Recent Advances in the Synthesis of Cyclobutanes by O Reactions

Chemical Reviews 116, 9748-9815

DOI: 10.1021/acs.chemrev.5b00723

Citation Report

#	Article	IF	CITATIONS
1	Photo Racemization and Polymerization of (R)-1,1′-Bi(2-naphthol). Molecules, 2016, 21, 1541.	1.7	14
3	[2 + 2] Photocycloadditions between the Carbon–Nitrogen Double Bonds of Imines and Carbon–Carbon Double Bonds. Organic Letters, 2016, 18, 6252-6255.	2.4	53
4	Eine Synthese von (±)â€Aplydacton. Angewandte Chemie, 2016, 128, 11418-11422.	1.6	7
5	Verzweigte Arylalkene aus Zimtsären: Selektivitäsumkehr in Heckâ€Reaktionen durch Carboxylate als abfallende dirigierende Gruppen. Angewandte Chemie, 2016, 128, 11466-11470.	1.6	5
6	Molecular simulation of enantioselective intermolecular [2+2] photocycloadditions by a chiral organocatalyst in solution. Tetrahedron, 2016, 72, 7021-7024.	1.0	1
7	Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer. Journal of the American Chemical Society, 2016, 138, 12636-12642.	6.6	160
8	Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Accounts of Chemical Research, 2016, 49, 1911-1923.	7.6	533
9	Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water. Organic Process Research and Development, 2016, 20, 1626-1632.	1.3	30
10	A metal-free one-pot synthesis of benzo[c]chromen-6-ones from 3,4-dichlorocoumarins and butadienes using tandem photo-thermal-photo reactions. Organic and Biomolecular Chemistry, 2016, 14, 9874-9882.	1.5	12
11	A Simple and Versatile Reactor for Photochemistry. Organic Process Research and Development, 2016, 20, 1792-1798.	1.3	45
12	Intramolecular thermal stepwise $[2 + 2]$ cycloadditions: investigation of a stereoselective synthesis of $[n.2.0]$ -bicyclolactones. Organic and Biomolecular Chemistry, 2016, 14, 9554-9559.	1.5	4
13	A Synthesis of (±)â€Aplydactone. Angewandte Chemie - International Edition, 2016, 55, 11251-11255.	7.2	41
14	Photocatalytic Systems with Flavinium Salts: From Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Organic Letters, 2016, 18, 3710-3713.	2.4	34
15	Tale of Twisted Molecules. Atropselective Photoreactions: Taming Light Induced Asymmetric Transformations through Non-biaryl Atropisomers. Accounts of Chemical Research, 2016, 49, 2713-2724.	7.6	45
16	Photodimerisation of the α′-polymorph of ortho-ethoxy-trans-cinnamic acid occurs via a two-stage mechanism at 343 K yielding 100% α-truxillic acid. CrystEngComm, 2016, 18, 7363-7376.	1.3	10
17	Enantioselective Approach to the Rightâ€Hand Substructure of Solanoeclepin A. European Journal of Organic Chemistry, 2016, 2016, 5845-5854.	1.2	3
18	Conformationally Driven Two- and Three-Photon Cascade Processes in the Stereoselective Photorearrangement of Pyrroles. Organic Letters, 2016, 18, 5608-5611.	2.4	13
19	All in One - Complete Issue: ChemInform 47/2016. ChemInform, 2016, 47, no.	0.1	1

