Key issues in development of thermoelectric power gen materials and their highly conducting interfaces with m

Energy Conversion and Management 114, 50-67 DOI: 10.1016/j.enconman.2016.01.065

Citation Report

#	Article	IF	CITATIONS
1	Meta-study: Analysis of thermoelectric figure of merit parameters for silicides with various doping agents. PAM Review Energy Science & Technology, 2016, 3, 113-125.	0.2	1
2	Performance calculations of thermoelectric module p-type leg composed of (Bi2Te3)x(Sb2Te3)1-x. E3S Web of Conferences, 2016, 10, 00062.	0.2	0
3	Stack-type thermoelectric power generating module with flexible section and using phase changes of low-boiling-point medium. Energy Conversion and Management, 2016, 127, 103-111.	4.4	4
4	Power output and efficiency of a thermoelectric generator under temperature control. Energy Conversion and Management, 2016, 127, 404-415.	4.4	65
5	Theoretical and experimental analysis of a solar thermoelectric power generation device based on gravity-assisted heat pipes and solar irradiation. Energy Conversion and Management, 2016, 127, 301-311.	4.4	33
6	Influence of pin material configurations on thermoelectric generator performance. Energy Conversion and Management, 2016, 129, 157-167.	4.4	15
7	Enhancements of thermoelectric performance utilizing self-assembled monolayers in semiconductors. Journal of Physics and Chemistry of Solids, 2017, 104, 228-232.	1.9	0
8	An alternative composite approach to tailor the thermoelectric performance in SiAlON and SiC. Journal of the European Ceramic Society, 2017, 37, 3367-3373.	2.8	19
9	Flexo-green Polypyrrole – Silver nanocomposite films for thermoelectric power generation. Energy Conversion and Management, 2017, 144, 143-152.	4.4	41
10	Parametric selection criteria of thermal electron-tunneling amplifiers operating at optimum states. Energy Conversion and Management, 2017, 143, 391-398.	4.4	10
11	Improved approach for determining thin layer thermal conductivity using the 3 <i>ω</i> method. Application to porous Si thermal conductivity in the temperature range 77–300 K. Journal Physics D: Applied Physics, 2017, 50, 195302.	1.3	7
12	Tellurium-free thermoelectrics: Improved thermoelectric performance of n-type Bi 2 Se 3 having multiscale hierarchical architecture. Energy Conversion and Management, 2017, 145, 415-424.	4.4	37
13	A comprehensive study on a novel concentric cylindrical thermoelectric power generation system. Applied Thermal Engineering, 2017, 117, 501-510.	3.0	33
14	A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance. Energy Conversion and Management, 2017, 134, 260-277.	4.4	136
15	Enhanced performance thermoelectric module having asymmetrical legs. Energy Conversion and Management, 2017, 148, 1372-1381.	4.4	102
16	Nanostructured polypyrrole: enhancement in thermoelectric figure of merit through suppression of thermal conductivity. Materials Research Express, 2017, 4, 085007.	0.8	34
17	Designing hybrid architectures for advanced thermoelectric materials. Materials Chemistry Frontiers, 2017, 1, 2457-2473.	3.2	34
18	Bi2Te3-MWCNT nanocomposite: An efficient thermoelectric material. Ceramics International, 2017, 43, 14976-14982.	2.3	49

