The potential of Sentinel-2 data for estimating biophysi simulation study

Remote Sensing Letters 7, 427-436

DOI: 10.1080/2150704x.2016.1149251

Citation Report

#	Article	IF	CITATIONS
1	Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission. Journal of Sensors, 2016, 2016, 1-16.	0.6	34
2	Understanding Forest Health with Remote Sensing -Part l—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sensing, 2016, 8, 1029.	1.8	138
3	The accuracy of large-area forest canopy cover estimation using Landsat in boreal region. International Journal of Applied Earth Observation and Geoinformation, 2016, 53, 118-127.	1.4	28
4	A data fusion Kalman filter algorithm to estimate leaf area index evolution by using Modis LAI and PROBA–V top of canopy synthesis data. Proceedings of SPIE, 2016, , .	0.8	1
5	Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters, 2017, 8, 508-517.	0.6	105
6	Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 2017, 195, 259-274.	4.6	252
7	Mapping the Abstractions of Forest Landscape Patterns. , 2017, , 213-261.		0
8	Comparison of ground and satellite-based methods for estimating stand-level fPAR in a boreal forest. Agricultural and Forest Meteorology, 2017, 232, 422-432.	1.9	23
9	Assessment of sentinel-2 vegetation indices for plot level tree AGB estimation. , 2017, , .		1
10	Monitoring of selected soil contaminants using proximal and remote sensing techniques: Background, state-of-the-art and future perspectives. Critical Reviews in Environmental Science and Technology, 2018, 48, 243-278.	6.6	63
11	Classification of multi-temporal spectral indices for crop type mapping: a case study in Coalville, UK. Journal of Agricultural Science, 2018, 156, 24-36.	0.6	36
12	Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 126-134.	1.4	63
13	Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery. Journal of Sensors, 2018, 2018, 1-11.	0.6	42
14	Combined Use of Optical and Synthetic Aperture Radar Data for REDD+ Applications in Malawi. Land, 2018, 7, 116.	1.2	22
15	Predicting Growing Stock Volume of Scots Pine Stands Using Sentinel-2 Satellite Imagery and Airborne Image-Derived Point Clouds. Forests, 2018, 9, 274.	0.9	28
16	Validation of Sentinel-2 fAPAR products using ground observations across three forest ecosystems. Remote Sensing of Environment, 2019, 232, 111310.	4.6	20
17	Reflectance Properties of Hemiboreal Mixed Forest Canopies with Focus on Red Edge and Near Infrared Spectral Regions. Remote Sensing, 2019, 11, 1717.	1.8	13
18	Estimating Forest Leaf Area Index and Canopy Chlorophyll Content with Sentinel-2: An Evaluation of Two Hybrid Retrieval Algorithms. Remote Sensing, 2019, 11, 1752.	1.8	35

#	Article	IF	CITATIONS
19	Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data. Remote Sensing, 2019, 11, 414.	1.8	68
20	Sentinel-2 Validation for Spatial Variability Assessment in Overhead Trellis System Viticulture Versus UAV and Agronomic Data. Remote Sensing, 2019, 11, 2573.	1.8	46
21	Linking Terrestrial LiDAR Scanner and Conventional Forest Structure Measurements with Multi-Modal Satellite Data. Forests, 2019, 10, 291.	0.9	13
22	Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. International Journal of Applied Earth Observation and Geoinformation, 2019, 76, 167-178.	1.4	57
23	Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. Forest Ecology and Management, 2019, 447, 12-25.	1.4	48
24	Detecting vegetation stress as a soil contamination proxy: a review of optical proximal and remote sensing techniques. International Journal of Environmental Science and Technology, 2019, 16, 2511-2524.	1.8	49
25	A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sensing, 2019, 11, 2638.	1.8	129
26	Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 2019, 50, 24-32.	2.3	93
27	Evaluation of Sentinel-2 MSI and Pleiades 1B Imagery in Forest Fire Susceptibility Assessment in Temperate Regions of Central and Eastern Europe. A Case Study of Romania. Advances in Natural and Technological Hazards Research, 2019, , 253-269.	1.1	2
28	Modelling <i>Parthenium hysterophorus</i> invasion in KwaZulu-Natal province using remotely sensed data and environmental variables. Geocarto International, 2020, 35, 1450-1465.	1.7	11
29	Red-Edge Band Vegetation Indices for Leaf Area Index Estimation From Sentinel-2/MSI Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 826-840.	2.7	76
30	Sentinel-2 red-edge spectral indices (RESI) suitability for mapping rubber boom in Luang Namtha Province, northern Lao PDR. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102176.	1.4	22
31	Comparison of Machine Learning Methods for Mapping the Stand Characteristics of Temperate Forests Using Multi-Spectral Sentinel-2 Data. Remote Sensing, 2020, 12, 3019.	1.8	32
32	Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 2020, 12, 2291.	1.8	283
33	Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sensing, 2020, 12, 2056.	1.8	21
34	Development of landscape forest performance index to assess forest quality of managed forests. IOP Conference Series: Earth and Environmental Science, 2020, 540, 012012.	0.2	1
35	Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors, 2020, 20, 7248.	2.1	24
36	Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sensing Letters, 2020, 11, 777-786.	0.6	20