#	Article	IF	Citations
20	Enantioselective Intermolecular $[2 + 2]$ Photocycloaddition Reactions of $2(1 < i > H < /i >)$ -Quinolones Induced by Visible Light Irradiation. Journal of the American Chemical Society, 2016, 138, 7808-7811.	6.6	221
21	Mechanism of the Enantioselective Intramolecular [2 + 2] Photocycloaddition Reaction of Coumarin Catalyzed by a Chiral Lewis Acid: Comparison with Enone Substrates. Journal of Organic Chemistry, 2016, 81, 7093-7101.	1.7	19
22	A Chiral Thiourea as a Template for Enantioselective Intramolecular $[2+2]$ Photocycloaddition Reactions. Journal of Organic Chemistry, 2016, 81, 6965-6971.	1.7	50
23	Visible Light [2+2] Photocycloaddition Mediated by Flavin Derivative Immobilized on Mesoporous Silica. ChemCatChem, 2017, 9, 1177-1181.	1.8	24
24	Fused multifunctionalized dibenzoselenophenes from tetraynes. Chemical Communications, 2017, 53, 1542-1545.	2.2	44
25	Progress in Enantioselective Radical Cyclizations. Chemistry - A European Journal, 2017, 23, 6225-6236.	1.7	44
26	Synthesis of pentacyclic compounds via intramolecular [3 + 2] photocycloaddition of cycloalkene linked naphthalenes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 198-206.	2.0	6
27	Eosin Y-catalyzed photooxidation of triarylphosphines under visible light irradiation and aerobic conditions. RSC Advances, 2017, 7, 13240-13243.	1.7	44
28	Regiospecific [2+2] photocycloadditions of an unsymmetrical olefin in the solid state based on metal-mediated assemblies. CrystEngComm, 2017, 19, 2603-2607.	1.3	15
29	Catalytic Asymmetric [3+1]â€Cycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie - International Edition, 2017, 56, 7479-7483.	7.2	66
30	Enantioselective photocyclisation reactions of 2-aryloxycyclohex-2-enones mediated by a chiral copper-bisoxazoline complex. Tetrahedron, 2017, 73, 5038-5047.	1.0	19
31	Photochemical Approaches to the Bilobalide Core. European Journal of Organic Chemistry, 2017, 2017, 3362-3372.	1.2	7
32	N-Substituted 3(10 <i>H</i>)-Acridones as Visible-Light, Water-Soluble Photocatalysts: Aerobic Oxidative Hydroxylation of Arylboronic Acids. Journal of Organic Chemistry, 2017, 82, 5236-5241.	1.7	59
33	Realizing an Aza Paternò–Bù⁄4chi Reaction. Angewandte Chemie - International Edition, 2017, 56, 7056-7061.	7.2	61
34	Flavinâ€Mediated Visibleâ€Light [2+2] Photocycloaddition of Nitrogenâ€and Sulfurâ€Containing Dienes. European Journal of Organic Chemistry, 2017, 2017, 2139-2146.	1.2	28
35	Synthesis of multi-substituted cyclobutenes: Cyclic strategy for [2 + 2] cycloaddition of ketene silyl acetals with propiolates. Tetrahedron Letters, 2017, 58, 2944-2947.	0.7	8
36	Photoinduced difunctionalization of 2,3-dihydrofuran for the efficient synthesis of 2,3-disubstituted tetrahydrofurans. Organic Chemistry Frontiers, 2017, 4, 1640-1646.	2.3	11
37	Catalytic Asymmetric [3+1] ycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie, 2017, 129, 7587-7591.	1.6	16

