Microencapsulation of ginger (Zingiber officinale) extra

LWT - Food Science and Technology 70, 119-125

DOI: 10.1016/j.lwt.2016.02.030

Citation Report

#	Article	IF	CITATIONS
1	Effect of dextrose equivalent on physical and chemical properties of lime essential oil microparticles. Industrial Crops and Products, 2017, 102, 105-114.	5.2	53
2	6-SHOGAOL RICH GINGER OLEORESIN LOADED MIXED MICELLES ENHANCES IN VITRO CYTOTOXICITY ON MCF-7 CELLS AND IN VIVO ANTICANCER ACTIVITY AGAINST DAL CELLS. International Journal of Pharmacy and Pharmaceutical Sciences, 2018, 10, 160.	0.3	7
3	Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Industrial Crops and Products, 2018, 122, 85-92.	5.2	79
4	Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Science and Technology, 2018, 38, 530-536.	1.7	28
5	Effects of Wall Materials and Operating Parameters on Physicochemical Properties, Process Efficiency, and Total Carotenoid Content of Microencapsulated Banana Passionfruit Pulp (Passiflora) Tj ETQq0 0	0 r g.B T/0\	venboock 10 Tf 5
6	Effect of convective and microwave methods on drying characteristics, color, rehydration and microstructure properties of ginger. Food Science and Technology, 2019, 39, 652-659.	1.7	34
7	Development and validation of a novel high performance liquid chromatography-coupled with Corona charged aerosol detector method for quantification of glucosamine in dietary supplements. PLoS ONE, 2019, 14, e0216039.	2.5	11
8	Modeling and optimization of the spray drying parameters for soapwort (Gypsophila Sp.) extract. Food Science and Biotechnology, 2019, 28, 1409-1419.	2.6	5
9	Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Applied Sciences (Switzerland), 2019, 9, 612.	2.5	33
10	Antimicrobial Activity of Ginger (<i>Zingiber Officinale</i>) and Its Application in Food Products. Food Reviews International, 2019, 35, 407-426.	8.4	94
11	Preparation, characterization, and antimicrobial activity of chitosan/gum arabic/polyethylene glycol composite films incorporated with black pepper essential oil and ginger essential oil as potential packaging and wound dressing materials. Advanced Composites and Hybrid Materials, 2020, 3, 485-497.	21.1	58
12	Sulfation, structural analysis, and anticoagulant bioactivity of ginger polysaccharides. Journal of Food Science, 2020, 85, 2427-2434.	3.1	19
13	Natural Macromolecules as Carriers for Essential Oils: From Extraction to Biomedical Application. Frontiers in Bioengineering and Biotechnology, 2020, 8, 563.	4.1	35
14	The role of encapsulant materials on the stability of bioactive compounds of red ginger (Zingiber) Tj ETQq1 1 0.7	843]4 rgE	3T <u>{</u> Qverlock 1
15	Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, 2020, 151, 366-375.	7.5	145
16	Microencapsulation of Lemongrass (Cymbopogon citratus) Essential Oil Via Spray Drying: Effects of Feed Emulsion Parameters. Processes, 2020, 8, 40.	2.8	34
17	Effect and mechanism of thyme microcapsules on histamine production by Morganella morganii MN483274 during the processing of smoked horse meat sausage. Food Control, 2021, 121, 107615.	5.5	12
18	Encapsulation of ginger oleoresin in co-crystallized sucrose: development, characterization and storage stability. Food and Function, 2021, 12, 7964-7974.	4.6	7