#	Article	IF	CITATIONS
19	Bi-In-Te phase diagram. Journal of Alloys and Compounds, 2017, 722, 499-508.	2.8	10
20	Sub-zero temperature thermo-electrochemical energy harvesting system using a self-heating negative temperature coefficient CNT-vanadium oxide cathode. Journal of Applied Electrochemistry, 2017, 47, 125-132.	1.5	1
21	Analytical and numerical investigation on a new compact thermoelectric generator. Energy Conversion and Management, 2017, 132, 261-271.	4.4	56
22	Thermodynamic assessment of TEG-ORC combined cycle powered by solar energy. International Journal of Renewable Energy Technology, 2017, 8, 346.	0.2	2
23	A Practical Approach to Evaluate Lattice Thermal Conductivity in Two-Phase Thermoelectric Alloys for Energy Applications. Materials, 2017, 10, 386.	1.3	9
24	Thermoelectric and Transport Properties of Delafossite CuCrO2:Mg Thin Films Prepared by RF Magnetron Sputtering. Nanomaterials, 2017, 7, 157.	1.9	40
25	Joining of Half-Heusler and Bismuth Tellurides for Segmented Thermoelectric Generators. Journal of Electronic Materials, 2018, 47, 701-710.	1.0	14
26	Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials. AIP Conference Proceedings, 2018, , .	0.3	4
27	Ecoâ€Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. Advanced Energy Materials, 2018, 8, 1800056.	10.2	116
28	Elucidating the mechanisms behind thermoelectric power factor enhancement of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) flexible films. Vacuum, 2018, 153, 238-247.	1.6	14
29	Effects of interface layers on the performance of annular thermoelectric generators. Energy, 2018, 147, 612-620.	4.5	37
30	Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators. Energy Conversion and Management, 2018, 166, 337-342.	4.4	65
31	Tuning the thermoelectric properties by manipulating copper in Cu2SnSe3 system. Journal of Alloys and Compounds, 2018, 748, 273-280.	2.8	13
32	Interfacial reactions between Ni and Bi2(Se0.1Te0.9)3 and its constituent material systems. Journal of Alloys and Compounds, 2018, 731, 111-117.	2.8	10
33	Conductive polymers for thermoelectric power generation. Progress in Materials Science, 2018, 93, 270-310.	16.0	274
34	Thermoelectric properties of phosphorus-doped indium tellurosilicate: InSiTe3. Journal of Alloys and Compounds, 2018, 735, 75-80.	2.8	6
35	Design and Simulation of a Novel Thermoelectric Micro-Device with Electrodeposited Bi-Te Alloys. Solid State Phenomena, 0, 281, 788-794.	0.3	0
36	Relationships between Thermoelectric Properties and Milling Rotational Speed on Bi _{0.3} Sb _{1.7} Te _{3.0} Thermoelectric Materials. Materials Transactions, 2018, 59, 1225-1232.	0.4	5

#	Article	IF	CITATIONS
37	Solid-Liquid Interdiffusion (SLID) Bonding of p-Type Skutterudite Thermoelectric Material Using Al-Ni Interlayers. Materials, 2018, 11, 2483.	1.3	10
38	Enhancing the thermoelectric properties of TiNiSn by transition metals co-doped on the Ti-site of Ti0.5TMI0.25TMII0.25NiSn: A first-principles study. Journal of Applied Physics, 2018, 124, 175101.	1.1	3
39	Strongly Enhanced Thermoelectric Performance over a Wide Temperature Range in Topological Insulator Thin Films. ACS Applied Energy Materials, 0, , .	2.5	4
40	Micro-thermoelectric devices with large output power fabricated on a multi-channel glass template. Journal of Micromechanics and Microengineering, 2018, 28, 125002.	1.5	7
41	Enhancing the Thermoelectric Performance of Self-Defect TiNiSn: A First-Principles Calculation. Journal of Electronic Materials, 2018, 47, 7456-7462.	1.0	9
42	Enhanced thermoelectric figure-of-merit of p-type SiGe through TiO2 nanoinclusions and modulation doping of boron. Materialia, 2018, 4, 147-156.	1.3	17
43	Thermoelectric Devices: Influence of the Legs Geometry and Parasitic Contact Resistances on ZT. , 0, , .		4
44	Joint improvement of conductivity and Seebeck coefficient in the ZnO:Al thermoelectric films by tuning the diffusion of Au layer. Materials and Design, 2018, 154, 41-50.	3.3	23
45	Influence of thickness and microstructure on thermoelectric properties of Mg-doped CuCrO2 delafossite thin films deposited by RF-magnetron sputtering. Applied Surface Science, 2018, 455, 244-250.	3.1	20
46	Recent progress and futuristic development of PbSe thermoelectric materials and devices. Materials Today Energy, 2018, 9, 359-376.	2.5	57
47	Performance of Functionally Graded Thermoelectric Materials and Devices: A Review. Journal of Electronic Materials, 2018, 47, 5122-5132.	1.0	36
48	Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3 <i>ï‰</i> method. Review of Scientific Instruments, 2018, 89, 084902.	0.6	10
49	The Importance of the Assembly in Thermoelectric Generators. , 0, , .		6
50	Energy Harvesting Research: The Road from Single Source to Multisource. Advanced Materials, 2018, 30, e1707271.	11.1	203
51	Facile fabrication of p- and n-type half-Heusler alloys with enhanced thermoelectric performance and low specific contact resistance employing spark plasma sintering. Materials Letters, 2018, 228, 250-253.	1.3	15
52	Fabrication of ultrathin poly-crystalline SiGe-on-insulator layer for thermoelectric applications. Journal of Physics Communications, 2019, 3, 075007.	0.5	4
53	Recycled carbon fibre/Bi2Te3 and Bi2S3 hybrid composite doped with MWCNTs for thermoelectric applications. Composites Part B: Engineering, 2019, 175, 107085.	5.9	21
54	Boosting thermoelectric power factor of free-standing Poly(3,4ethylenedioxythiophene):polystyrenesulphonate films by incorporation of bismuth antimony telluride nanostructures. Journal of Power Sources, 2019, 435, 226758.	4.0	21

