyst under very mild conditions. Molecular Catalysis, 2019, 470, 145-151.	1.0	12
55	Computerâ€aided solvent selection and design for the efficient extraction of a pharmaceutical molecule. Canadian Journal of Chemical Engineering, 2019, 97, 1605-1618.	0.9	4
56	A multi-component reaction for the synthesis of pyrido [1,2- <i>b</i>] isoquinoline derivatives <i>via</i> the [3 + 2] cycloaddition reaction between alkynes and <i>in situ</i> generated isoquinolinium ylides. Organic and Biomolecular Chemistry, 2019, 17, 4121-4128.	1.5	6
57	Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. Molecular Catalysis, 2019, 466, 60-69.	1.0	27
58	Eucalyptol: a new solvent for the synthesis of heterocycles containing oxygen, sulfur and nitrogen. Green Chemistry, 2019, 21, 1531-1539.	4.6	39
59	Life cycle considerations of solvents. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 66-71.	3.2	24

#	Article	IF	CITATIONS
60	Aiming for a standardized protocol for preparing a process green synthesis report and for ranking multiple synthesis plans to a common target product. Green Processing and Synthesis, 2019, 8, 787-801.	1.3	3
61	<i>N</i> â€Methylcaprolactam as a Dipolar Aprotic Solvent for Ironâ€Catalyzed Crossâ€Coupling Reactions: Matching Efficiency with Safer Reaction Media. ChemCatChem, 2019, 11, 1196-1199.	1.8	12
62	Comparing Industrial Amination Reactions in a Combined Class and Laboratory Green Chemistry Assignment. Journal of Chemical Education, 2019, 96, 93-99.	1.1	17
63	Liquid-liquid equilibria and density data for pseudoternary systems of refined soybean oil + (hexanal,) Tj ETQ 298.15 K. Journal of Chemical Thermodynamics, 2019, 131, 149-158.	q1 1 0.78 1.0	4314 rgBT 7
64	The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Current Chemistry, 2019, 377, 2.	3.0	99
65	Cobaltaâ€Electrocatalyzed Câ^'H Activation in Biomassâ€Derived Glycerol: Powered by Renewable Wind and Solar Energy. ChemSusChem, 2020, 13, 668-671.	3.6	31
66	Exploration of New Biomassâ€Derived Solvents: Application to Carboxylation Reactions. ChemSusChem, 2020, 13, 2080-2088.	3.6	22
67	Solubility Behaviors and Correlations of Common Solvent–Antisolvent Systems. Organic Process Research and Development, 2020, 24, 2722-2727.	1.3	5
68	A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies. ACS Catalysis, 2020, 10, 12642-12656.	5.5	35
69	Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nature Communications, 2020, 11, 5753.	5.8	122
70	Diethanolamine Boronic Esters: Development of a Simple and Standard Process for Boronic Ester Synthesis. Organic Process Research and Development, 2020, 24, 1683-1689.	1.3	12
71	Polarclean/Water as a Safe and Recoverable Medium for Selective C2-Arylation of Indoles Catalyzed by Pd/C. ACS Sustainable Chemistry and Engineering, 2020, 8, 16441-16450.	3.2	20
72	Toward a Scalable Synthesis and Process for EMA401, Part II: Development and Scale-Up of a Pyridine- and Piperidine-Free Knoevenagel–Doebner Condensation. Organic Process Research and Development, 2020, 24, 1756-1762.	1.3	6
73	Charging Organic Liquids by Static Charge. Journal of the American Chemical Society, 2020, 142, 21004-21016.	6.6	8
74	Selection of a recyclable <i>in situ</i> liquid–liquid extraction solvent for foam-free synthesis of rhamnolipids in a two-phase fermentation. Green Chemistry, 2020, 22, 8495-8510.	4.6	25
75	Bio-Solvents: Synthesis, Industrial Production and Applications. , 2020, , .		1
76	Process Development Overcomes a Challenging Pd-Catalyzed C–N Coupling for the Synthesis of RORc Inhibitor GDC-0022 . Organic Process Research and Development, 2020, 24, 567-578.	1.3	6
