Zr-based metal–organic frameworks: design, synthes

Chemical Society Reviews 45, 2327-2367

DOI: 10.1039/c5cs00837a

Citation Report

#	Article	IF	Citations
3	Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 12526-12534.	10.3	79
5	A Threefold Interpenetrated Pillaredâ€Layer Metal–Organic Framework for Selective Separation of C ₂ H ₂ ChemPlusChem, 2016, 81, 764-769.	2.8	24
6	Postsynthetic Inner-Surface Functionalization of the Highly Stable Zirconium-Based Metal–Organic Framework DUT-67. Inorganic Chemistry, 2016, 55, 7206-7213.	4.0	68
7	Confinement Effects of Metal–Organic Framework on the Formation of Charge-Transfer Tetrathiafulvalene Dimers. Inorganic Chemistry, 2016, 55, 12758-12765.	4.0	25
8	Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions. Chemical Communications, 2016, 52, 6513-6516.	4.1	74
9	Identification of Zr(<scp>iv</scp>)-based architectures generated from ligands incorporating the 2,2′-biphenolato unit. Dalton Transactions, 2016, 45, 7998-8007.	3.3	4
10	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 2016, 138, 6204-6216.	13.7	1,273
11	Exceptional photosensitivity of a polyoxometalate-based charge-transfer hybrid material. Chemical Communications, 2016, 52, 7394-7397.	4.1	97
12	Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	38.1	113
13	Governing metal–organic frameworks towards high stability. Chemical Communications, 2016, 52, 8501-8513.	4.1	196
14	Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework: Permanent Porosity and Proton Conduction. Crystal Growth and Design, 2016, 16, 5831-5835.	3.0	120
15	Pressure controlled drug release in a Zr-cluster-based MOF. Journal of Materials Chemistry B, 2016, 4, 6398-6401.	5.8	86
16	A Porous Zirconiumâ€Based Metalâ€Organic Framework with the Potential for the Separation of Butene Isomers. Chemistry - A European Journal, 2016, 22, 14988-14997.	3.3	57
17	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	2.6	80
18	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	13.7	101
19	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	14.6	202
20	Design of Highly Connected Cd-Tetrazolate-Dicarboxylate Frameworks with Enhanced CO ₂ /CH ₄ and C ₂ Hydrocarbons/CH ₄ Separation Performance. Crystal Growth and Design, 2016, 16, 6430-6435.	3.0	19
21	Two-dimensional metal–organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chemical Communications, 2016, 52, 12984-12987.	4.1	61

#	Article	IF	CITATIONS
22	AIE-active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications, 2016, 52, 11284-11287.	4.1	145
23	Postsynthetic Modification of Zirconium Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4310-4331.	2.0	188
24	MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23755-23762.	8.0	39
25	In-situ synthesis of SiO2@MOF composites for high-efficiency removal of aniline from aqueous solution. Applied Surface Science, 2016, 390, 506-512.	6.1	42
26	Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit. Chemical Communications, 2016, 52, 12698-12701.	4.1	56
27	Hydrogen adsorption in azolium and metalated N-heterocyclic carbene containing MOFs. CrystEngComm, 2016, 18, 7003-7010.	2.6	17
28	Selective Carbon Dioxide Adsorption by Two Robust Microporous Coordination Polymers. Inorganic Chemistry, 2016, 55, 12923-12929.	4.0	25
29	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	21.0	1,227
30	Applications of water stable metal–organic frameworks. Chemical Society Reviews, 2016, 45, 5107-5134.	38.1	991
31	Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters, 2016, 27, 1383-1394.	9.0	76
32	A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 10293-10298.	13.7	85
33	A series of robust metal–porphyrinic frameworks based on rare earth clusters and their application in N–H carbene insertion. Dalton Transactions, 2016, 45, 17108-17112.	3.3	18
34	Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation. Journal of Physical Chemistry C, 2016, 120, 24697-24705.	3.1	40
35	High Proton Conduction in Two Co ^{II} and Mn ^{II} Anionic Metal–Organic Frameworks Derived from 1,3,5-Benzenetricarboxylic Acid. Crystal Growth and Design, 2016, 16, 6776-6780.	3.0	73
36	Direct in Situ Conversion of Metals into Metal–Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32414-32420.	8.0	71
37	A two-dimensional metal-organic framework composed of paddle-wheel cobalt clusters with permanent porosity. Inorganic Chemistry Communication, 2016, 74, 98-101.	3.9	10
38	A highly stable amino-coordinated MOF for unprecedented block off N ₂ adsorption and extraordinary CO ₂ /N ₂ separation. Chemical Communications, 2016, 52, 13568-13571.	4.1	33
39	Rational design of a flu -type heterometallic cluster-based Zr-MOF. Chemical Communications, 2016, 52, 13671-13674.	4.1	52

3

#	Article	IF	Citations
40	Synthesis and structure of Zr(<scp>iv</scp>)- and Ce(<scp>iv</scp>)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Transactions, 2016, 45, 18822-18826.	3.3	76
41	Preparation of value-added metal-organic frameworks (MOFs) using waste PET bottles as source of acid linker. Sustainable Materials and Technologies, 2016, 10, 10-13.	3.3	18
42	A robust indium–porphyrin framework for CO ₂ capture and chemical transformation. Dalton Transactions, 2016, 45, 18730-18736.	3.3	27
43	Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. Journal of the American Chemical Society, 2016, 138, 8912-8919.	13.7	278
44	Highly Porous Zirconium Metal–Organic Frameworks with β-UH ₃ -like Topology Based on Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.	13.7	76
45	High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4178-4182.	3.0	50
46	Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 2017, 29, 1357-1361.	6.7	346
47	Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration. Separation and Purification Technology, 2017, 177, 249-256.	7.9	40
48	Direct white-light-emitting and near-infrared phosphorescence of zeolitic imidazolate framework-8. Chemical Communications, 2017, 53, 1801-1804.	4.1	86
49	Nanoscaled porphyrinic metal–organic frameworks: photosensitizer delivery systems for photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 1815-1821.	5.8	62
50	Postsynthetic N-methylation making a metal–organic framework responsive to alkylamines. Chemical Communications, 2017, 53, 1747-1750.	4.1	91
51	Metal–Organic Framework Photosensitized TiO ₂ Coâ€catalyst: A Facile Strategy to Achieve a High Efficiency Photocatalytic System. Chemistry - A European Journal, 2017, 23, 3931-3937.	3.3	30
52	Mixed-linker strategy for the construction of multifunctional metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 4280-4291.	10.3	163
53	Gadolinium-Based Metal–Organic Framework as an Efficient and Heterogeneous Catalyst To Activate Epoxides for Cycloaddition of CO ₂ and Alcoholysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 2623-2631.	6.7	91
54	Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers, 2017, 1, 1709-1745.	5.9	252
55	Dynamic behaviours of a rationally prepared flexible MOF by postsynthetic modification of ligand struts. Chemical Communications, 2017, 53, 3220-3223.	4.1	12
56	High organic sulfur removal performance of a cobalt based metal-organic framework. Journal of Hazardous Materials, 2017, 331, 142-149.	12.4	63
57	Using water adsorption measurements to access the chemistry of defects in the metal–organic framework UiO-66. CrystEngComm, 2017, 19, 4137-4141.	2.6	58

#	ARTICLE	IF	Citations
58	Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2034-2040.	3.0	24
59	From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. Journal of Materials Chemistry A, 2017, 5, 4835-4841.	10.3	80
60	Novel UIO-66-NO ₂ @XC-72 nanohybrid as an electrode material for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2017, 7, 5628-5635.	3 . 6	27
61	Cerium(IV) vs Zirconium(IV) Based Metal–Organic Frameworks for Detoxification of a Nerve Agent. Chemistry of Materials, 2017, 29, 2672-2675.	6.7	135
62	Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorganic Chemistry Frontiers, 2017, 4, 820-824.	6.0	38
63	Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons. CrystEngComm, 2017, 19, 1729-1737.	2.6	28
64	Green Synthesis of Zr-CAU-28: Structure and Properties of the First Zr-MOF Based on 2,5-Furandicarboxylic Acid. Inorganic Chemistry, 2017, 56, 2270-2277.	4.0	66
65	Flexible Zirconium MOF as the Crystalline Sponge for Coordinative Alignment of Dicarboxylates. ACS Applied Materials & Dicarbo	8.0	48
66	Directed assembly of a high surface area 2D metal–organic framework displaying the augmented "kagomé dual―(kgd-a) layered topology with high H ₂ and CO ₂ uptake. Inorganic Chemistry Frontiers, 2017, 4, 825-832.	6.0	8
67	A Multifunctional Zirconiumâ€Based Metal–Organic Framework for the Oneâ€Pot Tandem Photooxidative Passerini Threeâ€Component Reaction of Alcohols. ChemCatChem, 2017, 9, 1992-2000.	3.7	71
68	Stable Zr(IV)-Based Metal–Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10286-10295.	8.0	371
69	Pore modulation of zirconium–organic frameworks for high-efficiency detection of trace proteins. Chemical Communications, 2017, 53, 3941-3944.	4.1	114
70	Heterometallic Hybrid Open Frameworks: Synthesis and Application for Selective Detection of Nitro Explosives. Crystal Growth and Design, 2017, 17, 1836-1842.	3.0	21
71	Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation. Dalton Transactions, 2017, 46, 3223-3228.	3.3	23
72	Improving the Stability and Gas Adsorption Performance of Acylamide Group Functionalized Zinc Metal–Organic Frameworks through Coordination Group Optimization. Crystal Growth and Design, 2017, 17, 2584-2588.	3.0	15
73	A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. Sensors and Actuators B: Chemical, 2017, 250, 121-131.	7.8	94
74	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	10.3	78
7 5	Silver-Decorated Hafnium Metal–Organic Framework for Ethylene/Ethane Separation. Industrial & Engineering Chemistry Research, 2017, 56, 4508-4516.	3.7	58

#		IF	CITATIONS
76	An amino-coordination metal–organic framework for highly selective C _{2< sub>H_{2< sub> CH_{4< sub> and C_{2< sub>H_{C+sub>2< sub> C+sub>2< sub> C+sub>2< sub> C+sub>2< sub> C+sub>2< sub> C+sub 3}}}}}	3.6	20
77	Cation-Exchange Approach to Tuning the Flexibility of a Metal–Organic Framework for Gated Adsorption. Inorganic Chemistry, 2017, 56, 5069-5075.	4.0	16
78	2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods. 2D Materials, 2017, 4, 025098.	4.4	79
79	Single-Site Cobalt Catalysts at New Zr ₁₂ (î¼ ₃ (î¼ ₃ -OH) (sub>8-OH) Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides, Journal of the American Chemical Society, 2017, 139, 7004-7011.	_{6<td>sub 211</td>}	sub 211
80	DNAâ€Assembled Coreâ€Satellite Upconvertingâ€Metal–Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small, 2017, 13, 1700504.	10.0	114
81	Co-Ligand Dependent Formation and Phase Transformation of Four Porphyrin-Based Cerium Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3462-3474.	3.0	29
82	A Fluorescent Zirconiumâ€Based Metalâ€Organic Framework for Selective Detection of Nitro Explosives and Metal Ions. Chinese Journal of Chemistry, 2017, 35, 1091-1097.	4.9	12
83	When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews, 2017, 343, 1-24.	18.8	226
84	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	38.1	2,457
85	Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 8532-8536.	3.3	14
86	A Porous Array of Clock Qubits. Journal of the American Chemical Society, 2017, 139, 7089-7094.	13.7	86
87	Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications, 2017, 53, 5818-5821.	4.1	90
88	Synthesis of functionalized titanium-carboxylate molecular clusters and their catalytic activity. Journal of Industrial and Engineering Chemistry, 2017, 53, 171-176.	5.8	12
89	Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Central Science, 2017, 3, 31-38.	11.3	222
90	Crystallization process development of metal–organic frameworks by linking secondary building units, lattice nucleation and luminescence: insight into reproducibility. CrystEngComm, 2017, 19, 426-441.	2.6	34
91	The modulator driven polymorphism of Zr(IV) based metal–organic frameworks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160027.	3.4	21
92	Rare Earth pcu Metal–Organic Framework Platform Based on RE ₄ (μ ₃ -OH) ₄ (COO) ₆ ²⁺ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. Journal of the American Chemical Society, 2017, 139, 9333-9340.	13.7	102
93	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	38.1	1,519

#	Article	IF	CITATIONS
94	All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr ⁴⁺ MOF. Journal of Materials Chemistry A, 2017, 5, 14707-14719.	10.3	150
95	Systematic study of the impact of MOF densification into tablets on textural and mechanical properties. CrystEngComm, 2017, 19, 4211-4218.	2.6	58
96	1,4-Bis(2-(pyridin-4-yl)vinyl)naphthalene and Its Zinc(II) Coordination Polymers: Synthesis, Structural Characterization, and Selective Luminescent Sensing of Mercury(II) Ion. Crystal Growth and Design, 2017, 17, 3948-3959.	3.0	65
97	A stable porphyrinic metal–organic framework pore-functionalized by high-density carboxylic groups for proton conduction. Journal of Materials Chemistry A, 2017, 5, 14525-14529.	10.3	121
98	Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 2017, 46, 8649-8657.	3.3	55
99	Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 2017, 46, 3431-3452.	38.1	239
100	Dye@bio-MOF-1 Composite as a Dual-Emitting Platform for Enhanced Detection of a Wide Range of Explosive Molecules. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20076-20085.	8.0	117
101	Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nature Communications, 2017, 8, 15369.	12.8	366
102	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Applied Materials & Interfaces, 2017, 9, 19535-19540.	8.0	63
103	Flexible–Robust Metal–Organic Framework for Efficient Removal of Propyne from Propylene. Journal of the American Chemical Society, 2017, 139, 7733-7736.	13.7	242
104	A magnetic metal–organic framework as a highly active heterogeneous catalyst for one-pot synthesis of 2-substituted alkyl and aryl(indolyl)kojic acid derivatives. New Journal of Chemistry, 2017, 41, 7108-7115.	2.8	54
105	Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. Journal of Membrane Science, 2017, 533, 160-170.	8.2	109
106	Five New Transition Metal Coordination Polymers Based on V-Shaped Bis-triazole Ligand with Aromatic Dicarboxylates: Syntheses, Structures, and Properties. Crystal Growth and Design, 2017, 17, 2757-2766.	3.0	29
107	Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 2017, 8, 3939-3948.	7.4	177
108	Immobilization of AlEgens into metalâ€organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817.	2.3	17
109	Metal Insertion in a Methylamine-Functionalized Zirconium Metal–Organic Framework for Enhanced Carbon Dioxide Capture. Inorganic Chemistry, 2017, 56, 4308-4316.	4.0	11
110	Cluster Organic Frameworks Constructed from Heterometallic Supertetrahedral Cluster Secondary Building Units. Inorganic Chemistry, 2017, 56, 4635-4642.	4.0	30
111	Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. Journal of the American Chemical Society, 2017, 139, 5877-5882.	13.7	291

#	Article	IF	CITATIONS
112	Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. Journal of the American Chemical Society, 2017, 139, 6253-6260.	13.7	78
113	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	13.7	122
114	Investigating Unusual Organic Functional Groups to Engineer the Surface Chemistry of Mesoporous Silica to Tune CO ₂ –Surface Interactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14490-14496.	8.0	2
116	Metal–OrganicÂFramework (MOF)â€Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials, 2017, 29, 1606134.	21.0	1,633
117	Cu(I) 3,5-Diethyl-1,2,4-Triazolate (MAF-2): From Crystal Engineering to Multifunctional Materials. Crystal Growth and Design, 2017, 17, 1441-1449.	3.0	24
118	Enhancement of Gas Sorption and Separation Performance via Ligand Functionalization within Highly Stable Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 2131-2139.	3.0	35
119	Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 2017, 29, 3006-3019.	6.7	176
120	Toward a detoxification fabric against nerve gas agents: guanidine-functionalized poly[2-(3-butenyl)-2-oxazoline]/Nylon-6,6 nanofibers. RSC Advances, 2017, 7, 15246-15254.	3.6	16
121	Multifunctional Zinc Metal–Organic Framework Based on Designed H ₄ TCPP Ligand with Aggregation-Induced Emission Effect: CO ₂ Adsorption, Luminescence, and Sensing Property. Crystal Growth and Design, 2017, 17, 2090-2096.	3.0	84
122	Two new Zn(II)/Cu(II) complexes based on bi- and tritopic 1,2,4-triazole derivatives with glutaric acid: Syntheses, structures, luminescent and magnetic properties. Inorganic Chemistry Communication, 2017, 79, 21-24.	3.9	13
123	A Titanium–Organic Framework: Engineering of the Band-Gap Energy for Photocatalytic Property Enhancement. ACS Catalysis, 2017, 7, 338-342.	11.2	131
124	Molecular Design of Zirconium Tetrazolate Metal–Organic Frameworks for CO ₂ Capture. Crystal Growth and Design, 2017, 17, 543-549.	3.0	36
125	A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm, 2017, 19, 1464-1469.	2.6	36
126	High CO ₂ Uptake Capacity and Selectivity in a Fascinating Nanotube-Based Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 908-913.	4.0	51
127	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	11.2	288
128	Effect of Coordinated Solvent Molecules on Metal Coordination Sphere and Solvent-Induced Transformations. Crystal Growth and Design, 2017, 17, 517-526.	3.0	49
129	In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 599-602.	13.7	169
130	Novel Organic-Dehydration Membranes Prepared from Zirconium Metal-Organic Frameworks. Advanced Functional Materials, 2017, 27, 1604311.	14.9	98

#	Article	IF	CITATIONS
131	A Sr ²⁺ -metal–organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160026.	3.4	10
132	An ultrastable zirconium-phosphonate framework as bifunctional catalyst for highly active CO ₂ chemical transformation. Chemical Communications, 2017, 53, 1293-1296.	4.1	79
133	Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chemical Engineering Journal, 2017, 313, 19-26.	12.7	190
134	Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 38737-38744.	8.0	364
135	Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature Communications, 2017, 8, 1233.	12.8	286
136	A cluster-based mesoporous Ti-MOF with sodalite supercages. Chemical Communications, 2017, 53, 11670-11673.	4.1	74
137	Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2017, 139, 15251-15258.	13.7	112
138	The chemistry of titanium-based metal–organic frameworks. New Journal of Chemistry, 2017, 41, 14030-14043.	2.8	73
139	Platinum Nanoparticle Encapsulated Metal–Organic Frameworks for Colorimetric Measurement and Facile Removal of Mercury(II). ACS Applied Materials & Samp; Interfaces, 2017, 9, 40716-40725.	8.0	110
140	Separation of C2/C1 hydrocarbons through a gate-opening effect in a microporous metal–organic framework. CrystEngComm, 2017, 19, 6896-6901.	2.6	34
141	Tetraphenylethylene Immobilized Metal–Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr ₂ O ₇ ^{2–} and Nitroaromatic Explosives. Crystal Growth and Design, 2017, 17, 6041-6048.	3.0	239
142	Synthesis of Metal-organic Frameworks Based on Zr ⁴⁺ and Benzene 1,3,5-Tricarboxylate Linker as Heterogeneous Catalyst in the Esterification Reaction of Palmitic Acid. IOP Conference Series: Materials Science and Engineering, 2017, 214, 012006.	0.6	5
143	Lanthanide functionalized hybrid materials of polyoxometallate based metal–organic frameworks for multi-color luminescence. New Journal of Chemistry, 2017, 41, 12795-12800.	2.8	15
144	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	8.6	163
145	A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nature Energy, 2017, 2, 877-883.	39.5	563
146	A luminescent heterometallic metal–organic framework for the naked-eye discrimination of nitroaromatic explosives. Chemical Communications, 2017, 53, 10318-10321.	4.1	78
147	A new superacid hafnium-based metal–organic framework as a highly active heterogeneous catalyst for the synthesis of benzoxazoles under solvent-free conditions. Catalysis Science and Technology, 2017, 7, 4346-4350.	4.1	43
148	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	21.0	88

#	Article	IF	CITATIONS
149	Construction of ntt-Type Metal–Organic Framework from <i>C</i> 2-Symmetry Hexacarboxylate Linker for Enhanced Methane Storage. Crystal Growth and Design, 2017, 17, 4795-4800.	3.0	13
150	Syntheses of Exceptionally Stable Aluminum(III) Metal–Organic Frameworks: How to Grow Highâ€Quality, Large, Single Crystals. Chemistry - A European Journal, 2017, 23, 15518-15528.	3.3	60
151	Computational materials chemistry for carbon capture using porous materials. Journal Physics D: Applied Physics, 2017, 50, 463002.	2.8	7
152	TEMPO-Appended Metal–Organic Frameworks as Highly Active, Selective, and Reusable Catalysts for Mild Aerobic Oxidation of Alcohols. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33956-33967.	8.0	43
153	Size Modulation of Zirconium-Based Metal Organic Frameworks for Highly Efficient Phosphate Remediation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32151-32160.	8.0	146
154	Color-tunable entangled coordination polymers based on long flexible bis(imidazole) ligands and phenylenediacetate. New Journal of Chemistry, 2017, 41, 12139-12146.	2.8	9
155	Effect of sintering parameters using the central composite design method, electronic structure and physical properties of yttria-partially stabilized ZrO ₂ commercial ceramics. Materials Science-Poland, 2017, 35, 225-238.	1.0	1
156	Boosting Catalytic Performance of Metal–Organic Framework by Increasing the Defects via a Facile and Green Approach. ACS Applied Materials & Interfaces, 2017, 9, 34937-34943.	8.0	100
157	The duality of UiO-67-Pt MOFs: connecting treatment conditions and encapsulated Pt species by <i>operando </i> /i>XAS. Physical Chemistry Chemical Physics, 2017, 19, 27489-27507.	2.8	28
158	Stepwise engineering of pore environments and enhancement of CO ₂ /R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53, 11403-11406.	4.1	22
159	Nanostructured metal–organic frameworks, TMU-4, TMU-5, and TMU-6, as novel adsorbents for solid phase microextraction of polycyclic aromatic hydrocarbons. New Journal of Chemistry, 2017, 41, 12035-12043.	2.8	25
160	Bistable Dithienylethene-Based Metal–Organic Framework Illustrating Optically Induced Changes in Chemical Separations. Journal of the American Chemical Society, 2017, 139, 13280-13283.	13.7	98
161	Atomic Layer Deposition of Rheniumâ€"Aluminum Oxide Thin Films and ReO _{<i>x</i>} Incorporation in a Metalâ€"Organic Framework. ACS Applied Materials & Therfaces, 2017, 9, 35067-35074.	8.0	24
162	A zirconium metal–organic framework with an exceptionally high volumetric surface area. Dalton Transactions, 2017, 46, 14270-14276.	3.3	19
163	Ratiometric Luminescent Detection of Organic Amines Due to the Induced Lactam–Lactim Tautomerization of Organic Linker in a Metal–Organic Framework. ACS Applied Materials & Linker; Interfaces, 2017, 9, 31352-31356.	8.0	77
164	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule, 2017, 1, 77-107.	24.0	673
165	Efficiently mapping structure–property relationships of gas adsorption in porous materials: application to Xe adsorption. Faraday Discussions, 2017, 201, 221-232.	3.2	5
166	A gigantic polyoxozirconate with visible photoactivity. Dalton Transactions, 2017, 46, 10185-10188.	3.3	10

#	Article	IF	CITATIONS
167	Computational Screening of Bimetal-Functionalized Zr ₆ O ₈ MOF Nodes for Methane C–H Bond Activation. Inorganic Chemistry, 2017, 56, 8739-8743.	4.0	46
168	A series of transition metal coordination polymers based on a rigid bi-functional carboxylate–triazolate tecton. CrystEngComm, 2017, 19, 4586-4594.	2.6	12
169	Thermal Stimuliâ€Triggered Drug Release from a Biocompatible Porous Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 10215-10221.	3.3	62
170	Pentanuclear Yb(III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion. Applied Catalysis B: Environmental, 2017, 219, 603-610.	20.2	78
171	A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4 and CO2/N2 separations. Journal of Solid State Chemistry, 2017, 255, 102-107.	2.9	17
172	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	5.9	136
173	Rapid and specific luminescence sensing of Cu(<scp>ii</scp>) ions with a porphyrinic metal–organic framework. Chemical Communications, 2017, 53, 9986-9989.	4.1	120
174	Experimental and theoretical study on selenate uptake to zirconium metal–organic frameworks: Effect of defects and ligands. Chemical Engineering Journal, 2017, 330, 1012-1021.	12.7	111
175	Modulator Effect in UiO-66-NDC (1,4-Naphthalenedicarboxylic Acid) Synthesis and Comparison with UiO-67-NDC Isoreticular Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 5422-5431.	3.0	55
176	lonic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	12.8	111
177	Lone pair-Ï€ interaction-induced generation of photochromic coordination networks with photoswitchable conductance. Chemical Communications, 2017, 53, 9701-9704.	4.1	75
178	Ferrocene particles incorporated into Zr-based metal–organic frameworks for selective phenol hydroxylation to dihydroxybenzenes. RSC Advances, 2017, 7, 38691-38698.	3.6	34
179	A comparative study of C ₂ H ₂ adsorption properties in five isomeric copper-based MOFs based on naphthalene-derived diisophthalates. Dalton Transactions, 2017, 46, 11469-11478.	3.3	23
180	Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects. Chemistry of Materials, 2017, 29, 10478-10486.	6.7	102
181	Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE ₄ (ν ₃ -O) ₂ (COO) ₈ Clusters. ACS Applied Materials & amp; Interfaces, 2017, 9, 44560-44566.	8.0	25
182	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	13.7	102
183	Tuning the luminescence of two 3d–4f metal–organic frameworks for the fast response and highly selective detection of aniline. Dalton Transactions, 2017, 46, 16432-16438.	3.3	60
184	A multifunctional Ni(<scp>ii</scp>) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Transactions, 2017, 46, 16911-16924.	3.3	68

#	Article	IF	Citations
185	Syntheses, Structures and Properties of Two Transition Metal-Flexible Ligand Coordination Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1927-1932.	3.7	3
186	Microporous Lanthanide Metal–Organic Framework Constructed from Lanthanide Metalloligand for Selective Separation of C ₂ H ₂ CO ₂ and C ₂ H _{CH₄ at Room Temperature. Inorganic Chemistry, 2017, 56, 7145-7150.}	4.0	72
187	Efficient Capture and Effective Sensing of Cr ₂ O ₇ ^{2â€"} from Water Using a Zirconium Metalâ€"Organic Framework. Inorganic Chemistry, 2017, 56, 14178-14188.	4.0	189
188	A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Communications, 2017, 8, 1354.	12.8	296
189	Creation and bioapplications of porous organic polymer materials. Journal of Materials Chemistry B, 2017, 5, 9278-9290.	5.8	82
190	Zirconium-Based Nanoscale Metal–Organic Framework/Poly(Îμ-caprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. ACS Applied Materials & Interfaces, 2017, 9, 41512-41520.	8.0	77
191	Postsynthetic modification of a zirconium metal–organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability. Chemical Communications, 2017, 53, 8557-8560.	4.1	40
192	Synthesis of MOFs: a personal view on rationalisation, application and exploration. Dalton Transactions, 2017, 46, 8339-8349.	3.3	30
193	MOF-derived hierarchical ZnO/ZnFe ₂ O ₄ hollow cubes for enhanced acetone gas-sensing performance. RSC Advances, 2017, 7, 34609-34617.	3.6	58
194	Coordinative integration of a metal-porphyrinic framework and TiO ₂ nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. Journal of Materials Chemistry A, 2017, 5, 15380-15389.	10.3	91
195	Mixed sulfoisophthalate and 1,2,4-triazole directed d 10 metal coordination polymers: Synthesis, property and structural diversity. Journal of Solid State Chemistry, 2017, 254, 47-54.	2.9	6
196	Multi-Responsive Luminescent Sensors Based on Two-Dimensional Lanthanide–Metal Organic Frameworks for Highly Selective and Sensitive Detection of Cr(III) and Cr(VI) Ions and Benzaldehyde. Crystal Growth and Design, 2017, 17, 4326-4335.	3.0	154
197	A Flexible Fluorescent Zr Carboxylate Metal–Organic Framework for the Detection of Electron-Rich Molecules in Solution. Inorganic Chemistry, 2017, 56, 8423-8429.	4.0	23
198	Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and Basic Sites. ACS Applied Materials & Detaction of Nucleophilic and D	8.0	100
199	Aptamer-Embedded Zirconium-Based Metalâ€"Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sensors, 2017, 2, 982-989.	7.8	76
200	Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of Catalysis, 2017, 352, 401-414.	6.2	172
201	Postsynthetic ionization of an imidazole-containing metal–organic framework for the cycloaddition of carbon dioxide and epoxides. Chemical Science, 2017, 8, 1570-1575.	7.4	346
202	Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332, 48-74.	18.8	331

#	ARTICLE	IF	CITATIONS
203	Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46, 126-157.	38.1	1,554
204	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	18.8	275
205	Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal–Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chemistry - A European Journal, 2017, 23, 214-218.	3.3	98
206	Zr(IV) and Ce(IV)-based metal-organic frameworks incorporating 4-carboxycinnamic acid as ligand: Synthesis and properties. Microporous and Mesoporous Materials, 2017, 237, 275-281.	4.4	13
207	Synthesis and Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies. Crystal Growth and Design, 2017, 17, 1125-1131.	3.0	133
208	Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe 3+ in water. Journal of Solid State Chemistry, 2017, 245, 160-163.	2.9	58
210	A Novel H2O2 Biosensor Based On the composite of MP-11 encapasulated in PCN-333(Al)-Graphene Oxide. International Journal of Electrochemical Science, 2017, , 10390-10401.	1.3	4
211	Six novel coordination polymers based on the 5-($1H+tetrazol-5-yl$)isophthalic acid ligand: structures, luminescence, and magnetic properties. CrystEngComm, 2018, 20, 1985-1996.	2.6	17
212	A trichromatic MOF composite for multidimensional ratiometric luminescent sensing. Chemical Science, 2018, 9, 2918-2926.	7.4	96
213	Role of Structural Defects in the Water Adsorption Properties of MOF-801. Journal of Physical Chemistry C, 2018, 122, 5545-5552.	3.1	68
214	C–H Bond Activation on Bimetallic Two-Atom Co-M Oxide Clusters Deposited on Zr-Based MOF Nodes: Effects of Doping at the Molecular Level. ACS Catalysis, 2018, 8, 2864-2869.	11.2	39
215	Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chemical Communications, 2018, 54, 2792-2795.	4.1	90
216	An ingenious one-dimensional zirconium phosphonate with efficient strontium exchange capability and moderate proton conductivity. Dalton Transactions, 2018, 47, 5161-5165.	3.3	16
217	Porous Liquid: A Stable ZIF-8 Colloid in Ionic Liquid with Permanent Porosity. Langmuir, 2018, 34, 3654-3660.	3.5	108
218	$\label{eq:mgsub} Mg < sub > 1 \hat{a}^2 \times (sub > Co < sub > x < / sub > Li < sub > 2 < / sub > (3,5-pdcH) < sub > 2 < / sub > (DMF) < sub > 2 < / sub > (i > x < / i >) Tj Co < sup > 2 + < / sup > ions. New Journal of Chemistry, 2018, 42, 5096-5101.$	ETQq0 0 (2.8	0 rgBT /Overl 3
219	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie, 2018, 130, 3497-3501.	2.0	32
220	An ultrastable Zr-MOF for fast capture and highly luminescence detection of Cr ₂ O ₇ ^{2â^'} simultaneously in an aqueous phase. Journal of Materials Chemistry A, 2018, 6, 6363-6369.	10.3	121
221	Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization. Journal of Catalysis, 2018, 360, 160-167.	6.2	44

#	Article	IF	Citations
222	Structure and Dynamics of Zr ₆ O ₈ Metal–Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction. Journal of the American Chemical Society, 2018, 140, 3751-3759.	13.7	150
223	A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231, 173-181.	20.2	126
224	Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Materials Chemistry and Physics, 2018, 211, 234-241.	4.0	68
225	A uranyl phosphonate framework with a temperature-induced order–disorder transition and temperature-correlated photoluminescence. CrystEngComm, 2018, 20, 3153-3157.	2.6	14
226	Superactivity of MOF-808 toward Peptide Bond Hydrolysis. Journal of the American Chemical Society, 2018, 140, 6325-6335.	13.7	120
227	Tin(IV) Sulfide Greatly Improves the Catalytic Performance of UiOâ€66 for Carbon Dioxide Cycloaddition. ChemCatChem, 2018, 10, 2945-2948.	3.7	11
228	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106.	7.9	121
229	In situ growth of Zrâ€based metalâ€organic framework UiOâ€66â€NH ₂ for openâ€tubular capillary electrochromatography. Electrophoresis, 2018, 39, 2619-2625.	2.4	26
230	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	4.1	50
231	A Novel Zrâ€MOF as Fluorescence Turnâ€On Probe for Realâ€Time Detecting H ₂ S Gas and Fingerprint Identification. Small, 2018, 14, e1703822.	10.0	86
232	Highly Efficient and Selective Photooxidation of Sulfur Mustard Simulant by a Triazolobenzothiadiazole-Moiety-Functionalized Metal–Organic Framework in Air. Inorganic Chemistry, 2018, 57, 4230-4233.	4.0	50
233	Preparation and evaluation of openâ€tubular capillary column combining a metal–organic framework and a brushâ€shaped polymer for liquid chromatography. Journal of Separation Science, 2018, 41, 2347-2353.	2.5	11
234	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	7.4	158
235	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie - International Edition, 2018, 57, 5016-5019.	13.8	53
236	Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochimica Acta, 2018, 267, 170-180.	5.2	161
237	Imparting Designer Biorecognition Functionality to Metal–Organic Frameworks by a DNAâ€Mediated Surface Engineering Strategy. Small, 2018, 14, e1703812.	10.0	59
238	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie, 2018, 130, 5110-5113.	2.0	14
239	Incorporation of an intact dimeric Zr ₁₂ oxo cluster from a molecular precursor in a new zirconium metal–organic framework. Chemical Communications, 2018, 54, 2735-2738.	4.1	39

#	Article	IF	CITATIONS
240	High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chemistry, 2018, 254, 241-248.	8.2	142
241	Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sensors and Actuators B: Chemical, 2018, 262, 137-143.	7.8	225
242	Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295.	4.0	28
243	Temperature-induced self-assembly of two kinds Zn(<scp>ii</scp>)-based coordination polymers with luminescence properties for application in sensing and adsorption. New Journal of Chemistry, 2018, 42, 3885-3891.	2.8	18
244	Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6014-6023.	8.0	81
245	Efficient MOF-based degradation of organophosphorus compounds in non-aqueous environments. Journal of Materials Chemistry A, 2018, 6, 3038-3045.	10.3	42
246	New UiO-66/CuxS Heterostructures: Surface Functionalization Synthesis and Their Application in Photocatalytic Degradation of RhB. Bulletin of the Chemical Society of Japan, 2018, 91, 515-522.	3.2	22
247	Dual Ligand Strategy for Constructing a Series of d ¹⁰ Coordination Polymers: Syntheses, Structures, Photoluminescence, and Sensing Properties. Crystal Growth and Design, 2018, 18, 1882-1890.	3.0	33
248	Microporous Lead–Organic Framework for Selective CO ₂ Adsorption and Heterogeneous Catalysis. Inorganic Chemistry, 2018, 57, 1774-1786.	4.0	31
249	On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 2018, 9, 2723-2732.	7.4	41
250	One-pot sustainable synthesis of magnetic MIL-100(Fe) with novel Fe ₃ O ₄ morphology and its application in heterogeneous degradation. Dalton Transactions, 2018, 47, 3417-3424.	3.3	33
251	Modulatorâ€Controlled Synthesis of Microporous STAâ€26, an Interpenetrated 8,3â€Connected Zirconium MOF with the <i>theâ€i</i> Topology, and its Reversible Lattice Shift. Chemistry - A European Journal, 2018, 24, 6115-6126.	3.3	23
252	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie - International Edition, 2018, 57, 3439-3443.	13.8	78
253	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	18.8	246
254	Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst. ACS Energy Letters, 2018, 3, 532-539.	17.4	69
255	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	21.0	1,740
256	New Zn/Cd Coordination Polymers Constructed from Mixed Ligands: Crystal Structures and Photocatalytic Performances Toward Organic Dyes Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1565-1573.	3.7	7
257	Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal–Organic Frameworks for Transformation of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2018, 57, 2584-2593.	4.0	153