#	Article	IF	CITATIONS
55	Developing Contacting Solutions for Mg ₂ Si _{1–<i>x</i>} Sn <i>_x</i> Based Thermoelectric Generators: Cu and Ni ₄₅ Cu ₅₅ as Potential Contacting Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 40769-40780.	4.0	23
56	A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties. Composite Structures, 2019, 229, 111484.	3.1	13
57	The Study of Thermomechanical Processes During the Spark Plasma Sintering of Segmented Nanothermoelectrics. Materials Today: Proceedings, 2019, 8, 662-671.	0.9	0
58	CMOS-compatible transition metal disilicide for integrated thermoelectric applications. Materials Today: Proceedings, 2019, 8, 582-591.	0.9	2
59	Interface Effects on Epilayer Surface Density of States by Scanning Tunneling Spectroscopy and Density Functional Theory. Advanced Theory and Simulations, 2019, 2, 1900140.	1.3	2
60	Topological insulator nanoribbons – A new paradigm for high thermoelectric performance. Nano Energy, 2019, 66, 104092.	8.2	6
61	PbO–SiO ₂ -based glass doped with B ₂ O ₃ and Na ₂ O for coating of thermoelectric materials. Journal of Materials Research, 2019, 34, 3563-3572.	1.2	7
62	Advances on solar thermal cogeneration processes based on thermoelectric devices: A review. Solar Energy Materials and Solar Cells, 2019, 200, 109954.	3.0	44
63	Synergetic enhancement of thermoelectric and mechanical properties of n-type SiGe-P alloy through solid state synthesis and spark plasma sintering. Materials Research Bulletin, 2019, 118, 110483.	2.7	5
64	Impedance spectroscopy characterization of neutron irradiated thermoelectric modules for space nuclear power. AIP Advances, 2019, 9, .	0.6	5
65	Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties. Journal of Alloys and Compounds, 2019, 796, 314-320.	2.8	34
66	Effecting the thermoelectric properties of p-MnSi1.75 and n-Mg1.98Ag0.02Si module on power generation. Physica B: Condensed Matter, 2019, 566, 1-5.	1.3	4
67	Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy, 2019, 176, 853-860.	4.5	27
68	Design and development of DC to DC voltage booster to integrate with PbTe/TACS-85 based thermoelectric power generators. Materials Science for Energy Technologies, 2019, 2, 429-433.	1.0	8
69	Low Contact Resistivity and Interfacial Behavior of p-Type NbFeSb/Mo Thermoelectric Junction. ACS Applied Materials & Interfaces, 2019, 11, 14182-14190.	4.0	37
70	Feasibility investigation of a humidification-dehumidification (HDH) desalination system with thermoelectric generator operated by a salinity-gradient solar pond. Desalination, 2019, 462, 1-18.	4.0	58
71	Thermoelectric Energy Harvesting: Basic Principles and Applications. , 0, , .		61
72	Improving the Thermoelectric Performance of Tetrahedrally Bonded Quaternary Selenide Cu2CdSnSe4 Using CdSe Precipitates. Journal of Electronic Materials, 2019, 48, 2120-2130.	1.0	2