77	SUSSOL—Using Artificial Intelligence for Greener Solvent Selection and Substitution. Molecules, 2020, 25, 3037.	1.7	15

#	Article	IF	CITATIONS
78	An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides. Green Chemistry, 2020, 22, 2097-2128.	4.6	140
79	Greening Fmoc/ <i>t</i> Bu solid-phase peptide synthesis. Green Chemistry, 2020, 22, 996-1018.	4.6	85
80	2,2,2-trifluoroethanol-promoted access to symmetrically 3,3-disubstituted quinoline-2,4-diones. Journal of Fluorine Chemistry, 2020, 234, 109520.	0.9	0
81	Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chemical Science, 2021, 12, 1163-1175.	3.7	102
82	Stability and decay of surface electrostatic charges in liquids. Nano Energy, 2021, 81, 105618.	8.2	13
83	Liquid–liquid extraction technology for resource recovery: Applications, potential, and perspectives. Journal of Water Process Engineering, 2021, 40, 101762.	2.6	21
84	Development and Scale-Up of an Improved Manufacturing Route to the ATR Inhibitor Ceralasertib. Organic Process Research and Development, 2021, 25, 43-56.	1.3	20
85	Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chemical Reviews, 2021, 121, 1582-1622.	23.0	57
86	Multivariate Analysis in the Selection of Greener Solvents for the Bromination of 2-Cyano-4'-methylbiphenyl. Organic Process Research and Development, 2021, 25, 68-74.	1.3	1
87	Green Solvent Selection for Suzuki–Miyaura Coupling of Amides. ACS Sustainable Chemistry and Engineering, 2021, 9, 552-559.	3.2	31
88	Green alternative cosolvents to <i>N</i> -methyl-2-pyrrolidone in water polyurethane dispersions. RSC Advances, 2021, 11, 19070-19075.	1.7	15
89	Evaluation of greener solvents for solid-phase peptide synthesis. Green Chemistry Letters and Reviews, 2021, 14, 153-164.	2.1	21
90	Metal–Micelle Cooperativity: Phosphine Ligand-Free Ultrasmall Palladium(II) Nanoparticles for Oxidative Mizoroki–Heck-type Couplings in Water at Room Temperature. Jacs Au, 2021, 1, 308-315.	3.6	25
91	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
92	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149.		1
93	Commercial green solvents for environmental remediation. , 2021, , 89-119.		0
94	<i>N</i> Butylpyrrolidone (NBP) as a non-toxic substitute for NMP in iron-catalyzed C(sp ²)–C(sp ³) cross-coupling of aryl chlorides. Green Chemistry, 2021, 23, 7515-7521.	4.6	8
95	C–H Activation: Toward Sustainability and Applications. ACS Central Science, 2021, 7, 245-261.	5.3	357

	CITATION RE	PORT	
# 96	ARTICLE Eucalyptol: A Bio-Based Solvent for the Synthesis of O,S,N-Heterocycles. Application to Hiyama Coupling, Cyanation, and Multicomponent Reactions. Catalysts, 2021, 11, 222.	IF 1.6	CITATIONS 8
97	Demonstration of Green Solvent Performance on O,S,N-Heterocycles Synthesis: Metal-Free Click Chemistry and Buchwald—Hartwig Coupling. Molecules, 2021, 26, 1074.	1.7	4
98	Impact of Critical Material Attributes (CMAs)-Particle Shape on Miniature Pharmaceutical Unit Operations. AAPS PharmSciTech, 2021, 22, 98.	1.5	11
99	Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment. Advanced Energy and Sustainability Research, 2021, 2, 2000088.	2.8	46
100	On the Solubility and Stability of Polyvinylidene Fluoride. Polymers, 2021, 13, 1354.	2.0	97
101	Cyreneâ"¢ as a Neoteric Bioâ€Based Solvent for Catalystâ€Free Microwaveâ€Assisted Construction of Diverse Bipyridine Analogues for Heavyâ€Metal Sensing. ChemSusChem, 2021, 14, 2133-2140.	3.6	10
102	<i>N</i> -Chloro- <i>N</i> -sodio-carbamates as a Practical Amidating Reagent for Scalable and Sustainable Amidation of Aldehydes under Visible Light. Organic Process Research and Development, 2021, 25, 1176-1183.	1.3	8