#	Article	IF	CITATIONS
38	Photoinduced Oxidative Formylation of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Dimethylanilines with Molecular Oxygen without External Photocatalyst. Organic Letters, 2017, 19, 3386-3389.	2.4	88
39	Divergent Coupling of \hat{l}^2 , \hat{l}^3 -Unsaturated $\hat{l}\pm$ -Ketoesters with Simple Olefins: Vinylation and $[2 \pm 2]$ Cycloaddition. Organic Letters, 2017, 19, 3366-3369.	2.4	12
40	Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. Journal of the American Chemical Society, 2017, 139, 9120-9123.	6.6	203
41	Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation?. Journal of Organic Chemistry, 2017, 82, 8831-8841.	1.7	36
42	Mechanistic Investigation of Visible-Light-Induced Intermolecular [2 + 2] Photocycloaddition Catalyzed with Chiral Thioxanthone. Journal of Physical Chemistry A, 2017, 121, 4552-4559.	1.1	9
43	Palladium-Promoted Neutral 1,4-Brook Rearrangement/Intramolecular Allylic Cyclization Cascade Reaction: A Strategy for the Construction of Vinyl Cyclobutanols. Organic Letters, 2017, 19, 3478-3481.	2.4	14
44	Unique Strategies for Controlling Enantioselective Stereochemistry of Cyclizations via Radical Intermediates. European Journal of Organic Chemistry, 2017, 2017, 3302-3310.	1.2	11
45	Photochemical studies on bis-sulfide and -sulfone tethered polyenic derivatives. Organic and Biomolecular Chemistry, 2017, 15, 4180-4190.	1.5	2
46	Photocatalytic Regioselective and Stereoselective $[2 + 2]$ Cycloaddition of Styrene Derivatives Using a Heterogeneous Organic Photocatalyst. ACS Catalysis, 2017, 7, 3097-3101.	5.5	80
47	Brønsted Acid Catalysis in Visibleâ€Lightâ€Induced [2+2]â€Photocycloaddition Reactions of Enone Dithianes. Angewandte Chemie - International Edition, 2017, 56, 4337-4341.	7. 2	38
48	Brønstedâ€Säreâ€Katalyse der [2+2]â€Photocycloaddition von Enondithianen bei Bestrahlung mit sichtbarem Licht. Angewandte Chemie, 2017, 129, 4401-4405.	1.6	17
49	Unravelling Photochemical Relationships Among Natural Products from <i>Aplysia dactylomela</i> ACS Central Science, 2017, 3, 39-46.	5.3	18
50	Transposed Paternò–Büchi Reaction. Journal of the American Chemical Society, 2017, 139, 655-662.	6.6	47
51	A laboratory-scale annular continuous flow reactor for UV photochemistry using excimer lamps for discrete wavelength excitation and its use in a wavelength study of a photodecarboxlyative cyclisation. Green Chemistry, 2017, 19, 1431-1438.	4.6	23
52	Multi-modal mechanophores based on cinnamate dimers. Nature Communications, 2017, 8, 1147.	5.8	106
53	Organocatalytic intermolecular [2+2] cycloaddition of norbornadienes by a stable organic radical compound. Tetrahedron Letters, 2017, 58, 4755-4758.	0.7	3
54	Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes. Chemical Communications, 2017, 53, 12072-12075.	2.2	72
55	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visibleâ€Light Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15407-15410.	7. 2	128

#	Article	IF	Citations
56	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visibleâ€Light Catalysis. Angewandte Chemie, 2017, 129, 15609-15612.	1.6	30
57	Intermolecular [2 + 2] Cycloaddition of 1,4-Dihydropyridines with Olefins via Energy Transfer. Organic Letters, 2017, 19, 5888-5891.	2.4	38
58	Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light. Angewandte Chemie, 2017, 129, 14030-14034.	1.6	19
59	Single-crystal-to-single-crystal conversions of two metal-mediated photoreactive coordination polymers based on stereoselective [2 + 2] photocycloaddition reactions. CrystEngComm, 2017, 19, 6778-6786.	1.3	12
60	î²-Cyclodextrin-Mediated Enantioselective Photochemical Electrocyclization of 1,3-Dihydro-2H-azepin-2-one. Journal of Organic Chemistry, 2017, 82, 9832-9836.	1.7	10
61	Intermolecular [2+2] Photocycloaddition of \hat{I}^2 -Nitrostyrenes to Olefins upon Irradiation with Visible Light. Synlett, 2017, 28, 2946-2950.	1.0	10
62	Photochemical $[2+2]$ Cyclization of Helical Phosphinamides in Solution and in the Solid State. ChemPhotoChem, 2017, 1, 535-538.	1.5	6
63	Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light. Angewandte Chemie - International Edition, 2017, 56, 13842-13846.	7.2	101
64	Diastereoselective photocycloaddition reactions of 2-naphthalenecarboxylates and 2,3-naphthalenedicarboxylates with furans governed by chiral auxiliaries and hydrogen bonding interactions. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 7-17.	2.0	1
65	Recent Synthetic Applications of Catalyst-Free Photochemistry. Synlett, 2017, 28, 2714-2754.	1.0	55
66	Sceptrin – Enantioselective Synthesis of a Tetrasubstituted allâ€∢i>trans Cyclobutane Key Intermediate. European Journal of Organic Chemistry, 2017, 2017, 4566-4571.	1.2	4
67	The Inheritance Angle: A Determinant for the Number of Members in the Substituted Cucurbit[<i>n</i>]uril Family. Organic Letters, 2017, 19, 4034-4037.	2.4	19
68	Total Synthesis of (+)â€Dendrowardolâ€C. Angewandte Chemie - International Edition, 2017, 56, 10890-10893.	7.2	13
69	Realizing an Aza Paternò–Büchi Reaction. Angewandte Chemie, 2017, 129, 7162-7167.	1.6	16
70	Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angewandte Chemie - International Edition, 2017, 56, 11891-11895.	7.2	124
71	Total Synthesis of (+)â€Dendrowardolâ€C. Angewandte Chemie, 2017, 129, 11030-11033.	1.6	0
72	Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angewandte Chemie, 2017, 129, 12053-12057.	1.6	43
73	Photochemical Synthesis of 3-Azabicyclo[3.2.0]heptanes: Advanced Building Blocks for Drug Discovery. Journal of Organic Chemistry, 2017, 82, 9627-9636.	1.7	43