#	Article	IF	CITATIONS
19	Encapsulation of ginger essential oil in chitosanâ€based microparticles with improved biological activity and controlled release properties. Journal of Food Processing and Preservation, 2021, 45, e15373.	2.0	17
20	Natural Hydrogels, the Interesting Carriers for Herbal Extracts. Food Reviews International, 2022, 38, 713-737.	8.4	4
21	Green Extraction by Ultrasound, Microencapsulation by Spray Drying and Antioxidant Activity of the Tucuma Coproduct (Astrocaryum vulgare Mart.) Almonds. Biomolecules, 2021, 11, 545.	4.0	8
22	Fate of \hat{i}^2 -cyclodextrin-sugar beet pectin microcapsules containing garlic essential oil in an acidic food beverage. Food Bioscience, 2021, 42, 101029.	4.4	16
23	Preparation and Characterization of Ginger Essential Oil Microcapsule Composite Films. Foods, 2021, 10, 2268.	4.3	18
24	Autoclaveâ€assisted synthesis of AgNPs in <i>Z. officinale</i> extract and assessment of their cytotoxicity, antibacterial and antioxidant activities. IET Nanobiotechnology, 2019, 13, 262-268.	3.8	5
25	Impact of Thyme Microcapsules on Histamine Production by Proteus bacillus in Xinjiang Smoked Horsemeat Sausage. Foods, 2021, 10, 2491.	4.3	2
26	Microstructure of Annona muricata L. Leaves Extract Microcapsules Linked to Physical and Chemical Characteristics. Journal of Encapsulation and Adsorption Sciences, 2018, 08, 178-193.	0.3	0
27	Extraction, phytochemical analysis, monosaccharide composition and functional properties of X. americana seed mucilage. Bioactive Carbohydrates and Dietary Fibre, 2022, 27, 100302.	2.7	3
28	Ginger: a systematic review of clinical trials and recent advances in encapsulation of its bioactive compounds. Food and Function, 2022, 13, 1078-1091.	4.6	7
29	Preservation of Mimosa tenuiflora Antiaflatoxigenic Activity Using Microencapsulation by Spray-Drying. Molecules, 2022, 27, 496.	3.8	0
30	Prototypes of nutraceutical products from microparticles loaded with stilbenes extracted from grape cane. Food and Bioproducts Processing, 2022, 134, 19-29.	3.6	3
31	Effect of excipient wall materials on the development of ginger oleoresin microcapsules: assessing the physicochemical, antioxidant and structural properties. Journal of the Science of Food and Agriculture, 2023, 103, 73-82.	3.5	3
32	Microencapsulation by Spray Drying and Antioxidant Activity of Phenolic Compounds from Tucuma Coproduct (Astrocaryum vulgare Mart.) Almonds. Polymers, 2022, 14, 2905.	4.5	10
33	Synergistic antibacterial mechanism of different essential oils and their effect on quality attributes of ready-to-eat pakchoi (Brassica campestris L. ssp. chinensis). International Journal of Food Microbiology, 2022, 379, 109845.	4.7	5
34	Instant soluble roselle (Hibiscus sabdariffa L.) powder rich in bioactive compounds: Effect of the production process on volatile compounds. Journal of Food Measurement and Characterization, 2023, 17, 108-120.	3.2	5
35	Effect of process parameters on production of ginger oleoresin powder by spray drying using whey protein isolate as the wall material. Biomass Conversion and Biorefinery, 0, , .	4.6	0
36	Ginger in Ayurvedic Preparations and Its Applications in the Development of Nutraceuticals, Dietary Supplements and Functional Foods and Their Beneficial Effects in Various Biological Activities., 2022,, 45-72.		0

3

#	ARTICLE	IF	CITATIONS
37	Protein and polysaccharide based encapsulation of ginger oleoresin: impact of wall materials on powder stability, release rate and antimicrobial characteristics. International Journal of Biological Macromolecules, 2023, 240, 124331.	7.5	3
38	Supercritical fluid extraction of torch ginger: Encapsulation, metabolite profiling, and antioxidant activity. Journal of King Saud University - Science, 2023, 35, 102700.	3.5	0
39	A mixture design approach for developing ginger extract encapsulation by spray drying method: in vitro digestion and release behavior in a model product. Biomass Conversion and Biorefinery, 0, , .	4.6	0
40	Microencapsulation of Phenolic Compounds Extracted from Okra (Abelmoschus esculentus L.) Leaves, Fruits and Seeds. Applied Sciences (Switzerland), 2023, 13, 12273.	2.5	1