#	Article	IF	CITATIONS
73	Contacting Cu Electrodes to Mg2Si0.3Sn0.7: Direct vs. Indirect Resistive Heating. Semiconductors, 2019, 53, 1825-1830.	0.2	8
74	Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. Journal of Applied Physics, 2019, 126, 164503.	1.1	17
75	Defects and electrical properties in Bi-doped calcium manganite. Materials Research Express, 2019, 6, 125912.	0.8	3
76	Simultaneous enhancement in thermoelectric performance and mechanical stability of p-type SiGe alloy doped with Boron prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2019, 773, 752-761.	2.8	26
77	Harvesting waste heat energy by promoting H+-ion concentration difference with a fuel cell structure. Nano Energy, 2019, 57, 101-107.	8.2	18
78	Emerging Materials for Energy Harvesting. , 2019, , 719-817.		5
79	Ni and Ag electrodes for magnesium silicide based thermoelectric generators. Materials Today Energy, 2019, 11, 97-105.	2.5	38
80	Reduced lattice thermal conductivity of Ti-site substituted transition metals Ti1-XTMXNiSn: A quasi-harmonic Debye model study. Chinese Journal of Physics, 2019, 57, 393-402.	2.0	8
81	Elevated Temperature Behavior of CuPb18SbTe20/Nano-Ag/Cu Joints for Thermoelectric Devices. Journal of Electronic Materials, 2019, 48, 1276-1285.	1.0	7
82	Collaborative effects of Zn and Sb Co-doping in magnesium silicide for thermoelectric applications. Journal of Alloys and Compounds, 2019, 781, 606-612.	2.8	6
83	Tin doped Cu3SbSe4: A stable thermoelectric analogue for the mid-temperature applications. Materials Research Bulletin, 2019, 113, 38-44.	2.7	15
84	Effect of spark plasma sintering and Sb doping on the thermoelectric properties of Co4Ge6Te6 skutterudite. Journal of Solid State Chemistry, 2019, 269, 434-441.	1.4	3
85	Effects of Addition of Si and Sb on the Microstructure and Thermoelectric Properties of GeTe. Metals and Materials International, 2019, 25, 528-538.	1.8	13
86	Thermoelectric performance of electrophoretically deposited p-type Bi2Te3 film. Applied Surface Science, 2019, 477, 27-31.	3.1	8
87	Recent development and application of thin-film thermoelectric cooler. Frontiers of Chemical Science and Engineering, 2020, 14, 492-503.	2.3	26
88	Dislocation-induced ultra-low lattice thermal conductivity in rare earth doped β-Zn4Sb3. Scripta Materialia, 2020, 174, 95-101.	2.6	14
89	3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy, 2020, 195, 116892.	4.5	30
90	Review on texturization effects in thermoelectric oxides. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	26

#	Article	IF	CITATIONS
91	Free-standing flexible multiwalled carbon nanotubes paper for wearable thermoelectric power generator. Journal of Power Sources, 2020, 449, 227493.	4.0	38
92	Time-dependent power output and elastic/plastic fracture analyses of porous thermoelectric ceramics for generators. Ceramics International, 2020, 46, 8264-8273.	2.3	7
93	A novel vacuum pressure sensor using a thermoelectric device. Vacuum, 2020, 172, 109088.	1.6	5
94	Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 2020, 258, 114069.	5.1	356
95	A Thermoelectrochemical Converter Using High-Temperature Polybenzimidazole (PBI) Membranes for Harvesting Heat Energy. ACS Applied Energy Materials, 2020, 3, 614-624.	2.5	4
96	Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy, 2020, 207, 118303.	4.5	25
97	Size-Controlled Au–Cu ₂ Se Core–Shell Nanoparticles and Their Thermoelectric Properties. ACS Applied Materials & Interfaces, 2020, 12, 36589-36599.	4.0	9
98	Enhancing the performance of TEG system coupled with PCMs by regulating the interfacial thermal conduction. Energy Reports, 2020, 6, 1942-1949.	2.5	11
99	Enhancement of thermoelectric properties by partial substitution of Ge sites in anion ring [Ge2S2]4- found in Co2Ge3S3 skutterudite-based material. Journal of Solid State Chemistry, 2020, 292, 121590.	1.4	1
100	Real structure and thermal properties of solid solutions of γ-GdxDy1â^'xS1.5â^'y. Thermophysics and Aeromechanics, 2020, 27, 439-448.	0.1	2
101	Enhancing the Thermoelectric Properties of Misfit Layered Sulfides (MS)1.2+q(NbS2)n (M = Gd and Dy) through Structural Evolution and Compositional Tuning. ACS Omega, 2020, 5, 13006-13013.	1.6	8
102	Effect of growth modes on electrical and thermal transport of thermoelectric ZnO:Al films. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 259-266.	0.5	7
103	Theoretical analysis of thermoelectric performance in p-type CoSb3 based skutterudite by simultaneous partially void filling and Sn substitution. Journal of Physics and Chemistry of Solids, 2020, 145, 109545.	1.9	4
104	Enhancing Interfacial Properties of Mg ₂ Siâ€Based Thermoelectric Joint with Mg ₂ SiNi ₃ Compound as Electrodes. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901035.	0.8	7
105	Chemical and Electrochemical Methods for Producing Contacts to Thermoelements Based on Bismuth and Antimony Chalcogenides. , 2020, , .		1
106	Short- and long-range disorders in misfit layered compounds (MS)1.2+NbS2 with the solid solution subsystem (MS) = (Gd Dy1-S). Materials Research Bulletin, 2020, 131, 110963.	2.7	8
107	Effect of substrate layers on thermo-electric performance under transient heat loads. Energy Conversion and Management, 2020, 219, 113068.	4.4	13
108	Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference. Energy Conversion and Management, 2020, 207, 112516.	4.4	28