#	Article	IF	CITATIONS
258	A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO ₂ gas uptake capability. CrystEngComm, 2018, 20, 1874-1881.	2.6	40
259	Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5255-5268.	8.0	84
260	Chiral Functionalization of a Zirconium Metal–Organic Framework (DUT-67) as a Heterogeneous Catalyst in Asymmetric Michael Addition Reaction. Inorganic Chemistry, 2018, 57, 1483-1489.	4.0	76
261	<i>Operando</i> study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. Faraday Discussions, 2018, 208, 287-306.	3.2	46
262	Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis. ACS Central Science, 2018, 4, 5-19.	11.3	148
263	Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 635-641.	8.0	52
264	Pd@ZIF-67 Derived Recyclable Pd-Based Catalysts with Hierarchical Pores for High-Performance Heck Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2103-2111.	6.7	73
265	Microwave-Activated Mn-Doped Zirconium Metal–Organic Framework Nanocubes for Highly Effective Combination of Microwave Dynamic and Thermal Therapies Against Cancer. ACS Nano, 2018, 12, 2201-2210.	14.6	176
266	Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Transactions, 2018, 47, 1895-1902.	3.3	112
267	New Metal–Organic Frameworks for Chemical Fixation of CO ₂ . ACS Applied Materials & Interfaces, 2018, 10, 733-744.	8.0	192
268	A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO ₂ Adsorption and Chemical Fixation. Journal of the American Chemical Society, 2018, 140, 993-1003.	13.7	176
269	A highly stable MnII phosphonate as a highly efficient catalyst for CO2 fixation under ambient conditions. Chemical Communications, 2018, 54, 1758-1761.	4.1	40
270	Hierarchical Porous Zrâ€Based MOFs Synthesized by a Facile Monocarboxylic Acid Etching Strategy. Chemistry - A European Journal, 2018, 24, 2962-2970.	3.3	91
271	Enhanced acidity of defective MOF-808: effects of the activation process and missing linker defects. Catalysis Science and Technology, 2018, 8, 847-857.	4.1	28
272	Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework. CrystEngComm, 2018, 20, 5913-5918.	2.6	136
273	Dual-ligand approach for the solvent-free synthesis of indium-based coordination polymers. Inorganic Chemistry Communication, 2018, 92, 74-77.	3.9	7
274	Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: A molecular simulation study. Fuel, 2018, 226, 591-597.	6.4	29
275	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	18.8	105

#	Article	IF	CITATIONS
276	A new series of Co, Ni, Zn, and Cd metal–organic architectures driven by an unsymmetrical biphenyl-tricarboxylic acid: hydrothermal assembly, structural features and properties. Dalton Transactions, 2018, 47, 7431-7444.	3.3	23
277	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	12.8	251
278	Four 3D coordination polymers based on layers with single <i>syn</i> ê" <i>anti</i> carboxylate bridges: synthesis, structures, and magnetic properties. RSC Advances, 2018, 8, 14101-14108.	3.6	13
279	Morphological control of lanthanide ferrocyanides and their highly efficient catalytic degradation performance toward organic dyes under dark ambient conditions. Dalton Transactions, 2018, 47, 5933-5937.	3.3	6
280	Selective adsorption of Pd(II) over interfering metal ions (Co(II), Ni(II), Pt(IV)) from acidic aqueous phase by metal-organic frameworks. Chemical Engineering Journal, 2018, 345, 337-344.	12.7	76
281	Microencapsulated sunblock nanoparticles based on zeolitic imidazole frameworks for safe and effective UV protection. RSC Advances, 2018, 8, 12315-12321.	3.6	7
282	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	6.7	80
283	Metal–organic framework derived hollow materials for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 6754-6771.	10.3	233
284	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	11.3	382
285	Synthesis, structure and characterization of two solvatochromic metal–organic frameworks for chemical-sensing applications. CrystEngComm, 2018, 20, 2237-2240.	2.6	14
286	Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chemical Communications, 2018, 54, 4231-4249.	4.1	137
287	Postsynthetic Linker Exchange in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 143-182.	0.3	2
290	Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews, 2018, 364, 33-50.	18.8	105
291	Robust multifunctional Zr-based metal–organic polyhedra for high proton conductivity and selective CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7724-7730.	10.3	101
292	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	8.7	158
293	Novel cobalt(II) coordination complexes based on 3,4,5-trifluorobenzeneseleninic acid and different N-donor ligands. Polyhedron, 2018, 146, 172-179.	2.2	15
294	Synthesis of quinazolinones and benzazoles utilizing recyclable sulfated metal-organic framework-808 catalyst in glycerol as green solvent. Journal of Industrial and Engineering Chemistry, 2018, 64, 107-115.	5.8	19
295	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	38.1	530

#	Article	IF	CITATIONS
296	Unified meso-pores and dense Cu $<$ sup $>$ 2+ $<$ /sup $>$ sites in porous coordination polymers for highly efficient gas storage and separation. Dalton Transactions, 2018, 47, 4424-4427.	3.3	21
297	Investigating the cheletropic reaction between sulfur dioxide and butadiene-containing linkers in UiO-66. Canadian Journal of Chemistry, 2018, 96, 139-143.	1.1	5
298	Solvent-free synthesis of three layered manganese sulfate-oxalates with different pore apertures. Solid State Sciences, 2018, 75, 77-81.	3.2	4
299	Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media. Journal of Materials Science, 2018, 53, 1862-1873.	3.7	34
300	Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Applied Catalysis B: Environmental, 2018, 224, 46-52.	20.2	81
301	A water-stable Tb(<scp>)iii</scp>)-based metal–organic gel (MOG) for detection of antibiotics and explosives. Inorganic Chemistry Frontiers, 2018, 5, 120-126.	6.0	248
302	Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction. Chemical Engineering Journal, 2018, 333, 146-152.	12.7	56
303	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	9.0	33
304	Unravelling the Redoxâ€catalytic Behavior of Ce ⁴⁺ Metal–Organic Frameworks by Xâ€ray Absorption Spectroscopy. ChemPhysChem, 2018, 19, 373-378.	2.1	89
305	Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chemical Engineering Journal, 2018, 332, 608-618.	12.7	135
306	Metal–organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2018, 373, 22-48.	18.8	360
307	An Ultrastable Luminescent Metal–Organic Framework for Selective Sensing of Nitroaromatic Compounds and Nitroimidazole-Based Drug Molecules. Crystal Growth and Design, 2018, 18, 431-440.	3.0	115
308	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	11.3	204
309	Assembly of a new (3,6)-connected cobalt(II) metal–organic framework via a mixed ligands approach. Polyhedron, 2018, 141, 262-266.	2.2	7
310	The effect of functional groups in the aqueous-phase selective sensing of Fe(<scp>iii</scp>) ions by thienothiophene-based zirconium metal–organic frameworks and the design of molecular logic gates. Dalton Transactions, 2018, 47, 1159-1170.	3.3	59
311	A Semiconducting Copper(II) Coordination Polymer with (4,4) Square Grid Topology: Synthesis, Characterization, and Application in the Formation of a Photoswitch. Crystal Growth and Design, 2018, 18, 651-659.	3.0	55
312	Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiOâ€66. ChemPhysChem, 2018, 19, 420-429.	2.1	17
313	Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1181-1187.	10.3	44

#	Article	IF	CITATIONS
314	Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions. Journal of Colloid and Interface Science, 2018, 514, 234-239.	9.4	57
315	A new 3D cadmium coordination polymer containing 3-amino-1H-1,2,4-triazole: Synthesis, structure, and property. Inorganic Chemistry Communication, 2018, 88, 38-41.	3.9	7
316	Crystalline and permanently porous porphyrin-based metal tetraphosphonates. Chemical Communications, 2018, 54, 389-392.	4.1	52
317	A precursor method for the synthesis of new Ce(<scp>iv</scp>) MOFs with reactive tetracarboxylate linkers. Chemical Communications, 2018, 54, 876-879.	4.1	60
318	Extra Unsaturated Metal Centers of Zirconiumâ€Based MOFs: a Facile Approach towards Increasing CO ₂ Uptake Capacity at Low Pressure. European Journal of Inorganic Chemistry, 2018, 2018, 194-202.	2.0	5
319	Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion. Advanced Materials, 2018, 30, e1702891.	21.0	525
320	Materials genomicsâ€guided ab initio screening of MOFs with open copper sites for acetylene storage. AICHE Journal, 2018, 64, 1389-1398.	3.6	16
321	Di-methyl carbonate transesterification with EtOH over MOFs: Basicity and synergic effect of basic and acid active sites. Catalysis Communications, 2018, 104, 82-85.	3.3	17
322	Synthesis, crystal structure and properties of rare earth metal-organic framework materials based on the 2,5-pyridinedicarboxylic acid ligands. Molecular Crystals and Liquid Crystals, 2018, 666, 109-118.	0.9	1
323	Multi-responsive luminescent sensor based on three dimensional lanthanide metal–organic framework. New Journal of Chemistry, 2018, 42, 19485-19493.	2.8	28
324	Fluorescent 2D metal–organic framework nanosheets (MONs): design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale, 2018, 10, 22389-22399.	5.6	67
325	Synthesis of hydroxylated group IV metal oxides inside hollow graphitised carbon nanofibers: nano-sponges and nanoreactors for enhanced decontamination of organophosphates. Journal of Materials Chemistry A, 2018, 6, 20444-20453.	10.3	15
326	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	9.0	54
327	Synthesis and functionalization of phase-pure NU-901 for enhanced CO ₂ adsorption: the influence of a zirconium salt and modulator on the topology and phase purity. CrystEngComm, 2018, 20, 7066-7070.	2.6	43
329	Influence of Ligand Functionalization of UiO-66-Based Metal-Organic Frameworks When Used as Sorbents in Dispersive Solid-Phase Analytical Microextraction for Different Aqueous Organic Pollutants. Molecules, 2018, 23, 2869.	3.8	40
330	A robust zirconium amino acid metal-organic framework for proton conduction. Nature Communications, 2018, 9, 4937.	12.8	218
331	DNA-Walker-Induced Allosteric Switch for Tandem Signal Amplification with Palladium Nanoparticles/Metal–Organic Framework Tags in Electrochemical Biosensing. Analytical Chemistry, 2018, 90, 14493-14499.	6.5	101
332	Multifunctional Pd@UiO-66 Catalysts for Continuous Catalytic Upgrading of Ethanol to <i>n</i> -Butanol. ACS Catalysis, 2018, 8, 11973-11978.	11.2	89

#	Article	IF	CITATIONS
333	A Stable Zr(IV)-Based Metal–Organic Framework Constructed from C╀ Bridged Di-isophthalate Ligand for Sensitive Detection of Cr ₂ O ₇ ^{2–} in Water. Inorganic Chemistry, 2018, 57, 14260-14268.	4.0	62
334	Investigation of the Kinetic Stabilization of a Ce ⁴⁺ â€based MOF by inâ€situ Powder Xâ€say Diffraction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1826-1831.	1.2	18
335	Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. Langmuir, 2018, 34, 14546-14551.	3.5	43
336	Engineering Metal–Organic Frameworks for Photoacoustic Imaging-Guided Chemo-/Photothermal Combinational Tumor Therapy. ACS Applied Materials & Therfaces, 2018, 10, 41035-41045.	8.0	104
337	Scandium-organic frameworks: progress and prospects. Russian Chemical Reviews, 2018, 87, 1139-1167.	6.5	46
338	Stateâ€ofâ€theâ€Art Advances and Challenges of Ironâ€Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. Small, 2019, 15, e1803088.	10.0	111
339	Synthesis of Metallomacrocycle and Coordination Polymers with Pyridineâ€Based Amidocarboxylate Ligands and Their Catalytic Activities towards the Henry and Knoevenagel Reactions. ChemistryOpen, 2018, 7, 865-877.	1.9	20
340	Zirconium metal organic frameworks-based DGT technique for in situ measurement of dissolved reactive phosphorus in waters. Water Research, 2018, 147, 223-232.	11.3	24
341	A luminescent 2D zinc(II) metal–organic framework for selective sensing of Fe(III) ions and adsorption of organic dyes. Polyhedron, 2018, 156, 208-217.	2.2	21
342	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	21.0	362
343	Hfâ€based Metalâ€Organic Frameworks in Heterogeneous Catalysis. Israel Journal of Chemistry, 2018, 58, 1062-1074.	2.3	21
344	Systematic Investigations of the Transition between Framework Topologies in Ce/Zr-MOFs. Inorganic Chemistry, 2018, 57, 12820-12826.	4.0	20
345	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	6.7	120
346	Phosphonates Meet Metalâ-'Organic Frameworks: Towards CO 2 Adsorption. Israel Journal of Chemistry, 2018, 58, 1164-1170.	2.3	4
347	Design of High-Symmetrical Magnesium-Organic Frameworks with Acetate as Modulator and Their Fluorescence Sensing Performance. Inorganic Chemistry, 2018, 57, 14280-14289.	4.0	20
348	Synthesis, Structure, and Characterization of Defectâ€free [Hf ₆ (μ ₃ 46(C ₄ H-(Hfâ€UiOâ€66â€Fum). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1771-1776.	<arb>2<td>sus>O<sub< td=""></sub<></td></arb>	su s >O <sub< td=""></sub<>
349	Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. Nanomaterials, 2018, 8, 867.	4.1	18
350	Tailorâ€Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Advanced Materials, 2018, 30, e1805088.	21.0	241

#	Article	IF	CITATIONS
351	Optimizing H ₂ , D ₂ , and C ₂ H ₂ Sorption Properties by Tuning the Pore Apertures in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13312-13317.	4.0	14
352	Polymer Brush Decorated MOF Nanoparticles Loaded with AlEgen, Anticancer Drug, and Supramolecular Glue for Regulating and In Situ Observing DOX Release. Macromolecular Bioscience, 2018, 18, e1800317.	4.1	15
353	A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nature Energy, 2018, 3, 985-993.	39.5	217
354	Facile synthesis of a metal–organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6, 2918-2924.	5.4	37
355	A heterometallic microporous MOFs with two types of intrinsic secondary building units for selective gas separation and luminescence property. Polyhedron, 2018, 155, 218-222.	2.2	6
356	Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Materials Horizons, 2018, 5, 1137-1142.	12.2	105
357	Water-Stable Metal–Organic Framework for Effective and Selective Cr ₂ O ₇ ^{2–} Capture through Single-Crystal to Single-Crystal Anion Exchange. Inorganic Chemistry, 2018, 57, 11746-11752.	4.0	36
358	Combining Linker Design and Linker-Exchange Strategies for the Synthesis of a Stable Large-Pore Zr-Based Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35462-35468.	8.0	20
359	A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Mikrochimica Acta, 2018, 185, 469.	5.0	53
360	DNA-Mediated Nanoscale Metal–Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. Analytical Chemistry, 2018, 90, 12284-12291.	6.5	78
361	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018, 47, 8611-8638.	38.1	994
362	Two Self-Interpenetrating Copper(II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers. Crystal Growth and Design, 2018, 18, 6204-6210.	3.0	8
363	Synthesis and proton conductivity of two novel molybdate polymers. New Journal of Chemistry, 2018, 42, 16516-16522.	2.8	7
364	Coordination-Driven Self-assembly of Cyclopentadienyl-Capped Heterometallic Zr–Pd Cages. Crystal Growth and Design, 2018, 18, 6956-6964.	3.0	28
365	Nanoscale Mixed-Component Metal–Organic Frameworks with Photosensitizer Spatial-Arrangement-Dependent Photochemistry for Multimodal-Imaging-Guided Photothermal Therapy. Chemistry of Materials, 2018, 30, 6867-6876.	6.7	122
366	A new quinoline based luminescent Zr(<scp>iv</scp>) metal–organic framework for the ultrasensitive recognition of 4-nitrophenol and Fe(<scp>iii</scp>) ions. Dalton Transactions, 2018, 47, 14696-14705.	3.3	59
367	Ultrahigh Metal–Organic Framework Loading and Flexible Nanofibrous Membranes for Efficient CO ₂ Capture with Long-Term, Ultrastable Recyclability. ACS Applied Materials & Color Interfaces, 2018, 10, 34802-34810.	8.0	87
368	Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 14554-14560.	6.7	41

#	Article	IF	CITATIONS
369	Improving the capability of UiO-66 for $Cr(\langle scp \rangle vi \langle scp \rangle)$ adsorption from aqueous solutions by introducing isonicotinate $\langle i \rangle N \langle i \rangle$ -oxide as the functional group. Dalton Transactions, 2018, 47, 14549-14555.	3.3	45
370	Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials, 2018, 8, 676.	4.1	33
371	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	13.7	42
372	The Hydrolytic Stability and Degradation Mechanism of a Hierarchically Porous Metal Alkylphosphonate Framework. Nanomaterials, 2018, 8, 166.	4.1	4
373	Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte Chemie, 2018, 130, 14088-14092.	2.0	9
374	Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte Chemie - International Edition, 2018, 57, 13892-13896.	13.8	44
375	Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and Engineering, 2018, 6, 13217-13225.	6.7	35
376	Highly stable and porous porphyrin-based zirconium and hafnium phosphonates – electron crystallography as an important tool for structure elucidation. Chemical Science, 2018, 9, 5467-5478.	7.4	70
377	Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2018, 10, 18435-18439.	8.0	62
378	Thiol-Functionalized Zr-Based Metal–Organic Framework for Capture of Hg(II) through a Proton Exchange Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 8494-8502.	6.7	140
379	Zirconium in modern analytical chemistry. Reviews in Analytical Chemistry, 2018, 37, .	3.2	7
380	Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation. Inorganic Chemistry, 2018, 57, 6198-6201.	4.0	21
381	Insights into Catalytic Hydrolysis of Organophosphate Warfare Agents by Metal–Organic Framework NU-1000. Journal of Physical Chemistry C, 2018, 122, 12362-12368.	3.1	55
382	CO2 adsorption performance of functionalized metal-organic frameworks of varying topologies by molecular simulations. Chemical Engineering Science, 2018, 189, 65-74.	3.8	22
383	Hierarchical porous titanium terephthalate based material with highly active sites for deep oxidative desulfurization. Microporous and Mesoporous Materials, 2018, 270, 241-247.	4.4	25
384	The influence of the pore size in Metalâ-'Organic Frameworks in adsorption and separation of hydrogen sulphide: A molecular simulation study. Microporous and Mesoporous Materials, 2018, 271, 160-168.	4.4	41
385	Bismuth Coordination Polymers with 2,4,6â€Pyridine Tricarboxylic Acid: Highâ€Throughput Investigations, Crystal Structures and Luminescence Properties. European Journal of Inorganic Chemistry, 2018, 2018, 3232-3240.	2.0	12
386	Synthesis and structural characterization of the first neptunium based metal–organic frameworks incorporating {Np6O8} hexanuclear clusters. Chemical Communications, 2018, 54, 6979-6982.	4.1	48

#	Article	IF	CITATIONS
387	The high performance and mechanism of metal–organic frameworks and their composites in adsorptive desulfurization. Polyhedron, 2018, 152, 202-215.	2.2	25
388	Brønsted Basicity in Metal–Organic Framework-808 and Its Application in Base-Free Catalysis. Inorganic Chemistry, 2018, 57, 8033-8036.	4.0	42
389	Hypoxia-Triggered Nanoscale Metal–Organic Frameworks for Enhanced Anticancer Activity. ACS Applied Materials & Company (1988) amp; Interfaces, 2018, 10, 24638-24647.	8.0	91
390	Metal-Organic Frameworks for the Capture of Trace Aromatic Volatile Organic Compounds. CheM, 2018, 4, 1911-1927.	11.7	232
391	In Situ Growth of ZIF-8 on PAN Fibrous Filters for Highly Efficient U(VI) Removal. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 24164-24171.	8.0	175
392	Direct water-based synthesis and characterization of new Zr/Hf-MOFs with dodecanuclear clusters as IBUs. CrystEngComm, 2018, 20, 5108-5111.	2.6	29
393	Delamination and Photochemical Modification of a Novel Twoâ€Dimensional Zrâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 12848-12855.	3.3	12
394	Dense thiol arrays for metal–organic frameworks: boiling water stability, Hg removal beyond 2 ppb and facile crosslinking. Journal of Materials Chemistry A, 2018, 6, 14566-14570.	10.3	52
395	Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis Science and Technology, 2018, 8, 3610-3616.	4.1	81
396	MoS2 quantum dots-combined zirconium-metalloporphyrin frameworks: Synergistic effect on electron transfer and application for bioassay. Sensors and Actuators B: Chemical, 2018, 273, 566-573.	7.8	25
397	Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions. Journal of Colloid and Interface Science, 2018, 532, 700-710.	9.4	44
398	Multiparameter High-Throughput and in Situ X-ray Diffraction Study of Six New Bismuth Sulfonatocarboxylates: Discovery, Phase Transformation, and Reaction Trends. Inorganic Chemistry, 2018, 57, 10352-10363.	4.0	14
399	Excited-State Electronic Properties in Zr-Based Metal–Organic Frameworks as a Function of a Topological Network. Journal of the American Chemical Society, 2018, 140, 10488-10496.	13.7	107
400	Two metal–organic frameworks based on pyridyl–tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm, 2018, 20, 6070-6076.	2.6	9
401	Tuning Water Sorption in Highly Stable Zr(IV)-Metal–Organic Frameworks through Local Functionalization of Metal Clusters. ACS Applied Materials & Interfaces, 2018, 10, 27868-27874.	8.0	54
402	Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies. Journal of the American Chemical Society, 2018, 140, 10553-10561.	13.7	121
403	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	2.6	54
404	High-performance electrocatalyst based on metal-organic framework/macroporous carbon composite for efficient detection of luteolin. Journal of Electroanalytical Chemistry, 2018, 824, 153-160.	3.8	45

#	Article	IF	CITATIONS
405	Design of Metal–Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity. Analytical Chemistry, 2018, 90, 9929-9935.	6.5	67
406	Synthesis and crystal structure of a Zn(II) metal-organic framework based on 1,3,5-benzenetricarboxylate and 4,4′-bis(1-imidazolyl)biphenyl ligands: selective sensing of Mn ²⁺ and Fe ³⁺ ions in aqueous solution. Journal of Coordination Chemistry, 2018, 71, 2674-2690.	2.2	7
407	Water stable metal-organic framework as adsorbent from aqueous solution: A mini-review. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 176-183.	5.3	60
408	Green synthesis of aluminum-based metal organic framework for the removal of azo dye Acid Black 1 from aqueous media. Journal of Industrial and Engineering Chemistry, 2018, 67, 316-325.	5.8	29
409	Immobilization of a Full Photosystem in the Largeâ€Pore MILâ€101 Metal–Organic Framework for CO ₂ reduction. ChemSusChem, 2018, 11, 3315-3322.	6.8	57
410	High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4275-4281.	4.6	9
411	Postâ€Synthetic Ligand Exchange in Zirconiumâ€Based Metal–Organic Frameworks: Beware of The Defects!. Angewandte Chemie - International Edition, 2018, 57, 11706-11710.	13.8	107
412	One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chemical Engineering Journal, 2018, 353, 126-137.	12.7	356
413	MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorganic Chemistry, 2018, 57, 9096-9104.	4.0	258
414	Tracking the Formation of a Series of Co n (n=2, 6, 8) Clusters from Linear Co 3 Precursor Clusters by Optimizing the Reaction Conditions. ChemistrySelect, 2018, 3, 7830-7835.	1.5	1
415	Facile Synthesis of Vanadium Metalâ€Organic Frameworks for Highâ€Performance Supercapacitors. Small, 2018, 14, e1801815.	10.0	167
416	Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coordination Chemistry Reviews, 2018, 368, 80-92.	18.8	401
417	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr _{2⟨sub>0₇^{2–⟨sup⟩ in Water. ACS Applied Materials & Diterfaces, 2018, 10, 16650-16659.}}	8.0	219
418	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.	8.0	120
419	Supercapacitor with high cycling stability through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode. Dalton Transactions, 2018, 47, 13472-13478.	3.3	64
420	A water-stable lanthanide coordination polymer as a multiresponsive luminescent sensor for Fe ³⁺ , Cr(<scp>vi</scp>) and 4-nitrophenol. Dalton Transactions, 2018, 47, 13543-13549.	3.3	55
421	A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation. Inorganic Chemistry Frontiers, 2018, 5, 2445-2449.	6.0	59
422	Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy. Theranostics, 2018, 8, 4332-4344.	10.0	66

#	Article	IF	CITATIONS
423	More versatility than thought: large {Zr ₂₆ } oxocarboxylate cluster by corner-sharing of standard octahedral subunits. CrystEngComm, 2018, 20, 5132-5136.	2.6	11
424	Roomâ€Temperature Synthesis of Covalent Organic Framework (COF‣ZU1) Nanobars in CO ₂ /Water Solvent. ChemSusChem, 2018, 11, 3576-3580.	6.8	38
425	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	13.7	158
426	Computational Screening of Alkali, Alkaline Earth, and Transition Metals Alkoxide-Functionalized Metal–Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2018, 122, 19015-19024.	3.1	15
427	Postâ€Synthetic Ligand Exchange in Zirconiumâ€Based Metal–Organic Frameworks: Beware of The Defects!. Angewandte Chemie, 2018, 130, 11880-11884.	2.0	3
428	Highly Effective Removal of Nonsteroidal Anti-inflammatory Pharmaceuticals from Water by Zr(IV)-Based Metal–Organic Framework: Adsorption Performance and Mechanisms. ACS Applied Materials & Diterfaces, 2018, 10, 28076-28085.	8.0	171
429	Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis. Accounts of Chemical Research, 2018, 51, 2129-2138.	15.6	212
430	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	2.3	50
431	Energy-Transfer Metal–Organic Nanoprobe for Ratiometric Sensing with Dual Response to Peroxynitrite and Hypochlorite. ACS Omega, 2018, 3, 9400-9406.	3.5	19
432	Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping. Angewandte Chemie - International Edition, 2018, 57, 8453-8457.	13.8	72
433	Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping. Angewandte Chemie, 2018, 130, 8589-8593.	2.0	9
434	Dual Site Lewisâ€Acid Metalâ€Organic Framework Catalysts for CO ₂ Fixation: Counteracting Effects of Node Connectivity, Defects and Linker Metalation. ChemCatChem, 2018, 10, 3506-3512.	3.7	55
435	Rational Design of Catalytic Centers in Crystalline Frameworks. Advanced Materials, 2018, 30, e1707582.	21.0	103
436	Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coordination Chemistry Reviews, 2018, 375, 558-586.	18.8	93
437	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	2.6	29
438	A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274, 203-211.	4.4	138
439	Synthesis, structures, and properties of a family of 3d-based MOFs constructed from mixed ligands. Transition Metal Chemistry, 2019, 44, 31-38.	1.4	2
440	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	12.7	15

#	ARTICLE	IF	CITATIONS
441	The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni–Zn rechargeable battery. Journal of Power Sources, 2019, 438, 226986.	7.8	40
442	Effects of functionalization on the performance of metal-organic frameworks for adsorption-driven heat pumps by molecular simulations. Chemical Engineering Science, 2019, 208, 115143.	3.8	5
443	Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 13654-13663.	13.7	60
444	An Ultrastable Matryoshka [Hf ₁₃] Nanocluster as a Luminescent Sensor for Concentrated Alkali and Acid. Angewandte Chemie - International Edition, 2019, 58, 16610-16616.	13.8	39
445	An Ultrastable Matryoshka [Hf ₁₃] Nanocluster as a Luminescent Sensor for Concentrated Alkali and Acid. Angewandte Chemie, 2019, 131, 16763-16769.	2.0	7
446	Zirconium coordination polymers based on tartaric and malic acids as catalysts for cyanosilylation reactions. Applied Catalysis A: General, 2019, 585, 117190.	4.3	17
447	p <i>K</i> _a -Directed Incorporation of Phosphonates into MOF-808 via Ligand Exchange: Stability and Adsorption Properties for Uranium. ACS Applied Materials & Interfaces, 2019, 11, 33931-33940.	8.0	103
448	Metalation and DFT studies of metal organic frameworks UiO-66(Zr) with vanadium chloride as allyl alcohol epoxidation catalyst. Journal of Molecular Structure, 2019, 1198, 126940.	3.6	22
449	Cleaving Carboxyls: Understanding Thermally Triggered Hierarchical Pores in the Metal–Organic Framework MIL-121. Journal of the American Chemical Society, 2019, 141, 14257-14271.	13.7	53
450	Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Mikrochimica Acta, 2019, 186, 620.	5.0	64
451	Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35319-35326.	8.0	87
452	Design of a Multifunctional Indium–Organic Framework: Fluorescent Sensing of Nitro Compounds, Physical Adsorption, and Photocatalytic Degradation of Organic Dyes. Inorganic Chemistry, 2019, 58, 11220-11230.	4.0	71
453	Doubly interpenetrated indium-tricarboxylate frameworks mediated by small molecules with enhanced porosity. CrystEngComm, 2019, 21, 5045-5049.	2.6	5
454	Location controlled symmetry reduction: paradigm of an open metalloporphyrin framework based on the tetracarboxy porphyrin linker. CrystEngComm, 2019, 21, 5216-5221.	2.6	2
455	Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+. Journal of Solid State Chemistry, 2019, 278, 120892.	2.9	32
456	Reticular Chemistry of Uranyl Phosphonates: Sterically Hindered Phosphonate Ligand Method is Significant for Constructing Zeroâ€Dimensional Secondary Building Units. Chemistry - A European Journal, 2019, 25, 12567-12575.	3.3	18
457	Dependence of Dye Molecules Adsorption Behaviors on Pore Characteristics of Mesostructured MOFs Fabricated by Surfactant Template. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31441-31451.	8.0	38
458	A new Co(II) coordination polymer with the 2-(4-pyridyl)-terephthalate ligand: synthesis, crystal structure and magnetic properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 619-622.	0.7	0

#	Article	IF	CITATIONS
459	Synthesis, characterization and fluorescent properties of two porous lead(II) complexes assembled from similar carboxylphenyl terpyridine polydentate ligands. Inorganic Chemistry Communication, 2019, 107, 107488.	3.9	4
460	Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO ₂ Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorganic Chemistry, 2019, 58, 11389-11403.	4.0	92
461	Understanding Reduced CO ₂ Uptake of Ionic Liquid/Metal–Organic Framework (IL/MOF) Composites. ACS Applied Nano Materials, 2019, 2, 6022-6029.	5.0	45
462	Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous and Mesoporous Materials, 2019, 290, 109674.	4.4	53
463	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32090-32096.	8.0	44
464	A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Composites Part B: Engineering, 2019, 176, 107198.	12.0	50
465	Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 2019, 141, 13124-13133.	13.7	73
466	High quantum yield pure blue emission and fast proton conduction from an indium–metal–organic framework. Dalton Transactions, 2019, 48, 12088-12095.	3.3	17
467	Metal-organic frameworks for detection and desensitization of environmentally hazardous nitro-explosives and related high energy materials., 2019,, 231-283.		4
468	Metal-organic frameworks for capture and degradation of organic pollutants. , 2019, , 203-229.		6
469	Effective and selective adsorption of organoarsenic acids from water over a Zr-based metal-organic framework. Chemical Engineering Journal, 2019, 378, 122196.	12.7	79
470	Adsorption of hydrogen arsenate and dihydrogen arsenate ions from neutral water by UiO-66-NH2. Journal of Environmental Management, 2019, 247, 263-268.	7.8	40
471	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ETC	Qq0 0 0 rg 13.8	gBT /Overlock 350
472	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ETG	Qq1 1 0.78 2.0	84314 rgBT 47
473	Seven new complexes based on various coordination modes of bifunctional ligand: Luminescent sensing and magnetic properties. Inorganica Chimica Acta, 2019, 495, 118971.	2.4	8
474	Catalytic reactions within the cavity of coordination cages. Chemical Society Reviews, 2019, 48, 4707-4730.	38.1	313
475	A zirconium-organic framework incorporating with amino and sulfoxide groups. Inorganic Chemistry Communication, 2019, 107, 107484.	3.9	1
476	Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13841-13848.	13.7	101

#	Article	IF	CITATIONS
477	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	13.7	58
478	New linker installation in metal–organic frameworks. Dalton Transactions, 2019, 48, 12000-12008.	3.3	11
479	The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 2019, 7, 10240-10246.	5.5	27
480	Synthesis of poly[2-(3-butenyl)-2-oxazoline] with abundant carboxylic acid functional groups as a fiber-based sol–gel reaction supporter for catalytic applications. Journal of Industrial and Engineering Chemistry, 2019, 80, 112-121.	5.8	2
481	A robust cage-based framework for the highly selective purification of natural gas. Chemical Communications, 2019, 55, 10257-10260.	4.1	19
482	Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies. Chemistry - an Asian Journal, 2019, 14, 3096-3108.	3.3	66
483	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	47.7	366
484	Metal-Organic Frameworks in Green Analytical Chemistry. Separations, 2019, 6, 33.	2.4	80
485	High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Analytica Chimica Acta, 2019, 1081, 51-58.	5.4	74
486	A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26250-26260.	8.0	109
487	Modulating charge transport in MOFs with zirconium oxide nodes and redox-active linkers for lithium sulfur batteries. Polyhedron, 2019, 170, 788-795.	2.2	13
488	A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO2 to cyclic carbonates. Dalton Transactions, 2019, 48, 15487-15492.	3.3	18
489	A facile method to introduce iron secondary metal centers into metal–organic frameworks. Journal of Organometallic Chemistry, 2019, 897, 114-119.	1.8	5
490	Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123625.	4.7	85
491	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18011-18016.	13.8	103
492	Role of Two-Electron Defects on the CeO ₂ Surface in CO Preferential Oxidation over CuO/CeO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 18421-18433.	6.7	31
493	Multifunctional Tubular Organic Cageâ€Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angewandte Chemie, 2019, 131, 18179-18184.	2.0	30
494	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 16835-16843.	2.0	4

#	Article	IF	CITATIONS
495	Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. Journal of the American Chemical Society, 2019, 141, 17207-17216.	13.7	54
496	Lithium Thiophosphate Functionalized Zirconium MOFs for Li–S Batteries with Enhanced Rate Capabilities. Journal of the American Chemical Society, 2019, 141, 17891-17899.	13.7	117
497	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17308-17312.	2.0	3
498	Hollow Znâ^'Co Based Zeolitic Imidazole Framework as a Robust Heterogeneous Catalyst for Enhanced CO ₂ Chemical Fixation. Chemistry - an Asian Journal, 2019, 14, 4375-4382.	3.3	11
499	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17148-17152.	13.8	34
500	Cd ^{II} â€Organic Frameworks Fabricated with a Nâ€Rich Ligand and Flexible Dicarboxylates: Structural Diversity and Multiâ€Responsive Luminescent Sensing for Toxic Anions and Ethylenediamine. Chemistry - an Asian Journal, 2019, 14, 4420-4428.	3.3	31
501	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	5.8	31
502	High Propane and Isobutane Adsorption Cooling Capacities in Zirconium-Based Metal–Organic Frameworks Predicted by Molecular Simulations. ACS Sustainable Chemistry and Engineering, 2019, 7, 18242-18246.	6.7	14
504	Probing the Role of Anions in Influencing the Structure, Stability, and Properties in Neutral N-Donor Linker Based Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 7046-7054.	3.0	23
505	Dual-Functionalized Fluorescent Cationic Organic Network: Highly Efficient Detection and Removal of Dichromate from Water. ACS Applied Materials & Interfaces, 2019, 11, 46197-46204.	8.0	21
506	Triazine Poly(carboxylic acid) Metal–Organic Frameworks and the Fluorescent Response with Lead Oxygen Clusters: [Pb ₇ (COO) ₁₂ X ₂] by Halogen Tuning (X = Cl, Br,) Tj ETÇ)q 4.0 0 rg	BTgOverlock
507	Continuous UiO-66-Type Metal–Organic Framework Thin Film on Polymeric Support for Organic Solvent Nanofiltration. ACS Applied Materials & Solvent Nanofiltration. ACS Applied Materials & Solvent Nanofiltration.	8.0	49
508	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials & Lorentz	8.0	29
509	A Series of UiO-66(Zr)-Structured Materials with Defects as Heterogeneous Catalysts for Biodiesel Production. Industrial & Engineering Chemistry Research, 2019, 58, 21961-21971.	3.7	29
510	Uncovering Structural Opportunities for Zirconium Metal–Organic Frameworks via Linker Desymmetrization. Advanced Science, 2019, 6, 1901855.	11.2	19
511	Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO ₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41458-41471.	8.0	55
512	FOXC1 upâ€regulates the expression of tollâ€like receptors in myocardial ischaemia. Journal of Cellular and Molecular Medicine, 2019, 23, 7566-7580.	3.6	15
513	Seasonal Fish Assemblage Structure Using Environmental DNA in the Yangtze Estuary and Its Adjacent Waters. Frontiers in Marine Science, 2019, 6, .	2.5	31