103	Realistic interplays between data science and chemical engineering in the first quarter of the 21st century, part 2: Dos and don'ts. Chemical Engineering Research and Design, 2021, 169, 308-318.	2.7	3
104	Métrica usando conceitos de quÃmica verde para avaliar o uso de produtos quÃmicos em métodos normatizados nacionais e internacionais para determinação do Número de Acidez Total (NAT). Research, Society and Development, 2021, 10, e25510514894.	0.0	1
105	A Novel Integrated Workflow for Isolation Solvent Selection Using Prediction and Modeling. Organic Process Research and Development, 2021, 25, 1143-1159.	1.3	13
106	Computer Aided Design of Solvent Blends for Hybrid Cooling and Antisolvent Crystallization of Active Pharmaceutical Ingredients. Organic Process Research and Development, 2021, 25, 1123-1142.	1.3	18
107	Cyclopentyl Methyl Ether (CPME) and 4-Methyltetrahydropyran (4-MeTHP) : Basic Chemical Properties and Applications as Next Generation Reaction Solvents. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 547-557.	0.0	0
108	A tool for identifying green solvents for printed electronics. Nature Communications, 2021, 12, 4510.	5.8	58
109	Synthetic and Chromatographic Challenges and Strategies for Multigram Manufacture of KRAS ^{G12C} Inhibitors. Organic Process Research and Development, 2022, 26, 710-729.	1.3	12
110	Chemometrics approaches to green analytical chemistry procedure development. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100498.	3.2	14
111	Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship. Journal of Chemical Information and Modeling, 2021, 61, 4890-4899.	2.5	16
112	The green solvent: a critical perspective. Clean Technologies and Environmental Policy, 2021, 23, 2499-2522.	2.1	80
113	Systems level roadmap for solvent recovery and reuse in industries. IScience, 2021, 24, 103114.	1.9	21

# 114	ARTICLE Cyrene as a green solvent in the pharmaceutical industry. , 2021, , 243-248.	IF	CITATIONS 3
115	Dimethyl isosorbide <i>via</i> organocatalyst <i>N</i> -methyl pyrrolidine: scaling up, purification and concurrent reaction pathways. Catalysis Science and Technology, 2021, 11, 3411-3421.	2.1	17
116	Droplet-based nanogenerators for energy harvesting and self-powered sensing. Nanoscale, 2021, 13, 17290-17309.	2.8	18
117	Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbl ₃) perovskite solar cells. Green Chemistry, 2021, 23, 2471-2486.	4.6	45
118	<i>>n</i> â€Butanol: An Ecologically and Economically Viable Extraction Solvent for Isolating Polar Products from Aqueous Solutions. European Journal of Organic Chemistry, 2021, 2021, 6224-6228.	1.2	5
119	Green-Solvent Selection for Acyl Buchwald–Hartwig Cross-Coupling of Amides (Transamidation). ACS Sustainable Chemistry and Engineering, 2021, 9, 14937-14945.	3.2	21
120	Green metrics in pharmaceutical development. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100564.	3.2	12
121	Comparative screening of organic solvents, ionic liquids, and their binary mixtures for vitamin E extraction from deodorizer distillate. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108711.	1.8	4
122	Solventes verdes obtidos de biomassa: propriedades e aplicações. , 2020, , 45-84.		0
123	Use of Green Solvents in Metallaphotoredox Cross-Electrophile Coupling Reactions Utilizing a Lipophilic Modified Dual Ir/Ni Catalyst System. Journal of Organic Chemistry, 2021, 86, 17428-17436.	1.7	5