#	Article	IF	CITATIONS
109	Development and investigation of the effective thermoelectric materials for the multisectional generator thermoelements. Materials Today: Proceedings, 2020, 20, 295-304.	0.9	7
110	Dilute concentrations of Sb (Bi) dopants in Sn-site enhance the thermoelectric properties of TiNiSn half-Heusler alloys: a first-principles study. Japanese Journal of Applied Physics, 2020, 59, 035003.	0.8	2
111	Morphology and the Thermoelectric Properties of γ-GdxDy1–ÂxS1.5–Ây Solid Solution Ceramics. Physics of the Solid State, 2020, 62, 611-620.	0.2	5
112	Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond. Renewable Energy, 2020, 156, 748-767.	4.3	27
113	High-Performance Ag–Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators. ACS Applied Materials & Interfaces, 2020, 12, 19655-19663.	4.0	48
114	The Problems of Measuring the Electrical Conductivity and the Implementation of Its Measurement Methods of High-alloyed Semiconductors. , 2020, , .		0
115	Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. Journal of Power Sources, 2020, 455, 227983.	4.0	85
116	Thin-film contact systems for thermocouples operating in a wide temperature range. Journal of Alloys and Compounds, 2021, 852, 156889.	2.8	8
117	Thermally stable, low resistance Mg2Si0.4Sn0.6/Cu thermoelectric contacts using SS 304 interlayer by one step sintering. Materials Research Bulletin, 2021, 136, 111147.	2.7	13
118	Anionic conduction mediated giant n-type Seebeck coefficient in doped Poly(3-hexylthiophene) free-standing films. Materials Today Physics, 2021, 16, 100307.	2.9	11
119	Interfacial advances yielding high efficiencies for thermoelectric devices. Journal of Materials Chemistry A, 2021, 9, 3209-3230.	5.2	12
120	Progress of hybrid nanocomposite materials for thermoelectric applications. Materials Advances, 2021, 2, 1927-1956.	2.6	22
121	A Comprehensive Review on Thermoelectric Generator for Energy Harvesting. Lecture Notes in Electrical Engineering, 2021, , 1897-1905.	0.3	2
122	Near-Broken-Gap Alignment between FeWO ₄ and Fe ₂ WO ₆ for Ohmic Direct p–n Junction Thermoelectrics. ACS Applied Materials & Interfaces, 2021, 13, 7416-7422.	4.0	11
123	Mo-Fe/NbFeSb Thermoelectric Junctions: Anti-Thermal Aging Interface and Low Contact Resistivity. ACS Applied Materials & Interfaces, 2021, 13, 7317-7323.	4.0	17
124	Pressure-Induced Modifications in the Optoelectronic and Thermoelectric Properties of MgHfO3 for Renewable Energy Applications. Arabian Journal for Science and Engineering, 0, , 1.	1.7	1
125	Thermoelectric materials for space applications. CEAS Space Journal, 2021, 13, 325-340.	1.1	13
126	First-principles study of anisotropic thermoelectric properties of hexagonal KBaBi. Journal of Solid State Chemistry, 2021, 296, 121961.	1.4	4