#	Article	IF	CITATIONS
514	Mixed Functionalization of Organic Ligands in UiO-66: A Tool to Design Metal–Organic Frameworks for Tailored Microextraction. Molecules, 2019, 24, 3656.	3.8	15
515	Hydrophilic Carboxyl Cotton for in Situ Growth of UiO-66 and Its Application as Adsorbents. Industrial & Discourse Engineering Chemistry Research, 2019, 58, 20331-20339.	3.7	29
516	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 16682-16690.	13.8	45
517	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nature Communications, 2019, 10, 3861.	12.8	164
518	Dynamic Interplay between Defective UiOâ€66 and Protic Solvents in Activated Processes. Chemistry - A European Journal, 2019, 25, 15315-15325.	3.3	13
519	Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 17646-17659.	3.7	152
520	Linker functionalized metal-organic frameworks. Coordination Chemistry Reviews, 2019, 399, 213023.	18.8	170
521	Effect of linker and metal on photoreduction and cascade reactions of nitroaromatics by M-UiO-66 metal organic frameworks. Inorganica Chimica Acta, 2019, 497, 119076.	2.4	14
522	Tuning the Connectivity, Rigidity, and Functionality of Two-Dimensional Zr-Based Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 12748-12755.	4.0	19
523	Ligand Exchange in the Synthesis of Metal–Organic Frameworks Occurs Through Acid-Catalyzed Associative Substitution. Inorganic Chemistry, 2019, 58, 14457-14466.	4.0	18
524	Selective Dye Adsorption by Zeolitic Imidazolate Framework-8 Loaded UiO-66-NH2. Nanomaterials, 2019, 9, 1283.	4.1	49
525	An Optimised Compaction Process for Zr-Fumarate (MOF-801). Inorganics, 2019, 7, 110.	2.7	17
526	Controlling Charge-Transport in Metal–Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron–Porphyrin Centered Redox Hopping Rate. Journal of Physical Chemistry B, 2019, 123, 8814-8822.	2.6	40
527	Stabilizing defects in metal–organic frameworks: pendant Lewis basic sites as capping agents in UiO-66-type MOFs toward highly stable and defective porous materials. Dalton Transactions, 2019, 48, 14696-14704.	3.3	22
528	Accelerated proton transmission in metal–organic frameworks for the efficient reduction of CO ₂ in aqueous solutions. Journal of Materials Chemistry A, 2019, 7, 23055-23063.	10.3	12
529	Ligand Excess "Inverse-Defected―Zr ₆ Tetrahedral Tetracarboxylate Framework and Its Thermal Transformation. Inorganic Chemistry, 2019, 58, 12786-12797.	4.0	3
530	Protons Make Possible Heterolytic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 9699-9704.	11.2	41
531	Geometry Mismatch and Reticular Chemistry: Strategies To Assemble Metal–Organic Frameworks with Non-default Topologies. Journal of the American Chemical Society, 2019, 141, 16517-16538.	13.7	90

#	Article	IF	CITATIONS
532	Magnesium based coordination polymers: Syntheses, structures, properties and applications. Coordination Chemistry Reviews, 2019, 399, 213025.	18.8	17
533	A pillared-layer strategy to construct water-stable Zn–organic frameworks for iodine capture and luminescence sensing of Fe ³⁺ . Dalton Transactions, 2019, 48, 602-608.	3.3	29
534	Fabrication of 2D metal–organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chemistry, 2019, 21, 54-58.	9.0	66
535	Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. Journal of Membrane Science, 2019, 576, 78-87.	8.2	7 5
536	Superâ€Stable, Highly Efficient, and Recyclable Fibrous Metal–Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions. Small, 2019, 15, e1805242.	10.0	54
537	Coordination Nanosheets of Phthalocyanine as Multifunctional Platform for Imaging-Guided Synergistic Therapy of Cancer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6840-6849.	8.0	40
538	Syntheses, structures and properties of a new Cu(II) coordination polymer based on 4,4′-(hexafluoroisopropylidene)bis(benzoic acid) ligand. Journal of Molecular Structure, 2019, 1183, 292-297.	3.6	7
539	Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2394-2400.	5.5	23
540	Exploiting π–π Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Design an Efficient Sorbent for Atrazine Removal from Water. ACS	8.0	96
541	Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as <i>in Situ</i> Size-Selective Raman Probes. Journal of the American Chemical Society, 2019, 141, 3893-3900.	13.7	119
542	Zirconium-Based Metal–Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 2568-2576.	13.7	105
543	An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. CrystEngComm, 2019, 21, 1407-1415.	2.6	39
544	A Microporous Zirconium Metalâ€Organic Framework Based on <i>trans</i>)â€Aconitic Acid for Selective Carbon Dioxide Adsorption. European Journal of Inorganic Chemistry, 2019, 2019, 2674-2679.	2.0	12
545	Quest for 9-connected robust metal–organic framework platforms based on [M ₃ (O/OH)(COO) ₆ (pyridine) ₃) clusters as excellent gas separation and asymmetric supercapacitor materials. Journal of Materials Chemistry A, 2019, 7, 4640-4650.	10.3	33
546	Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for heterogeneous catalysis of Henry reactions. CrystEngComm, 2019, 21, 1358-1362.	2.6	28
547	Co(<scp>ii</scp>)-cluster-based metalâ€"organic frameworks as efficient heterogeneous catalysts for selective oxidation of arylalkanes. CrystEngComm, 2019, 21, 1666-1673.	2.6	12
548	Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values. Chemical Engineering Journal, 2019, 362, 865-876.	12.7	181
549	Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent. Catalysis Science and Technology, 2019, 9, 327-335.	4.1	40

#	Article	IF	Citations
550	Two ultramicroporous metal–organic frameworks assembled from binuclear secondary building units for highly selective CO2/N2 separation. Dalton Transactions, 2019, 48, 1680-1685.	3.3	8
551	Enhanced electrochemical performance of Li–Co-BTC ternary metal–organic frameworks as cathode materials for lithium-ion batteries. Dalton Transactions, 2019, 48, 2013-2018.	3.3	32
552	A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1,4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion. Inorganica Chimica Acta, 2019, 493, 72-80.	2.4	14
554	Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Single-vs Double-Node Metal†Organic Frameworks for Sarin Decomposition. Journal of Physical Chemistry C, 2019, 123, 15157-15165.	3.1	31
555	High dispersion of polyethyleneimine within mesoporous UiO-66s through pore size engineering for selective CO2 capture. Chemical Engineering Journal, 2019, 375, 121962.	12.7	26
556	Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	21
557	Spectroscopy Identification of the Bimetallic Surface of Metal–Organic Framework-Confined Pt–Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation. ACS Applied Materials & Description of the Bimetallic Surface of Metal–Organic Framework-Confined Pt–Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation. ACS Applied Materials	8.0	41
558	Zirconium-Based Metal–Organic Framework Nanocarrier for the Controlled Release of Ibuprofen. ACS Applied Nano Materials, 2019, 2, 3329-3334.	5.0	28
559	An adjustable dual-emission fluorescent metal-organic framework: Effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117283.	3.9	27
560	Metal–Organic Frameworks Toward Electrocatalytic Applications. Applied Sciences (Switzerland), 2019, 9, 2427.	2.5	55
561	Optimization of the synthesis of UiO-66(Zr) in ionic liquids. Microporous and Mesoporous Materials, 2019, 288, 109564.	4.4	14
562	Zr(IV) rosslinked Polyacrylamide/Polyanionic Cellulose Composite Hydrogels with High Strength and Unique Acid Resistance. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 981-991.	2.1	23
563	Homochiral BINAPDA-Zr-MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes. Inorganic Chemistry, 2019, 58, 9253-9259.	4.0	29
564	Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2and glucose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 456-463.	4.7	71
565	Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nature Communications, 2019, 10, 2490.	12.8	158
566	Highly Efficient Oxygen Reduction Reaction Catalyst Derived from Fe/Ni Mixed-Metal–Organic Frameworks for Application of Fuel Cell Cathode. Industrial & Engineering Chemistry Research, 2019, 58, 10224-10237.	3.7	25
567	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	12.8	180
568	Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids. Angewandte Chemie - International Edition, 2019, 58, 10909-10913.	13.8	76

#	Article	IF	CITATIONS
569	Toward Metal–Organicâ€Frameworkâ€Based Supercapacitors: Roomâ€Temperature Synthesis of Electrically Conducting MOFâ€Based Nanocomposites Decorated with Redoxâ€Active Manganese. European Journal of Inorganic Chemistry, 2019, 2019, 3036-3044.	2.0	35
570	Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids. Angewandte Chemie, 2019, 131, 11025-11029.	2.0	7
571	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	6.7	80
572	Experimental methods in chemical engineering: Fluorescence emission spectroscopy. Canadian Journal of Chemical Engineering, 2019, 97, 2168-2175.	1.7	15
573	Determination and removal of clenbuterol with a stable fluorescent zirconium(IV)-based metal organic framework. Mikrochimica Acta, 2019, 186, 454.	5.0	32
574	A multifunctional Zr(<scp>iv</scp>)-based metal–organic framework for highly efficient elimination of Cr(<scp>vi</scp>) from the aqueous phase. Journal of Materials Chemistry A, 2019, 7, 16833-16841.	10.3	80
575	Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous Catalysis. Journal of the American Chemical Society, 2019, 141, 8737-8740.	13.7	178
576	Zr and Hf-metal-organic frameworks: Efficient and recyclable heterogeneous catalysts for the synthesis of 2-arylbenzoxazole via ring open pathway acylation reaction. Journal of Catalysis, 2019, 374, 110-117.	6.2	27
577	Fluorescent Zr(IV) Metal–Organic Frameworks Based on an Excited-State Intramolecular Proton Transfer-Type Ligand. Inorganic Chemistry, 2019, 58, 6918-6926.	4.0	13
578	A Stable Mesoporous Zr-Based Metal Organic Framework for Highly Efficient CO ₂ Conversion. Inorganic Chemistry, 2019, 58, 7480-7487.	4.0	51
579	Selective incorporation of Pd nanoparticles into the pores of an alkyne-containing metal-organic framework VNU1 for enhanced electrocatalytic hydrogen evolution reaction at near neutral pH. Materials Chemistry and Physics, 2019, 233, 16-20.	4.0	4
580	Symmetry-guided syntheses of mixed-linker Zr metal–organic frameworks with precise linker locations. Chemical Science, 2019, 10, 5801-5806.	7.4	22
581	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 10995-11000.	13.8	31
582	Construction of Designated Heptanuclear Metal 8-hydroxyquinolates with Different Ions and Auxiliary Coligands. Crystal Growth and Design, 2019, 19, 3372-3378.	3.0	5
583	The first water-based synthesis of Ce(iv)-MOFs with saturated chiral and achiral C4-dicarboxylate linkers. Dalton Transactions, 2019, 48, 8433-8441.	3.3	24
584	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11111-11116.	2.0	13
585	A Titanium(IV)â€Based Metal–Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative Desulfurization Catalyst. Angewandte Chemie, 2019, 131, 9258-9263.	2.0	37
586	Spillover effect on Pd-embedded metal-organic frameworks based on zirconium(IV) and benzene 1,3,5-tricarboxylate as hydrogen storage materials. Materials Research Express, 2019, 6, 084001.	1.6	7

#	Article	IF	CITATIONS
587	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	30.8	481
588	Synthesis of flower-like CuS/UiO-66 composites with enhanced visible-light photocatalytic performance. Inorganic Chemistry Communication, 2019, 104, 223-228.	3.9	18
589	A straightforward route to obtain zirconium based metal-organic gels. Microporous and Mesoporous Materials, 2019, 284, 128-132.	4.4	46
590	The impact of an isoreticular expansion strategy on the performance of iodine catalysts supported in multivariate zirconium and aluminum metal†organic frameworks. Dalton Transactions, 2019, 48, 6445-6454.	3.3	14
591	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15788-15794.	8.0	31
592	A Titanium(IV)â€Based Metal–Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative Desulfurization Catalyst. Angewandte Chemie - International Edition, 2019, 58, 9160-9165.	13.8	99
593	A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry A, 2019, 7, 13173-13179.	10.3	68
594	A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Science China Materials, 2019, 62, 1315-1322.	6.3	41
595	Selective decontamination of the reactive air pollutant nitrous acid <i>via</i> node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	7.4	28
596	Salting-in species induced self-assembly of stable MOFs. Chemical Science, 2019, 10, 5743-5748.	7.4	36
597	Cooperative Sieving and Functionalization of Zr Metal–Organic Frameworks through Insertion and Post-Modification of Auxiliary Linkers. ACS Applied Materials & Interfaces, 2019, 11, 22390-22397.	8.0	60
598	A Biocompatible Gd ^{lll} –Organic Framework Incorporating Polar Pores for pH-Sensitive Anti-Cancer Drug Delivery and Inhibiting Human Bone Tumour Cells — RETRACTED. Australian Journal of Chemistry, 2019, 72, 233-239.	0.9	1
599	Zr-Based Metal–Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H ₂ O ₂ Decomposition. Inorganic Chemistry, 2019, 58, 6983-6992.	4.0	137
600	Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. Journal of Hazardous Materials, 2019, 375, 191-197.	12.4	56
601	Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to \hat{I}^3 -valerolactone. Molecular Catalysis, 2019, 472, 17-26.	2.0	43
602	[Zr ₆ O ₄ (OH) ₄ (benzene-1,4-dicarboxylato) ₆] _n : a hexagonal polymorph of UiO-66. Chemical Communications, 2019, 55, 5954-5957.	4.1	24
603	Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem, 2019, 11, 2978-2993.	3.7	46
604	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	4.4	47

#	Article	IF	CITATIONS
605	Rapid and Low-Cost Electrochemical Synthesis of UiO-66-NH ₂ with Enhanced Fluorescence Detection Performance. Inorganic Chemistry, 2019, 58, 6742-6747.	4.0	71
606	Insights into the water adsorption mechanism in the chemically stable zirconium-based MOF DUT-67 – a prospective material for adsorption-driven heat transformations. Journal of Materials Chemistry A, 2019, 7, 12681-12690.	10.3	51
607	Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconiumâ \in "tricarboxylate metalâ \in "organic framework: towards the addition of acid active sites. CrystEngComm, 2019, 21, 3014-3030.	2.6	38
609	Distinctive Two-Step Intercalation of Sr2+ into a Coordination Polymer with Record High 90Sr Uptake Capabilities. CheM, 2019, 5, 977-994.	11.7	119
610	Gallic acid functionalized UiO-66 for the recovery of ribosylated metabolites from human urine samples. Talanta, 2019, 201, 23-32.	5 . 5	22
611	Deep eutectic solvents appended to UiO-66 type metal organic frameworks: Preserved open metal sites and extra adsorption sites for CO2 capture. Applied Surface Science, 2019, 480, 770-778.	6.1	48
612	Porphyrinic Metal–Organic Frameworks Installed with Brønsted Acid Sites for Efficient Tandem Semisynthesis of Artemisinin. ACS Catalysis, 2019, 9, 5111-5118.	11.2	96
613	Ferrocene-Encapsulated Zn Zeolitic Imidazole Framework (ZIF-8) for Optical and Electrochemical Sensing of Amyloid-β Oligomers and for the Early Diagnosis of Alzheimer's Disease. ACS Applied Materials & Disease.	8.0	81
614	Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe ³⁺ in aqueous solution. Chemical Communications, 2019, 55, 4727-4730.	4.1	61
615	Two Cu _x I _y -based copper–organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I ₂ sorption and release. Inorganic Chemistry Frontiers, 2019, 6, 1261-1266.	6.0	18
616	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	4.7	45
617	Four Novel Coordination Polymers Based on Flexible 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene Ligand: Synthesis, Structure, Luminescence and Magnetic Properties. Journal of Cluster Science, 2019, 30, 777-787.	3.3	5
618	Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(III) and Europium(III) ions and their photoluminescence performances. Chemical Engineering Journal, 2019, 370, 729-741.	12.7	83
619	<i>De novo</i> synthesis of mesoporous photoactive titanium(<scp>iv</scp>)–organic frameworks with MIL-100 topology. Chemical Science, 2019, 10, 4313-4321.	7.4	72
620	Sulfur Chemistry for Stable and Electroactive Metalâ€Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, 8654-8662.	3.3	13
621	Surfactant-Thermal Synthesis of Amino Acid-Templated Zinc Phosphates with 3-Connected Nets Related to Zeolite ABW. Inorganic Chemistry, 2019, 58, 4089-4092.	4.0	20
622	Zirconium-MOF-catalysed selective synthesis of \hat{l}_{\pm} -hydroxyamide via the transfer hydrogenation of \hat{l}_{\pm} -ketoamide. New Journal of Chemistry, 2019, 43, 6160-6167.	2.8	16
623	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	2.6	67

#	Article	IF	CITATIONS
624	Hierarchical Hybrid Metal–Organic Frameworks: Tuning the Visible/Near-Infrared Optical Properties by a Combination of Porphyrin and Its Isomer Units. Inorganic Chemistry, 2019, 58, 4647-4656.	4.0	16
625	Poreâ€Surface Engineering by Decorating Metalâ€Oxo Nodes with Phenylsilane to Give Versatile Superâ€Hydrophobic Metal–Organic Frameworks (MOFs). Angewandte Chemie - International Edition, 2019, 58, 7405-7409.	13.8	60
626	Green Oxidation of Cyclohexanone to Adipic Acid over Phosphotungstic Acid Encapsulated in UiO-66. Catalysis Letters, 2019, 149, 1504-1512.	2.6	20
627	Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. Chemical Communications, 2019, 55, 5367-5370.	4.1	54
628	Poreâ€Surface Engineering by Decorating Metalâ€Oxo Nodes with Phenylsilane to Give Versatile Superâ€Hydrophobic Metal–Organic Frameworks (MOFs). Angewandte Chemie, 2019, 131, 7483-7487.	2.0	16
629	Metal–Organic Framework Photocatalyst Incorporating Bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 7115-7121.	13.7	125
630	Janus triple tripods build up a microporous manifold for HgCl ₂ and I ₂ uptake. Chemical Communications, 2019, 55, 5091-5094.	4.1	9
631	Interrogating Kinetic versus Thermodynamic Topologies of Metal–Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. Journal of the American Chemical Society, 2019, 141, 6146-6151.	13.7	94
632	Fe(III) porphyrin metal–organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2. Journal of Porous Materials, 2019, 26, 1507-1521.	2.6	41
634	Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation. Matter, 2019, 1, 156-167.	10.0	67
635	Single-Crystal Synthesis and Structures of Highly Stable Ni ₈ -Pyrazolate-Based Metal–Organic Frameworks., 2019, 1, 20-24.		26
636	Topology Exploration in Highly Connected Rare-Earth Metal–Organic Frameworks via Continuous Hindrance Control. Journal of the American Chemical Society, 2019, 141, 6967-6975.	13.7	125
637	Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol. Chinese Journal of Catalysis, 2019, 40, 553-566.	14.0	61
638	High Uptake of ReO ₄ ^{â^'} and CO ₂ Conversion by a Radiationâ€Resistant Thoriumâ€"Nickle [Th ₄₈ Ni ₆] Nanocageâ€Based Metalâ€"Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 6022-6027.	13.8	109
639	High Uptake of ReO ₄ ^{â^'} and CO ₂ Conversion by a Radiationâ€Resistant Thoriumâ€"Nickle [Th ₄₈ Ni ₆] Nanocageâ€Based Metalâ€"Organic Framework. Angewandte Chemie, 2019, 131, 6083-6088.	2.0	15
640	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	21.0	370
641	Selective Adsorption of CH4/N2 on Ni-based MOF/SBA-15 Composite Materials. Nanomaterials, 2019, 9, 149.	4.1	16
642	Znln2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation. Inorganic Chemistry Communication, 2019, 102, 25-29.	3.9	22

#	Article	IF	CITATIONS
643	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	6.7	97
644	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	18.8	326
645	Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry, 2019, 12, 139-165.	3.5	89
646	Toward Base Heterogenization: A Zirconium Metal–Organic Framework/Dendrimer or Polymer Mixture for Rapid Hydrolysis of a Nerve-Agent Simulant. ACS Applied Nano Materials, 2019, 2, 1005-1008.	5.0	57
647	Direct grafting-from of PEDOT from a photoreactive Zr-based MOF – a novel route to electrically conductive composite materials. Chemical Communications, 2019, 55, 3367-3370.	4.1	29
648	Pore-Templated Growth of Catalytically Active Gold Nanoparticles within a Metal–Organic Framework. Chemistry of Materials, 2019, 31, 1485-1490.	6.7	47
649	Amino functionalized Zn/Cd-metal–organic frameworks for selective CO ₂ adsorption and Knoevenagel condensation reactions. Dalton Transactions, 2019, 48, 4007-4014.	3.3	47
650	Constructing new metal–organic frameworks with complicated ligands from "One-Pot― <i>in situ</i> reactions. Chemical Science, 2019, 10, 3949-3955.	7.4	46
651	Robust Porphyrin-Spaced Zirconium Pyrogallate Frameworks with High Proton Conduction. Inorganic Chemistry, 2019, 58, 3569-3573.	4.0	29
652	Pore Size Reduction in Zirconium Metal–Organic Frameworks for Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7118-7126.	6.7	39
653	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	6.7	65
654	Metal–Organic Framework Containing Planar Metal-Binding Sites: Efficiently and Cost-Effectively Enhancing the Kinetic Separation of C ₂ H ₂ /C ₂ H ₄ . Journal of the American Chemical Society, 2019, 141, 3807-3811.	13.7	144
655	Single-site metal–organic framework catalysts for the oxidative coupling of arenes <i>via</i> C–H/C–H activation. Chemical Science, 2019, 10, 3616-3622.	7.4	77
656	Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiOâ^66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone. Frontiers in Chemistry, 2019, 7, 42.	3.6	12
657	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	18.8	298
658	A Zn(<scp>ii</scp>) metal–organic framework with dinuclear [Zn ₂ (<i>N</i> -oxide) ₂] secondary building units. Dalton Transactions, 2019, 48, 6314-6318.	3.3	2
659	Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coordination Chemistry Reviews, 2019, 386, 85-95.	18.8	74
660	Synthesis of a surface mounted metal–organic framework on gold using a Au–carbene self-assembled monolayer linkage. Materials Chemistry Frontiers, 2019, 3, 636-639.	5.9	8

#	Article	IF	CITATIONS
661	Porous High-Valence Metal–Organic Framework Featuring Open Coordination Sites for Effective Water Adsorption. Inorganic Chemistry, 2019, 58, 3058-3064.	4.0	22
662	A new approach to enhancing the CO ₂ capture performance of defective UiO-66 <i>via</i> post-synthetic defect exchange. Dalton Transactions, 2019, 48, 3349-3359.	3.3	57
663	Enhancing the Water Resistance of Mn-MOF-74 by Modification in Low Temperature NH3-SCR. Catalysts, 2019, 9, 1004.	3.5	20
664	Large-Scale Structural Refinement and Screening of Zirconium Metal–Organic Frameworks for H ₂ S/CH ₄ Separation. ACS Applied Materials & Therfaces, 2019, 11, 46984-46992.	8.0	22
665	Microwaveâ€Assisted Synthesis as an Efficient Method to Enhance the Catalytic Activity of Zrâ€Based Metal Organic Framework UiOâ€66 in a Heterocyclization Reaction. Asian Journal of Organic Chemistry, 2019, 8, 2276-2281.	2.7	38
666	Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chemical Communications, 2019, 55, 13959-13962.	4.1	72
667	Monomolecular VB ₂ -doped MOFs for photocatalytic oxidation with enhanced stability, recyclability and selectivity. Journal of Materials Chemistry A, 2019, 7, 26934-26943.	10.3	18
668	A robust MOF-based trap with high-density active alkyl thiol for the super-efficient capture of mercury. Chemical Communications, 2019, 55, 12972-12975.	4.1	84
669	Noble metal-free integrated UiO-66-PANI-Co ₃ O ₄ catalyst for visible-light-induced H ₂ production. Chemical Communications, 2019, 55, 14494-14497.	4.1	21
670	Green separation of rare earth elements by valence-selective crystallization of MOFs. Chemical Communications, 2019, 55, 14902-14905.	4.1	9
671	Structure and electronic properties of rare earth DOBDC metal–organic-frameworks. Physical Chemistry Chemical Physics, 2019, 21, 23085-23093.	2.8	24
672	Dye-Modified Metal–Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution in Urine Solution and Urine Solution in U	8.0	45
673	Elucidating Energy-Transfer Dynamics Within and Beyond Lanthanide Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 30165-30170.	3.1	7
674	Electronically conductive metal–organic framework-based materials. APL Materials, 2019, 7, .	5.1	66
675	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	13.7	106
676	Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes <i>via</i> voltammetric techniques: a critical review. Inorganic Chemistry Frontiers, 2019, 6, 3440-3455.	6.0	38
677	Temperature modulation of defects in NH ₂ -UiO-66(Zr) for photocatalytic CO ₂ reduction. RSC Advances, 2019, 9, 37733-37738.	3.6	47
678	Novel cobalt(II) metal-organic coordination polymers based on 3,4-bifluorobenzeneseleninic acid. Inorganica Chimica Acta, 2019, 484, 8-12.	2.4	4

#	Article	IF	CITATIONS
679	Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chemical Engineering Journal, 2019, 356, 329-340.	12.7	109
680	Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3400-3406.	8.0	37
681	Light-Harvesting in Porous Crystalline Compositions: Where We Stand toward Robust Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 1841-1854.	6.7	43
682	Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures. Advanced Science, 2019, 6, 1801715.	11.2	159
683	On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials, 2019, 195, 51-62.	11.4	98
684	Effect of Functional Groups on the Adsorption of Light Hydrocarbons in ⟨i⟩fmj⟨/i⟩-type Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 832-838.	3.0	33
685	An Amineâ€Functionalized Zirconium Metal–Organic Polyhedron Photocatalyst with High Visibleâ€Light Activity for Hydrogen Production. Chemistry - A European Journal, 2019, 25, 2824-2830.	3.3	53
686	Highly sensitive and recyclable sensing of Fe3+ ions based on a luminescent anionic [Cd(DMIPA)]2-framework with exposed thioether group in the snowflake-like channels. Journal of Solid State Chemistry, 2019, 270, 493-499.	2.9	31
687	Auxiliary ligand-assisted structural variation of two Co(II) metal-organic frameworks: Syntheses, crystal structure and magnetic properties. Inorganic Chemistry Communication, 2019, 99, 172-175.	3.9	18
688	Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution. Microporous and Mesoporous Materials, 2019, 277, 277-285.	4.4	177
689	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	14.2	627
690	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	18.8	91
691	Water-Based Synthesis and Enhanced CO ₂ Capture Performance of Perfluorinated Cerium-Based Metal–Organic Frameworks with UiO-66 and MIL-140 Topology. ACS Sustainable Chemistry and Engineering, 2019, 7, 394-402.	6.7	75
692	Engineering UiOâ€66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019, 11, 899-923.	3.7	182
693	Selective Separation of Isomeric Dicarboxylic Acid by the Preferable Crystallization of Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2019, 14, 135-140.	3.3	9
694	Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 380, 484-518.	18.8	86
695	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catalysis, 2019, 9, 1779-1798.	11.2	622
696	Novel and Versatile Cobalt Azobenzeneâ€Based Metalâ€Organic Framework as Hydrogen Adsorbent. ChemPhysChem, 2019, 20, 1334-1339.	2.1	8

#	Article	IF	CITATIONS
697	Mechanically fabricated Metal–organic framework/resin composite nanoparticles for efficient basic catalysis. Applied Organometallic Chemistry, 2019, 33, e4788.	3.5	5
698	Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H ₂ -Adsorption Properties. Inorganic Chemistry, 2019, 58, 1607-1620.	4.0	42
699	Effective adsorption of phosphoric acid by UiO-66 and UiO-66-NH2 from extremely acidic mixed waste acids: Proof of concept. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 483-486.	5.3	17
700	Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 2019, 380, 230-259.	18.8	470
701	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	3.4	78
702	lonic Conduction in Metal–Organic Frameworks with Incorporated Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 70-81.	6.7	104
703	Co(II) and Cd(II) metal-organic frameworks with a linear 1,4-di(1H-imidazol-1-yl) benzene and V-shaped polycarboxylate acid ligands: Synthesis, magnetic property and discriminating Fe3â€+â€ion in aqueous solution. Polyhedron, 2019, 159, 78-83.	2.2	5
704	α-Fe2O3 nanoclusters confined into UiO-66 for efficient visible-light photodegradation performance. Applied Surface Science, 2019, 466, 956-963.	6.1	67
705	Direct epitaxial synthesis of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from water. Microporous and Mesoporous Materials, 2019, 276, 68-75.	4.4	102
706	Metal–organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coordination Chemistry Reviews, 2019, 378, 32-65.	18.8	329
707	An unusual dependency on the hole-scavengers in photocatalytic reductions mediated by a titanium-based metal-organic framework. Catalysis Today, 2020, 340, 86-91.	4.4	27
708	Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 2020, 381, 122758.	12.7	92
709	Magnetic transitions in metal-organic frameworks of [(CH3)2NH2]Fell(HCOO)3, [(CH3)2NH2]Coll(HCOO)3 and [(CH3)2NH2]FellIFell(HCOO)6. Journal of Magnetism and Magnetic Materials, 2020, 493, 165715.	2.3	4
710	Corrosion behavior of ion-irradiated SiC in FLiNaK molten salt. Corrosion Science, 2020, 163, 108229.	6.6	13
711	Reversed ethane/ethylene adsorption in a metal–organic framework via introduction of oxygen. Chinese Journal of Chemical Engineering, 2020, 28, 593-597.	3.5	19
712	Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups. Applied Surface Science, 2020, 501, 144074.	6.1	102
713	Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. Journal of Hazardous Materials, 2020, 382, 121018.	12.4	64
714	Nanohybrid photocatalysts with Znln2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2020, 260, 118152.	20.2	154

#	Article	IF	CITATIONS
715	Dual sensing of copper ion and chromium (VI) oxyanions by benzotriazole functionalized UiO-66 metal-organic framework in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112238.	3.9	20
716	Triplet–Triplet Annihilation Upconversion in a MOF with Acceptorâ€Filled Channels. Chemistry - A European Journal, 2020, 26, 1003-1007.	3.3	32
717	Functionalization of UiO-66-NH2 with rhodanine via amidation: Towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chemical Engineering Journal, 2020, 382, 123009.	12.7	55
718	Structure, microwave dielectric performance, and infrared reflectivity spectrum of olivineâ€type Mg 2 Ge 0.98 O 4 ceramic. Journal of the American Ceramic Society, 2020, 103, 1789-1797.	3.8	18
719	A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes and Pigments, 2020, 173, 107993.	3.7	94
720	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	14.9	34
721	MOFs-Based Catalysts Supported Chemical Conversion of CO2. Topics in Current Chemistry, 2020, 378, 11.	5.8	38
722	MOF-derived nano-popcorns synthesized by sonochemistry as efficient sensitizers for tumor microwave thermal therapy. Biomaterials, 2020, 234, 119773.	11.4	43
723	Recent Progress in the Removal of Heavy Metal Ions from Water Using Metalâ€Organic Frameworks. ChemistrySelect, 2020, 5, 124-146.	1.5	70
724	Water-stable 2-D Zr MOFs with exceptional UO ₂ ²⁺ sorption capability. Journal of Materials Chemistry A, 2020, 8, 1849-1857.	10.3	29
725	A Stable Broad-Range Fluorescent pH Sensor Based on Eu ³⁺ Post-Synthetic Modification of a Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2020, 59, 1764-1771.	3.7	19
726	A multifunctional Zr-MOF for the rapid removal of Cr ₂ O ₇ ^{2â^'} , efficient gas adsorption/separation, and catalytic performance. Materials Chemistry Frontiers, 2020, 4, 1150-1157.	5.9	27
727	Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes. Journal of Power Sources, 2020, 450, 227592.	7.8	40
728	Site-Selective Probes of Mixed-Node Metal Organic Frameworks for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2020, 124, 1405-1412.	3.1	16
729	Sulfonic Groups Lined along Channels of Metal–Organic Frameworks (MOFs) for Super-Proton Conductor. Inorganic Chemistry, 2020, 59, 396-402.	4.0	77
730	DNA Amplifier-Functionalized Metal–Organic Frameworks for Multiplexed Detection and Imaging of Intracellular mRNA. ACS Sensors, 2020, 5, 103-109.	7.8	54
731	Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. IScience, 2020, 23, 100793.	4.1	16
732	Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: Catalyst for ethylene hydrogenation. Journal of Catalysis, 2020, 382, 165-172.	6.2	23

#	ARTICLE	IF	CITATIONS
733	Methyl functionalized Zr-Fum MOF with enhanced Xenon adsorption and separation. Separation and Purification Technology, 2020, 239, 116514.	7.9	34
734	Insights into Catalytic Gas-Phase Hydrolysis of Organophosphate Chemical Warfare Agents by MOF-Supported Bimetallic Metal-Oxo Clusters. ACS Applied Materials & Interfaces, 2020, 12, 14631-14640.	8.0	18
735	Liquid-repellent textile surfaces using zirconium (Zr)-based porous materials and a polyhedral oligomeric silsesquioxane coating. Journal of Colloid and Interface Science, 2020, 563, 363-369.	9.4	14
736	Metal-organic framework UiO-66 membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 216-232.	4.4	67
737	Computer-assisted design for stable and porous metal-organic framework (MOF) as a carrier for curcumin delivery. LWT - Food Science and Technology, 2020, 120, 108949.	5.2	16
738	Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties. Chemistry of Materials, 2020, 32, 97-104.	6.7	37
739	Selective and sensitive recognition of Fe3+ ion by a Lewis basic functionalized chemically stable metal-organic framework (MOF). Inorganica Chimica Acta, 2020, 502, 119359.	2.4	22
740	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	3.0	306
741	Facile synthesis of metal-organic framework UiO-66 for adsorptive removal of methylene blue from water. Chemical Physics, 2020, 531, 110655.	1.9	26
742	Water-alcohol adsorptive separations using metal-organic frameworks and their composites as adsorbents. Microporous and Mesoporous Materials, 2020, 295, 109946.	4.4	21
743	Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH2 for Pd(II) and Pt(IV) recovery from acidic solutions: Adsorption experiments, spectroscopic analyses, and theoretical computations. Journal of Hazardous Materials, 2020, 387, 121689.	12.4	62
744	Recent Advances in Photocatalysis over Metal–Organic Frameworksâ€Based Materials. Solar Rrl, 2020, 4, 1900438.	5 . 8	22
745	Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2020, 2, 440-450.	10.0	58
746	Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem, 2020, 2, 100025.	19.1	326
747	Theoretical Insights into the Initial Hydrolytic Breakdown of HKUST-1. Journal of Physical Chemistry C, 2020, 124, 1991-2001.	3.1	30
748	Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. CheM, 2020, 6, 2902-2923.	11.7	91
749	Twinning in Zr-Based Metal-Organic Framework Crystals. Chemistry, 2020, 2, 777-786.	2.2	4
750	Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114766.	3.5	108

#	Article	IF	CITATIONS
751	Synthesis and characterization of four 2D-3D Zn/Cd/Pb coordination polymers assembled by diverse SBUs and based on isomeric N-heterocyclic multicarboxylate ligands. Journal of Solid State Chemistry, 2020, 292, 121742.	2.9	2
752	Mechanism of the highly effective peptide bond hydrolysis by MOF-808 catalyst under biologically relevant conditions. Physical Chemistry Chemical Physics, 2020, 22, 25136-25145.	2.8	22
753	The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 2020, 49, 16551-16586.	3.3	76
754	Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. Trends in Chemistry, 2020, 2, 965-979.	8.5	14
755	Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF. Journal of Molecular Graphics and Modelling, 2020, 101, 107731.	2.4	8
756	Two Isostructural URIC-4 Materials: From Hydrogen Physisorption to Heterogeneous Reductive Amination through Hydrogen Molecule Activation at Low Pressure. Inorganic Chemistry, 2020, 59, 15733-15740.	4.0	2
757	Highly efficient synergistic CO ₂ conversion with epoxide using copper polyhedron-based MOFs with Lewis acid and base sites. Inorganic Chemistry Frontiers, 2020, 7, 4517-4526.	6.0	36
758	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	47.7	294
759	Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coordination Chemistry Reviews, 2020, 425, 213526.	18.8	84
760	Use of open source monitoring hardware to improve the production of MOFs: using STA-16(Ni) as a case study. Scientific Reports, 2020, 10, 17355.	3.3	3
761	Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange. Journal of Environmental Chemical Engineering, 2020, 8, 104363.	6.7	9
762	Applications of multifunctional zirconium-based metal-organic frameworks in analytical chemistry: Overview and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 131, 116015.	11.4	35
763	Design and Precursor-based Solid-State Synthesis of Mixed-Linker Zr-MIL-140A. Inorganic Chemistry, 2020, 59, 15250-15261.	4.0	4
764	The construction of a multifunctional metal–organic framework for targeting tumors and bioimaging. New Journal of Chemistry, 2020, 44, 18303-18307.	2.8	4
765	Metal-organic frameworks based on pyrazole subunit for batteries applications: A systematic review. Materials Today: Proceedings, 2020, 31, S96-S102.	1.8	8
766	Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13491-13499.	13.7	97
767	Rare-earth metal–organic frameworks: from structure to applications. Chemical Society Reviews, 2020, 49, 7949-7977.	38.1	244
768	A Green-Emission Metal–Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Interfaces, 2020, 12, 35375-35384.	8.0	32