124	Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. Journal of the American Chemical Society, 2021, 143, 21024-21036.	6.6	23
125	Metrics of green chemistry: Waste minimization. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100569.	3.2	40
126	A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis. Journal of the American Chemical Society, 2022, 144, 1205-1217.	6.6	97
127	Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges. Green Chemistry, 2022, 24, 975-1020.	4.6	57
128	Taking the Green Road Towards Pharmaceutical Manufacturing. Synthesis, 2022, 54, 4257-4271.	1.2	3
129	Eucalyptol, an All-Purpose Product. Catalysts, 2022, 12, 48.	1.6	13
130	What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chemical Research in Toxicology, 2022, 35, 163-198.	1.7	5
132	Software tools for green and sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100623.	3.2	4

#	Article	IF	CITATIONS
133	Integrating Technoeconomic, Environmental, and Safety Criteria in Solvent Screening for Extraction Processes: The Case of Algae Lipid Extraction. ACS Sustainable Chemistry and Engineering, 2022, 10, 472-485.	3.2	4
134	Making Sustainability Assessment Accessible: Tools Developed by the ACS Green Chemistry Institute Pharmaceutical Roundtable. ACS Sustainable Chemistry and Engineering, 2021, 9, 16862-16864.	3.2	10
135	Amine-free CO ₂ -switchable hydrophilicity solvents and their application in extractions and polymer recycling. Green Chemistry, 2022, 24, 3704-3716.	4.6	8
136	Application of the Polonovski Reaction: Scale-up of an Efficient and Environmentally Benign Opioid Demethylation. Organic Process Research and Development, 2022, 26, 1398-1404.	1.3	2
137	An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 2022, 442, 136313.	6.6	14
138	Improving the environmental hazard scores metric for solvent mixtures containing carbon dioxide for chromatographic separations. Green Chemistry, 2022, 24, 4504-4515.	4.6	6
139	A case study in green chemistry: the reduction of hazardous solvents in an industrial R&D environment. Green Chemistry, 2022, 24, 3943-3956.	4.6	10
140	Green assessment of polymer microparticles production processes: a critical review. Green Chemistry, 2022, 24, 4237-4269.	4.6	16
141	Solubility Model to Guide Solvent Selection in Synthetic Process Development. Crystal Growth and Design, 2022, 22, 4404-4420.	1.4	2
142	Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chemical Reviews, 2022, 122, 13006-13042.	23.0	28
143	ppm Pdâ€Containing Nanoparticles as Catalysts for Negishi Couplings … <i>in Water</i> . Angewandte Chemie, 2022, 134, .	1.6	2
144	Development of a Continuous Flow Synthesis of Lorazepam. Organic Process Research and Development, 2022, 26, 2715-2727.	1.3	3
145	Evaluation of Predictive Solubility Models in Pharmaceutical Process Development─an Enabling Technologies Consortium Collaboration. Crystal Growth and Design, 2022, 22, 5239-5263.	1.4	4
146	ppm Pdâ€Containing Nanoparticles as Catalysts for Negishi Couplings … <i>in Water</i> . Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
147	Biocatalysis, solvents, and green metrics in sustainable chemistry. , 2022, , 1-22.		3
148	Nucleophilicity Prediction Using Graph Neural Networks. Journal of Chemical Information and Modeling, 2022, 62, 4319-4328.	2.5	6
149	Zinc-free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell. ACS Catalysis, 2022, 12, 12617-12626.	5.5	32
150	Poly (Vinylidene Difluoride) Polymer in 1-Ethyl-3-methylimidazolium Acetate and Acetic Acid Containing Solvents: Tunable and Recoverable Solvent Media to Induce Crystalline Phase Transition and Porosity. Sustainable Chemistry, 2022, 3, 455-474.	2.2	0