#	Article	IF	CITATIONS
127	High Power Density Thermoelectric Generators with Skutterudites. Advanced Energy Materials, 2021, 11, 2100580.	10.2	25
128	Novel Hybrid p- and n-Type Organic Thermoelectric Materials Based on Mussel-Inspired Polydopamine. ACS Applied Materials & Interfaces, 2021, 13, 23970-23982.	4.0	23
129	Thermoelectric Properties and Thermal Stability of Nanostructured Thermoelectric Materials on the Basis of PbTe, GeTe, and SiGe. Nanobiotechnology Reports, 2021, 16, 363-372.	0.2	9
130	Mechanisms of Heat Transfer in Thermoelectric Materials. Nanobiotechnology Reports, 2021, 16, 308-315.	0.2	4
131	Kinetics of Thermal Decomposition of Yttrium and Samarium Hydroxides and Sm(OH)3@Y(OH)3 Compound with a Core–Shell Nanostructure. Russian Journal of General Chemistry, 2021, 91, 1368-1378.	0.3	2
132	Development and characterisation of a Y2Ti2O7-based glass-ceramic as a potential oxidation protective coating for titanium suboxide (TiOx). Ceramics International, 2021, 47, 19774-19783.	2.3	6
133	Performance Analysis and Optimization of a SnSe-Based Thermoelectric Generator. ACS Applied Energy Materials, 2021, 4, 8211-8219.	2.5	7
134	Paper-based thermoelectric generator based on multi-walled carbon nanotube/carboxylated nanocellulose. Journal of Power Sources, 2021, 500, 229992.	4.0	19
135	Interfacial reactions between pure Cu, Ni, and Ni–Cu alloys and p-type Bi2Te3 bulk thermoelectric material. Journal of Materials Science, 2021, 56, 16545-16557.	1.7	5
136	Experimental investigation on performance improvement of thermoelectric generator based on phase change materials and heat transfer enhancement. Energy, 2021, 229, 120676.	4.5	17
137	Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. Progress in Materials Science, 2021, 121, 100840.	16.0	160
138	Energy conversion performance optimization and strength evaluation of a wearable thermoelectric generator made of a thermoelectric layer on a flexible substrate. Energy, 2021, 229, 120694.	4.5	23
139	Thermoelectric Properties of ex-situ PTH/PEDOT Composites. Afyon Kocatepe University Journal of Sciences and Engineering, 2021, 21, 783-791.	0.1	2
140	Optimizing thermoelectric generators based on Mg2(Si, Sn) alloys through numerical simulations. Energy Conversion and Management: X, 2021, 11, 100097.	0.9	0
141	Thermal management of thermoelectric generators for waste energy recovery. Applied Thermal Engineering, 2021, 196, 117291.	3.0	61
142	Valence band structure and charge distribution in the layered lanthanide-doped CuCr0.99Ln0.01S2 (Ln = La, Ce) solid solutions. Scientific Reports, 2021, 11, 18934.	1.6	8
143	Wearable thermoelectric 3D spacer fabric containing a photothermal ZrC layer with improved power generation efficiency. Energy Conversion and Management, 2021, 243, 114432.	4.4	14
144	Thermoelectric Power Generators: State-of-the-Art, Heat Recovery Method, and Challenges. Electricity, 2021, 2, 359-386.	1.4	21