3

#	Article	IF	Citations
37	Understanding forest biomass and net primary productivity in Himalayan ecosystem using geospatial approach. Modeling Earth Systems and Environment, 2020, 6, 2517-2534.	1.9	14
39	Correlation of Field-Measured and Remotely Sensed Plant Water Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline. Forests, 2020, 11, 77.	0.9	36
40	Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem. Spatial Information Research, 2021, 29, 109-121.	1.3	41
41	Habitat Mosaics of Sand Steppes and Forest-Steppes in the Ipoly Valley in Hungary. Forests, 2021, 12, 135.	0.9	1
42	Using Sentinel-2 Images to Map the Populus euphratica Distribution Based on the Spectral Difference Acquired at the Key Phenological Stage. Forests, 2021, 12, 147.	0.9	11
43	Comprehensive Evaluation of Sentinel-2 Red Edge and Shortwave-Infrared Bands to Estimate Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7448-7465.	2.3	21
44	Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills. Tropical Ecology, 2021, 62, 288-300.	0.6	16
45	Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172, 28-40.	4.9	33
46	Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data. Remote Sensing, 2021, 13, 1282.	1.8	25
47	Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 71-87.	4.9	43
48	Reviewing the Potential of Sentinel-2 in Assessing the Drought. Remote Sensing, 2021, 13, 3355.	1.8	25
49	National scale mapping of larch plantations for Wales using the Sentinel-2 data archive. Forest Ecology and Management, 2021, 501, 119679.	1.4	5
50	Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	101
51	Classification of forest vegetation types in Jilin Province, China based on deep learning and multi-temporal Sentinel-2 data. , 2019, , .		2
52	Evaluation of Ecological Integrity in Landscape Based on Remote Sensing Data., 2020, , 161-173.		0
53	Exploring the potential of Sentinel-2A satellite data for aboveground biomass estimation in fragmented Himalayan subtropical pine forest. Journal of Mountain Science, 2020, 17, 2880-2896.	0.8	8
54	Estimating Aboveground Biomass in Dense Hyrcanian Forests by the Use of Sentinel-2 Data. Forests, 2022, 13, 104.	0.9	26
55	Combining both spectral and textural indices for alleviating saturation problem in forest LAI estimation using Sentinel-2 data. Geocarto International, 2022, 37, 10511-10531.	1.7	8

#	Article	IF	CITATIONS
56	Geo-ML Enabled Above Ground Biomass and Carbon Estimation for Urban Forests. Communications in Computer and Information Science, 2022, , 599-617.	0.4	1
57	Habitat Changes along Ipoly River Valley (Hungary) in Extreme Wet and Dry Years. Water (Switzerland), 2022, 14, 787.	1.2	1
58	Assessing the Spectral Information of Sentinel-1 and Sentinel-2 Satellites for Above-Ground Biomass Retrieval of a Tropical Forest. ISPRS International Journal of Geo-Information, 2022, 11, 199.	1.4	2
59	Estimating species-specific leaf area index and basal area using optical and SAR remote sensing data in Acadian mixed spruce-fir forests, USA. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102727.	1.4	2
60	Novel vegetation indices for estimating photosynthetic and non-photosynthetic fractional vegetation cover from Sentinel data. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102793.	0.9	5
61	Use of Sentinel 2 imagery to estimate vegetation height in fragments of Atlantic Forest. Ecological Informatics, 2022, 69, 101680.	2.3	2
62	A Synthetic Landscape Metric to Evaluate Urban Vegetation Quality: A Case of Fuzhou City in China. Forests, 2022, 13, 1002.	0.9	5
63	Multi-Source Mapping of Forest Susceptibility to Spruce Budworm Defoliation Based on Stand Age and Composition across a Complex Landscape in Maine, USA. Canadian Journal of Remote Sensing, 2022, 48, 873-893.	1.1	2
64	Above-Ground Biomass Estimation for Coniferous Forests in Northern China Using Regression Kriging and Landsat 9 Images. Remote Sensing, 2022, 14, 5734.	1.8	7
65	Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment, 2023, 285, 113391.	4.6	20
66	SzélsÅ'séges klÃmaszituáció hatásának vizsgálata lpoly menti pannon, legeltetett homoki gyepekben. , 2022, 20, 115-129.		0
67	Building a high-resolution site index map using boosted regression trees: the Norwegian case. Canadian Journal of Forest Research, 0, , .	0.8	2
68	Improving Leaf Area Index Estimation With Chlorophyll Insensitive Multispectral Red-Edge Vegetation Indices. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3568-3582.	2.3	2
69	Aboveground biomass estimation in dry forest in northeastern Brazil using metrics extracted from sentinel-2 data: Comparing parametric and non-parametric estimation methods. Advances in Space Research, 2023, 72, 361-377.	1.2	2
70	Leveraging Google Earth Engine to estimate foliar C: N ratio in an African savannah rangeland using Sentinel 2 data. Remote Sensing Applications: Society and Environment, 2023, 30, 100981.	0.8	1