		CITATION REPOR	:T	
#	Article	IF		Citations
151	Application of Biobased Solvents in Asymmetric Catalysis. Molecules, 2022, 27, 6701.	1.7	· .	10
152	Iterative model-based optimal experimental design for mixture-process variable models to pre solubility. Chemical Engineering Research and Design, 2023, 189, 768-780.	edict 2.7	, (0
153	Evolution of packed column SFC as a greener analytical tool for pharmaceutical analysis. Sep Science and Technology, 2022, , 1-28.	aration 0.0	0	0
154	Early Process Development and Scale-Up of Orally Active Apomorphine Drug Candidates. Org Process Research and Development, 2023, 27, 105-119.	ganic 1.3	; (0
155	Machine Learning C–N Couplings: Obstacles for a General-Purpose Reaction Yield Predictio Omega, 2023, 8, 3017-3025.	n. ACS 1.6	;	11
156	Facile Synthesis of Organic Compounds in PEG, ScCO ₂ and H ₂ O: A Current Organic Chemistry, 2022, 26, 1638-1652.	A Review. 0.9)	0
157	Greening Sample Treatment. , 2019, , 87-167.			0
158	A comprehensive review on recent developments and future perspectives of switchable solve their applications in sample preparation techniques. Green Chemistry, 2023, 25, 1729-1748.	nts and 4.6	5 8	8
159	A unified ML framework for solubility prediction across organic solvents. , 2023, 2, 356-367.		,	7
160	Industrial application of green solvent for energy conversion and storage. , 2023, , 113-124.			0
161	Improving the sustainability of the ruthenium-catalysed <i>N</i> -directed C–H arylation of with aryl halides. Green Chemistry, 2023, 25, 2394-2400.	arenes 4.6	5	5
162	Recyclability and reusability of the solvents. , 2023, , 133-170.			0
163	GreenMedChem: the challenge in the next decade toward eco-friendly compounds and proce drug design. Green Chemistry, 2023, 25, 2109-2169.	sses in 4.6	5	11
164	Application of Green Solvent in Green Chemistry: An overview. Green Chemistry & Technolog 2023, 9, 01-14.	y Letters, 0.8	3 :	1
165	A Perspective on Explanations of Molecular Prediction Models. Journal of Chemical Theory an Computation, 2023, 19, 2149-2160.	d 2.3	3 :	13
166	Scalable, Green Synthesis of Heteroaromatic Amine-boranes. Organic Process Research and Development, 2023, 27, 775-783.	1.3		2
167	Current developments of eco-friendly organic field-effect transistors: from molecular enginee of organic semiconductors to greener device processing. Chemical Communications, 2023, 5 4995-5015.	ring ;9, 2.2	2 :	3
168	Alternatives to classic solvents for the isolation of bioactive compounds from Chrysochromul rotalis. Bioresource Technology, 2023, 379, 129057.	lina 4.8	3 :	2

~		<u>_</u>	
CITAT	ION	Report	

#	Article	IF	CITATIONS
169	The Medicinal Chemistry and Process Chemistry Interface. , 2023, , 800-811.		1
172	API Syntheses in Aqueous Media: Assessing the Environmental Footprint en route from Academic Discovery to Industrial Applications as "Green Opportunity―for Process Chemistry. Organic Process Research and Development, 2023, 27, 822-830.	1.3	5
173	Advanced methodologies for the cleaning of works of art. Science China Technological Sciences, 2023, 66, 2162-2182.	2.0	10
177	Circular economy for perovskite solar cells – drivers, progress and challenges. Energy and Environmental Science, 2023, 16, 3711-3733.	15.6	4
188	A tutorial review for research laboratories to support the vital path toward inherently sustainable and green synthetic chemistry. , 2024, 2, 578-607.		0
196	Green Chemistry Considerations in the Synthesis of Nirmatrelvir, the Active Pharmaceutical Ingredient (API) in Paxlovidâ"¢. , 2024, , .		0