#	ARTICLE	IF	CITATIONS
769	Conductive Metal–Organic Frameworks: Design, Synthesis, and Applications. Small Methods, 2020, 4, 2000396.	8.6	92
770	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catalysis, 2020, 10, 3720-3732.	11.2	187
771	Metal–organic framework derived amorphous VO _x coated Fe ₃ O ₄ /C hierarchical nanospindle as anode material for superior lithium-ion batteries. Nanoscale, 2020, 12, 16901-16909.	5 . 6	31
772	Nucleophilic versus Electrophilic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 10634-10649.	4.0	30
773	Dendrite-free Li Anode Enabled by a Metal–Organic Framework-Modified Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 12351-12359.	5.1	14
774	Self-assembly of zirconocene-based metal–organic capsules: the structure, luminescence sensing of Fe ³⁺ and iodine capture. New Journal of Chemistry, 2020, 44, 21255-21260.	2.8	7
775	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	13.7	103
776	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Diterraces, 2020, 12, 52588-52594.	8.0	3
777	Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chemical Communications, 2020, 56, 15615-15618.	4.1	10
778	Zr ₆ O ₈ Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catalysis, 2020, 10, 14959-14970.	11.2	24
779	Unexpected "Spontaneous―Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles. Journal of the American Chemical Society, 2020, 142, 21169-21177.	13.7	68
780	Metal–Organic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11907-11919.	5.1	51
781	Activity boosting of a metal-organic framework by Fe-Doping for electrocatalytic hydrogen evolution and oxygen evolution. Journal of Solid State Chemistry, 2020, 292, 121696.	2.9	11
782	A green approach for enhancing the hydrophobicity of UiO-66(Zr) catalysts for biodiesel production at 298 K. RSC Advances, 2020, 10, 41283-41295.	3. 6	14
783	The Surface Chemistry of Metal Oxide Clusters: From Metal–Organic Frameworks to Minerals. ACS Central Science, 2020, 6, 1523-1533.	11.3	46
784	Improved catalytic performance of Co-MOF-74 by nanostructure construction. Green Chemistry, 2020, 22, 5995-6000.	9.0	29
785	Design and applications of water-stable metal-organic frameworks: status and challenges. Coordination Chemistry Reviews, 2020, 423, 213507.	18.8	138
786	Ce-MIL-140: expanding the synthesis routes for cerium(<scp>iv</scp>) metal–organic frameworks. Dalton Transactions, 2020, 49, 11396-11402.	3.3	20

#	Article	IF	CITATIONS
787	Fabrication and Characterization of PVDF/UiO-66(Zr) Mixed Matrix Membrane on Non-Woven PET Support. Materials Science Forum, 2020, 1005, 108-115.	0.3	1
788	A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption. Journal of Porous Materials, 2020, 27, 1773-1782.	2.6	9
789	Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al ³⁺ . Analytical Chemistry, 2020, 92, 11600-11606.	6.5	22
790	Surface Siloxane-Modified Silica Materials Combined with Metal–Organic Frameworks as Novel MALDI Matrixes for the Detection of Low-MW Compounds. ACS Applied Materials & Diterfaces, 2020, 12, 37793-37803.	8.0	13
791	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	11.6	32
792	A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coordination Chemistry Reviews, 2020, 422, 213441.	18.8	121
793	Surface Modifications of Nanofillers for Carbon Dioxide Separation Nanocomposite Membrane. Symmetry, 2020, 12, 1102.	2.2	12
794	Optimizing zirconium metal–organic frameworks through steric tuning for efficient removal of Cr ₂ O ₇ ^{2ⰳ} . Chemical Communications, 2020, 56, 10513-10516.	4.1	8
795	A three-dimensional covalent organic framework with turn-on luminescence for molecular decoding of volatile organic compounds. Sensors and Actuators B: Chemical, 2020, 323, 128708.	7.8	30
796	Single-Crystal Synthesis and Diverse Topologies of Hexanuclear Ce ^{IV} -Based Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 11233-11237.	4.0	15
797	Isolated zirconium centres captured from aqueous solution: the structure of zirconium mandelate revealed from NMR crystallography. Chemical Communications, 2020, 56, 10159-10162.	4.1	0
798	The role of photoinduced charge transfer for photocatalysis, photoelectrocatalysis and luminescence sensing in metal–organic frameworks. Dalton Transactions, 2020, 49, 12892-12917.	3.3	23
799	Cluster/cage-based coordination polymers with tetrazole derivatives. Coordination Chemistry Reviews, 2020, 422, 213424.	18.8	39
800	Proton conductive Zr-based MOFs. Inorganic Chemistry Frontiers, 2020, 7, 3765-3784.	6.0	80
801	CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. Journal of CO2 Utilization, 2020, 42, 101332.	6.8	14
802	NO ₂ Removal under Ambient Conditions by Nanoporous Multivariate Zirconium-Based Metal–Organic Framework. ACS Applied Nano Materials, 2020, 3, 11442-11454.	5.0	20
803	Molecular Spheres Inspired Self-Assembly of Hydrolytically Stable Mesoporous Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 8015-8020.	3.0	4
804	Pillared-layered indium phosphites templated by amino acids: isoreticular structures, water stability, and fluorescence. Dalton Transactions, 2020, 49, 14766-14770.	3.3	4

#	Article	IF	Citations
805	Improving Charge Transfer in Metal–Organic Frameworks through Open Site Functionalization and Porosity Selection for Li–S Batteries. Chemistry of Materials, 2020, 32, 8450-8459.	6.7	21
806	High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials. Advanced Materials, 2020, 32, e2002780.	21.0	48
807	Goldâ€Nanoparticleâ€Decorated Metalâ€Organic Frameworks for Anticancer Therapy. ChemMedChem, 2020, 15, 2236-2256.	3.2	8
808	State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorganic Chemistry Frontiers, 2020, 7, 4293-4319.	6.0	66
809	Defect-engineering a metal–organic framework for CO ₂ fixation in the synthesis of bioactive oxazolidinones. Inorganic Chemistry Frontiers, 2020, 7, 3571-3577.	6.0	33
810	A low symmetry cluster meets a low symmetry ligand to sharply boost MOF thermal stability. Chemical Communications, 2020, 56, 11985-11988.	4.1	19
811	A robust 3D In–MOF with an imidazole acid ligand as a fluorescent sensor for sensitive and selective detection of Fe ³⁺ ions. New Journal of Chemistry, 2020, 44, 16076-16081.	2.8	9
812	Regulating the Topologies of Zirconium–Organic Frameworks for a Crystal Sponge Applicable to Inorganic Matter. Inorganic Chemistry, 2020, 59, 11940-11944.	4.0	8
813	Investigating the Process and Mechanism of Molecular Transport within a Representative Solvent-Filled Metal–Organic Framework. Langmuir, 2020, 36, 10853-10859.	3.5	18
814	Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. Journal of Physical Chemistry C, 2020, 124, 20854-20863.	3.1	18
815	Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 41157-41166.	8.0	20
816	Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Applied Nano Materials, 2020, 3, 9440-9448.	5.0	50
817	Titaniumâ€Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020, 4, 2000486.	8.6	98
818	The synthetic strategies for single atomic site catalysts based on metal–organic frameworks. Nanoscale, 2020, 12, 20580-20589.	5.6	17
819	Zr-Based MOFs for oxidative desulfurization: what matters?. Green Chemistry, 2020, 22, 6351-6356.	9.0	52
820	Extension of Surface Organometallic Chemistry to Metal–Organic Frameworks: Development of a Well-Defined Single Site [(≡Zr–Oâ^')W(â•O)(CH ₂ ^{<i>t</i>} Bu) ₃] Olefin Metathesis Catalyst. Journal of the American Chemical Society, 2020, 142, 16690-16703.	13.7	31
821	Metal–Organic Frameworks Based on Group 3 and 4 Metals. Advanced Materials, 2020, 32, e2004414.	21.0	69
822	A Highly Connected Trinuclear Cluster Based Metal–Organic Framework for Efficient Separation of C ₂ H ₄ and C ₂ H ₄ 213005-13008.	4.0	24

#	Article	IF	CITATIONS
823	Metal–organic frameworks: advanced tools for multicomponent reactions. Green Chemistry, 2020, 22, 7265-7300.	9.0	76
824	H ₅ PV ₂ Mo ₁₀ O ₄₀ encapsulated into Cu ₃ (BTC) ₂ as an efficient heterogeneous nanocrystalline catalyst for styrene epoxidation. New Journal of Chemistry, 2020, 44, 16913-16920.	2.8	30
825	Hydrothermal Synthesis of Zrâ€Amino Terephthalate and its Composite with MWCNTs as a Novel Electrode Material in Nitrite Quantification. Electroanalysis, 2020, 32, 2493-2502.	2.9	4
826	Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors, 2020, 8, 122.	3.6	17
828	Environmentally Benign Oneâ€pot Synthesis of Benzoâ€Fused Sevenâ€Membered Heterocyclic Compounds Using UiOâ€66 Metalâ€Organic Framework as Efficient and Reusable Catalyst. ChemistrySelect, 2020, 5, 14554-14558.	1.5	3
829	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	13.7	95
830	Electrochemical Aptasensors Based on Hybrid Metal-Organic Frameworks. Sensors, 2020, 20, 6963.	3.8	19
831	Synthesis, Structural, and Physicochemical Characterization of a Ti ₆ and a Unique Type of Zr ₆ Oxo Clusters Bearing an Electron-Rich Unsymmetrical {OON} Catecholate/Oxime Ligand and Exhibiting Metalloaromaticity. Inorganic Chemistry, 2020, 59, 18345-18357.	4.0	7
832	Tuning the Pore Surface of an Ultramicroporous Framework for Enhanced Methane and Acetylene Purification Performance. Inorganic Chemistry, 2020, 59, 16725-16736.	4.0	23
833	Axial Cl/Br atom-mediated CO ₂ electroreduction performance in a stable porphyrin-based metal–organic framework. Chemical Communications, 2020, 56, 14817-14820.	4.1	10
834	A robust and multifunctional calcium coordination polymer as a selective fluorescent sensor for acetone and iron (+3) and as a tunable proton conductor. Journal of Materials Chemistry C, 2020, 8, 16784-16789.	5.5	18
835	UiO-66 derivatives and their composite membranes for effective proton conduction. Dalton Transactions, 2020, 49, 17130-17139.	3.3	32
836	Synthesis of 5-hydroxymethylfurfural from monosaccharides catalyzed by superacid VNU-11–SO ₄ in 1-ethyl-3-methylimidazolium chloride ionic liquid. RSC Advances, 2020, 10, 39687-39692.	3.6	10
837	Prodrugâ€Loaded Zirconium Carbide Nanosheets as a Novel Biophotonic Nanoplatform for Effective Treatment of Cancer. Advanced Science, 2020, 7, 2001191.	11.2	35
838	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	1.0	6
839	A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium. ACS Applied Materials & Interfaces, 2020, 12, 25221-25232.	8.0	107
840	Thhorium Metal–Organic Framework Showing Proton Transformation from [NH ₂ (CH ₃) ₂ + to the Carboxyl Group to Enhance Porosity for Selective Adsorption of D ₂ over H ₂ and Ammonia Capture. Crystal Growth and Design, 2020, 20, 3605-3610.	3.0	5
841	Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks. Matter, 2020, 2, 1651-1666.	10.0	43

#	Article	IF	Citations
842	Photochromism of metal–organic frameworks based on carbazole-dicarboxylic acid and bipyridine: sensing adjustment by controlling strut-to-strut energy transfer. Dalton Transactions, 2020, 49, 7952-7958.	3.3	8
843	Postsynthetic Oxidation of the Coordination Site in a Heterometallic Metal–Organic Framework: Tuning Catalytic Behaviors. Chemistry of Materials, 2020, 32, 5192-5199.	6.7	20
844	Synthesis and catalytic activities of a Zn(<scp>ii</scp>) based metallomacrocycle and a metal–organic framework towards one-pot deacetalization-Knoevenagel tandem reactions under different strategies: a comparative study. Dalton Transactions, 2020, 49, 8075-8085.	3.3	26
845	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	4.1	81
846	Four-dimensional metal-organic frameworks. Nature Communications, 2020, 11, 2690.	12.8	109
847	Dehydrogenation of ethanol to acetaldehyde with nitrous oxide over the metal–organic framework NU-1000: a density functional theory study. Physical Chemistry Chemical Physics, 2020, 22, 13622-13628.	2.8	9
848	Adsorption characteristics and cooling/heating performance of COF-5. Applied Thermal Engineering, 2020, 176, 115442.	6.0	15
849	Pd/UIO-66/sepiolite: Toward highly efficient dual-supported Pd-based catalyst for dehydrogenation of formic acid at room temperature. Journal of Catalysis, 2020, 388, 66-76.	6.2	32
850	Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377.	47.7	303
851	Influence of Water in the Synthesis of the Zirconium-Based Metal–Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH) ₂ (DMF) ₂]Cl. Inorganic Chemistry, 2020, 59, 7860-7868.	4.0	29
852	Metal removal from the secondary building unit of bio-MOF-1 by adenine N6-alkylation while retaining the overall 3D porous topology. CrystEngComm, 2020, 22, 4201-4205.	2.6	2
853	Highly selective C2H2 and CO2 capture and photoluminescence properties of two Tb(III)-based MOFs. Journal of Solid State Chemistry, 2020, 285, 121257.	2.9	4
854	Three-dimensional macroporous Carbon/Zr-2,5-dimercaptoterephthalic acid metal-organic frameworks nanocomposites for removal and detection of Hg(II). Sensors and Actuators B: Chemical, 2020, 320, 128447.	7.8	40
855	Stable metal–organic frameworks with low water affinity built from methyl-siloxane linkers. Chemical Communications, 2020, 56, 7905-7908.	4.1	7
856	MOF-derived Zn, S, and P co-doped nitrogen-enriched carbon as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 19174-19180.	7.1	11
857	A Scandium MOF with an Unprecedented Inorganic Building Unit, Delimiting the Micropore Windows. Inorganic Chemistry, 2020, 59, 8995-9004.	4.0	11
858	Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catalysis, 2020, 10, 7820-7825.	11.2	50
859	Ligand Functionalization in Zirconiumâ€Based Metalâ€Organic Frameworks for Enhanced Carbon Dioxide Fixation. Advanced Sustainable Systems, 2020, 4, 2000098.	5.3	9

#	Article	IF	Citations
861	The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 419, 213388.	18.8	197
862	Thermal Post-Treatments to Enhance the Water Stability of NH2-MIL-125(Ti). Catalysts, 2020, 10, 603.	3 . 5	30
863	Structural diversity and applications of Ce(III)-based coordination polymers. Coordination Chemistry Reviews, 2020, 419, 213392.	18.8	16
864	Nano-architecture cobalt (III) supramolecular coordination polymer based on host-guest recognition as an effective catalyst for phenolic degradation and chemical sensor. Journal of Organometallic Chemistry, 2020, 921, 121397.	1.8	2
865	Room temperature aqueous synthesis of UiO-66 derivatives <i>via</i> postsynthetic exchange. Dalton Transactions, 2020, 49, 8841-8845.	3.3	19
866	Octafluorobiphenyl-4,4′-dicarboxylate as a ligand for metal-organic frameworks: progress and perspectives. Pure and Applied Chemistry, 2020, 92, 1081-1092.	1.9	2
867	Adsorption of Fluorocarbons and Chlorocarbons by Highly Porous and Robust Fluorinated Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 4167-4171.	4.0	23
868	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11 , 1431 .	12.8	51
869	Twist and sliding dynamics between interpenetrated frames in Ti-MOF revealing high proton conductivity. Chemical Science, 2020, 11, 3978-3985.	7.4	38
870	Nanocable catalysts MTe (M = Pt, PtCu)@UIO-67 for CO2 conversion. Science China Materials, 2020, 63, 769-778.	6.3	12
871	A Convenient and Versatile Strategy for the Functionalization of Silica Foams Using High Internal Phase Emulsion Templates as Microreactors. ACS Applied Materials & Interfaces, 2020, 12, 14607-14619.	8.0	15
872	Supramolecular assemblies based on Fe ₈ L ₁₂ cubic metal–organic cages: synergistic adsorption and spin-crossover properties. Dalton Transactions, 2020, 49, 4220-4224.	3.3	9
873	Three Cd(II)-based luminescent metal-organic frameworks constructed from the mixed-ligand strategy for highly selective detection of nitrobenzene. Journal of Solid State Chemistry, 2020, 286, 121314.	2.9	5
874	Postsynthetic modification of MOFs for biomedical applications. , 2020, , 245-276.		1
875	Fabrication of NH ₂ -MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustainable Energy and Fuels, 2020, 4, 2823-2830.	4.9	27
876	A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 9536-9544.	10.3	95
877	Building Conjugated Donor–Acceptor Cross-Links into Metal–Organic Frameworks for Photo- and Electroactivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19201-19209.	8.0	9
878	Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1801-1821.	6.0	126

#	Article	IF	CITATIONS
879	Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm, 2020, 22, 4511-4525.	2.6	127
880	Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Advanced Materials, 2020, 32, e1907090.	21.0	255
881	Fusiform-Like Copper(II)-Based Metal–Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 17254-17267.	8.0	156
882	Interpenetrated Metal–Organic Frameworks with ftw Topology and Versatile Functions. ACS Applied Materials & Description (1988) Applied Materials & Description (1988	8.0	17
883	General Approach for Constructing Mechanoresponsive and Redox-Active Metal–Organic and Covalent Organic Frameworks by Solid–Liquid Reaction: Ferrocene as the Versatile Function Unit. Inorganic Chemistry, 2020, 59, 5271-5275.	4.0	10
884	Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO2 Utilization. Energies, 2020, 13, 521.	3.1	22
885	Preparation of Covalent-Ionically Cross-Linked UiO-66-NH2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance. Frontiers in Chemistry, 2020, 8, 56.	3.6	17
886	Dynamic Coordination Chemistry of Fluorinated Zrâ€MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry - A European Journal, 2020, 26, 8254-8261.	3.3	16
887	Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as an efficient fluorescence sensing for Hg2+ ions, DMF small molecule, and adsorption of Hg2+ ions from water solution. Journal of Solid State Chemistry, 2020, 286, 121277.	2.9	56
888	Exchange reactions in metal-organic frameworks: New advances. Coordination Chemistry Reviews, 2020, 421, 213421.	18.8	66
889	MOF nanoparticles with encapsulated dihydroartemisinin as a controlled drug delivery system for enhanced cancer therapy and mechanism analysis. Journal of Materials Chemistry B, 2020, 8, 7382-7389.	5.8	40
890	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Diterfaces, 2020, 12, 34423-34431.	8.0	26
891	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	3.5	47
892	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie, 2020, 132, 18381-18385.	2.0	7
893	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18224-18228.	13.8	44
894	Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. Journal of the American Chemical Society, 2020, 142, 12357-12366.	13.7	53
895	Metal Organic Frameworks-Based Optical Thin Films. , 2020, , .		3
896	Stimuli-responsive structural changes in metal–organic frameworks. Chemical Communications, 2020, 56, 9416-9432.	4.1	50

#	Article	IF	CITATIONS
897	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	21.0	182
898	Single-Site Cobalt-Catalyst Ligated with Pyridylimine-Functionalized Metal–Organic Frameworks for Arene and Benzylic Borylation. Inorganic Chemistry, 2020, 59, 10473-10481.	4.0	31
899	Enhanced catalytic performance of UiO-66 via a sulfuric acid post-synthetic modification strategy with partial etching. Applied Catalysis A: General, 2020, 602, 117733.	4.3	5
900	Two anthracene chromophore based metal–organic frameworks for gas adsorption and promising nitro aromatic sensing. New Journal of Chemistry, 2020, 44, 12496-12502.	2.8	4
901	Effect of organic additives in fluoacid-based Ti and Zr-treatments for galvanized steel on the stability of a polymer coated interface. Progress in Organic Coatings, 2020, 146, 105738.	3.9	5
902	One-Step Encapsulation of Bimetallic Pd–Co Nanoparticles Within UiO-66 for Selective Conversion of Furfural to Cyclopentanone. Catalysis Letters, 2020, 150, 2158-2166.	2.6	16
903	Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chemical Engineering Journal, 2020, 388, 124389.	12.7	71
904	Amino-Functionalized Water-Stable Metal–Organic Framework for Enhanced C ₂ H ₂ /CH ₄ Separation Performance. Inorganic Chemistry, 2020, 59, 2631-2635.	4.0	31
905	Modulator-Induced Zr-MOFs Diversification and Investigation of Their Properties in Gas Sorption and Fe3+ Ion Sensing. Inorganic Chemistry, 2020, 59, 2961-2968.	4.0	22
906	Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Topics in Current Chemistry, 2020, 378, 27.	5.8	57
907	Selective adsorption mechanisms of pharmaceuticals on benzene-1,4-dicarboxylic acid-based MOFs: Effects of a flexible framework, adsorptive interactions and the DFT study. Science of the Total Environment, 2020, 720, 137449.	8.0	55
908	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	6.7	89
909	Phosphate or arsenate modified UiO-66-NO2: Amorphous mesoporous matrix. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108, 129-133.	5.3	12
910	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	13.7	69
911	Discrimination of Various Amine Vapors by a Triemissive Metal-Organic Framework Composite via the Combination of a Three-Dimensional Ratiometric Approach and a Confinement-Induced Enhancement Effect. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12043-12053.	8.0	38
912	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	14.9	174
913	Synthesis and Characterization of a Layered Scandium MOF Containing a Sulfoneâ€Functionalized Vâ€Shaped Linker Molecule. European Journal of Inorganic Chemistry, 2020, 2020, 1147-1152.	2.0	7
914	Sulfonic acid-based metal organic framework functionalized magnetic nanocomposite combined with gas chromatography-electron capture detector for extraction and determination of organochlorine. Chinese Chemical Letters, 2020, 31, 1843-1846.	9.0	29

#	Article	IF	CITATIONS
915	Tuning the Catalytic Activity of UiOâ€66 via Modulated Synthesis: Esterification of Levulinic Acid as a Test Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 833-840.	2.0	12
916	Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 2020, 277, 102108.	14.7	34
917	Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- BrÃ, nsted Acidity: The Role of the Hemilabile Linker. Journal of the American Chemical Society, 2020, 142, 3174-3183.	13.7	156
918	Metal–Organic Frameworks Towards Desulfurization of Fuels. Topics in Current Chemistry, 2020, 378, 17.	5.8	33
919	g-C ₃ N ₄ /Uio-66-NH ₂ nanocomposites with enhanced visible light photocatalytic activity for hydrogen evolution and oxidation of amines to imines. New Journal of Chemistry, 2020, 44, 3052-3061.	2.8	40
920	Tuning Zr ₁₂ O ₂₂ Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66. ACS Catalysis, 2020, 10, 2906-2914.	11.2	90
921	Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Research, 2020, 13, 511-526.	10.4	45
922	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	11.2	136
923	Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: A systematic and comparative study on dehydration of natural gas. Separation and Purification Technology, 2020, 239, 116512.	7.9	24
924	PCN-223 as a drug carrier for potential treatment of colorectal cancer. Journal of Industrial and Engineering Chemistry, 2020, 84, 290-296.	5.8	16
925	Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microporous and Mesoporous Materials, 2020, 298, 110064.	4.4	74
926	The Effect of Surface Hydroxylation on MOF Formation on ALD Metal Oxides: MOF-525 on TiO ₂ /Polypropylene for Catalytic Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & Date: Applied Materials &	8.0	39
927	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
928	De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation. Journal of Hazardous Materials, 2020, 397, 122431.	12.4	44
929	Improving the Cd2+ detection capability of a new anionic rare earth metal–organic framework based on a [RE6(μ3-OH)8]10+ secondary building unit: an ion-exchange approach towards more efficient sensors. Molecular Systems Design and Engineering, 2020, 5, 1077-1087.	3.4	8
930	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	47.7	692
931	Topology-Based Functionalization of Robust Chiral Zr-Based Metal–Organic Frameworks for Catalytic Enantioselective Hydrogenation. Journal of the American Chemical Society, 2020, 142, 9642-9652.	13.7	48
932	Heterojunction Incorporating Perovskite and Microporous Metal–Organic Framework Nanocrystals for Efficient and Stable Solar Cells. Nano-Micro Letters, 2020, 12, 80.	27.0	42

#	Article	IF	CITATIONS
933	Water-based routes for synthesis of metal-organic frameworks: A review. Science China Materials, 2020, 63, 667-685.	6.3	131
934	Toxicity of nanoscale metal-organic frameworks in biological systems. , 2020, , 383-395.		7
935	Discrete nanographene implanted in zirconium metal-organic framework for electrochemical energy storage. Journal of Solid State Chemistry, 2020, 287, 121377.	2.9	7
936	Metal-organic frameworks for QCM-based gas sensors: A review. Sensors and Actuators A: Physical, 2020, 307, 111984.	4.1	108
937	lodine Capture Using Zr-Based Metal–Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism. ACS Applied Materials & Diterfaces, 2020, 12, 20429-20439.	8.0	234
938	Nanoporous Zirconium Phosphonate Materials with Enhanced Chemical and Thermal Stability for Sorbent Applications. ACS Applied Nano Materials, 2020, 3, 3717-3729.	5.0	12
939	Two Co-based MOFs assembled from an amine-functionalized pyridinecarboxylate ligand: inorganic acid-directed structural variety and gas adsorption properties. CrystEngComm, 2020, 22, 3424-3431.	2.6	14
940	Metal-organic framework (MOF)-derived catalysts for Fischer-Tropsch synthesis: Recent progress and future perspectives. Journal of Energy Chemistry, 2020, 51, 230-245.	12.9	52
941	Isoreticular Three-Dimensional Kagome Metal–Organic Frameworks with Open-Nitrogen-Donor Pillars for Selective Gas Adsorption. Crystal Growth and Design, 2020, 20, 3523-3530.	3.0	15
942	Synthesis of the Elusive bis (4â€carboxyphenylimino)acenaphthene Ligand and of its Palladium Dichloride Complex. ChemistrySelect, 2020, 5, 3119-3123.	1.5	1
943	Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 2020, 395, 125080.	12.7	93
944	Water-stable MOFs-based core-shell nanostructures for advanced oxidation towards environmental remediation. Composites Part B: Engineering, 2020, 192, 107985.	12.0	36
945	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	47.7	149
946	Assorted functionality-appended UiO-66-NH ₂ for highly efficient uranium(<scp>vi</scp>) sorption at acidic/neutral/basic pH. RSC Advances, 2020, 10, 14650-14661.	3.6	34
947	Time-Resolved <i>in Situ</i> Polymorphic Transformation from One 12-Connected Zr-MOF to Another., 2020, 2, 499-504.		16
948	Two amino acid-templated metal phosphates: surfactant-thermal synthesis, water stability, and proton conduction. Dalton Transactions, 2020, 49, 5440-5444.	3.3	10
949	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 2021, 14, 507-511.	10.4	57
950	Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Research, 2021, 14, 392-397.	10.4	9

#	ARTICLE	IF	CITATIONS
951	Characterization of the Zirconium Metal-Organic Framework (MOF) UiO-66-NH ₂ for the Decomposition of Nerve Agents in Solid-State Conditions Using Phosphorus-31 Solid State-Magic Angle Spinning Nuclear Magnetic Resonance (³¹ P SS-MAS NMR) and Gas Chromatography – Mass Spectrometry (GC-MS). Analytical Letters, 2021, 54, 468-480.	1.8	7
952	Using MOF-808 as a Promising Support to Immobilize Ru for Selective Hydrogenation of Levulinic Acid to Î ³ -Valerolactone. Catalysis Letters, 2021, 151, 86-94.	2.6	12
953	Heavy metal ions' poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice. Journal of Hazardous Materials, 2021, 401, 123318.	12.4	51
954	Cdâ€Based Metal–Organic Framework for Selective Turnâ€On Fluorescent DMSO Residual Sensing. Chemistry - A European Journal, 2021, 27, 3753-3760.	3.3	12
955	Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: exceptionally selective capture and effectual fixation of CO ₂ with fast-responsive, nanomolar detection of assorted organo-contaminants in water. Materials Chemistry Frontiers, 2021, 5, 979-994.	5.9	50
956	Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Metals, 2021, 40, 499-504.	7.1	52
957	Deciphering the photobehaviour of ensemble and single crystals of Zr-based ITQ MOF composites. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112887.	3.9	3
958	Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Materials Chemistry and Physics, 2021, 258, 123924.	4.0	53
959	Advanced applications of Zr-based MOFs in the removal of water pollutants. Chemosphere, 2021, 267, 128863.	8.2	88
960	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	12.4	109
961	Construction and magnetic properties of cobalt(II) and manganese(II) coordination polymers based on N-heterocyclic carboxylate bifunctional ligands. Inorganica Chimica Acta, 2021, 515, 120054.	2.4	6
962	[M ₂ (μâ€OH) ₂ (DHBQ) ₃] (M = Zr, Hf) ‷Two New Isostructural Coordination Polymers based on the Unique M ₂ O ₁₄ Inorganic Building Unit and 2,5â€Dioxidoâ€ <i>p</i> chemie. 2021. 647. 436-441.	1.2	5
963	Zrâ€MOFâ€808 as Catalyst for Amide Esterification. Chemistry - A European Journal, 2021, 27, 4588-4598.	3.3	34
964	Defective UiO-67 for enhanced adsorption of dimethyl phthalate and phthalic acid. Journal of Molecular Liquids, 2021, 321, 114477.	4.9	27
965	Cellular evaluation of the metal-organic framework PCN-224 associated with inflammation and autophagy. Toxicology in Vitro, 2021, 70, 105019.	2.4	6
966	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
967	Construction of an epoxy composite coating with exceptional thermo-mechanical properties using Zr-based NH2-UiO-66 metal-organic framework (MOF): Experimental and DFT-D theoretical explorations. Chemical Engineering Journal, 2021, 408, 127366.	12.7	62
968	Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF). Chemical Engineering Journal, 2021, 408, 127361.	12.7	89

#	Article	IF	CITATIONS
969	An overview of catalytic conversion of CO2 into fuels and chemicals using metal organic frameworks. Chemical Engineering Research and Design, 2021, 149, 67-92.	5.6	62
970	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	3.2	70
971	Removal of metal-cyanide complexes and recovery of Pt(II) and Pd(II) from wastewater using an alkali–tolerant metal-organic resin. Journal of Hazardous Materials, 2021, 406, 124315.	12.4	27
972	Facile design of UiO-66-NH2@La(OH)3 composite with enhanced efficiency for phosphate removal. Journal of Environmental Chemical Engineering, 2021, 9, 104632.	6.7	18
973	Desensitization of high explosives by encapsulation in metal-organic frameworks. Chemical Engineering Journal, 2021, 407, 127882.	12.7	5
974	Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Separation and Purification Technology, 2021, 266, 118087.	7.9	41
975	Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, 2021, 371, 120-133.	4.4	11
976	Metal–organic frameworks <i>vs.</i> buffers: case study of UiO-66 stability. Inorganic Chemistry Frontiers, 2021, 8, 720-734.	6.0	65
977	Construction of Hyaluronic Acidâ€Covered Hierarchically Porous MILâ€nanoMOF for Loading and Controlled Release of Doxorubicin. Chemistry - A European Journal, 2021, 27, 2987-2992.	3.3	10
978	Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chinese Journal of Catalysis, 2021, 42, 872-903.	14.0	73
979	1Â+Â1Â>Â2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 2021, 417, 128022.	12.7	73
980	Ratiometric fluorescent sensing carbendazim in fruits and vegetables via its innate fluorescence coupling with UiO-67. Food Chemistry, 2021, 345, 128839.	8.2	30
981	Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. Separation and Purification Technology, 2021, 259, 118197.	7.9	38
982	Tuning the Conduction Band Potential of Biâ€based Semiconductors Using a Combination of Organic Ligands. ChemSusChem, 2021, 14, 892-897.	6.8	7
983	Heterocyclic reaction inducted by BrÃ,nsted–Lewis dual acidic Hf-MOF under microwave irradiation. Molecular Catalysis, 2021, 499, 111291.	2.0	13
984	Removal of Co(II) from Aqueous Solutions by Pyridine Schiff Base-Functionalized Zirconium-Based MOFs: A Combined Experimental and DFT Study on the Effect of <i>ortho</i> -, <i>meta</i> -, and <i>para</i> -Substitution. Journal of Chemical & Data, 2021, 66, 749-760.	1.9	14
985	An active and stable multifunctional catalyst with defective UiO-66 as a support for Pd over the continuous catalytic conversion of acetone and hydrogen. RSC Advances, 2021, 11, 48-56.	3.6	6
986	An ultra-stable hafnium phosphonate MOF platform for comparing the proton conductivity of various guest molecules/ions. Chemical Communications, 2021, 57, 1238-1241.	4.1	24

#	Article	IF	CITATIONS
987	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography. Journal of the American Chemical Society, 2021, 143, 390-398.	13.7	103
988	Chemistry and applications of s-block metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 3828-3854.	10.3	31
989	Construction of an Asymmetric Porphyrinic Zirconium Metal–Organic Framework through Ionic Postchiral Modification. Inorganic Chemistry, 2021, 60, 206-218.	4.0	21
990	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. Journal of Physical Chemistry Letters, 2021, 12, 177-184.	4.6	7
991	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie, 2021, 133, 4620-4624.	2.0	33
992	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie - International Edition, 2021, 60, 4570-4574.	13.8	117
993	Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorganic Chemistry Frontiers, 2021, 8, 201-233.	6.0	166
994	E.Âcoli@UiO-67 composites as a recyclable adsorbent for bisphenol A removal. Chemosphere, 2021, 270, 128672.	8.2	9
995	Functionalization of zirconium-based metal–organic frameworks for gas sensing applications. Journal of Hazardous Materials, 2021, 403, 124104.	12.4	42
996	Chiral and robust Zr(<scp>iv</scp>)-based metal–organic frameworks built from spiro skeletons. Faraday Discussions, 2021, 231, 168-180.	3.2	13
997	Facile and rapid synthesis of functionalized Zr-BTC for the optical detection of the blistering agent simulant 2-chloroethyl ethyl sulfide (CEES). Dalton Transactions, 2021, 50, 3261-3268.	3.3	17
998	Efficient and Selective Visible-Light-Driven Oxidative Coupling of Amines to Imines in Air over CdS@Zr-MOFs. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2779-2787.	8.0	66
999	Effects of ligand functionalization on the band gaps and luminescent properties of a Zr12 oxo-cluster based metal–organic framework. CrystEngComm, 2021, 23, 2961-2967.	2.6	10
1000	Tailoring Lewis/BrÃ,nsted acid properties of MOF nodes <i>via</i> hydrothermal and solvothermal synthesis: simple approach with exceptional catalytic implications. Chemical Science, 2021, 12, 10106-10115.	7.4	40
1001	A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polymer Chemistry, 2021, 12, 3517-3521.	3.9	28
1002	In Situ Nuclear Magnetic Resonance Investigation of Molecular Adsorption and Kinetics in Metalâ \in Organic Framework UiO-66. Journal of Physical Chemistry Letters, 2021, 12, 892-899.	4.6	10
1003	Metal–Organic Frameworks (MOFs) Based Analytical Techniques for Food Safety Evaluation. EFood, 2021, 2, 1-12.	3.1	17
1004	The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing. Dalton Transactions, 2021, 50, 5724-5731.	3.3	4