#	Article	IF	CITATIONS
145	Thermoelectric properties of efficient thermoelectric materials on the basis of bismuth and antimony chalcogenides for multisection thermoelements. Journal of Alloys and Compounds, 2021, 877, 160328.	2.8	10
146	High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review. Materials Today Physics, 2021, 21, 100468.	2.9	38
147	Study on improving comprehensive property of Te-based thermoelectric joint. Journal of Alloys and Compounds, 2021, 886, 161242.	2.8	3
148	Theoretical and Experimental Surveys of Doped Thermoelectric NaxCoO2. , 2021, , 265-279.		0
149	Skutterudites: Progress and Challenges. , 2019, , 177-201.		6
150	Importance of Schottky barriers for wide-bandgap thermoelectric devices. Physical Review Materials, 2018, 2, .	0.9	1
151	Feasibility Demonstrations of Liquid Turbine Power Generator Driven by Low Temperature Heats. Journal of Power and Energy Engineering, 2016, 04, 59-67.	0.3	3
152	Biodegradable Cul/BCNF composite thermoelectric film for wearable energy harvesting. Cellulose, 2021, 28, 10707-10714.	2.4	8
153	Relaxation of residual stress-controlled thermopower factor in transparent-flexible Ti-doped ZnO thin films. Ceramics International, 2022, 48, 2605-2613.	2.3	11
154	Further Stabilization and Power Density Improvement of Stack-Type Thermoelectric Power Generating Module with Biphasic Medium by Using Various Flexible Metals as Electrodes. Journal of Power and Energy Engineering, 2018, 06, 78-86.	0.3	0
155	DESIGN OF HEAT PIPE ASSISTED THERMOELECTRIC GENERATOR AND EXPERIMENTAL INVESTIGATON OF THE POWER PERFORMANCE. Sakarya University Journal of Science, 0, , .	0.3	1
156	Thermo-Responsive Nanomaterials for Thermoelectric Generation. Springer Series in Materials Science, 2020, , 269-293.	0.4	1
158	The Quest for High-Efficiency Thermoelectric Generators for Extracting Electricity from Waste Heat. Jom, 2021, 73, 4070-4084.	0.9	2
159	Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 2022, 201, 117793.	3.0	153
160	Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy, 2022, 92, 106774.	8.2	60
161	Enhanced Thermoelectric Performance of p-Type Bi0.5Sb1.5Te3 Nanocomposites Through Nanoflower Morphology. Journal of Electronic Materials, 2022, 51, 508-515.	1.0	3
162	Thermoelectric generators act as renewable energy sources. Cleaner Materials, 2021, 2, 100030.	1.9	29
163	High-temperature Bi2Te3 thermoelectric generator fabricated using Cu nanoparticle paste bonding. Journal of Alloys and Compounds, 2022, 896, 163060.	2.8	3

#	Article	IF	CITATIONS
164	Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe. ACS Applied Materials & Interfaces, 2021, 13, 58701-58711.	4.0	14
165	Lanthanum strontium cobaltite as interconnect in oxide thermoelectric generators. Solid State Sciences, 2022, 124, 106801.	1.5	5
166	Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods, 2022, 6, e2101235.	4.6	77
167	Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Advanced Materials Technologies, 2022, 7, .	3.0	42
168	Enhanced Thermoelectric Power Generation Using Buck –Boost Converter. IOP Conference Series: Materials Science and Engineering, 2022, 1219, 012033.	0.3	0
169	Toward Reduced Interface Contact Resistance: Controllable Surface Energy of Sb ₂ Te ₃ Films via Tuning the Crystallization and Orientation. ACS Applied Materials & Interfaces, 2022, 14, 10955-10965.	4.0	5
170	Improvement of Contact and Bonding Performance of Mg2Si/Mg2SiNi3 Thermoelectric Joints by Optimizing the Concentration Gradient of Mg. Journal of Electronic Materials, 2022, 51, 2256-2265.	1.0	5
171	Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation. Chemical Engineering Research and Design, 2022, 162, 134-154.	2.7	37
172	A Review on Doped/Composite Bismuth Chalcogenide Compounds for Thermoelectric Device Applications: Various Synthesis Techniques and Challenges. Journal of Electronic Materials, 2022, 51, 2014-2042.	1.0	12
173	Experimental Investigation on High Capacity Stove-Powered Thermoelectric Generator Incorporated with a Novel Heat Collector. Materials, 2022, 15, 2382.	1.3	1
174	Thermoelectric capabilities of superlattices described by the Fivaz model. Materials Today: Proceedings, 2022, , .	0.9	0
175	Review of thermoelectric generation for internal combustion engine waste heat recovery. Progress in Energy and Combustion Science, 2022, 91, 101009.	15.8	62
176	Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu _{2-δ} Se Phase. ACS Applied Materials & Interfaces, 2021, 13, 61386-61395.	4.0	11
177	Figure of merit enhancement in thermoelectric materials based on Î³â€Łn _{0.8} Yb _{0.2} S _{1.5â€∢/sub><i>_y</i> (LnÂ=ÂGd, Dy) solid solutions Journal of the American Ceramic Society, 2022, 105, 2813-2822.}	. 1.9	8
178	Surface Modification Engineering leads to the Synergetic Optimization of Interfacial properties for Bi ₂ Te ₃ -based micro thermoelectric devices. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
179	Effect of joining temperature on the interconnection zone and electrical resistance of Ag/n-Mg ₂ Si and Ag/n-Mg ₂ Sn contacts. Materials Advances, 2022, 3, 5418-5429.	2.6	1
180	Structure induced modification on thermoelectric and optical properties by Mg doping in CuCrO2 nanocrystals. Solid State Communications, 2022, 353, 114855.	0.9	9
181	A conductive line inclusion in thermoelectric materials: the thermoelectric fields and the effective thermoelectric properties. Philosophical Magazine, 0, , 1-20.	0.7	0