#	Article	IF	CITATIONS
1005	Electrolytic synthesis of porphyrinic Zr-metal–organic frameworks with selective crystal topologies. Dalton Transactions, 2021, 50, 5411-5415.	3.3	4
1006	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	38.1	331
1007	Cu-MOF Material Constructed with a Triazine Polycarboxylate Skeleton: Multifunctional Identify and Microdetecting of the Aromatic Diamine Family $(\langle i \rangle o \langle i \rangle, \langle i \rangle m \langle i \rangle, \langle i \rangle p \langle i \rangle$ -Phenylenediamine) Based on the Luminescent Response. Inorganic Chemistry, 2021, 60, 2829-2838.	4.0	22
1008	Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Transactions, 2021, 50, 1166-1188.	3.3	33
1009	Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Transactions, 2021, 50, 3450-3458.	3.3	8
1010	Stable Zr-UiO-67 constructed through polymeric network assisted post-synthetic modification and its wettability modulation. Chemical Communications, 2021, 57, 11021-11024.	4.1	6
1011	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis., 2021,, 369-404.		1
1012	Robust and Environmentally Friendly MOFs. , 2021, , 1-31.		0
1013	Solid Acid-Catalyzed Esterification of Levulinic Acid for Production of Value-Added Chemicals. , 2021, , 345-382.		3
1014	MIL-101(Cr) with incorporated polypyridine zinc complexes for efficient degradation of a nerve agent simulant: spatial isolation of active sites promoting catalysis. Dalton Transactions, 2021, 50, 1995-2000.	3.3	6
1015	Alkylamino-terephthalate ligands stabilize 8-connected Zr ⁴⁺ MOFs with highly efficient sorption for toxic Se species. Journal of Materials Chemistry A, 2021, 9, 3379-3387.	10.3	16
1016	Linker Desymmetrization: Access to a Series of Rare-Earth Tetracarboxylate Frameworks with Eight-Connected Hexanuclear Nodes. Journal of the American Chemical Society, 2021, 143, 2784-2791.	13.7	61
1017	Water-stable metal–organic framework for environmental remediation. , 2021, , 585-621.		3
1018	Computational determination of coordination structure impact on adsorption and acidity of pristine and sulfated MOF-808. Materials Advances, 2021, 2, 4246-4254.	5.4	9
1019	Surface organometallic and coordination chemistry approach to formation of single site heterogeneous catalysts., 2021,,.		0
1020	Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57, 8452-8455.	4.1	15
1021	Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. Journal of Materials Chemistry B, 2021, 9, 7760-7770.	5.8	17
1022	Dual-mode imaging of copper transporter 1 in HepG2 cells by hyphenating confocal laser scanning microscopy with laser ablation ICPMS. Analytical and Bioanalytical Chemistry, 2021, 413, 1353-1361.	3.7	7

#	Article	IF	CITATIONS
1023	Organic–Inorganic Semiconductor Heterojunction Photocatalysts. , 2021, , 315-350.		2
1024	Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. Acta Chimica Sinica, 2021, 79, 809.	1.4	4
1025	Confinement-guided photophysics in MOFs, COFs, and cages. Chemical Society Reviews, 2021, 50, 4382-4410.	38.1	84
1026	Research Progress of Metal-Organic Skeleton Compounds. Material Sciences, 2021, 11, 950-957.	0.0	1
1027	Smart metal organic frameworks: focus on cancer treatment. Biomaterials Science, 2021, 9, 1503-1529.	5.4	34
1028	Metal–metal bonds in polyoxometalate chemistry. Nanoscale, 2021, 13, 13574-13592.	5.6	21
1029	Metalâ^'Organic Frameworks for Liquid Phase Applications. Advanced Science, 2021, 8, 2003143.	11.2	21
1030	Synthesis of C ₂ oxygenates from syngas over UiO-66 supported Rh–Mn catalysts: the effect of functional groups. New Journal of Chemistry, 2021, 45, 696-704.	2.8	0
1031	Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2021, 23, 2245-2251.	2.8	13
1032	Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 2021, 11, 283.	3.5	34
1033	Modulation of the Thermochemical Stability and Adsorptive Properties of MOF-808 by the Selection of Non-structural Ligands. Chemistry of Materials, 2021, 33, 1471-1476.	6.7	26
1034	A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products. Foods, 2021, 10, 419.	4.3	5
1035	A Robust Cage-Based Metal–Organic Framework Showing Ultrahigh SO ₂ Uptake for Efficient Removal of Trace SO ₂ from SO ₂ /CO ₂ and SO ₂ /CO ₂ /C	4.0	19
1036	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	6.7	56
1037	Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)-based metal-organic framework. Mikrochimica Acta, 2021, 188, 83.	5.0	5
1038	Computational Insights into As(V) Removal from Water by the UiO-66 Metal–Organic Framework. Journal of Physical Chemistry C, 2021, 125, 3157-3168.	3.1	17
1039	Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 11350-11358.	13.8	118
1040	Aluminum Metal–Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis. ACS Catalysis, 2021, 11, 3943-3957.	11.2	28

#	Article	IF	Citations
1041	Catalytic Performance of Zrâ€Based Metal–Organic Frameworks Zrâ€abtc and MIPâ€200 in Selective Oxidations with H ₂ O ₂ . Chemistry - A European Journal, 2021, 27, 6985-6992.	3.3	20
1042	Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials, 2021, 316, 110985.	4.4	61
1043	Biocompatible MIP-202 Zr-MOF tunable sorbent for cost-effective decontamination of anionic and cationic pollutants from waste solutions. Scientific Reports, 2021, 11, 6619.	3.3	53
1044	Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics, 2021, 10, 358.	3.7	18
1045	Preparation and Application of UiO-66 in Desiccant-Coated Heat Exchanger-Based Desiccant Cooling Systems. Industrial & Engineering Chemistry Research, 2021, 60, 4727-4734.	3.7	8
1046	Amino Acidâ€Functionalized Metalâ€Organic Frameworks for Asymmetric Base–Metal Catalysis. Angewandte Chemie, 2021, 133, 11059-11065.	2.0	1
1047	Perspectives on titanium-based metal–organic frameworks. JPhys Energy, 2021, 3, 021003.	5.3	11
1048	A Zr-Based Metal–Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorganic Chemistry, 2021, 60, 4539-4550.	4.0	26
1049	Zr-based acid-stable nucleotide coordination polymers: An excellent platform for acidophilic enzymes immobilization. Journal of Inorganic Biochemistry, 2021, 216, 111338.	3.5	4
1050	Robust Biological Hydrogenâ€Bonded Organic Framework with Postâ€Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visibleâ€Lightâ€Driven CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 8983-8989.	13.8	83
1051	Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. Korean Journal of Chemical Engineering, 2021, 38, 653-673.	2.7	32
1052	Luminescent Turn-On/Turn-Off Sensing Properties of a Water-Stable Cobalt-Based Coordination Polymer. Crystal Growth and Design, 2021, 21, 2332-2339.	3.0	22
1053	Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 11451-11459.	2.0	21
1054	Density Functional Investigation of the Conversion of Furfural to Furfuryl Alcohol by Reaction with <i>i</i> i-Propanol over UiO-66 Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 4860-4868.	4.0	22
1055	Robust Biological Hydrogenâ∈Bonded Organic Framework with Postâ∈Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visibleâ∈Lightâ∈Driven CO ₂ Reduction. Angewandte Chemie, 2021, 133, 9065-9071.	2.0	23
1056	Creating an Aligned Interface between Nanoparticles and MOFs by Concurrent Replacement of Capping Agents. Journal of the American Chemical Society, 2021, 143, 5182-5190.	13.7	32
1057	Amino Acidâ€Functionalized Metalâ€Organic Frameworks for Asymmetric Base–Metal Catalysis. Angewandte Chemie - International Edition, 2021, 60, 10964-10970.	13.8	53
1058	Nonbonded Zr ⁴⁺ and Hf ⁴⁺ Models for Simulations of Condensed Phase Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 6471-6478.	3.1	5

#	Article	IF	CITATIONS
1059	Polyphenolâ€Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Advanced Materials, 2021, 33, e2007356.	21.0	216
1061	Aqueous-Phase Nanomolar Detection of Dichromate by a Recyclable Cd(II) Metal–Organic Framework. Crystal Growth and Design, 2021, 21, 2680-2689.	3.0	19
1062	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	19.5	78
1063	Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Crystal Growth and Design, 2021, 21, 3100-3122.	3.0	34
1064	Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal–Organic Frameworks for Cancer Therapy. CCS Chemistry, 2022, 4, 996-1006.	7.8	16
1065	Loading of the Model Amino Acid Leucine in UiO-66 and UiO-66-NH ₂ : Optimization of Metal–Organic Framework Carriers and Evaluation of Host–Guest Interactions. Inorganic Chemistry, 2021, 60, 5694-5703.	4.0	18
1066	Ultrastable Zirconium-Based Cationic Metal–Organic Frameworks for Perrhenate Removal from Wastewater. Inorganic Chemistry, 2021, 60, 11730-11738.	4.0	22
1067	Physical properties of porphyrin-based crystalline metalâ€'organic frameworks. Communications Chemistry, 2021, 4, .	4.5	54
1068	Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC - Trends in Analytical Chemistry, 2021, 137, 116226.	11.4	61
1069	Open Framework Material Based Thin Films: Electrochemical Catalysis and Stateâ€ofâ€theâ€art Technologies. Advanced Energy Materials, 2022, 12, 2003499.	19.5	25
1070	Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3276-3285.	6.7	79
1071	Metal–Organic Frameworks as Versatile Platforms for Organometallic Chemistry. Inorganics, 2021, 9, 27.	2.7	12
1072	Adsorptive and responsive hybrid sponge of melamine foam and metal organic frameworks for rapid collection/removal and detection of mycotoxins. Chemical Engineering Journal, 2021, 410, 128268.	12.7	40
1073	Incorporating Photochromic Triphenylamine into a Zirconium–Organic Framework for Highly Effective Photocatalytic Aerobic Oxidation of Sulfides. ACS Applied Materials & Interfaces, 2021, 13, 20137-20144.	8.0	50
1074	Efficient Removal of Chromium(VI) Anionic Species and Dye Anions from Water Using MOF-808 Materials Synthesized with the Assistance of Formic Acid. Nanomaterials, 2021, 11, 1398.	4.1	16
1075	Engineering Structural Metal–Organic Framework for Hypoxia-Tolerant Type I Photodynamic Therapy against Hypoxic Cancer. , 2021, 3, 781-789.		21
1076	A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. Materials Science and Engineering C, 2021, 124, 112053.	7.3	10
1077	Zirconia-Based Solid Acid Catalysts for Biomass Conversion. Energy & Samp; Fuels, 2021, 35, 9209-9227.	5.1	32

#	Article	IF	Citations
1078	Dimensional Reduction of Lewis Acidic Metal–Organic Frameworks for Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 8184-8192.	13.7	59
1079	Understanding disorder and linker deficiency in porphyrinic zirconium-based metal–organic frameworks by resolving the Zr8O6 cluster conundrum in PCN-221. Nature Communications, 2021, 12, 3099.	12.8	41
1080	Novel Ba ²⁺ and Pb ²⁺ metalâ€"organic frameworks based on a semi-rigid tetracarboxylic acid: syntheses, structures, topologies and luminescence properties. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 291-298.	0.5	1
1081	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	19.5	68
1082	Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. Journal of Colloid and Interface Science, 2021, 590, 495-505.	9.4	111
1083	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	18.8	57
1084	A fluorescent biosensor based on graphene quantum dots/zirconium-based metal-organic framework nanocomposite as a peroxidase mimic for cholesterol monitoring in human serum. Microchemical Journal, 2021, 164, 106001.	4.5	22
1085	Trends and Prospects in UiOâ€66 Metalâ€Organic Framework for CO ₂ Capture, Separation, and Conversion. Chemical Record, 2021, 21, 1771-1791.	5 . 8	48
1086	Cooling performance of metal organic framework-water pairs in cascaded adsorption chillers. Applied Thermal Engineering, 2021, 189, 116707.	6.0	17
1087	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	47.7	194
1088	Metal–Organic Framework-Confined Single-Site Base-Metal Catalyst for Chemoselective Hydrodeoxygenation of Carbonyls and Alcohols. Inorganic Chemistry, 2021, 60, 9029-9039.	4.0	16
1089	A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconiumâ€Based MOF Materials. Chemistry - A European Journal, 2021, 27, 9967-9987.	3.3	33
1090	Evolution of 14-Connected Zr ₆ Secondary Building Units through Postsynthetic Linker Incorporation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51945-51953.	8.0	15
1091	Ligandâ€Conformerâ€Induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie, 2021, 133, 16657-16664.	2.0	5
1092	Dimensions of fluorescence kinetic concentration of doped morphology homologs synthesized by TCPP and UiO-66 MOF. Applied Materials Today, 2021, 23, 100982.	4.3	12
1093	Merging <i>N</i> ÀeHydroxyphthalimide into Metalâ€Organic Frameworks for Highly Efficient and Environmentally Benign Aerobic Oxidation. Chemistry - A European Journal, 2021, 27, 9674-9685.	3.3	15
1094	Metal-organic framework composites as green/sustainable catalysts. Coordination Chemistry Reviews, 2021, 436, 213827.	18.8	105
1095	Ligandâ€Conformerâ€Induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie - International Edition, 2021, 60, 16521-16528.	13.8	29

#	Article	IF	CITATIONS
1096	Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. Journal of Membrane Science, 2021, 627, 119201.	8.2	22
1097	Snapshots of Ce ₇₀ Toroid Assembly from Solids and Solution. Journal of the American Chemical Society, 2021, 143, 9612-9621.	13.7	23
1098	Light-Activated and Self-Driven Autonomous DNA Nanomachine Enabling Fluorescence Imaging of MicroRNA in Living Cells with Exceptional Precision and Efficiency. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31485-31494.	8.0	27
1099	A general Ca-MOM platform with enhanced acid-base stability for enzyme biocatalysis. Chem Catalysis, 2021, 1, 146-161.	6.1	26
1100	Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today, 2021, 46, 109-124.	14.2	143
1101	Defect Engineering of Nanoscale Hf-Based Metal–Organic Frameworks for Highly Efficient Iodine Capture. Inorganic Chemistry, 2021, 60, 9848-9856.	4.0	31
1102	A flexible Zr-MOF with dual stimulus responses to temperature and guest molecules. Inorganic Chemistry Communication, 2021, 128, 108597.	3.9	4
1103	High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal–Organic Framework via "Click―Reaction. Inorganic Chemistry, 2021, 60, 10089-10094.	4.0	17
1104	Construction of Stable Helical Metalâ€Organic Frameworks with a Conformationally Rigid "Concave Ligand― Chemistry - A European Journal, 2021, 27, 10833-10838.	3.3	1
1105	Screening Metal–Organic Frameworks for Separation of Binary Solvent Mixtures by Compact NMR Relaxometry. Molecules, 2021, 26, 3481.	3.8	3
1106	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	18.8	52
1107	Effect of Topology on Photodynamic Sterilization of Porphyrinic Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10151-10159.	3.3	29
1108	Mixed Dimensional Nanostructure (UiOâ€66â€Decorated MWCNT) as a Nanofiller in Mixedâ€Matrix Membranes for Enhanced CO ₂ /CH ₄ Separation. Chemistry - A European Journal, 2021, 27, 11132-11140.	3.3	9
1109	Macro- and mesoporous Cu2O/Cu3(OH)2(CO3)2 synthesized by supercritical CO2 as an efficient catalyst for alcohol oxidation. Journal of CO2 Utilization, 2021, 49, 101551.	6.8	2
1110	Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into functional materials. Materials Today, 2021, 47, 170-186.	14.2	69
1111	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	2.0	18
1112	Controlling the Structural Robustness of Zirconium-Based Metal Organic Frameworks for Efficient Adsorption on Tetracycline Antibiotics. Water (Switzerland), 2021, 13, 1869.	2.7	13
1113	Structural modulation of UiO-66-NH2 metal-organic framework via interligands cross-linking: Cooperative effects of pore diameter and amide group on selective CO2 separation. Applied Surface Science, 2021, 553, 149547.	6.1	17

#	Article	IF	Citations
1114	Dynamic Pendulum Effect of an Exceptionally Flexible <scp>Pillaredâ€Layer Metalâ€Organic</scp> Framework ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2718-2724.	4.9	7
1115	Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation. Polymers, 2021, 13, 2539.	4.5	27
1116	Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Frontiers in Energy, 2021, 15, 656-666.	2.3	18
1117	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	18.8	82
1118	Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37231-37238.	8.0	17
1119	Ultrathin Zirconium Hydroxide Nanosheetâ€Assembled Nanofibrous Membranes for Rapid Degradation of Chemical Warfare Agents. Small, 2021, 17, e2101639.	10.0	20
1120	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	6.7	94
1121	Bismuth-based metal–organic frameworks and their derivatives: Opportunities and challenges. Coordination Chemistry Reviews, 2021, 439, 213902.	18.8	62
1122	Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion. Accounts of Chemical Research, 2021, 54, 3083-3094.	15.6	167
1123	Dual-Function Lanthanide–Organic Frameworks Based on a Zwitterionic Ligand as a Ratiometric Thermometer and a Selective Sensor for Nitroaromatic Explosives. Industrial & Discrete Engineering Chemistry Research, 2021, 60, 11760-11767.	3.7	12
1124	Introducing High Density of Very Active Sites and Stepwise Postmodification for Tailoring the Porosity of Highly Demanding Cr ³⁺ -Based Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 12109-12115.	4.0	3
1125	Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH2. Toxicology and Applied Pharmacology, 2021, 423, 115573.	2.8	38
1126	The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters. Coordination Chemistry Reviews, 2021, 438, 213886.	18.8	40
1127	Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coordination Chemistry Reviews, 2021, 438, 213907.	18.8	21
1128	Construction of Highly Proton-Conductive Zr(IV)-Based Metal–Organic Frameworks From Pyrrolo-pyrrole-Based Linkers with a Rhombic Shape. Inorganic Chemistry, 2021, 60, 12129-12135.	4.0	4
1129	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213915.	18.8	125
1130	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	13.8	450
1131	Synthesis of two new Hfâ€MOFs with UiOâ€66 and CAUâ€22 structure employing 2,5â€pyrazinedicarboxylic acid as linker molecule Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2029-2034.	1.2	1

#	Article	IF	CITATIONS
1132	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	13.7	73
1133	Art of Architecture: Efficient Transport through Solvent-Filled Metal–Organic Frameworks Regulated by Topology. Chemistry of Materials, 2021, 33, 6832-6840.	6.7	12
1134	Preparation and Desalination Performance of PA/UiO-66/PES Composite Membranes. Membranes, 2021, 11, 628.	3.0	4
1135	Azoâ€Functionalized Zirconiumâ€Based Metalâ^'Organic Polyhedron as an Efficient Catalyst for CO ₂ Fixation with Epoxides. Chemistry - A European Journal, 2021, 27, 12890-12899.	3.3	8
1136	Metal–Organic Frameworks Featuring 18-Connected Nonanuclear Rare-Earth Oxygen Clusters and Cavities for Efficient C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2021, 60, 13471-13478.	4.0	11
1137	Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. Journal of Hazardous Materials, 2021, 416, 125941.	12.4	168
1138	Review on Flexible Metalâ€Organic Frameworks. ChemistrySelect, 2021, 6, 8227-8243.	1.5	19
1139	Study of antimicrobial properties of Piper betel coated nanozirconium on cotton gauze. Applied Nanoscience (Switzerland), 2023, 13, 3301-3307.	3.1	4
1140	Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coordination Chemistry Reviews, 2021, 441, 213954.	18.8	63
1141	Metal-organic frameworks for diagnosis and therapy of infectious diseases. Critical Reviews in Microbiology, 2022, 48, 161-196.	6.1	17
1142	Synthesis, Structures of <scp>2D</scp> Coordination Layers <scp>Metalâ€Organic</scp> Frameworks with Highly Selective <scp>CO₂</scp> Uptake ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2789-2794.	4.9	11
1143	MOF/hydrogel catalysts for efficient nerve-agent degradation. Chem Catalysis, 2021, 1, 502-504.	6.1	3
1144	Formulation of Metal–Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility. Journal of the American Chemical Society, 2021, 143, 13557-13572.	13.7	88
1145	Effect of amino-defective-MOF materials on the selective hydrodeoxygenation of fatty acid over Pt-based catalysts. Journal of Catalysis, 2021, 400, 283-293.	6.2	18
1146	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. Materials Today Chemistry, 2021, 21, 100534.	3.5	8
1147	Monodispersed MOF-808 Nanocrystals Synthesized via a Scalable Room-Temperature Approach for Efficient Heterogeneous Peptide Bond Hydrolysis. Chemistry of Materials, 2021, 33, 7057-7066.	6.7	51
1148	Adsorptive Removal of Industrial Dye by Nanoporous Zr porphyrinic Metal–Organic Framework Microcubes. ACS Applied Nano Materials, 2021, 4, 10068-10076.	5.0	18
1149	Hierarchical <i>n</i> MOF-867/MXene Nanocomposite for Chemical Adsorption of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 8231-8241.	5.1	20

#	Article	IF	CITATIONS
1150	Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 2021, 121, 100812.	32.8	52
1151	Ion conductive membranes for flow batteries: Design and ions transport mechanism. Journal of Membrane Science, 2021, 632, 119355.	8.2	23
1152	Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residues. Journal of Chromatography A, 2021, 1652, 462349.	3.7	11
1153	Structural Regulation and Light Hydrocarbon Adsorption/Separation of Three Zirconium–Organic Frameworks Based on Different V-Shaped Ligands. ACS Applied Materials & Interfaces, 2021, 13, 41680-41687.	8.0	25
1154	Synthesis and application of [Zr-UiO-66-PDC-SO3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Scientific Reports, 2021, 11, 16817.	3.3	34
1155	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie - International Edition, 2021, 60, 26038-26052.	13.8	91
1156	Bibliometric Analysis on Decontamination of Chemical Warfare Agents in Last Thirty Years. IOP Conference Series: Earth and Environmental Science, 2021, 831, 012022.	0.3	0
1157	Chiral Iron(II)-Catalysts within Valinol-Grafted Metal–Organic Frameworks for Enantioselective Reduction of Ketones. ACS Catalysis, 2021, 11, 10450-10459.	11.2	29
1158	Ultrastable High-Connected Chromium Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 14470-14474.	13.7	57
1159	Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. Journal of the American Chemical Society, 2021, 143, 14253-14260.	13.7	118
1160	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie, 2021, 133, 26242-26256.	2.0	13
1161	Highâ€Throughput Discovery of a Rhombohedral Twelveâ€Connected Zirconiumâ€Based Metalâ€Organic Framework with Ordered Terephthalate and Fumarate Linkers. Angewandte Chemie - International Edition, 2021, 60, 26939-26946.	13.8	10
1162	Functional Porphyrinic Metal–Organic Framework as a New Class of Heterogeneous Halogenâ€Bondâ€Donor Catalyst. Angewandte Chemie - International Edition, 2021, 60, 24312-24317.	13.8	20
1163	Room temperature synthesis of high-quality Ce(IV)-based MOFs in water. Microporous and Mesoporous Materials, 2021, 324, 111303.	4.4	29
1164	Microwave-assisted solvothermal synthesis of defective zirconium-organic framework as a recyclable nano-adsorbent with superior adsorption capacity for efficient removal of toxic organic dyes. Colloids and Interface Science Communications, 2022, 46, 100511.	4.1	18
1165	Study of the Cycloaddition of CO ₂ with Styrene Oxide Over Six onnected spn Topology MOFs (Zr, Hf) at Room Temperature. Chemistry - A European Journal, 2021, 27, 14947-14963.	3.3	11
1166	Highâ€throughput discovery of a rhombohedral twelveâ€connected zirconiumâ€based metalâ€organic framework with ordered terephthalate and fumarate linkers. Angewandte Chemie, 0, , .	2.0	2
1167	Solid-State Synthesis of Defect-Rich Zr-UiO-66 Metal–Organic Framework Nanoparticles for the Catalytic Ring Opening of Epoxides with Alcohols. ACS Applied Nano Materials, 2021, 4, 9752-9759.	5.0	8

#	Article	IF	CITATIONS
1168	Selective hydroboration of alkynes via multisite synergistic catalysis by PCN-222(Cu). Journal of Catalysis, 2021, 401, 63-69.	6.2	15
1169	Synthesis, Characterization, and Electrocatalytic Activity Exploration of MOF-74: A Research-Style Laboratory Experiment. Journal of Chemical Education, 2021, 98, 3341-3347.	2.3	10
1170	Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchemical Journal, 2021, 168, 106387.	4.5	29
1171	Functional Porphyrinic Metalâ€Organic Framework as a New Class of Heterogeneous Halogen Bond Donor Catalyst. Angewandte Chemie, 2021, 133, 24514.	2.0	2
1172	Novel enzyme-metal-organic framework composite for efficient cadaverine production. Biochemical Engineering Journal, 2021, 176, 108222.	3.6	4
1173	PEGylated Nanoscale Metal–Organic Frameworks for Targeted Cancer Imaging and Drug Delivery. Bioconjugate Chemistry, 2021, 32, 2195-2204.	3.6	19
1174	Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation. Separation and Purification Technology, 2022, 280, 119803.	7.9	31
1175	"Shake â€~n Bake―Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 14294-14301.	4.0	20
1176	Computational Screening of Metal-Catecholate-Functionalized Metal–Organic Frameworks for Room-Temperature Hydrogen Storage. Journal of Physical Chemistry C, 2021, 125, 21701-21708.	3.1	9
1177	Dialysis/adsorption bifunctional thin-film nanofibrous composite membrane for creatinine clearance in portable artificial kidney. Journal of Membrane Science, 2021, 636, 119550.	8.2	21
1178	An Eu-doped Zr-metal-organic framework for simultaneous detection and removal of antibiotic tetracycline. Journal of Environmental Chemical Engineering, 2021, 9, 106012.	6.7	23
1179	Microwave-assisted synthesis of Zr-based metal–organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chemical Physics Letters, 2021, 780, 138906.	2.6	27
1180	Sensitive electrochemical aptasensor for determination of sulfaquinoxaline based on AuPd NPs@UiO-66-NH2/CoSe2 and RecJf exonuclease-assisted signal amplification. Analytica Chimica Acta, 2021, 1182, 338948.	5.4	16
1181	Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. Journal of Chromatography A, 2021, 1655, 462491.	3.7	23
1182	Bimetallic organic framework Cu/UiO-66 mediated "fluorescence turn-on―method for ultrasensitive and rapid detection of carcinoembryonic antigen (CEA). Analytica Chimica Acta, 2021, 1183, 339000.	5.4	30
1183	Tubular porous coordination polymer for selective adsorption of CO2. Inorganic Chemistry Communication, 2021, 132, 108798.	3.9	1
1184	Acid-promoted synthesis of defected UiO-66-NH2 for rapid detoxification of chemical warfare agent simulant. Materials Letters, 2021, 302, 130427.	2.6	12
1185	An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coordination Chemistry Reviews, 2021, 446, 214011.	18.8	93

#	Article	IF	CITATIONS
1186	Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chinese Journal of Catalysis, 2021, 42, 1903-1920.	14.0	45
1187	A novel TMD/MOF (Transition Metal Dichalcogenide/Metalorganic frameworks) composite for highly and selective adsorption of methylene blue dye from aqueous mixture of MB and MO. Journal of Molecular Liquids, 2021, 342, 117520.	4.9	36
1188	Engineering of UiO-66-NH2 as selective and reusable adsorbent to enhance the removal of Au(III) from water: Kinetics, isotherm and thermodynamics. Journal of Colloid and Interface Science, 2021, 601, 272-282.	9.4	22
1189	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	20.2	28
1190	Controlled hydrodeoxygenation of lignin-derived anisole over supported Pt on UiO-66 based-catalysts through defect engineering approach. Fuel Processing Technology, 2021, 224, 107001.	7.2	11
1191	Facile synthesis of Zr-based metal-organic gel (Zr-MOG) using "green―sol-gel approach. Surfaces and Interfaces, 2021, 27, 101469.	3.0	3
1192	Extraction and separation of heavy rare earth elements: A review. Separation and Purification Technology, 2021, 276, 119263.	7.9	96
1193	Recent advances of Zr based metal organic frameworks photocatalysis: Energy production and environmental remediation. Coordination Chemistry Reviews, 2021, 448, 214177.	18.8	109
1194	MOF-based membranes for pervaporation. Separation and Purification Technology, 2021, 278, 119233.	7.9	40
1195	Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol. Environmental Research, 2022, 203, 111818.	7.5	30
1196	Enhanced degradation of bisphenol F in a porphyrin-MOF based visible-light system under high salinity conditions. Chemical Engineering Journal, 2022, 428, 132106.	12.7	21
1197	Two three-dimensional mixed-ligated cobalt phosphonate coordination polymers: Syntheses, crystal structures and magnetic properties. Journal of Molecular Structure, 2022, 1248, 131456.	3.6	4
1198	Hierarchically porous metal hydroxide/metal–organic framework composite nanoarchitectures as broad-spectrum adsorbents for toxic chemical filtration. Journal of Colloid and Interface Science, 2022, 606, 272-285.	9.4	7
1199	Four anionic Ln-MOFs for remarkable separation of C2H2–CH4/CO2–CH4 and highly sensitive sensing of nitrobenzene. CrystEngComm, 2021, 23, 2788-2792.	2.6	11
1200	Recent progress in the development of MOF-based optical sensors for Fe ³⁺ . Dalton Transactions, 2021, 50, 7139-7155.	3.3	32
1201	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	38.1	130
1202	Preparation of hollow metal–organic frameworks <i>via</i> epitaxial protection and selective etching. Faraday Discussions, 2021, 231, 181-193.	3.2	3
1203	Flexibility and Switchable Porosity in Metal-Organic Frameworks: Phenomena, Characterization and Functions., 2021,, 328-375.		2

#	Article	IF	CITATIONS
1204	Cu/ZnO _x @UiO-66 synthesized from a double solvent method as an efficient catalyst for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2021, 11, 4367-4375.	4.1	17
1205	A new strategy for constructing covalently connected MOF@COF core–shell heterostructures for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 16743-16750.	10.3	7 5
1206	Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 2021, 427, 213554.	18.8	197
1207	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	38.1	135
1208	Non-conventional Catalytic Materials for Refining and Petrochemicals. , 2021, , 377-399.		0
1209	Anthracene-Bisimidazole Tetraacid Linker-Based Metal–Organic Nanosheets for Turn-On Fluorescence Sensing of Nerve Agent Mimics. ACS Applied Nano Materials, 2021, 4, 449-458.	5.0	20
1210	A pyridyl-decorated Zr-organic framework for enhanced gas separation and CO ₂ transformation. Dalton Transactions, 2021, 50, 3848-3853.	3.3	6
1211	Twoâ€Dimensional Metalâ€Organic Framework Nanosheet Supported Noble Metal Nanocrystals for Highâ€Efficiency Water Oxidation. Advanced Materials Interfaces, 2021, 8, 2002034.	3.7	21
1212	Photocatalytic nitrogen fixation of metal–organic frameworks (MOFs) excited by ultraviolet light: insights into the nitrogen fixation mechanism of missing metal cluster or linker defects. Nanoscale, 2021, 13, 7801-7809.	5.6	54
1213	Bimetallic CeZr ₅ -UiO-66 as a highly efficient photocatalyst for the nitrogen reduction reaction. Sustainable Energy and Fuels, 2021, 5, 4053-4059.	4.9	13
1214	Metal–organic frameworks forÂheterogeneous photocatalysisÂof organicÂdyes. , 2021, , 489-508.		2
1215	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	6.0	30
1216	A flexible microporous framework with temperature-dependent gate-opening behaviours for C2 gases. Chemical Communications, 2021, 57, 3785-3788.	4.1	3
1217	Continuous microfluidic synthesis of zirconium-based UiO-67 using a coiled flow invertor reactor. MethodsX, 2021, 8, 101246.	1.6	12
1218	Development of Au–Pd@UiO-66-on-ZIF-L/CC as a self-supported electrochemical sensor for <i>in situ</i> i> monitoring of cellular hydrogen peroxide. Journal of Materials Chemistry B, 2021, 9, 9031-9040.	5.8	14
1219	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	21.0	184
1220	Recent Progress of Nanoscale Metalâ€Organic Frameworks in Synthesis and Battery Applications. Advanced Science, 2021, 8, 2001980.	11.2	58
1221	Inside/Outside: Postâ€Synthetic Modification of the Zrâ€Benzophenonedicarboxylate Metal–Organic Framework. Chemistry - A European Journal, 2020, 26, 2222-2232.	3.3	10

#	Article	IF	CITATIONS
1222	MB-UiO-66-NH ₂ Metal-Organic Framework as Chromogenic and Fluorogenic Sensor for Hydrazine Hydrate in Aqueous Solution. ChemistrySelect, 2017, 2, 7630-7636.	1.5	23
1223	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
1224	Smart logic gates constructed by fluorescent-customizable nanoMOFs for diseases monitoring. Applied Materials Today, 2020, 20, 100760.	4.3	4
1225	Morphology-controllable formation of MOF-Derived C/ZrO2@1T-2H MoS2 heterostructure for improved electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 14831-14840.	7.1	8
1226	Creating uniform pores for xenon/krypton and acetylene/ethylene separation on a strontium-based metal-organic framework. Journal of Solid State Chemistry, 2020, 288, 121337.	2.9	8
1227	Zirconium phosphonate sorbents with tunable structure and function. Microporous and Mesoporous Materials, 2017, 252, 90-104.	4.4	27
1228	Highly Selective Separation of Rare Earth Elements by Zn-BTC Metal–Organic Framework/Nanoporous Graphene ⟨i⟩via In Situ⟨ i⟩ Green Synthesis. Analytical Chemistry, 2021, 93, 1732-1739.	6.5	47
1229	Programmable Triboelectric Nanogenerators Dependent on the Secondary Building Units in Cadmium Coordination Polymers. Inorganic Chemistry, 2021, 60, 550-554.	4.0	21
1230	Poly(lauryl methacrylate)-Grafted Amino-Functionalized Zirconium-Terephthalate Metal–Organic Framework: Efficient Adsorbent for Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. ACS Omega, 2020, 5, 12202-12209.	3.5	9
1231	Co-ligand tuned pyrimidine-2-carboxylate Mn(ii) complexes from a 2D 63 layer to an interpenetrated srs-net. Dalton Transactions, 2017, 46, 8593-8597.	3.3	4
1232	Zinc-tetracarboxylate framework material with nano-cages and one-dimensional channels for excellent selective and effective adsorption of methyl blue dye. RSC Advances, 2020, 10, 3539-3543.	3.6	7
1233	An easy and low-cost method of embedding chiral molecules in metal–organic frameworks for enantioseparation. Chemical Communications, 2020, 56, 7459-7462.	4.1	25
1234	Unexpected linker-dependent Brønsted acidity in the (Zr)UiO-66 metal organic framework and application to biomass valorization. Catalysis Science and Technology, 2020, 10, 4002-4009.	4.1	25
1235	Recent advances in metal–organic frameworks for pesticide detection and adsorption. Dalton Transactions, 2020, 49, 14361-14372.	3.3	52
1236	Porous MOF-808@PVDF beads for removal of iodine from gas streams. RSC Advances, 2020, 10, 44679-44687.	3.6	37
1237	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	10.3	209
1238	A multifunctional double walled zirconium metal–organic framework: high performance for CO ₂ adsorption and separation and detecting explosives in the aqueous phase. Journal of Materials Chemistry A, 2020, 8, 17106-17112.	10.3	23
1239	pH-responsive and hyaluronic acid-functionalized metal–organic frameworks for therapy of osteoarthritis. Journal of Nanobiotechnology, 2020, 18, 139.	9.1	58

#	Article	IF	CITATIONS
1240	Zirconium-based Metal–Organic Frameworks with N-Confused Porphyrins: Synthesis, Structures, and Optical Properties. Chemistry Letters, 2017, 46, 1230-1232.	1.3	5
1241	Metal-Organic Framework (MOF)-Based Drug Delivery. Current Medicinal Chemistry, 2020, 27, 5949-5969.	2.4	152
1242	Enhanced water stability and high CO ₂ storage capacity of a Lewis basic sites-containing zirconium metal–organic framework. Dalton Transactions, 2021, 50, 16587-16592.	3.3	8
1243	Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorganic Chemistry Frontiers, 2021, 8, 4767-4779.	6.0	8
1244	Two Zr-based heterometal–organic frameworks for efficient CO ₂ reduction under visible light. CrystEngComm, 2021, 23, 8115-8120.	2.6	1
1245	Thiol-functionalized UiO-66 anchored atomically dispersed metal ions for the photocatalytic selective oxidation of benzyl alcohol. Chemical Communications, 2021, 57, 12151-12154.	4.1	9
1246	Thiol decorated defective metal–organic frameworks embedded with palladium nanoparticles for efficient Cr(<scp>vi</scp>) reduction. Inorganic Chemistry Frontiers, 2021, 8, 5093-5099.	6.0	8
1247	Preparation of multivariate zirconia metal-organic frameworks for highly efficient adsorption of endocrine disrupting compounds. Journal of Hazardous Materials, 2022, 424, 127559.	12.4	51
1248	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	19.1	25
1249	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	5.6	10
1250	Heterogenizing a Homogeneous Nickel Catalyst Using Nanoconfined Strategy for Selective Synthesis of Mono- and 1,2-Disubstituted Benzimidazoles. Inorganic Chemistry, 2021, 60, 16042-16047.	4.0	5
1251	A Novel Porous Tiâ€Squarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation. Advanced Materials, 2021, 33, e2106627.	21.0	35
1252	Fabrication of MOF-808(Zr) with abundant defects by cleaving Zr O bond for oxidative desulfurization of fuel oil. Journal of Industrial and Engineering Chemistry, 2022, 105, 435-445.	5.8	25
1253	The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. Nanomaterials, 2021, 11, 2791.	4.1	3
1254	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	5.7	7
1256	Impact of Zr ₆ Node in a Metal–Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorganic Chemistry, 2021, 60, 16966-16976.	4.0	13
1257	Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends in Food Science and Technology, 2021, 118, 569-588.	15.1	113
1258	A magnetic solid phase extraction based on UiO-67@GO@Fe3O4 coupled with UPLC-MS/MS for the determination of nitroimidazoles and benzimidazoles in honey. Food Chemistry, 2022, 373, 131512.	8.2	20

#	Article	IF	CITATIONS
1260	A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808. Green Chemistry, 2021, 23, 9982-9991.	9.0	27
1261	Construction of two new Co(II)-organic frameworks based on diverse metal clusters: Highly selective C2H2 and CO2 capture and magnetic properties. Journal of Solid State Chemistry, 2022, 305, 122629.	2.9	3
1262	Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451, 214262.	18.8	253
1263	Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Applied Catalysis B: Environmental, 2022, 301, 120793.	20.2	42
1264	Catalysis by Metal Nanoparticles Encapsulated Within Metal–Organic Frameworks. Molecular Catalysis, 2020, , 221-247.	1.3	0
1265	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	3.3	13
1266	Pickering emulsions stabilized by metal–organic frameworks, graphitic carbon nitride and graphene oxide. Soft Matter, 2021, 18, 10-18.	2.7	12
1267	UiO-67-derived bithiophene and bithiazole MIXMOFs for luminescence sensing and removal of contaminants of emerging concern in wastewater. Inorganic Chemistry Frontiers, 2021, 9, 90-102.	6.0	3
1268	Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets. Biosensors and Bioelectronics, 2022, 198, 113817.	10.1	10
1269	Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. Journal of the American Chemical Society, 2021, 143, 19300-19305.	13.7	72
1270	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie, 2022, 134, .	2.0	5
1271	Probing the Node Chemistry of a Metal–Organic Framework to Achieve Ultrahigh Hydrophobicity and Highly Efficient CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15897-15907.	6.7	17
1272	Computational insights into efficient CO2 and H2S capture through zirconium MOFs. Journal of CO2 Utilization, 2022, 55, 101811.	6.8	8
1273	Support–Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. Materials, 2021, 14, 6796.	2.9	5
1274	Flammability and Thermal Kinetic Analysis of UiO-66-Based PMMA Polymer Composites. Polymers, 2021, 13, 4113.	4. 5	9
1275	Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sensors and Actuators B: Chemical, 2022, 353, 131032.	7.8	17
1276	Aqueous zirconiumâ \in MOF syntheses assisted by Î \pm â \in cyclodextrin: towards deeper understanding of the beneficial role of cyclodextrin. European Journal of Inorganic Chemistry, 0, , .	2.0	3
1277	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	32.8	161

#	Article	IF	CITATIONS
1278	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
1279	Exploring the Role of Cluster Formation in UiO Family Hf Metal–Organic Frameworks with ⟨i⟩in Situ⟨/i⟩ X-ray Pair Distribution Function Analysis. Journal of the American Chemical Society, 2021, 143, 19668-19683.	13.7	24
1280	Unveiling the nature of boric acid adsorption by metal-organic frameworks with hexanuclear clusters. Chemical Engineering Journal, 2022, 433, 133543.	12.7	7
1281	Coordinatively Unsaturated Hf-MOF-808 Prepared via Hydrothermal Synthesis as a Bifunctional Catalyst for the Tandem <i>N</i> -Alkylation of Amines with Benzyl Alcohol. ACS Sustainable Chemistry and Engineering, 2021, 9, 15793-15806.	6.7	23
1282	Sustainable synthesis of semicrystalline Zr-BDC MOF and heterostructural Ag3PO4/Zr-BDC/g-C3N4 composite for photocatalytic dye degradation. Catalysis Today, 2022, 390-391, 162-175.	4.4	21
1283	Selective and Sensitive Fluorescence Turnâ€on Detection of Cyanide lons in Water by Post Metallization of a MOF. ChemPlusChem, 2021, 87, e202100426.	2.8	6
1284	Promise of nano-carbon to the next generation sustainable agriculture. Carbon, 2022, 188, 461-481.	10.3	27
1285	Finely Tuning Tridentate Carboxylic Acids for the Construction of Rod Scandium Metal–Organic Frameworks with High Chemical Stability and Selective Gas Adsorption. Inorganic Chemistry, 2021, 60, 18789-18793.	4.0	3
1286	Green synthesis of polyacrylamide/polyanionic cellulose hydrogels composited with Zr-based coordination polymer and their enhanced mechanical and adsorptive properties. Polymer Journal, 2022, 54, 515-524.	2.7	3
1287	A nanosized anionic MOF with rich thiadiazole groups for controlled oral drug delivery. Materials Today Bio, 2022, 13, 100180.	5 . 5	14
1288	Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal. ACS Applied Materials & Interfaces, 2021, 13, 58848-58861.	8.0	15
1289	Two scandium-based coordination polymers: rapid ultrasound-assisted synthesis, crystal transformation, and catalytic properties. CrystEngComm, 2021, 23, 7813-7821.	2.6	1
1290	Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 2022, 335, 111670.	4.4	65
1291	Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment: A review and perspectives. Surfaces and Interfaces, 2022, 28, 101647.	3.0	42
1292	Combination of heteropolyacid and UiO-67 (Zr) to generate heterogeneous nanocomposite catalyst for efficient oxidative desulfurization system. Inorganic Chemistry Communication, 2022, 136, 109143.	3.9	8
1293	Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. Solid State Nuclear Magnetic Resonance, 2022, 117, 101772.	2.3	14
1294	Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coordination Chemistry Reviews, 2022, 453, 214314.	18.8	24
1295	Zirconium-based Metal-Organic Frameworks for highly efficient solar light-driven photoelectrocatalytic disinfection. Separation and Purification Technology, 2022, 285, 120351.	7.9	5

#	Article	IF	CITATIONS
1296	Metal-organic frameworks and their composites for the adsorption and sensing of phosphate. Coordination Chemistry Reviews, 2022, 455, 214376.	18.8	63
1297	Preparation and application of bimetallic mixed ligand MOF photocatalytic materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128108.	4.7	20
1298	From layered structure to 8-fold interpenetrated MOF with enhanced selective adsorption of C2H2/CH4 and CO2/CH4. Journal of Solid State Chemistry, 2022, 307, 122881.	2.9	14
1299	Mixed-Linker Metal-Organic frameworks for carbon and hydrocarbons capture under moist conditions. Chemical Engineering Journal, 2022, 433, 134447.	12.7	16
1300	Preparation of ionic liquid-type UiO-66 and its adsorption desulfurization performance. Fuel, 2022, 312, 122945.	6.4	10
1301	Overcoming Structural Collapse in Stable Zirconium Phosphonate Materials for Strontium Removal. SSRN Electronic Journal, 0, , .	0.4	0
1302	Adsorptive Desulfurization Using Cu ⁺ Modified UiO-66(Zr) Via Vapor Ethanol Reduction. SSRN Electronic Journal, 0, , .	0.4	0
1303	A Neurofilament-Light Chains Electrochemical Immunosensor Expected to Reveal the Early Stage of Neurodegenerative Diseases. SSRN Electronic Journal, 0, , .	0.4	0
1304	Racemic Porous Organic Cage Crystal with Selective Gas Adsorption Behaviors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	1
1305	A Microporous Metal–Organic Framework Incorporating Both Primary and Secondary Building Units for Splitting Alkane Isomers. Journal of the American Chemical Society, 2022, 144, 3766-3770.	13.7	36
1306	Synthetic Mechanism of UiOâ€66â€NH ₂ /BiVO ₄ /BiOBr Spherical and Lamellar Dual Zâ€scheme Heterojunction and Efficient Photocatalytic Degradation of Tetracycline Under Visible Light. ChemistrySelect, 2022, 7, .	1.5	3
1307	Two-dimensional Zr/Hf-hydroxamate metal–organic frameworks. Chemical Communications, 2022, 58, 3601-3604.	4.1	12
1308	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie, 2022, 134, .	2.0	3
1309	Templated synthesis of zirconium(<scp>iv</scp>)-based metal–organic layers (MOLs) with accessible chelating sites. Chemical Communications, 2022, 58, 957-960.	4.1	6
1310	Impact of capping agent removal from Au NPs@MOF core–shell nanoparticle heterogeneous catalysts. Journal of Materials Chemistry A, 2022, 10, 3201-3205.	10.3	20
1311	Metal-Organic Frameworks-Based Sensors for Food Safety. Foods, 2022, 11, 382.	4.3	29
1312	Post-synthetic modification of UiO-66-OH toward porous liquids for CO ₂ capture. New Journal of Chemistry, 2022, 46, 2189-2197.	2.8	4
1313	Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5615-5623.	8.0	33

#	Article	IF	CITATIONS
1314	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
1315	Metal–organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions. RSC Advances, 2022, 12, 1433-1450.	3.6	53
1316	Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption. Environmental Science: Nano, 2022, 9, 254-264.	4.3	10
1317	Metal–Organic Frameworks (MOFs) and Materials Derived from MOFs as Catalysts for the Development of Green Processes. Catalysts, 2022, 12, 136.	3.5	12
1318	Selective Adsorption of Rare Earth Elements by Zn-BDC MOF/Graphene Oxide Nanocomposites Synthesized via In Situ Interlayer-Confined Strategy. Industrial & Engineering Chemistry Research, 2022, 61, 1841-1849.	3.7	19
1319	Merging the chemistry of metal–organic and polyoxometalate clusters to form enhanced photocatalytic materials. Inorganic Chemistry Frontiers, 2022, 9, 935-940.	6.0	8
1320	Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. Langmuir, 2022, 38, 1550-1559.	3.5	15
1321	ZrBDC-Based Functional Adsorbents for Small-Scale Methane Storage Systems. Adsorption Science and Technology, 2022, 2022, .	3.2	2
1322	Waste-derived biochar/carbon for various environmental and energy applications., 2022,, 339-363.		0
1323	Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks. Nano Materials Science, 2022, 4, 351-365.	8.8	29
1324	A highly stable Zn ₉ -pyrazolate metal–organic framework with metallosalen ligands as a carbon dioxide cycloaddition catalyst. Inorganic Chemistry Frontiers, 2022, 9, 1812-1818.	6.0	16
1325	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	13.7	127
1326	Overcoming structural collapse in stable zirconium phosphonate materials for strontium removal. Separation and Purification Technology, 2022, 291, 120605.	7.9	3
1327	Two-dimensional Metal Organic Frameworks for photonic applications. Optical Materials Express, 0, , .	3.0	9
1328	Lanthanide-based metal–organic frameworks solidified by gelatin-methacryloyl hydrogels for improving the accuracy of localization and excision of small pulmonary nodules. Journal of Nanobiotechnology, 2022, 20, 60.	9.1	10
1329	Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal–Organic Polyhedron (MOP). Inorganic Chemistry, 2022, 61, 2813-2823.	4.0	24
1330	Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Separation and Purification Technology, 2022, 287, 120577.	7.9	15
1331	Determination of anionic perfluorinated compounds in water samples using cationic fluorinated metal organic framework membrane coupled with UHPLC–MS/MS. Journal of Hazardous Materials, 2022, 429, 128333.	12.4	23

#	Article	IF	CITATIONS
1332	Metal–organic frameworks with ftw -type connectivity: design, pore structure engineering, and potential applications. CrystEngComm, 2022, 24, 2189-2200.	2.6	5
1333	Capture of Gaseous Iodine in Isoreticular Zirconiumâ€Based UiOâ€n Metalâ€Organic Frameworks: Influence of Amino Functionalization, DFT Calculations, Raman and EPR Spectroscopic Investigation. Chemistry - A European Journal, 2022, 28, e202104437.	3.3	23
1334	Monoâ€Phosphine Metalâ€Organic Frameworkâ€Supported Cobalt Catalyst for Efficient Borylation Reactions. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	11
1335	Efficient Detection of Fe3+ and Cr2O72â^' lons in Water by Zn-Tetrazolate-Based Two-Dimensional Metal-Organic Framework: A Comparative Study. Engineering Proceedings, 2022, 12, .	0.4	0
1336	Enhanced Solubility of Zirconium Oxo Clusters from Diacetoxyzirconium(IV) Oxide Aqueous Solution as Inorganic Extremeâ€Ultraviolet Photoresists. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	10
1337	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	13.7	23
1338	Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal–Organic Framework for Benchmark Waterâ€Sorptionâ€Driven Heat Allocations. Advanced Science, 2022, 9, e2105556.	11.2	17
1339	Leveraging Chiral Zr(IV)-Based Metal–Organic Frameworks To Elucidate Catalytically Active Rh Species in Asymmetric Hydrogenation Reactions. Journal of the American Chemical Society, 2022, 144, 3117-3126.	13.7	31
1340	Constructing fluorine-doped Zr-MOF films on titanium for antibacteria, anti-inflammation, and osteogenesis. Materials Science and Engineering C, 2022, 134, 112699.	7.3	12
1341	Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coordination Chemistry Reviews, 2022, 458, 214428.	18.8	107
1342	Scalable robust nano-porous Zr-based MOF adsorbent with high-capacity for sustainable water purification. Separation and Purification Technology, 2022, 288, 120620.	7.9	32
1343	Metal–Organic Frameworks (Mofs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. SSRN Electronic Journal, 0, , .	0.4	0
1344	Theoretical Evaluation OfÂAdsorption Desalination Performance of Metal-Organic Frameworks Under Varying Senarios. SSRN Electronic Journal, 0, , .	0.4	0
1345	Zirconium oxo clusters as discrete molecular catalysts for the direct amide bond formation. Catalysis Science and Technology, 2022, 12, 3190-3201.	4.1	11
1346	Surface Plasma Resonance Biosensing of Phosphorylated Proteins Via Ph-Adjusted Specific Binding of Phosphate Residues with Uio-66. SSRN Electronic Journal, O, , .	0.4	0
1348	Upconverted/Downshifted NaLnF ₄ and Metal-Organic Framework Heterostructures Boosting NIR-II Imaging-Guided Photodynamic Immunotherapy Toward Tumors. SSRN Electronic Journal, 0, , .	0.4	0
1349	Metal–Organic Frameworks (MOFs) as Versatile Detoxifiers for Chemical Warfare Agents (CWAs). , 2022, , 453-489.		1
1350	Understanding the structure–activity relationships of different double atom catalysts from density functional calculations: three general rules for efficient CO oxidation. Journal of Materials Chemistry A, 2022, 10, 9025-9036.	10.3	11

#	Article	IF	CITATIONS
1351	Zirconium Based MOFs and Their Potential Use in Water Remediation: Current Achievements and Possibilities. Air, Soil and Water Research, 2022, 15, 117862212210801.	2.5	1
1352	Synergistic Lewis acid and Pd active sites of metal–organic frameworks for highly efficient carbonylation of methyl nitrite to dimethyl carbonate. Inorganic Chemistry Frontiers, 2022, 9, 2379-2388.	6.0	11
1353	<scp> </scp> -Cysteine modified metal–organic framework as a chiral stationary phase for enantioseparation by capillary electrochromatography. RSC Advances, 2022, 12, 6063-6075.	3.6	21
1354	Luminescent organic porous crystals from non-cyclic molecules and their applications. CrystEngComm, 2022, 24, 2575-2590.	2.6	10
1355	Post-synthetic ligand cyclization in metal–organic frameworks through functional group connection with regioisomerism. Chemical Communications, 2022, 58, 5948-5951.	4.1	5
1356	Tailored porous framework materials for advancing lithium–sulfur batteries. Chemical Communications, 2022, 58, 4005-4015.	4.1	16
1357	AÂNovel Ce(Iv)-Mof-Based Cataluminescence Sensor for Detection of Hydrogen Sulfide. SSRN Electronic Journal, $0,$	0.4	0
1358	Hexahydric component metal organic frameworks constructed by multiple ligands and mixed-valence ions. Inorganic Chemistry Frontiers, 2022, 9, 2081-2086.	6.0	1
1359	A fluorescence nanoplatform for the determination of hydrogen peroxide and adenosine triphosphate via tuning of the peroxidase-like activity of CuO nanoparticle decorated UiO-66. Mikrochimica Acta, 2022, 189, 119.	5.0	5
1360	Zwitterionic Luminescent 2D Metal–Organic Framework Nanosheets (LMONs): Selective Turn-On Fluorescence Sensing of Dihydrogen Phosphate. Inorganic Chemistry, 2022, 61, 3942-3950.	4.0	12
1361	Extrusion-Spheronization of UiO-66 and UiO-66_NH ₂ into Robust-Shaped Solids and Their Use for Gaseous Molecular Iodine, Xenon, and Krypton Adsorption. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10669-10680.	8.0	18
1362	Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nature Communications, 2022, 13, 928.	12.8	23
1363	A zirconium metal-organic framework with SOC topological net for catalytic peptide bond hydrolysis. Nature Communications, 2022, 13, 1284.	12.8	32
1364	Esterification of Levulinic Acid to Methyl Levulinate over Zr-MOFs Catalysts. ChemEngineering, 2022, 6, 26.	2.4	4
1365	Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. Energies, 2022, 15, 2023.	3.1	37
1366	Advanced Metal–Organic Frameworks-Based Catalysts in Electrochemical Sensors. Frontiers in Chemistry, 2022, 10, 881172.	3.6	9
1367	A Structure–Activity Study of Aromatic Acid Modulators for the Synthesis of Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 3383-3394.	6.7	24
1368	The Chemistry of Zirconium/Carboxylate Clustering Process: Acidic Conditions to Promote Carboxylate-Unsaturated Octahedral Hexamers and Pentanuclear Species. Inorganic Chemistry, 2022, 61, 4842-4851.	4.0	4

#	ARTICLE	IF	CITATIONS
1369	Multivariate Strategy Preparation of Nanoscale Ru-Doped Metal–Organic Frameworks with Boosted Photoactivity for Bioimaging and Reactive Oxygen Species Generation. Inorganic Chemistry, 2022, 61, 4647-4654.	4.0	6
1370	Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water**. Chemistry - A European Journal, 2022, 28, .	3.3	13
1371	Construction of novel cluster-based MOF as multifunctional platform for CO2 catalytic transformation and dye selective adsorption. Chinese Chemical Letters, 2023, 34, 107368.	9.0	6
1372	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	47.7	175
1373	Hafnium-Based Metal–Organic Framework Nanoparticles as a Radiosensitizer to Improve Radiotherapy Efficacy in Esophageal Cancer. ACS Omega, 2022, 7, 12021-12029.	3.5	25
1374	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
1375	Oneâ€pot synthesis of a novel chiral Zrâ€based metalâ€organic framework for capillary electrochromatographic enantioseparation. Electrophoresis, 2022, 43, 1161-1173.	2.4	6
1376	Construction and Sensing Amplification of Raspberry-Shaped MOF@MOF. Inorganic Chemistry, 2022, 61, 4705-4713.	4.0	13
1377	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	4
1378	Metal–Organic Frameworks Can Photocatalytically Split Water—Why Not?. Advanced Materials, 2022, 34, e2200465.	21.0	24
1379	Bifunctionalized Metal–Organic Frameworks for Poreâ€Sizeâ€Dependent Enantioselective Sensing. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
1380	Aluminum-fumarate based MOF: A promising environmentally friendly adsorbent for the removal of phosphate. Chemical Engineering Research and Design, 2022, 160, 502-512.	5.6	29
1382	Rapid Generation of Metal–Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 6674-6680.	13.7	10
1383	Seignette salt induced defects in Zr-MOFs for boosted Pb(\hat{a} ;) adsorption: universal strategy and mechanism insight. Chemical Engineering Journal, 2022, 442, 136276.	12.7	82
1384	Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol. Polyhedron, 2022, 216, 115728.	2.2	9
1385	MOF-801 as a Nanoporous Water-Based Carrier System for In Situ Encapsulation and Sustained Release of 5-FU for Effective Cancer Therapy. Inorganic Chemistry, 2022, 61, 5912-5925.	4.0	32
1386	The Influence of UiOâ€66 Metal–Organic Framework Structural Defects on Adsorption and Separation of Hexane Isomers. Chemistry - A European Journal, 2022, , .	3.3	2
1387	Upconverted/downshifted NaLnF4 and metal-organic framework heterostructures boosting NIR-II imaging-guided photodynamic immunotherapy toward tumors. Nano Today, 2022, 43, 101439.	11.9	43

#	Article	IF	CITATIONS
1388	Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. Journal of Membrane Science, 2022, 648, 120369.	8.2	15
1389	Bifunctionalized Metal–Organic Frameworks for Poreâ€Sizeâ€Dependent Enantioselective Sensing. Angewandte Chemie, 0, , .	2.0	1
1390	A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. Journal of Molecular Graphics and Modelling, 2022, 113, 108147.	2.4	15
1391	Nanoconfinement of tetraphenylethylene in zeolitic metal-organic framework for turn-on mechanofluorochromic stress sensing. Applied Materials Today, 2022, 27, 101434.	4.3	11
1392	Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications – A review. Chemosphere, 2022, 298, 134184.	8.2	82
1393	Coordination polymers of d- and f-elements with (1,4-phenylene)dithiazole dicarboxylic acid. Inorganica Chimica Acta, 2022, 537, 120923.	2.4	1
1394	Zr6O8-porphyrinic MOFs as promising catalysts for the boosting photocatalytic degradation of contaminants in high salinity wastewater. Chemical Engineering Journal, 2022, 440, 135883.	12.7	33
1395	A novel Ce(IV)-MOF-based cataluminescence sensor for detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2022, 362, 131746.	7.8	10
1396	A strongly hydrophobic ethane-selective metal-organic framework for efficient ethane/ethylene separation. Chemical Engineering Journal, 2022, 442, 136152.	12.7	19
1397	UiO-66 Selective Enrichment Integrated with Thermal Desorption GC-MS for Detection of Benzene Homologues in Ambient Air. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-9.	1.6	2
1398	Transformation of a Cluster-Based Metal–Organic Framework to a Rod Metal–Organic Framework. Chemistry of Materials, 2022, 34, 273-278.	6.7	14
1399	Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chemical Research in Chinese Universities, 2022, 38, 31-44.	2.6	4
1400	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	10.4	46
1401	Chemoselective and Tandem Reduction of Arenes Using a Metal–Organic Framework-Supported Single-Site Cobalt Catalyst. Inorganic Chemistry, 2022, 61, 1031-1040.	4.0	4
1402	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60715-60735.	8.0	86
1403	Bimetallic Ordered Large-Pore MesoMOFs for Simultaneous Enrichment and Dephosphorylation of Phosphopeptides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60173-60181.	8.0	16
1404	Zâ€Scheme In ₂ S ₃ /NUâ€1000 Heterojunction for Boosting Photoâ€Oxidation of Sulfide into Sulfoxide under Ambient Conditions. Chemistry - A European Journal, 2022, 28, .	3.3	6
1405	Femtomolar and locus-specific detection of N6-methyladenine in DNA by integrating double-hindered replication and nucleic acid-functionalized MB@Zr-MOF. Journal of Nanobiotechnology, 2021, 19, 408.	9.1	7

#	Article	IF	CITATIONS
1406	A new yttriumâ€based metal–organic framework for molecular sieving of propane from propylene with high propylene capacity. AICHE Journal, 2022, 68, .	3.6	17
1407	Zirconium metal organic cages: From phosphate selective sensing to derivate forming. Chinese Chemical Letters, 2022, 33, 4415-4420.	9.0	5
1408	Investigation of the aqueous adsorption capacity of a 6-connected Zr-MOF for anionic and cationic dyes in comparison with other traditional porous materials. IOP Conference Series: Earth and Environmental Science, 2021, 947, 012032.	0.3	0
1409	Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics, 2021, 13, 2166.	4.5	32
1410	En route from metal alkoxides to metal oxides: metal oxo/alkoxo clusters. Journal of Sol-Gel Science and Technology, 2023, 105, 587-595.	2.4	4
1411	A zirconium(IV)-based metal–organic framework modified with ruthenium and palladium nanoparticles: synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol. Chemical Papers, 0, , 1.	2.2	3
1412	Self-propelled nanomotors based on hierarchical metal-organic framework composites for the removal of heavy metal ions. Journal of Hazardous Materials, 2022, 435, 128967.	12.4	19
1413	Compatible with excellent gold/palladium trap and open sites for green Suzuki coupling by an imidazole-modified MOF. Microporous and Mesoporous Materials, 2022, 337, 111877.	4.4	4
1414	Modulated self-assembly of an interpenetrated MIL-53 Sc metal–organic framework with excellent volumetric H2 storage and working capacity. Materials Today Chemistry, 2022, 24, 100887.	3.5	4
1415	Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renewable and Sustainable Energy Reviews, 2022, 162, 112441.	16.4	35
1417	Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 2022, 51, 8133-8159.	3.3	22
1418	Metal-organic framework for photocatalytic reduction of carbon dioxide. , 2022, , 727-748.		0
1419	Hydrated metal ions as weak BrÃ,nsted acids show promoting effects on proton conduction. CrystEngComm, 2022, 24, 3886-3893.	2.6	8
1420	MOFs for solar photochemistry applications. , 2022, , 665-698.		1
1421	Comparative Study of Pd–Ni Bimetallic Catalysts Supported on UiO-66 and UiO-66-NH2 in Selective 1,3-Butadiene Hydrogenation. Nanomaterials, 2022, 12, 1484.	4.1	2
1422	Enhanced water sorption onto bimetallic MOF-801 for energy conversion applications. Sustainable Materials and Technologies, 2022, , e00442.	3.3	3
1423	Synergistic effect of –COOH and Zr(IV) with a short distance in Zr-MOFs for promoting utilization of H2O2 in oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2022, 111, 480-489.	5.8	0
1424	A neurofilament-light chains electrochemical immunosensor expected to reveal the early stage of neurodegenerative diseases. Chemical Engineering Journal, 2022, , 136850.	12.7	4

#	Article	IF	CITATIONS
1425	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	3.3	8
1426	Preparation of Highly Stable DUT-52 Materials and Adsorption of Dichromate Ions in Aqueous Solution. ACS Omega, 2022, 7, 16414-16421.	3.5	7
1427	Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23518-23526.	8.0	19
1428	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	9.4	7
1429	Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources, 2022, 538, 231588.	7.8	15
1430	Tunable rare-earth metalâ^'organic frameworks for ultra-high selenite capture. Journal of Hazardous Materials, 2022, 436, 129094.	12.4	11
1431	A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere, 2022, 302, 134845.	8.2	69
1432	Computational study of Brønsted acidity in the metal–organic framework UiO-66. Chemical Physics Letters, 2022, 800, 139658.	2.6	2
1433	Surface plasma resonance biosensing of phosphorylated proteins via pH-adjusted specific binding of phosphate residues with UiO-66. Chemical Engineering Journal, 2022, 446, 137000.	12.7	1
1434	Dendrite suppression with zirconium (IV) based metal–organic frameworks modified glass microfiber separator for ultralong-life rechargeable zinc-ion batteries. Journal of Science: Advanced Materials and Devices, 2022, 7, 100467.	3.1	6
1435	Integrating Ti3C2/MgIn2S4 heterojunction with a controlled release strategy for split-type photoelectrochemical sensing of miRNA-21. Analytica Chimica Acta, 2022, 1215, 339990.	5.4	11
1436	Metal organic frameworks as a versatile platform for the radioactive iodine capture: State of the art developments and future prospects. Inorganica Chimica Acta, 2022, 539, 121026.	2.4	9
1437	Facile membrane preparation from colloidally stable metal-organic framework-polymer nanoparticles. Journal of Membrane Science, 2022, 657, 120669.	8.2	4
1438	Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances. Chemosphere, 2022, 303, 134987.	8.2	64
1439	Separation of pyrrolidine from tetrahydrofuran by using pillar[6]arene-based nonporous adaptive crystals. Chemical Science, 2022, 13, 7536-7540.	7.4	14
1440	Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr ₆ O ₈ Metal-Organic Framework Nodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27040-27047.	8.0	7
1441	In situ Growth of UiO-66 with Its Particle Size Reduced by 90% into Porous Polyacrylate: Experiments and Applications. Industrial & Experiments Chemistry Research, 0, , .	3.7	3
1442	Effect of Synthesis Temperature on Water Adsorption in UiO-66 Derivatives: Experiment, DFT+D Modeling, and Monte Carlo Simulations. Journal of Physical Chemistry C, 2022, 126, 9185-9194.	3.1	6

#	Article	IF	CITATIONS
1443	<scp>Cageâ€Ligand</scp> Strategy for the Construction of Zr ₄ (embonate) ₆ â€"Based <scp>MOFs</scp> with <scp>Thirdâ€Order Nonlinearâ€Optical</scp> Properties. Chinese Journal of Chemistry, 2022, 40, 2067-2071.	4.9	7
1444	Structure Tuning of Hafnium Metal–Organic Frameworks through a Mixed Solvent Approach. Crystals, 2022, 12, 785.	2.2	1
1445	Design and synthesis of hollow Ce/Zr-UiO-66 nanoreactors for synergistic and efficient catalysis. Journal of Solid State Chemistry, 2022, 312, 123306.	2.9	7
1446	Embedding Multiphoton Active Units within Metal–Organic Frameworks for Turning on Highâ€Order Multiphoton Excited Fluorescence for Bioimaging. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
1447	Facile synthesis of degradable DOX/ICG co-loaded metal–organic frameworks for targeted drug release and thermoablation. Cancer Nanotechnology, 2022, 13, .	3.7	3
1448	Embedding Multiphoton Active Units within Metalâ€Organic Frameworks for Turning on Highâ€Order Multiphoton Excited Fluorescence for Bioimaging. Angewandte Chemie, 0, , .	2.0	0
1449	Contributions of MOF-808 to methane production from anaerobic digestion of waste activated sludge. Water Research, 2022, 220, 118653.	11.3	22
1450	Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coordination Chemistry Reviews, 2022, 468, 214595.	18.8	64
1451	Metalâ^'Organic Frameworks for Water Decontamination and Reuse: A Dig at Heavy Metal lons and Organic Toxins. ACS Symposium Series, 0, , 77-124.	0.5	8
1452	Recent Advances and Challenges in Selective Environmental Applications of Metalâ^'Organic Frameworks. ACS Symposium Series, 0, , 223-245.	0.5	1
1453	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147
1454	Mercury-instructed assembly (MiA): architecting clathrin triskelion-inspired highly functional <i>C</i> ₃ -symmetric triskelion nanotorus functional structures into microtorus structures. Nanoscale, 2022, 14, 10200-10210.	5.6	4
1455	2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorganic Chemistry Frontiers, 2022, 9, 4850-4863.	6.0	7
1456	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	1.0	35
1457	Removal of methyl orange wastewater by Ugi multicomponent reaction functionalized UiO-66-NS. Environmental Science and Pollution Research, 2022, 29, 76833-76846.	5. 3	2
1458	Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS Applied Nano Materials, 2022, 5, 13862-13873.	5.0	28
1459	Stable Black Phosphorus Encapsulation in Porous Mesh-like UiO-66 Promoted Charge Transfer for Photocatalytic Oxidation of Toluene and <i>o</i> -Dichlorobenzene: Performance, Degradation Pathway, and Mechanism. ACS Catalysis, 2022, 12, 8069-8081.	11.2	102
1460	Efficient determination of BTX compounds based on UiO-66-diatomite composite enrichment and thermal desorption GC–MS. Microchemical Journal, 2022, 181, 107731.	4.5	0

#	Article	IF	CITATIONS
1461	Structural and Dynamic Analysis of Sulphur Dioxide Adsorption in a Series of Zirconiumâ€Based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
1462	Improvement of anti-corrosion performance of an epoxy coating using hybrid UiO-66-NH2/carbon nanotubes nanocomposite. Scientific Reports, 2022, 12, .	3.3	12
1463	Structural and dynamic analysis of adsorption of sulphur dioxide in a series of Zrâ€based metalâ€organic frameworks. Angewandte Chemie, 0, , .	2.0	0
1464	Probing adsorption of water and DMF in UiO-66(Zr) using solid-state NMR. Solid State Nuclear Magnetic Resonance, 2022, 120, 101797.	2.3	3
1465	Clusters with a Zr6O8 core. Coordination Chemistry Reviews, 2022, 469, 214686.	18.8	14
1466	Experimental and molecular simulation studies on adsorption and diffusion of elemental mercury in flexible UiO-66. Fuel, 2022, 325, 124989.	6.4	5
1467	Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorganic Chemistry Frontiers, 2022, 9, 3943-3971.	6.0	5
1468	Metal–organic frameworks based on infinite secondary building units: recent progress and future outlooks. Journal of Materials Chemistry A, 2022, 10, 19320-19347.	10.3	11
1469	The unique opportunities of mechanosynthesis in green and scalable fabrication of metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 15332-15369.	10.3	9
1470	Dual-emissive EY/UiO-66-NH ₂ as a ratiometric probe for turn-on sensing and cell imaging of hypochlorite. Analyst, The, 2022, 147, 3867-3875.	3.5	6
1471	Zr ⁴⁺ -terephthalate MOFs with 6-connected structures, highly efficient As(<scp>iii</scp> / <scp>v</scp>) sorption and superhydrophobic properties. Chemical Communications, 2022, 58, 8862-8865.	4.1	5
1472	Effect of Orbital-Symmetry Matching in a Metal–Organic Framework for Highly Efficient C ₂ H ₂ H ₄ and C ₂ H ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₂ C ₄ C ₅ C ₆ C ₇ C ₈ C _{8<td>4.0</td><td>3</td>}	4.0	3
1473	lodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29916-29933.	8.0	34
1474	Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. Chemosphere, 2022, 307, 135680.	8.2	6
1475	Effects of High Gamma Doses on the Structural Stability of Metal–Organic Frameworks. Langmuir, 0, , .	3.5	11
1476	Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications. Materials Today Chemistry, 2022, 25, 100974.	3.5	33
1477	Submicron-thick, mixed-matrix membranes with metal-organic frameworks for CO2 separation: MIL-140C vs. UiO-67. Journal of Membrane Science, 2022, 659, 120788.	8.2	6
1478	Theoretical evaluation of adsorption desalination performance of metal-organic frameworks under varying scenarios. Applied Thermal Engineering, 2022, 215, 119000.	6.0	1

#	Article	IF	Citations
1479	Coordination polymers in adsorptive remediation of environmental contaminants. Coordination Chemistry Reviews, 2022, 470, 214694.	18.8	16
1480	The role of cobalt to control the synthesis of nanoscale Co/UiOâ€66 composite for photocatalysis. Journal of the American Ceramic Society, 2022, 105, 7043-7052.	3.8	4
1481	Metal-organic frameworks as advanced sorbents for oil/water separation. Journal of Molecular Liquids, 2022, 363, 119900.	4.9	11
1482	Assessment of MOF-801 synthesis for toluene adsorption by using design of experiment methodology. Korean Journal of Chemical Engineering, 2022, 39, 3129-3137.	2.7	1
1483	An unusual F-bridged dual-trinuclear Mg–organic framework as a luminescent thermometer for highly efficient low-temperature detection. CrystEngComm, 2022, 24, 6141-6145.	2.6	1
1484	Two cationic iron-based crystalline porous materials for encapsulation and sustained release of 5-fluorouracil. Dalton Transactions, 2022, 51, 13263-13271.	3.3	3
1485	Vacuum-Arc Synthesis of Metal-Organic Framework Structures Based on ZrO2. Inorganic Materials: Applied Research, 2022, 13, 924-928.	0.5	0
1486	Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 2 (A Review). Petroleum Chemistry, 2022, 62, 677-713.	1.4	3
1487	Selective Hydrogenolysis of 5-Hydroxymethylfurfural into 2,5-Dimethylfuran under Mild Conditions Using Pd/MOF-808. ACS Sustainable Chemistry and Engineering, 2022, 10, 10286-10293.	6.7	10
1488	Research Progress Based on Regulation of Tumor Microenvironment Redox and Drug-Loaded Metal-Organic Frameworks. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	4.0	1
1489	Impedimetric aptasensor based on zirconium $\hat{a}\in \hat{b}$ cobalt metal $\hat{a}\in \hat{b}$ organic framework for detection of carcinoembryonic antigen. Mikrochimica Acta, 2022, 189, .	5.0	17
1490	Leveraging Isothermal Titration Calorimetry to Explore Structure–Property Relationships of Protein Immobilization in Metal–Organic Frameworks. Angewandte Chemie, 0, , .	2.0	2
1491	Metal–organic frameworks in chiral separation of pharmaceuticals. Chirality, 2022, 34, 1419-1436.	2.6	12
1492	Leveraging Isothermal Titration Calorimetry to Explore Structure–Property Relationships of Protein Immobilization in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
1493	Effect of Missing-Linker Defects on CO ₂ Hydrogenation to Methanol by Cu Nanoparticles in UiO-66. Journal of Physical Chemistry C, 2022, 126, 13157-13167.	3.1	9
1494	Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Critical Reviews in Analytical Chemistry, 0, , 1-17.	3.5	4
1495	Selectively Confined Poly(3,4-Ethylenedioxythiophene) in the Nanopores of a Metal–Organic Framework for Electrochemical Nitrite Detection with Reduced Limit of Detection. ACS Applied Nano Materials, 2022, 5, 12980-12990.	5.0	11
1496	A Green Alternative for the Direct Aerobic Iodination of Arenes Using Molecular Iodine and a POM@MOF Catalyst. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37681-37688.	8.0	2