ARTICLE IF CITATIONS A comprehensive DFT analysis on structural, electronic, optical, thermoelectric, SLME properties of 182 1.2 19 new Double Perovskite Oxide Pb2ScBiO6. Chemical Physics Letters, 2022, 806, 139987. Hybrid thermoelectric generators-renewable energy systems: A short review on recent developments. 2.5 Energy Reports, 2022, 8, 1361-1370. Optoelectronics and Transport Phenomena in Rb2InBiX6 (X = Cl, Br) Compounds for Renewable Energy 184 0.9 31 Applications: A DFT Insight. Chemistry, 2022, 4, 1044-1059. Band structure engineering in Feâ \in Sb based lanthanide filled p-type skutterudites RFe₄Sb₁₂ (Râ \in ‰=â \in ‰Nd, Sm) to enhance the Seebeck coefficient and thermoelectric 1.1 figure of merit. Journal of Applied Physics, 2022, 132, 155103. 185 Thermoelectric properties of SmS@Y2O2S and Y2O2S@SmS compounds with a core-shell 186 1.2 1 nanostructure. Chemical Physics Letters, 2022, 809, 140157. Opportunities for thermoelectric generators in supporting a low carbon economy. Nanomaterials 0.1 and Energy, 2022, 11, 8-26. Preparation and study of nanodispersed powders of thermoelectric materials. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2022, 25, 188 0.1 0 188-201. Low-cost preparation of highly-efficient thermoelectric BixSb2-xTe3 nanostructured powders via 189 1.4 mechanical alloying. Journal of Solid State Chemistry, 2023, 319, 123823. All-oxide thermoelectric π-element with a composite interconnector obtained by hydrostatic 190 2.3 1 pressing. Ceramics International, 2023, 49, 14281-14290. Thermoelectric Modules: Key Issues in Architectural Design and Contact Optimization. ChemNanoMat, 1.5 2023, 9, . The synthesis of bismuth telluride nanowires with a high aspect ratio via precise regulation of 192 2 1.3 growth rates. Materials Letters, 2023, 335, 133772. Nanostructured Thermoelectric Materials for Temperatures of 200–1200 K Obtained by Spark Plasma 0.2 Sintering. Semiconductors, 2022, 56, 437-443. Bulk and Thin Film TE Materials and Applications., 2023, , 405-417. 194 0 Performance analysis of thermoelectric generator system in different aspect ratio collector channels. Applied Thermal Engineering, 2023, 226, 120330. First-principles calculations to investigate structural, optoelectronics and thermoelectric properties of lead free Cs2GeSnX6 (XÂ=ÂCl, Br). Materials Science and Engineering B: Solid-State 196 1.7 25 Materials for Advanced Technology, 2023, 292, 116421. First principles insight on structural, opto-electronic and transport properties of novel zintl-phase AMg2Bi2 (A=Sr, Ba). Journal of Solid State Chemistry, 2023, 320, 123860. Challenges and Progress in Contact Development for PbTeâ€based Thermoelectrics. ChemNanoMat, 2023, 198 1.53 9,. 199 Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.

CITATION REPORT IF ARTICLE CITATIONS Comparison of reliability of thermoelectric generator modules with different schemes for connecting thermoelements. Tekhnologiya I Konstruirovanie V Elektronnoi Apparature, 2022, , 59-64. 0.1 0 Potency of Extended X-ray Absorption Fine Structure Spectroscopy toward the Determination of Individúal Bond Grüneisen Parameter for High Thermoelectric Performance. ACS Applied Energy 2.5 Materials, 2023, 6, 2981-2988. Improved Power Factor in Highly Textured n-Type Ag₂Se Flexible Films. ACS Applied 2.0 3 Electronic Materials, 2023, 5, 1650-1659. Insight on structural, electronic and thermoelectric properties of perovskite AgBaCl3 by an Ab-initio for solar cell and renewable energy. Materials Today: Proceedings, 2023, , .

10

Physics and technology of thermoelectric materials and devices. Journal Physics D: Applied Physics, 2023, 56, 333001.

#

200