#	Article	IF	CITATIONS
1497	Precisely decorating CdS on Zr-MOFs through pore functionalization strategy: A highly efficient photocatalyst for H2 production. Chinese Journal of Catalysis, 2022, 43, 2332-2341.	14.0	32
1498	A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. , 2022, 140, 213049.		20
1499	Enhancing the natural gas upgrading and acetylene extraction performance of stable zirconium-organic frameworks PCN-605 by ligand functionalization. Journal of Environmental Chemical Engineering, 2022, 10, 108383.	6.7	O
1500	A water-stable zwitterionic Zn(II) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk. Polyhedron, 2022, 226, 116092.	2.2	11
1501	Deciphering the underlying mechanism of MOF-808-based abiotic catalysis enhancing biodegradability of waste activated sludge: Insights from the effects on bioconversion of extracellular organic substances into methane. Science of the Total Environment, 2022, 849, 157855.	8.0	8
1502	Green synthesis of heterogeneous polymeric bio-based acid decorated with hydrophobic regulator for efficient catalytic production of biodiesel at low temperatures. Fuel, 2022, 329, 125467.	6.4	20
1503	Investigation of catalytic activity of vanadyl sulphate immobilized on prepared UiO-66 modified with urea and melamine as allyl alcohol epoxidation catalysts. Journal of the Iranian Chemical Society, 0, , .	2.2	1
1504	UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: A comprehensive review. Journal of Drug Delivery Science and Technology, 2022, 76, 103758.	3.0	27
1505	Bioinspired photothermal sponge for simultaneous solar-driven evaporation and solar-assisted wastewater purification. Separation and Purification Technology, 2022, 301, 122010.	7.9	10
1506	Metal-organic frameworks for pharmaceutical and biomedical applications. Journal of Pharmaceutical and Biomedical Analysis, 2022, 221, 115026.	2.8	13
1507	3-Âμm Nanosecond Pulsed Fiber Laser Enabled by the Porous Coordination Network Yellow Material. IEEE Photonics Technology Letters, 2022, 34, 1171-1174.	2.5	0
1508	Adsorptive desulfurization using Cu+ modified UiO-66(Zr) via ethanol vapor reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108578.	6.7	7
1509	Adsorptive removal of carbamazepine and ibuprofen from aqueous solution using a defective Zr-based metal-organic framework. Journal of Environmental Chemical Engineering, 2022, 10, 108560.	6.7	7
1510	A new aminobenzoate-substituted s-triazin-based Zr metal organic frameworks as efficient catalyst for biodiesel production from microalgal lipids. Fuel Processing Technology, 2022, 238, 107487.	7.2	7
1511	MOF-based DNA hydrolases optimized by atom engineering for the removal of antibiotic-resistant genes from aquatic environment. Applied Catalysis B: Environmental, 2023, 320, 121931.	20.2	16
1512	Visual detection of vitamin C in fruits and vegetables using UiO-66 loaded Ce-MnO2 mimetic oxidase. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121900.	3.9	3
1513	Selective krypton uptake through trap confinement, formation of Kr2 dimer, and light response in a photochromic and radiation-resistant thorium-diarylethene-framework. Chemical Engineering Journal, 2023, 451, 139004.	12.7	6
1514	UiO-66-NH ₂ based fluorescent sensing for detection of tetracyclines in milk. RSC Advances, 2022, 12, 23427-23436.	3.6	11

#	Article	IF	CITATIONS
1515	Heterogenization of molecular cobalt catalysts in robust metal–organic frameworks for efficient photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 5418-5424.	4.1	3
1516	Cu ₃ (BTC) ₂ nanoflakes synthesized in an ionic liquid/water binary solvent and their catalytic properties. Soft Matter, 2022, 18, 6009-6014.	2.7	1
1517	Ultrasmall zirconium carbide nanodots for synergistic photothermal-radiotherapy of glioma. Nanoscale, 2022, 14, 14935-14949.	5.6	18
1518	Applications of novel composite UiO-66-NH ₂ /Melamine with phosphorous acid tags as a porous and efficient catalyst for the preparation of novel spiro-oxindoles. New Journal of Chemistry, 2022, 46, 19054-19061.	2.8	13
1519	A diamantane-4,9-dicarboxylate based UiO-66 analogue: challenging larger hydrocarbon cage platforms. CrystEngComm, 2022, 24, 7530-7534.	2.6	3
1520	Ni ₂ P NPs loaded on methylthio-functionalized UiO-66 for boosting visible-light-driven photocatalytic H ₂ production. Dalton Transactions, 2022, 51, 12282-12289.	3.3	3
1521	Recent advances in Al(<scp>iii</scp>)/In(<scp>iii</scp>)-based MOFs for the detection of pollutants. New Journal of Chemistry, 2022, 46, 19577-19592.	2.8	88
1522	In-Situ Etching Mof Nanoparticles for Constructing Defects-Free Interface in Hybrid Membranes for Gas Separation. SSRN Electronic Journal, 0, , .	0.4	0
1523	Metal–Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol. ACS Catalysis, 2022, 12, 11159-11168.	11.2	12
1524	RhB-Embedded Zirconium–Biquinoline-Based MOF Composite for Highly Sensitive Probing Cr(VI) and Photochemical Removal of CrO ₄ ^{2–} , Cr ₂ O ₇ ^{2–} , and MO. Inorganic Chemistry, 2022, 61, 15213-15224.	4.0	18
1525	Highâ€Efficiency Electrogenerated Chemiluminescence of Novel Zrâ€Based Metal–Organic Frameworks through Organic Linkers Regulation. ChemElectroChem, 2022, 9, .	3.4	4
1526	Synthesis and characterization of a nanocomposite zeolite Y@metal–organic framework as photocatalyst. Journal of Coordination Chemistry, 2022, 75, 2136-2149.	2.2	4
1527	Structural and Acidic Characteristics of Multiple Zr Defect Sites in UiO-66 Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 9295-9302.	4.6	12
1528	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments on Inorganic Chemistry, 2023, 43, 257-304.	5.2	1
1529	Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) – Delivered Phycocyanobilin. Journal of Pharmaceutical Sciences, 2022, , .	3.3	3
1530	Ligand-Directed Dimensionality Control over Zr-Based Metal–Organic Materials: From an Extended Framework to a Discrete Metal–Organic Cage and Macrocycle. Crystal Growth and Design, 2022, 22, 6384-6389.	3.0	3
1531	ZrIV metal–organic framework based on terephthalic acid and 1,10-phenanthroline as an adsorbent for solid phase extraction of tetracycline antibiotics. Mendeleev Communications, 2022, 32, 661-663.	1.6	10
1532	Characterization of Spun PMMA/UiO-66-NH ₂ @PMMA Thin Films and Their SPR Sensing Response to Haloalkane Vapors. IEEE Sensors Journal, 2022, 22, 18287-18294.	4.7	2

#	Article	IF	CITATIONS
1533	Metal-organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter, 2022, 5, 3161-3193.	10.0	13
1534	Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Critical Reviews in Analytical Chemistry, 0, , 1-22.	3.5	9
1535	Adsorptive degradation of dimethyl methylphosphonate over Zr-based metal–organic framework built from 3,3′,5,5′-azobenzenetetracarboxylic acid. Journal of Hazardous Materials Letters, 2022, 3, 100066.	3.6	5
1536	ZIF-8 modified polyvinyl alcohol/chitosan composite aerogel for efficient removal of Congo red. Journal of Solid State Chemistry, 2022, 316, 123628.	2.9	6
1537	Cooperation of Zr(<scp>iv</scp>)–N and Zr(<scp>iv</scp>)–O coordinate bonds of Zr(<scp>iv</scp>)–amide ensures the transparent and tough polyacrylamide hydrogels. Journal of Materials Chemistry B, 2022, 10, 9258-9265.	5.8	3
1538	Zr ⁴⁺ solution structures from pair distribution function analysis. Chemical Science, 2022, 13, 12883-12891.	7.4	6
1539	Dynamic environment at the Zr _{6} oxo cluster surface is key for the catalytic formation of amide bonds. Catalysis Science and Technology, 2023, 13, 100-110.	4.1	5
1540	Rational design and synthesis of diimide-based metal-organic frameworks for lanthanides recovery from tailing wastewater. Cell Reports Physical Science, 2022, 3, 101120.	5.6	1
1541	Creating High-Number Defect Sites through a Bimetal Approach in Metal–Organic Frameworks for Boosting Trace SO ₂ Removal. Inorganic Chemistry, 2022, 61, 16986-16991.	4.0	3
1542	Single-Phase White-Light Phosphors Based on a Bicarbazole-Based Metal–Organic Framework with Encapsulated Dyes. , 2022, 4, 2345-2351.		10
1543	The Effects of Ligand Substitution on MOF-808 Thermal Cycling Stability and Negative Thermal Expansion. , 2022, 4, 2381-2387.		3
1544	In situ rapid versatile method for the preparation of zirconium metal-organic framework filters. Science China Chemistry, 2022, 65, 2462-2467.	8.2	3
1545	The Dependence of Olefin Hydrogenation and Isomerization Rates on Zirconium Metal–Organic Framework Structure. ACS Catalysis, 2022, 12, 13671-13680.	11.2	3
1546	Postsynthetic Metalation of a New Metal–Organic Framework To Improve Methane Working Storage Capacity. , 2022, 4, 2375-2380.		2
1547	Green, One-Step Mechanochemical Synthesis and Techno-economic Analysis of UiO-66-NH ₂ . ACS Applied Energy Materials, 2023, 6, 9074-9083.	5.1	4
1548	Synthesis and Biomedical Applications of Highly Porous Metal–Organic Frameworks. Molecules, 2022, 27, 6585.	3.8	4
1550	Bifunctional Self-Penetrating Co(II)-Based 3D MOF for High-Performance Environmental and Energy Storage Applications. Crystal Growth and Design, 2022, 22, 7374-7394.	3.0	15
1551	Functionalized Zirconium Organic Frameworks as Fluorescent Probes for the Detection of Tetracyclines in Water and Pork. Inorganic Chemistry, 2022, 61, 17322-17329.	4.0	12

#	Article	IF	Citations
1552	Porphyrin-MOF-derived carbon-encapsulated copper as a selective and leaching resistant catalyst for the hydrogenation of nitriles. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104561.	5. 3	6
1553	Selective and highly efficient recovery of Au(III) by poly(ethylene sulfide)-functionalized UiO-66-NH2: Characterization and mechanisms. Journal of Molecular Liquids, 2022, 367, 120584.	4.9	6
1554	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	18.8	25
1555	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	18.8	43
1556	Biomass-derived hydrophobic metal-organic frameworks solid acid for green efficient catalytic esterification of oleic acid at low temperatures. Fuel Processing Technology, 2023, 239, 107558.	7.2	29
1557	Enhanced adsorption and synergistic photocatalytic degradation of tetracycline by MOF-801/GO composites <i>via</i> solvothermal synthesis. Environmental Science: Nano, 2022, 9, 4609-4618.	4.3	8
1558	In-situ etching MOF nanoparticles for constructing enhanced interface in hybrid membranes for gas separation. Journal of Membrane Science, 2023, 666, 121146.	8.2	12
1559	Zirconium-based metal-organic frameworks for fluorescent sensing. Coordination Chemistry Reviews, 2023, 476, 214930.	18.8	63
1560	Use of the Advantages of Titanium in the Metal: Organic Framework. , 0, , .		0
1561	Water-stable porous Al24 Archimedean solids for removal of trace iodine. Nature Communications, 2022, 13, .	12.8	33
1563	Rational Design of a Zr-MOF@Curli-Polyelectrolyte Hybrid Membrane toward Efficient Chemical Protection, Moisture Permeation, and Catalytic Detoxification. ACS Applied Materials & Samp; Interfaces, 2022, 14, 53421-53432.	8.0	3
1564	Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review. Progress in Solid State Chemistry, 2022, 68, 100380.	7.2	10
1565	The review of different dimensionalities based pristine metal organic frameworks for supercapacitor application. Journal of Energy Storage, 2022, 56, 105700.	8.1	13
1566	Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage. Batteries, 2022, 8, 245.	4.5	1
1567	Zr-Based Metal-Organic Frameworks for Green Biodiesel Synthesis: A Minireview. Bioengineering, 2022, 9, 700.	3.5	8
1568	Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials, 2023, 292, 121917.	11.4	49
1569	Systematic evaluation of water adsorption in isoreticular UiO-type metal–organic frameworks. Journal of Materials Chemistry A, 2023, 11, 1246-1255.	10.3	17
1570	Computational study of the conversion of methane and carbon dioxide to acetic acid over NU-1000 metal–organic framework-supported single-atom metal catalysts. Molecular Catalysis, 2023, 535, 112855.	2.0	5

#	Article	IF	CITATIONS
1571	Equipping carbon dots in a defect-containing MOF <i>via</i> self-carbonization for explosive sensing. Journal of Materials Chemistry C, 2022, 11, 321-328.	5 . 5	8
1572	Sustainable synthesis of metal-organic frameworks and their derived materials from organic and inorganic wastes. Coordination Chemistry Reviews, 2023, 478, 214986.	18.8	28
1573	Microwave- and ultrasonic-assisted synthesis of 2D La-based MOF nanosheets by coordinative unsaturation degree to boost phosphate adsorption. RSC Advances, 2022, 12, 35517-35530.	3.6	4
1574	Two Cd(II)-Based MOFs Constructed from Tris(3′-F-4′-carboxybiphenyl)amine: Synthesis, Crystal Structure, Luminescence Sensing towards Nitrophenols and Acetylacetone. Crystals, 2022, 12, 1708.	2.2	2
1575	A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. Nanomaterials, 2022, 12, 4263.	4.1	4
1576	Using magnetite/zirconium-comodified attapulgite as a novel phosphorus (P) sorbent for the efficient removal of P and the adsorption mechanism allowing this effect. Applied Water Science, 2023, 13 , .	5.6	1
1577	Solid-Phase Extraction of Organic Dyes on Mixed-Ligand Zr(IV) Metal–Organic Framework. Applied Sciences (Switzerland), 2022, 12, 12219.	2.5	1
1578	A General Strategy for the Synthesis of Hierarchically Ordered Metal–Organic Frameworks with Tunable Macroâ€, Mesoâ€, and Microâ€Pores. Small, 2023, 19, .	10.0	6
1579	Substituent Engineering-Enabled Structural Rigidification and Performance Improvement for C ₂ /CO ₂ Separation in Three Isoreticular Coordination Frameworks. Inorganic Chemistry, 2022, 61, 21076-21086.	4.0	4
1580	Production of Levulinic Esters by Heterogeneous Catalysis with Zr Metal–Organic Frameworks in Pressure Reactors. Industrial & Engineering Chemistry Research, 2022, 61, 17821-17832.	3.7	3
1581	Metal–Organic Frameworkâ€Based Photocatalysis for Solar Fuel Production. Small Methods, 2023, 7, .	8.6	43
1582	Fabrication of Poly(3, 4â€ethylenedioxythiophene)/Oâ^'S Coâ€Doped Porous Carbon Composites as Electrode Materials for Supercapacitors. ChemistrySelect, 2022, 7, .	1.5	2
1583	New Type of Nanocomposite CsH2PO4-UiO-66 Electrolyte with High Proton Conductivity. Molecules, 2022, 27, 8387.	3.8	4
1584	Waterâ€Harvesting Metal–Organic Frameworks with Gigantic Al ₂₄ Units and their Deconstruction into Molecular Clusters. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
1585	Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue. Nano Research, 2023, 16, 6160-6166.	10.4	4
1586	Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 56938-56947.	8.0	10
1587	Nanoscale metallicâ€organic frameworks as an advanced tool for medical applications: Challenges and recent progress. Applied Organometallic Chemistry, 2023, 37, .	3.5	15
1588	Waterâ∈Harvesting Metalâ∈"Organic Frameworks with Gigantic Al ₂₄ Units and their Deconstruction into Molecular Clusters. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
1589	Real-Space Imaging of the Node–Linker Coordination on the Interfaces between Self-Assembled Metal–Organic Frameworks. Nano Letters, 2022, 22, 9928-9934.	9.1	8
1590	Effectively Decontaminating Protein-Bound Uremic Toxins in Human Serum Albumin Using Cationic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 55354-55364.	8.0	1
1591	Tailoring and Identifying Brønsted Acid Sites on Metal Oxo-Clusters of Metal–Organic Frameworks for Catalytic Transformation. ACS Central Science, 2023, 9, 27-35.	11.3	6
1592	A porous Ti-based metal–organic framework for CO ₂ photoreduction and imidazole-dependent anhydrous proton conduction. Chemical Communications, 0, , .	4.1	1
1593	Zr- and Ti-based metal–organic frameworks: synthesis, structures and catalytic applications. Chemical Communications, 2023, 59, 2541-2559.	4.1	16
1594	Zirconium-amino acid framework as a green phosphatase-like nanozyme for the selective detection of phosphate-containing drugs. Chemical Communications, 2023, 59, 1098-1101.	4.1	9
1595	Metal Organic Framework Glasses: A New Platform for Electrocatalysis?. Chemical Record, 2023, 23, .	5.8	5
1596	Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics, 2023, 15, 274.	4.5	15
1597	A ZIF-based drug delivery system as three-in-one platform for joint cancer therapy. Materials Chemistry and Physics, 2023, 297, 127345.	4.0	6
1598	Porous framework materials for energy & Environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	8.7	12
1599	Electrocatalytic Porphyrin/Phthalocyanineâ€Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structureâ€Performance Relationships. Advanced Science, 2023, 10, .	11,2	23
1600	Building cobaloxime-based metal-organic framework for photocatalytic aerobic oxidation of arylboronic acids to phenols. Chemical Communications, 0, , .	4.1	3
1601	Piezoelectric Metalâ€Organic Frameworks Mediated Mechanoredox Borylation and Arylation Reactions by Ball Milling. Chemistry - A European Journal, 2023, 29, .	3.3	6
1602	A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles. Membranes, 2023, 13, 65.	3.0	4
1603	A general approach to 3D-printed single-atom catalysts. , 2023, 2, 129-139.		39
1604	Enhancing Dynamic Spectral Diffusion in Metal–Organic Frameworks through Defect Engineering. Journal of the American Chemical Society, 2023, 145, 1072-1082.	13.7	16
1605	Hierarchical ensembles of FeCo metal-organic frameworks reinforced nickel foam as an impedimetric sensor for detection of IL-1RA in human samples. Chemical Engineering Journal, 2023, 458, 141444.	12.7	8
1606	Metal-organic frameworks for food contaminant adsorption and detection. Frontiers in Chemistry, 0, 11 , .	3.6	5

#	Article	IF	CITATIONS
1607	Topological control of metal–organic frameworks toward highly sensitive and selective detection of chromate and dichromate. Inorganic Chemistry Frontiers, 2023, 10, 1721-1730.	6.0	14
1608	A systematic study of a polymer-assisted carboxylate-based MOF synthesis: multiple roles of core cross-linked PMAA- <i>b</i> -PMMA nanoparticles. Polymer Chemistry, 2023, 14, 662-669.	3.9	1
1609	Modulated synthesis of S-functionalized magnetic metal organic frameworks-808 for Hg (II) removal. Journal of Cleaner Production, 2023, 387, 135859.	9.3	3
1610	Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water. Journal of Colloid and Interface Science, 2023, 636, 459-469.	9.4	13
1611	Uncertainty in Composite Membranes: From Defect Engineering to Film Processing. Journal of the American Chemical Society, 2023, 145, 830-840.	13.7	12
1612	Engineering Catalysis within a Saturated In(III)-Based MOF Possessing Dynamic Ligand–Metal Bonding. ACS Applied Materials & Dynamic Ligand–Metal Bonding.	8.0	15
1613	Preparation of ropivacaine encapsulated by zeolite imidazole framework microspheres as sustainedâ€release system and efficacy evaluation. Chemistry - A European Journal, 0, , .	3.3	0
1614	Controlling the Output Performance of Triboelectric Nanogenerator Through Filling Isostructural Metal–Organic Frameworks With Varying Functional Groups. Advanced Materials Technologies, 2023, 8, .	5.8	8
1615	Tuning the optical properties of the metal–organic framework UiO-66 <i>via</i> ligand functionalization. Physical Chemistry Chemical Physics, 2023, 25, 6333-6341.	2.8	5
1616	Synthesis of zirconium-based metal–organic frameworks with iron(<scp>ii</scp>) clathrochelate ligands. CrystEngComm, 2023, 25, 1550-1555.	2.6	5
1617	Reticular Design of Precise Linker Installation into a Zirconium Metal–Organic Framework to Reinforce Hydrolytic Stability. Journal of the American Chemical Society, 2023, 145, 3055-3063.	13.7	19
1618	Zeolites and molecular frameworks for adsorption-based syngas purification. , 2023, , 203-228.		0
1619	Post Engineering of a Chemically Stable MOF for Selective and Sensitive Sensing of Nitric Oxide. Molecular Systems Design and Engineering, 0, , .	3.4	2
1620	Aspartic acid derivative-based MOFs: A promising green material for simultaneous removal of phosphorus and arsenic(V) in contaminated spring water. Journal of Water Process Engineering, 2023, 52, 103547.	5.6	11
1621	Solid ionic liquids with macro–microporous structure for efficient heterogeneous catalysis of biodiesel. New Journal of Chemistry, 2023, 47, 7701-7707.	2.8	2
1622	Dangling carboxylic-acid functionality in a fish-bone-shaped 2D framework as a hydrogen-bond-donating catalyst in Friedel–Crafts alkylation. Chemical Communications, 2023, 59, 4954-4957.	4.1	7
1623	In Situ Fabrication of Metal–Organic Framework Thin Films with Enhanced Pervaporation Performance. Advanced Functional Materials, 2023, 33, .	14.9	8
1624	Thermal-Response Proton Conduction in Schiff Base-Incorporated Metal–Organic Framework Hybrid Membranes under Low Humidity Based on the Excited-State Intramolecular Proton Transfer Mechanism. ACS Applied Materials & Samp; Interfaces, 2023, 15, 10064-10074.	8.0	4

#	Article	IF	CITATIONS
1625	Modified biomass adsorbents for removal of organic pollutants: a review of batch and optimization studies. International Journal of Environmental Science and Technology, 2023, 20, 11615-11644.	3.5	6
1626	Zr-MOF functionalized nanochannels: Application to regenerative and sensitive electrochemical aptasensing platform. Sensors and Actuators B: Chemical, 2023, 381, 133455.	7.8	8
1627	Robust Six-Connected Self-Penetrating Net with Two-Fold Interpenetration for Trace SO $<$ sub $>$ 2 $<$ /sub $>$ Removal and UO $<$ sub $>$ 2 $<$ /sub $>$ 2+ $<$ /sup $>$ Detection. Inorganic Chemistry, 0, , .	4.0	0
1628	Design and fabrication of metal-organic-framework based coatings for high fire safety and UV protection, reinforcement and electrical conductivity properties of textile fabrics. Progress in Organic Coatings, 2023, 179, 107545.	3.9	7
1629	Nanoproteomics deciphers the prognostic value of EGFR family proteins-based liquid biopsy. Analytical Biochemistry, 2023, 671, 115133.	2.4	0
1630	A core-satellite MOF-on-MOF hybrid for intelligent delivery of multi-agrochemicals for sustainable agriculture. Applied Surface Science, 2023, 624, 157129.	6.1	3
1631	Zirconium-based cyclodextrin porous coordination polymer for highly efficient uptake of Cr(VI) species. Polyhedron, 2023, 237, 116392.	2.2	0
1632	Construction of high-density proton transport channels in phosphoric acid doped polybenzimidazole membranes using ionic liquids and metal-organic frameworks. Journal of Power Sources, 2023, 560, 232665.	7.8	17
1633	Progress on fundamentals of adsorption transport of metal-organic frameworks materials and sustainable applications for water harvesting and carbon capture. Journal of Cleaner Production, 2023, 393, 136253.	9.3	6
1634	Metal-Organic Framework in Pharmaceutical Drug Delivery. Current Topics in Medicinal Chemistry, 2023, 23, 1155-1170.	2.1	5
1635	Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry, 2023, 15, 403.	2.2	10
1636	Boosting Activity and Selectivity of UiOâ€66 through Acidity/Alkalinity Functionalization in Dimethyl Carbonate Catalysis. Small, 2023, 19, .	10.0	7
1637	Two Dual-Function Zr/Hf-MOFs as High-Performance Proton Conductors and Amines Impedance Sensors. Inorganic Chemistry, 2023, 62, 3036-3046.	4.0	15
1638	State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews, 2023, 481, 215055.	18.8	9
1639	Highâ€Valence Metalâ€Organic Framework Materials Constructed from Metalâ€Oxo Clusters: Opportunities and Challenges. ChemPlusChem, 2023, 88, .	2.8	5
1640	Self-enhanced peroxidase-like activity in a wide pH range enabled by heterostructured Au/MOF nanozymes for multiple ascorbic acid-related bioenzyme analyses. Analyst, The, 2023, 148, 1579-1586.	3.5	2
1641	Stabilization of Palladium-Nanoparticle-Decorated Postsynthesis-Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in C–C Coupling Reaction. ACS Omega, 2023, 8, 8505-8518.	3.5	7
1642	Synergistic Effects of Lewis Acid–Base Pair Sites─Hf-MOFs with Functional Groups as Distinguished Catalysts for the Cycloaddition of Epoxides with CO ₂ . Inorganic Chemistry, 2023, 62, 3817-3826.	4.0	10

#	Article	IF	Citations
1643	Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry, 2023, 5, 100866.	2.0	9
1644	Construction of Zn ^l Cd ^l -CPs and their fluorescent detection for Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} and TNP in water <i>via</i> luminescence quenching. CrystEngComm, 2023, 25, 2728-2738.	2.6	6
1645	Classification of the MOFs Based on the Secondary Building Units (SBUs). Engineering Materials, 2023, , 15-30.	0.6	0
1646	Robust DUT-67 material for highly efficient removal of the Cr(VI) ion from an aqueous solution. Frontiers in Chemistry, $0,11,1$	3.6	0
1647	Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker. CrystEngComm, 2023, 25, 2119-2124.	2.6	1
1648	Spatial separation of redox centers for boosting cooperative photocatalytic hydrogen evolution with oxidation coupling of benzylamine over Pt@UiO-66-NH ₂ @ZnIn ₂ S ₄ . Catalysis Science and Technology, 2023, 13. 2517-2528.	4.1	4
1649	Mixed-Matrix Membranes Containing Porous Materials for Gas Separation: From Metal–Organic Frameworks to Discrete Molecular Cages. Engineering, 2023, 23, 40-55.	6.7	8
1650	Metal–Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sensors, 2023, 8, 1033-1053.	7.8	14
1651	Selective Methane Oxidation to Acetic Acid Using Molecular Oxygen over a Mono-Copper Hydroxyl Catalyst. Journal of the American Chemical Society, 2023, 145, 6156-6165.	13.7	11
1652	Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade. ACS Nano, 2023, 17, 5808-5820.	14.6	8
1653	Influence of Water Content on Speciation and Phase Formation in Zr–Porphyrinâ€Based MOFs. Advanced Materials, 0, , .	21.0	8
1654	Nitrogen-doped metal-organic framework derived porous carbon/polymer membrane for the simultaneous extraction of four benzotriazole ultraviolet stabilizers in environmental water. Journal of Chromatography A, 2023, 1695, 463929.	3.7	5
1655	Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today, 2023, 65, 207-226.	14.2	18
1656	Synthetic Access to a Framework-Stabilized and Fully Sulfided Analogue of an Anderson Polyoxometalate that is Catalytically Competent for Reduction Reactions. Journal of the American Chemical Society, 2023, 145, 7268-7277.	13.7	11
1657	Structure, Properties, and Reactivity of Polyoxocationic Zirconium and Hafnium Clusters: A Computational Investigation. Inorganic Chemistry, 2023, 62, 5081-5087.	4.0	2
1658	Unveiling the Structure–Modulator Relationships in Thorium-Based Metal–Organic Framework Crystallization. Inorganic Chemistry, 2023, 62, 5479-5486.	4.0	3
1659	Vapor-Like Water in the NU-1000 Zr-MOF: A Molecular Level Understanding of Balanced Hydrophobicity in Humid Conditions. Journal of Physical Chemistry C, 2023, 127, 6503-6514.	3.1	3
1660	Determination of citrinin with a stable fluorescent zirconium(IV)-based metal–organic framework. Chemical Papers, 0, , .	2.2	0

#	Article	IF	CITATIONS
1661	Rational Design and Assembly of Two-Dimensional Layered Metal–Organic Frameworks: Structure, Morphology, Fluorescence Regulation, and High Iodine Adsorption. Crystal Growth and Design, 0, , .	3.0	0
1662	2D titanium catecholate metal–organic frameworks with tunable gas adsorption and ionic conductivity. Journal of Materials Chemistry A, O, , .	10.3	0
1663	A supported pyridylimine–cobalt catalyst for <i>N</i> formylation of amines using CO ₂ . Dalton Transactions, 0, , .	3.3	1
1664	A density functional theory study of Ni _{<i>x</i>} (<i>x</i> = 4â€"16) cluster impregnation effects in multi-metal (Ce, Ti) UiO-66 metalâ€"organic frameworks. New Journal of Chemistry, 2023, 47, 8549-8557.	2.8	1
1665	Evolution of Zr nodes in metal–organic frameworks. Trends in Chemistry, 2023, 5, 339-352.	8.5	4
1666	Harnessing Hafniumâ€Based Nanomaterials for Cancer Diagnosis and Therapy. Small, 2023, 19, .	10.0	11
1667	Metalâ€Organic Framework Nanoparticles with Universal Dispersibility through Crown Ether Surface Coordination for Phaseâ€Transfer Catalysis and Separation Membranes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
1668	Metalâ€Organic Framework Nanoparticles with Universal Dispersibility through Crown Ether Surface Coordination for Phaseâ€Transfer Catalysis and Separation Membranes. Angewandte Chemie, 2023, 135, .	2.0	1
1669	Solid-State Luminescence Turn-On Sensing Using MOF-Confined Reporter–Spacer–Receptor Architectures Facilitated by Quencher Displacement. Analytical Chemistry, 2023, 95, 6612-6619.	6.5	6
1670	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	47.7	37
1671	MOF based CO2 capture: Adsorption and membrane separation. Inorganic Chemistry Communication, 2023, 152, 110722.	3.9	8
1672	Methylthio-functionalized UiO-66 to promote the electron–hole separation of ZnIn ₂ S ₄ for boosting hydrogen evolution under visible light illumination. Dalton Transactions, 2023, 52, 6730-6738.	3.3	2
1673	Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room Temperature. Journal of the American Chemical Society, 2023, 145, 10227-10235.	13.7	5
1674	UiO-66 framework with encapsulated spin probe: synthesis and exceptional sensitivity to mechanical pressure. Physical Chemistry Chemical Physics, 0, , .	2.8	1
1675	MOFâ€onâ€MOFâ€Derived Hollow Co ₃ O ₄ /In ₂ O ₃ Nanostructure for Efficient Photocatalytic CO ₂ Reduction. Advanced Science, 2023, 10, .	11.2	23
1676	Linker Vacancy Engineering of a Robust ftwâ€type Zrâ€MOF for Hexane Isomers Separation. Angewandte Chemie, 2023, 135, .	2.0	1
1677	Linker Vacancy Engineering of a Robust ftwâ€type Zrâ€MOF for Hexane Isomers Separation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1678	Microenvironment regulation of Ru(bda)L2 catalyst incorporated in metal-organic framework for effective photo-driven water oxidation. Chinese Journal of Catalysis, 2023, 48, 127-136.	14.0	1

#	Article	IF	CITATIONS
1679	Unlocking New Topologies in Zr-Based Metal–Organic Frameworks by Combining Linker Flexibility and Building Block Disorder. Journal of the American Chemical Society, 2023, 145, 10051-10060.	13.7	6
1680	Mixed matrix membrane for enhanced Ethanol/Water pervaporation separation by incorporation of hydrophilic Zr-MOF NU-906 in chitosan. Separation and Purification Technology, 2023, 318, 123985.	7.9	4
1681	Phosphateâ€functionalized Zirconium Metal–Organic Frameworks for Enhancing Lithium–Sulfur Battery Cycling. Chemistry - A European Journal, 2023, 29, .	3.3	1
1682	Construction of Water Vapor Stable Ultramicroporous Copper-Based Metal–Organic Framework for Efficient CO2 Capture. Processes, 2023, 11, 1387.	2.8	0
1683	Preparation of Thiadiazole Modified UiO-68-CdS Composites for RhB Degradation under Visible Light Irradiation. Crystals, 2023, 13, 785.	2.2	0
1684	Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions. Nano Research, 2023, 16, 11334-11341.	10.4	6
1685	Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35, 108587.	9.0	1
1686	Facile Fabrication of PTA@MOF-808H Nanocomposites in Acidic Media Employing Hydrogen Peroxide for Catalytic Oxidative Desulfurization of Fuel Oil. Springer Proceedings in Energy, 2023, , 115-123.	0.3	1
1687	Palladium Nanoparticle-Decorated Porous Metal–Organic-Framework (Zr)@Guanidine: Novel Efficient Catalyst in Cross-Coupling (Suzuki, Heck, and Sonogashira) Reactions and Carbonylative Sonogashira under Mild Conditions. ACS Omega, 2023, 8, 16395-16410.	3.5	4
1688	Photoreactive Carbon Dioxide Capture by a Zirconium–Nanographene Metal–Organic Framework. Journal of Physical Chemistry Letters, 2023, 14, 4334-4341.	4.6	3
1689	Oxidation-Responsive PolyMOF Nanoparticles for Combination Photodynamic-Immunotherapy with Enhanced STING Activation. ACS Nano, 2023, 17, 9374-9387.	14.6	10
1690	NH2-Modified UiO-66: Structural Characteristics and Functional Properties. Molecules, 2023, 28, 3916.	3.8	4
1691	Quantification of Linker Defects in UiO-Type Metal–Organic Frameworks. Chemistry of Materials, 2023, 35, 3793-3800.	6.7	17
1692	Postsynthetic Photochemical Modification and 2D Structuring of Zrâ€MOF Thin Films Containing Benzophenone Linker Molecules. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1693	Postsynthetische Photochemische Modifizierung und 2D Strukturierung von Zrâ€MOF DÃ⅓nnfilmen mit Benzophenon LinkermolekÃ⅓len. Angewandte Chemie, 2023, 135, .	2.0	0
1694	Cysteine-functionalization zirconium-organic framework for efficient adsorption 2,4-dichlorophenylacetic acid from water. Journal of Environmental Chemical Engineering, 2023, 11, 110162.	6.7	5
1695	Development of high refractive index UiO-66 framework derivatives <i>via</i> ligand halogenation. Physical Chemistry Chemical Physics, 2023, 25, 15391-15399.	2.8	1
1696	Metalâ€"Organic Frameworks for Water Harvesting: Machine Learning-Based Prediction and Rapid Screening. ACS Sustainable Chemistry and Engineering, 2023, 11, 8148-8160.	6.7	4

#	Article	IF	CITATIONS
1697	Reprogramming of the tumor microenvironment using a PCN-224@IrNCs/ <scp>d</scp> -Arg nanoplatform for the synergistic PDT, NO, and radiosensitization therapy of breast cancer and improving anti-tumor immunity. Nanoscale, 2023, 15, 10715-10729.	5.6	1
1698	Carboxamide functionality grafted entangled Co(<scp>ii</scp>) framework as a unique hydrogen-bond-donor catalyst in solvent-free tandem deacetalization-Knoevenagel condensation with pore-fitting-mediated size-selectivity. Dalton Transactions, 2023, 52, 8661-8669.	3.3	2
1699	A fluorescent aptasensor for quantification of cocaine mediated by signal amplification characteristics of UiO-66/AuNPs nanocomposite. Analytical Biochemistry, 2023, 674, 115193.	2.4	0
1700	Engineering earth-abundant copper(<scp>i</scp>) sensitizing centers in metal–organic frameworks for efficient photosynthesis. Journal of Materials Chemistry A, O, , .	10.3	1
1701	Rational design of stable functional metal–organic frameworks. Materials Horizons, 2023, 10, 3257-3268.	12.2	13
1702	Controlled Growth of a Photocatalytic Metal–Organic Framework on Conductive Plates by Mixing Direct Synthesis and Postsynthetic Modification Strategies. ACS Applied Energy Materials, 0, , .	5.1	0
1703	Gold nanoparticle decorated post-synthesis modified UiO-66-NH2 for A3-coupling preparation of propargyl amines. Scientific Reports, 2023, 13, .	3.3	1
1704	A Turn-Off Fluorescent Biomimetic Sensor Based on a Molecularly Imprinted Polymer-Coated Amino-Functionalized Zirconium (IV) Metal–Organic Framework for the Ultrasensitive and Selective Detection of Trace Oxytetracycline in Milk. Foods, 2023, 12, 2255.	4.3	0
1705	Stabilization of Pd NPs over the surface of β-cyclodextrin incorporated UiO-66-NH ₂ for the Câ€"C coupling reaction. RSC Advances, 2023, 13, 17143-17154.	3.6	3
1706	Acidic Properties of Known and New OOH Functionalized M(IV) Metalâ€Organic Frameworks. Chemistry - A European Journal, 0, , .	3.3	0
1707	High-Concentration Self-Assembly of Zirconium- and Hafnium-Based Metal–Organic Materials. Journal of the American Chemical Society, 2023, 145, 13273-13283.	13.7	9
1708	Guest-induced structural deformation in Cu-based metal-organic framework upon hydrocarbon adsorption. Microporous and Mesoporous Materials, 2023, 360, 112699.	4.4	2
1709	Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35, 108661.	9.0	2
1710	Enhancement of catalytic hydrolysis activity for organophosphates by the metal–organic framework MOF-808-NH ₂ <i>via</i> post-synthetic modification. Journal of Materials Chemistry A, 2023, 11, 13300-13308.	10.3	3
1711	Reticular Chemistry in Its Chiral Form: Axially Chiral Zr(IV)-Spiro Metal–Organic Framework as a Case Study. Journal of the American Chemical Society, 2023, 145, 13869-13878.	13.7	7
1712	Stepwise Assembly of Quinary Multivariate Metal–Organic Frameworks via Diversified Linker Exchange and Installation. Journal of the American Chemical Society, 2023, 145, 13929-13937.	13.7	3
1713	Controlling polyHIPE Surface Properties by Tuning the Hydrophobicity of MOF Particles Stabilizing a Pickering Emulsion. ACS Applied Materials & Emulsion. ACS Applied Materials & Emulsion. ACS Applied Materials & Emulsion.	8.0	2
1714	UiO-66 nanoparticles as a drug delivery system: A comprehensive review. Journal of Drug Delivery Science and Technology, 2023, 86, 104690.	3.0	8

#	Article	IF	CITATIONS
1715	Survival of Zirconium-Based Metal–Organic Framework Crystallinity at Extreme Pressures. Inorganic Chemistry, 2023, 62, 10092-10099.	4.0	1
1717	pH-stable MOFs: Design principles and applications. Coordination Chemistry Reviews, 2023, 493, 215301.	18.8	18
1718	Visible-light-driven organic oxidation over CdS-doped metal–organic frameworks. Dalton Transactions, 2023, 52, 8857-8863.	3.3	2
1719	Recent Advances in Metal–Organic Frameworks Based on Electrospinning for Energy Storage. Advanced Fiber Materials, 2023, 5, 1592-1617.	16.1	11
1720	Aptasensors with palladium nanoparticle-modified hemin-containing metal–organic frameworks as the signal marker for detection of exosomes. Analyst, The, 2023, 148, 3740-3747.	3. 5	1
1722	Biomimetic Photodegradation of Glyphosate in Carborane-Functionalized Nanoconfined Spaces. Journal of the American Chemical Society, 2023, 145, 13730-13741.	13.7	6
1723	Electrochemical High-Performance Hybrid Supercapacitors of Carbon Nanosphere Doped 3D Zr (II) Linked 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-Yl]Sulfanyl}Benzoic Acid Metal Organic Frameworks. Advanced Materials Research, 0, 1177, 87-100.	0.3	0
1724	Recent advances for water-stable metal-organic frameworks (MOFs). Journal of Physics: Conference Series, 2023, 2478, 062029.	0.4	0
1725	Systematic Study on Zirconium Chelidamates: From a Molecular Complex to a M-HOF and a MOF. Inorganic Chemistry, 2023, 62, 12252-12259.	4.0	3
1726	Removal of norfloxacin from high salinity wastewater by Hf-porphyrin MOF with missing linker defects: Insights into anion trapping and photoinduced charge transfer effects. Chemical Engineering Journal, 2023, 466, 143194.	12.7	11
1727	A smartphone-assisted dual-response imprinted fluorescence sensor based on UiO-66 and quantum dots for detecting bovine hemoglobin. Microchemical Journal, 2023, 191, 108825.	4.5	4
1728	A UiO-66-NH2 MOF/PAMAM Dendrimer Nanocomposite for Electrochemical Detection of Tramadol in the Presence of Acetaminophen in Pharmaceutical Formulations. Biosensors, 2023, 13, 514.	4.7	9
1729	A water stable and highly fluorescent Zn(<scp>ii</scp>) based metal–organic framework for fast detection of Hg ²⁺ , Cr ^{VI} , and antibiotics. Dalton Transactions, 2023, 52, 7611-7619.	3.3	8
1730	Highly luminescent and thermostable R6G@DUT-52 composite for sensing Fe3+ ion and white light emitting diode. Chemical Engineering Journal, 2023, 466, 143290.	12.7	2
1731	Research development of porphyrin-based metal–organic frameworks: targeting modalities and cancer therapeutic applications. Journal of Materials Chemistry B, 2023, 11, 6172-6200.	5.8	5
1732	Ligand-directed structure evolution from a titanium-oxo cluster to coordination capsule and one-dimensional coordination polymer based on {Ti ₃ O} units. New Journal of Chemistry, 2023, 47, 11312-11317.	2.8	1
1733	Fe3O4@iron-based metal–organic framework nanocomposite [Fe3O4@MOF (Fe) NC] as a recyclable magnetic nano-organocatalyst for the environment-friendly synthesis of pyrano[2,3-d]pyrimidine derivatives. Frontiers in Chemistry, 0, 11, .	3.6	3
1734	Unveiling Unexpected Modulator-CO ₂ Dynamics within a Zirconium Metal–Organic Framework. Journal of the American Chemical Society, 2023, 145, 11195-11205.	13.7	14

#	Article	IF	CITATIONS
1735	DigiMOF: A Database of Metal–Organic Framework Synthesis Information Generated via Text Mining. Chemistry of Materials, 2023, 35, 4510-4524.	6.7	10
1736	Process intensification of synthesis of metal organic framework particles assisted by ultrasound irradiation. Ultrasonics Sonochemistry, 2023, 96, 106443.	8.2	0
1738	Highly thermostable mixed lanthanide organic frameworks with high quantum yield for warm white light-emitting diodes. Frontiers in Chemistry, 0, 11 , .	3.6	0
1739	MOFs for long-term gas storage: exploiting kinetic trapping in ZIF-8 for on-demand and stimuli-controlled gas release. Inorganic Chemistry Frontiers, 2023, 10, 4763-4772.	6.0	5
1740	[Zr ₆ (μ ₃ â€O) ₄ (μ ₃ â€OH) ₄](1â€adamantane a model for extrinsic "defectâ€engineerable―porosity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	carboxylat 1.2	te) _{12< 0}
1741	Ultrastable 3D cage-like metal–organic frameworks constructed using polydentate cyanurate ligands and their gas adsorption properties. Dalton Transactions, 2023, 52, 10183-10189.	3.3	O
1742	Fragment-based approach for the efficient calculation of the refractive index of metal–organic frameworks. Physical Chemistry Chemical Physics, 2023, 25, 19013-19023.	2.8	1
1743	Review and Perspectives of Monolithic Metal–Organic Frameworks: Toward Industrial Applications. Energy & Samp; Fuels, 2023, 37, 9938-9955.	5.1	5
1744	A Study of the Fabrication of Different-Dimensional Metal–Organic Frameworks and Their Hybrid Composites for Novel Applications. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
1745	Metal organic framework MOF-808-based solid-state electrolytes for lithium-ion batteries. New Journal of Chemistry, 0, , .	2.8	2
1746	Removing Perfluoro Pollutants PFOA and PFOS by Two-Pronged Design of a Ni ₈ -Pyrazolate Porous Framework. ACS Applied Materials & Interfaces, 2023, 15, 35107-35116.	8.0	1
1747	Confinement of Organic Dyes in UiO-66-Type Metal–Organic Frameworks for the Enhanced Synthesis of [1,2,5]Thiadiazole[3,4- <i>g</i>]benzoimidazoles. Journal of the American Chemical Society, 2023, 145, 17588-17596.	13.7	4
1748	Regulating highly photoelectrochemical activity of Zr-based mixed-linker metal-organic frameworks toward sensitive electrogenerated chemiluminescence sensing of \hat{l}_{\pm} -glucosidase. Biosensors and Bioelectronics, 2023, 237, 115530.	10.1	2
1749	A New Approach to the Ring-Opening of Epoxides under Mild and Green Conditions. Polycyclic Aromatic Compounds, 0, , $1\text{-}14$.	2.6	0
1750	Highly Efficient Photocatalytic Degradation of Tetracycline by Modifying UiO-66 via Different Regulation Strategies. ACS Omega, 0, , .	3.5	1
1751	Advances in Metal–Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms. Nanomaterials, 2023, 13, 2178.	4.1	0
1752	A Bifunctional Coordinationâ€Chainâ€Based Hydrogenâ€Bonded Framework for Quantitative Enantioselective Sensing. Chemistry - A European Journal, 2023, 29, .	3.3	2
1753	Interfacial bonding, corrosion, and wear behavior of Zr-based amorphous (Zr41.2Ti13.8Cu12.5Ni10Be22.5) alloy coatings prepared by plasma spraying technique. Surface and Coatings Technology, 2023, 470, 129818.	4.8	4

#	Article	IF	CITATIONS
1754	Polyphenol-Based Nanoparticles: A Promising Frontier for Enhanced Colorectal Cancer Treatment. Cancers, 2023, 15, 3826.	3.7	5
1755	Conductive Lanthanide Metal–Organic Frameworks with Exceptionally High Stability. Journal of the American Chemical Society, 2023, 145, 16983-16987.	13.7	5
1756	Microwave-activated Cu-doped zirconium metal-organic framework for a highly effective combination of microwave dynamic and thermal therapy. Journal of Controlled Release, 2023, 361, 102-114.	9.9	3
1757	Six metal–organic architectures from a 5-methoxyisophthalate linker: assembly, structural variety and catalytic features. RSC Advances, 2023, 13, 23745-23753.	3.6	1
1758	Research progress in photocatalysis of rare earth metal-organic frameworks: From environmental restoration, resource utilization to photodynamic therapy. Inorganic Chemistry Communication, 2023, 156, 111210.	3.9	O
1759	Boosting Antibacterial Photodynamic Therapy in a Nanosized Zr MOF by the Combination of Ag NP Encapsulation and Porphyrin Doping. Inorganic Chemistry, 2023, 62, 13892-13901.	4.0	3
1760	Immobilized hindered amine radical scavenger for durability enhancement of perfluorosulfonic acid membrane in PEMFCs. Journal of Membrane Science, 2023, 686, 121999.	8.2	11
1761	What factors determine activity of UiO-66 in H2O2-based oxidation of thioethers? The role of basic sites. Journal of Catalysis, 2023, 427, 115099.	6.2	2
1762	Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. Science and Technology of Advanced Materials, 2023, 24, .	6.1	0
1763	Polymer dots for photoelectrochemical bioanalysis. , 2023, , 43-69.		0
1764	Peptide nucleic acid-zirconium coordination nanoparticles. Scientific Reports, 2023, 13, .	3.3	0
1765	Current advances in the detection and removal of organic arsenic by metal-organic frameworks. Chemosphere, 2023, 339, 139687.	8.2	1
1766	Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal–organic frameworks: a review. RSC Advances, 2023, 13, 25182-25208.	3.6	1
1767	Elucidating the role of synthesis conditions on Zr-MOF properties and yield. Materials Chemistry and Physics, 2023, 309, 128448.	4.0	0
1768	Synthesis strategies of metal-organic frameworks for CO ₂ capture., 0, 3, .		2
1769	Multifunctional Roles of Dihydrotetrazine-Decorated Zr-MOFs in Photoluminescence and Colorimetrism for Discrimination of Arsenate and Phosphate Ions in Water. ACS Applied Materials & Samp; Interfaces, 2023, 15, 39319-39331.	8.0	1
1770	A luminescent Eu-based MOFs material for the sensitive detection of nitro explosives and development of fingerprint. Inorganic Chemistry Communication, 2023, 156, 111267.	3.9	7
1772	Ultra-fast Proton Conduction and Photocatalytic Water Splitting in a Pillared Metal–Organic Framework. Journal of the American Chemical Society, 2023, 145, 19225-19231.	13.7	5

#	Article	IF	CITATIONS
1773	MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta, 2024, 266, 125124.	5.5	5
1775	Recent advances in tailoring zeolitic imidazolate frameworks (ZIFs) and their derived materials based on hard template strategy for multifunctional applications. Coordination Chemistry Reviews, 2024, 498, 215464.	18.8	5
1776	Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology. Nature Communications, 2023, 14 , .	12.8	2
1777	Integrating Metal Complex Units and Redox Sites into Thoriumâ€Based Metal–Organic Frameworks for Selective Photocatalytic Oxidation of Sulfides. Advanced Functional Materials, 2023, 33, .	14.9	2
1778	Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks. Nanomaterials, 2023, 13, 2754.	4.1	1
1779	The stability of MOFs in aqueous solutions—research progress and prospects. Green Chemical Engineering, 2023, , .	6.3	6
1780	Unravelling the Water Adsorption Mechanism in Hierarchical MOFs: Insights from In Situ Positron Annihilation Lifetime Studies. ACS Applied Materials & Samp; Interfaces, 2023, 15, 48264-48276.	8.0	0
1781	Enhancing catalytic activity and pore structure of metal–organic framework-808 via ligand competition for biodiesel production from microalgal lipids at reduced temperatures. Bioresource Technology, 2023, 386, 129533.	9.6	3
1782	Recent advances in Porphyrin-based metal organic frameworks and composites for photocatalytic hydrogen evolution and water treatment. Chemical Engineering Research and Design, 2023, 199, 620-638.	5.6	1
1783	Coordination Bonding Directed Molecular Assembly toward Functional Metal–Organic Frameworks: From Structural Regulation to Properties Modulation. Accounts of Materials Research, 2023, 4, 839-853.	11.7	3
1784	Introduction to metal–organic frameworks. , 2024, , 1-24.		0
1785	A Novel Platform of MOF for Sonodynamic Therapy Advanced Therapies. Pharmaceutics, 2023, 15, 2071.	4.5	4
1786	Upcycling plastic waste: Rapid aqueous depolymerization of PET and simultaneous growth of highly defective UiO-66 metal-organic framework with enhanced CO2 capture via one-pot synthesis. Chemical Engineering Journal, 2023, 473, 145349.	12.7	8
1787	Metal phosphonates find their way for CO2 cycloaddition: A mini-review. Inorganic Chemistry Communication, 2023, 156, 111220.	3.9	0
1788	Sulfate promotes the photocatalytic degradation of antibiotics by porphyrin MOF: The electron-donating effect of the anion., 2023, 2, 46-56.		0
1789	Electrospun mesh pattern of polyvinyl alcohol/zirconium-based metal-organic framework nanocomposite as a sorbent for extraction of phthalate esters. Journal of Chromatography A, 2023, 1707, 464295.	3.7	7
1790	Characterization, Structure, and Reactivity of Hydroxyl Groups on Metalâ€Oxide Cluster Nodes of Metal–Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis. Advanced Materials, 2024, 36, .	21.0	1
1791	How Reproducible is the Synthesis of Zr–Porphyrin Metal–Organic Frameworks? An Interlaboratory Study. Advanced Materials, 0, , .	21.0	3

#	Article	IF	Citations
1792	Facet-controlled assembly for organizing metal-organic framework particles into extended structures. IScience, 2023, 26, 107867.	4.1	0
1793	Performance of Zr-Based Metal–Organic Framework Materials as In Vitro Systems for the Oral Delivery of Captopril and Ibuprofen. International Journal of Molecular Sciences, 2023, 24, 13887.	4.1	1
1794	Metagenomic insights into the improvement of CO2/H2 biomethanation or biogas upgrading using zirconium metal organic frameworks. Journal of Environmental Chemical Engineering, 2023, 11, 110965.	6.7	0
1795	Reaction Mechanisms and Catalytic Performance of CO ₂ to Aromatics Over M(ZnO,) Tj ETQq1 1 Sustainable Chemistry and Engineering, 2023, 11, 14334-14347.		T /Overlock O
1796	Investigation of differences in the protein transport capability of homochiral nanochannels., 2023, 2, 100039.		0
1797	Understanding the structure-dependent adsorption behavior of four zirconium-based porphyrinic MOFs for the removal of pharmaceuticals. Microporous and Mesoporous Materials, 2024, 363, 112827.	4.4	2
1798	Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. Journal of Environmental Management, 2023, 347, 119089.	7.8	0
1799	Core-shell design of UiO66-Fe3O4 configured with EDTA-assisted washing for rapid adsorption and simple recovery of heavy metal pollutants from soil. Journal of Environmental Sciences, 2024, 139, 556-568.	6.1	2
1800	Simplifying the Synthesis of Metal–Organic Frameworks. Accounts of Materials Research, 2023, 4, 867-878.	11.7	1
1801	A bio-platform TCN@HKUST-1 with admirable biocompatibility was applied to the antibacterial field. Polyhedron, 2023, 246, 116677.	2.2	2
1802	A Cationic Octanuclear Zirconium Peroxide Ring with Unusual Thermal Stability. Inorganic Chemistry, 2023, 62, 16669-16672.	4.0	0
1803	Combined experimental and theoretical studies on iodine capture of Zr-based metal-organic frameworks: Effect of N-functionalization and adsorption mechanism. Materials Today Sustainability, 2023, 24, 100574.	4.1	O
1804	Highly sensitive ratiometric fluorescence detection of tetracycline residues in food samples based on Eu/Zr-MOF. Food Chemistry, 2024, 436, 137717.	8.2	1
1805	Critical Role of Defects in UiO-66 Nanocrystals for Catalysis and Water Remediation. ACS Applied Nano Materials, 2023, 6, 18698-18720.	5. O	3
1806	Integrating catalytic role of gold nanoparticles with in-situ confinement effect of zirconium-based metal-organic frameworks for electrochemical determination of methylmercury. Electrochimica Acta, 2023, 471, 143374.	5.2	1
1807	Coordination Polymers from an Amino-Functionalized Terphenyl-Tetracarboxylate Linker: Structural Multiplicity and Catalytic Properties. Inorganic Chemistry, 0, , .	4.0	О
1808	Morpholine derivatives as low volatility bases toward hydrolysis of toxic organophosphorus chemicals. Journal of Molecular Structure, 2024, 1296, 136852.	3.6	0
1810	Kind and role of linkers for metal–organic frameworks. , 2024, , 35-50.		O

#	Article	IF	CITATIONS
1811	UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation. Separation and Purification Technology, 2024, 331, 125456.	7.9	1
1812	Postsynthetic Modification of the Nonanuclear Node in a Zirconium Metal–Organic Framework for Photocatalytic Oxidation of Hydrocarbons. Journal of the American Chemical Society, 2023, 145, 24052-24060.	13.7	2
1813	Concomitant role of metal clusters and ligands in the synthesis and control of porosity in Metal-Organic Frameworks: A literature review. Results in Chemistry, 2023, 6, 101206.	2.0	1
1814	Recent Advances in Reticular Chemistry for Clean Energy, Global Warming, and Water Shortage Solutions. Advanced Functional Materials, 0, , .	14.9	2
1815	Engineering hydroxyls on a metal-organic framework as Adsorbers and high-activity Dehydrochlorination sites for selective gold recovery. Resources, Conservation and Recycling, 2023, 199, 107286.	10.8	0
1816	Exosome-tuned MOF signal amplifier boosting tumor exosome phenotyping with high-affinity nanostars. Biosensors and Bioelectronics, 2024, 245, 115828.	10.1	1
1817	The role of terminal coordinated amides in a series of Ca-tatb frameworks: pore size regulation and fluorescence sensing tunability. Journal of Materials Chemistry C, 2023, 11, 15841-15847.	5 . 5	0
1818	A luminescent metal-organic framework as a highly sensitive and selective sensor for the detection of iodate. Journal of Organometallic Chemistry, 2024, 1003, 122929.	1.8	0
1819	Multiresponsive luminescent sensors for antibiotics and CrVI with two luminescent ZnII/CdII coordination complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 306, 123615.	3.9	0
1820	Sulfamic Acid Supported Zr-MOF: An Effective Catalyst for One-Step Synthesis of Novel 6-Amino-5-(4-Amino-2-Oxo-2 <i>H</i> -Chromen) Analogs. Polycyclic Aromatic Compounds, 0, , 1-19.	2.6	O
1821	Design and Advanced Manufacturing of NUâ€1000 Metal–Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. Small, 0, , .	10.0	4
1822	Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks. Dalton Transactions, 2023, 52, 17679-17683.	3.3	O
1823	Application of metal-organic frameworks for sensing of VOCs and other volatile biomarkers. Coordination Chemistry Reviews, 2024, 501, 215558.	18.8	2
1824	A stable ultra-microporous hafnium-based metal–organic framework with high performance for CO ₂ adsorption and separation. CrystEngComm, 2023, 25, 6489-6495.	2.6	0
1825	Recent Advances and Synergistic Effects of Non-Precious Carbon-Based Nanomaterials as ORR Electrocatalysts: A Review. Molecules, 2023, 28, 7751.	3.8	1
1826	Towards ultrathin metal-organic frameworks membranes for high-performance separation. APL Materials, 2023, 11 , .	5.1	0
1827	Reactivity of metal–oxo clusters towards biomolecules: from discrete polyoxometalates to metal–organic frameworks. Chemical Society Reviews, 2024, 53, 84-136.	38.1	5
1828	Accessing Benzylic Amine and Azide Chemical Handles in Canonical Metal–Organic Frameworks. Chemistry of Materials, 2023, 35, 9702-9712.	6.7	0

#	Article	IF	CITATIONS
1829	Zero- to One-Dimensional Zn24 Supraclusters: Synthesis, Structures and Detection Wavelength. Nanomaterials, 2023, 13, 3058.	4.1	0
1830	Continuous flow synthesis of PCN-222 (MOF-545) with controlled size and morphology: a sustainable approach for efficient production. Green Chemistry, 2023, 25, 10596-10610.	9.0	0
1831	Azo sulfathiazole-modified UiO-66-NH2 for the three-component synthesis of pyrrolo [1, 2-c] imidazoles. Journal of Molecular Structure, 2024, 1300, 137172.	3.6	0
1832	Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS Applied Materials & Samp; Interfaces, 2023, 15, 56587-56599.	8.0	0
1833	One-step facile synthesis of polyethylene terephthalate–derived metal–organic framework for liquid-phase adsorption of benzophenone-4. Chemical Engineering Journal Advances, 2023, 16, 100581.	5.2	0
1834	Elucidating influences of defects and thermal treatments on CO2 capture of a Zr-based metal–organic framework. Chemical Engineering Journal, 2024, 479, 147605.	12.7	1
1835	Heterogenized molecular Pd(<scp>ii</scp>) catalyst on ultrathin 2D metal–organic frameworks with nanoflower-like morphology for isonitrile-involved cyclization reaction. Catalysis Science and Technology, 2023, 13, 7036-7045.	4.1	0
1836	Cobalt- and calcium-based metal–organic frameworks (MOFs) as an advanced electrode material for supercapacitors. Materials Research Innovations, 0, , 1-10.	2.3	O
1837	Modulator-Dependent Dynamics Synergistically Enabled Record SO ₂ Uptake in Zr(IV) Metal–Organic Frameworks Based on Pyrene-Cored Molecular Quadripod Ligand. Journal of the American Chemical Society, 0, , .	13.7	0
1838	Room-temperature aqueous synthesis of MOF-808(Zr) for selective adsorption of dye mixtures. Separation and Purification Technology, 2024, 333, 125957.	7.9	0
1839	High-adaptability refrigeration under extreme temperatures in summer enabled by metal-organic framework. Fundamental Research, 2023, , .	3.3	0
1840	Conquering Metal–Organic Frameworks by Raman Scattering Techniques. Advanced Functional Materials, 0, , .	14.9	0
1841	Increasing Mass Transfer Resistance of MOFs as a Reverse Tuning Strategy to Achieve High-Resolution Gas Chromatographic Separation. Analytical Chemistry, 0, , .	6.5	0
1844	Constructing Lanthanideâ€Organic Complexes for Xâ€ray Scintillation and Imaging. Chemistry - A European Journal, 0, , .	3.3	0
1845	Metal-Organic Framework Based Electrochemical Sensors. , 0, , .		0
1846	Spatiotemporal manipulation metal–organic frameworks as oral drug delivery systems for precision medicine. Coordination Chemistry Reviews, 2024, 502, 215615.	18.8	3
1848	Single-atom catalysts for electrocatalytic applications: Synthetic strategies, in-situ characterization, and future challenges. Applied Materials Today, 2024, 36, 102037.	4.3	0
1849	Functionalized <scp>UiO</scp> â€66 as an efficient catalyst for the synthesis of bioâ€based poly(1,3â€propylene sebacate). Journal of Applied Polymer Science, 2024, 141, .	2.6	O

#	Article	IF	Citations
1850	An Octacarboxylate-Linked Sodium Metal–Organic Framework with High Porosity. Journal of the American Chemical Society, 0, , .	13.7	0
1851	Metal-organic frameworks (MOFs) and their applications in detection, conversion, and depletion of nitroaromatic pollutants. Inorganic Chemistry Communication, 2024, 160, 111982.	3.9	0
1852	Stability of Zr-Based UiO-66 Metal–Organic Frameworks in Basic Solutions. Nanomaterials, 2024, 14, 110.	4.1	1
1853	A novel amine-functionalized polyoxometalate-based metal-organic framework: A reusable heterogeneous nanocomposite for selective oxidation of alcohols. Journal of Molecular Structure, 2024, 1303, 137503.	3.6	0
1854	Improving bioelectrochemical performance by sulfur-doped titanium dioxide cooperated with Zirconium based metal–organic framework (S-TiO2@MOF-808) as cathode in microbial fuel cells. Bioresource Technology, 2024, 394, 130288.	9.6	0
1855	Adsorption of aqueous Cr (VI) onto UiO66NH2 MOF: Isotherm, thermodynamics and mechanism studies. Materials Today: Proceedings, 2024, , .	1.8	0
1856	Advances in MOFs and their derivatives for non‑noble metal electrocatalysts in water splitting. Coordination Chemistry Reviews, 2024, 503, 215639.	18.8	5
1857	Leveraging metal node-linker self-assembly to access functional anisotropy of zirconium-based MOF-on-MOF epitaxial heterostructure thin films. Chemical Science, 2024, 15, 2586-2592.	7.4	O
1858	Flexible–robust MOFs/HOFs for challenging gas separations. Coordination Chemistry Reviews, 2024, 505, 215660.	18.8	1
1859	Water-stable metal–organic frameworks (MOFs): rational construction and carbon dioxide capture. Chemical Science, 2024, 15, 1570-1610.	7.4	0
1860	A Green Environmental Protection Photocatalytic Molecular Reactor for Aerobic Oxidation of Sulfide to Sulfoxide. Chemistry - A European Journal, 2024, 30, .	3.3	0
1862	Chiral Reticular Chemistry: A Tailored Approach Crafting Highly Porous and Hydrolytically Robust Metal–Organic Frameworks for Intelligent Humidity Control. Journal of the American Chemical Society, 2024, 146, 2141-2150.	13.7	0
1863	Combined DFT and Kinetic Monte Carlo Study of UiO-66 Catalysts for Î ³ -Valerolactone Production. Journal of Physical Chemistry C, 2024, 128, 1049-1057.	3.1	0
1864	Stepwise post-synthetic linker installation in rare-earth metal–organic frameworks. Journal of Materials Chemistry C, 2024, 12, 2836-2842.	5.5	0
1865	Recent advances in metal–organic frameworks for stimuli-responsive drug delivery. Nanoscale, 2024, 16, 4434-4483.	5.6	0
1866	Applications of Emerging Metal and Covalent Organic Frameworks in Perovskite Photovoltaics: Materials and Devices. Advanced Energy Materials, 2024, 14, .	19.5	0
1867	Reticular chemistry guided precise construction of zirconium-pentacarboxylate frameworks with 5-connected Zr ₆ clusters. Chemical Science, 2024, 15, 3174-3181.	7.4	0
1868	Insights into the Spray Synthesis of UiO-66 and UiO-66-NH2 Metal–Organic Frameworks: Effect of Zirconium Precursors and Process Parameters. Crystals, 2024, 14, 116.	2.2	0

#	Article	IF	CITATIONS
1869	Enhanced atmospheric water harvesting (AWH) by Co-based MOF with abundant hydrophilic groups and open metal sites. Journal of Water Process Engineering, 2024, 58, 104899.	5.6	0
1870	Solar-Driven Ammonia Production through Engineering of the Electronic Structure of a Zr-Based MOF. Inorganic Chemistry, 2024, 63, 2327-2339.	4.0	0
1871	Effective adsorption of methyl orange dye from water samples over copper(II) Schiff-base complex-immobilized cerium-based metal-organic framework. Journal of Molecular Structure, 2024, 1304, 137612.	3.6	0
1872	Exploiting the Warburg Effect: Coâ€Delivery of Metformin and FOXK2 siRNA for Ovarian Cancer Therapy. Small Science, 2024, 4, .	9.9	O
1873	Evaluating the Role of Functional Groups in the Selective Capture of Ag(I) onto UiO-66-Type Metal–Organic Frameworks. Langmuir, 2024, 40, 3222-3230.	3.5	0
1874	Reversible solvent interactions with UiO-67 metal–organic frameworks. Journal of Chemical Physics, 2024, 160, .	3.0	0
1875	Building robust metal-organic frameworks with premade ligands. Coordination Chemistry Reviews, 2024, 505, 215690.	18.8	0
1876	A Review on Metal–Organic Framework as a Promising Catalyst for Biodiesel Production. Energy & Samp; Fuels, 2024, 38, 2654-2689.	5.1	0
1877	Covalent-Metal organic Frameworks: Preparation and applications. Chemical Engineering Journal, 2024, 483, 149217.	12.7	0
1878	Building the future: the research frontiers and industrial prospects in framework chemistry. Scientia Sinica Chimica, 2024, , .	0.4	0
1879	Copper tetrazole compounds: Structures, properties and applications. Coordination Chemistry Reviews, 2024, 504, 215604.	18.8	0
1880	Regulating luminescence thermal enhancement in negative thermal expansion metal–organic frameworks. Chemical Science, 2024, 15, 3721-3729.	7.4	0
1881	MOF magic: zirconium-based frameworks in theranostic and bio-imaging applications. Journal of Materials Chemistry B, 2024, 12, 2691-2710.	5.8	0
1882	Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, , 109642.	9.0	0
1883	Decoration of Bi2MoO6 nanosheets with NH2-UiO-66 for boosting visible-light photocatalytic activities. Inorganica Chimica Acta, 2024, 565, 121979.	2.4	0
1884	Yttrium-doped MOFs for efficient phosphate adsorption: Electrochemical properties, electro-assisted desorption, and mechanism study. Separation and Purification Technology, 2024, 341, 126845.	7.9	0
1885	Functionalization of Defective Zr-MOFs for Water Decontamination: Mechanistic Insight into the Competitive Roles of \hat{a} NH ₂ and \hat{a} SH Sites in the Removal of Hg(II) Ions. ACS Applied Materials & Laplaces, 0, , .	8.0	0
1886	Two Better Than One: Enhanced Photoâ€Assisted Liâ€O ₂ Batteries with Bimetallic Feâ€UiOâ€66 Metalâ€Organic Framework Photocathodes. Advanced Functional Materials, 0, , .	14.9	0

#	Article	IF	CITATIONS
1887	Dendrite-free anodes enabled by MOF-808 and ZIF-8 modified glass microfiber separator for ultralong-life zinc-ion hybrid capacitors. Journal of Energy Storage, 2024, 85, 111063.	8.1	0
1888	Preparation and application of UiO-66(Zr) and its derivatives as catalysts in lignocellulosic biomass conversion. Chemical Engineering Journal, 2024, 486, 149971.	12.7	0
1889	Benzothiadiazole-functionalized Zr-MOF nanosheets enable visible-light mediated photocatalytic oxidation of sulfides in water. Journal of Catalysis, 2024, 431, 115395.	6.2	0
1890	Decontamination of Oily and Micro-pollutant Loaded Wastewater Using Metal Organic Framework. , 2024, , .		0
1891	A o-phenanthroline-based metal-organic framework for fluorescence sensing toward CrVI and antibiotics in aqueous phase. Inorganic Chemistry Communication, 2024, 162, 112249.	3.9	0
1892	Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications. Materials Today Energy, 2024, 41, 101542.	4.7	0
1893	Sequential Hydrolysis of Metal Oxo Clusters Drives Polymorphism in Electrodeposited Zirconium Metal–Organic Frameworks. Chemistry of Materials, 2024, 36, 2402-2411.	6.7	0
1894	CO2 photocatalytic reduction with robust and stable metal–organic framework: a review. Materials for Renewable and Sustainable Energy, 2024, 13, 109-132.	3.6	0
1895	Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production. Current Research in Green and Sustainable Chemistry, 2024, 8, 100401.	5.6	0
1896	Engineering ethane-trapping metal-organic framework for efficient ethylene separation under high humid conditions. Separation and Purification Technology, 2024, 342, 127011.	7.9	0
1897	Stepwise Node-Locking of a Mesoporous Zirconium Metal–Organic Framework Toward Enhanced Cycle Stability for Water Adsorption. Chemistry of Materials, 2024, 36, 2652-2660.	6.7	0
1898	Acceleration of the charge transfer rate for efficient photocatalytic hydrogen production via adjusting modulator and introducing electronic bridge dual strategies. Fuel, 2024, 366, 131252.	6.4	0
1899	A robust Zr(IV)-based metal-organic framework featuring high-density free carboxylic groups for efficient uranium recovery. Chemical Engineering Journal, 2024, 486, 150251.	12.7	0
1900	Metal–Organic-Frameworks: as Revolutionizing Material Utilized for Distinct Applications in Precision Farming. BioNanoScience, 0, , .	3 . 5	0
1901	Boosting structural variety and catalytic activity of porphyrinic metal–organic frameworks by harnessing bifunctional ligands. Inorganic Chemistry Frontiers, 2024, 11, 2281-2289.	6.0	0
1902	Probing Structural Imperfections: Protein-Aided Defect Characterization in Metal–Organic Frameworks. , 2024, 6, 1396-1403.		0
1903	Polyoxometalate-based porphyrinic metal-organic frameworks as heterogeneous catalysts. Coordination Chemistry Reviews, 2024, 508, 215764.	18.8	0
1904	Synthesis of stable mesoporous Zr-MOFs using pyrazine-containing ligand for efficient capture of Pb(II) in wastewater. Journal of Environmental Chemical Engineering, 2024, 12, 112543.	6.7	0

#	Article	IF	CITATIONS
1905	Design and Machine Learning Prediction of In Situ Grown PDA-Stabilized MOF (UiO-66-NH ₂) Membrane for Low-Pressure Separation of Emulsified Oily Wastewater. ACS Applied Materials & Samp; Interfaces, 2024, 16, 16271-16289.	8.0	O