#	Article	IF	CITATIONS
74	A New Synthetic Approach to <i>C₂</i> Rearrangement and Ringâ€Closing Metathesis as Key Steps. ChemistrySelect, 2017, 2, 6877-6881.	0.7	9
75	Template-assisted photodimerization of N-unprotected uracil derivatives: selective formation of the cis–syn photodimer. Chemical Communications, 2017, 53, 9610-9612.	2.2	1
76	Origins of Enantioselectivity in Asymmetric Radical Additions to Octahedral Chiral-at-Rhodium Enolates: A Computational Study. Journal of the American Chemical Society, 2017, 139, 17902-17907.	6.6	58
77	UV-mediated decomposition of diazomalonates in benzene: Unexpected access to functionalized bicyclo[3.2.0]heptane skeleton. Tetrahedron Letters, 2017, 58, 3081-3084.	0.7	2
78	Cyclobutene vs 1,3-Diene Formation in the Gold-Catalyzed Reaction of Alkynes with Alkenes: The Complete Mechanistic Picture. Journal of the American Chemical Society, 2017, 139, 10302-10311.	6.6	63
79	Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. Journal of the American Chemical Society, 2017, 139, 9807-9810.	6.6	103
80	Intramolecular Chirality Transfer $[2+2]$ Cycloadditions of Allenoates and Alkenes. Organic Letters, 2017, 19, 3703-3706.	2.4	31
81	UV-induced single-crystal-to-single-crystal conversion from a coordination ladder to a two-dimensional network through an intermolecular carbon–carbon coupling reaction. Dalton Transactions, 2017, 46, 9755-9759.	1.6	16
82	Chromium photocatalysis: accessing structural complements to Diels–Alder adducts with electron-deficient dienophiles. Chemical Science, 2017, 8, 654-660.	3.7	76
83	Intramolecular Photoreactions of 9-Cyanophenanthrene-Linked Arylcyclopropanes. ACS Omega, 2017, 2, 8697-8708.	1.6	4
84	Catalytic asymmetric synthesis of a nitrogen heterocycle through stereocontrolled direct photoreaction from electronically excited state. Nature Communications, 2017, 8, 2245.	5.8	82
85	[2 + 2] Photodimerization of Naphthylvinylpyridines through Cation-Ï€ Interactions in Acidic Solution. Molecules, 2017, 22, 491.	1.7	9
86	Molecular chirality: A new approach from a dynamical point of view. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 841-849.	1.6	1
87	Enantioselective Intermolecular [2+2] Photocycloaddition Reaction of Cyclic Enones and Its Application in a Synthesis of (\hat{a}°) -Grandisol. Journal of the American Chemical Society, 2018, 140, 3228-3231.	6.6	94
88	Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie f $\tilde{A}^{1/4}$ r die organische Synthese?. Angewandte Chemie, 2018, 130, 10188-10228.	1.6	360
89	Dual C(sp ³)â^'H Bond Functionalization of Nâ€Heterocycles through Sequential Visibleâ€Light Photocatalyzed Dehydrogenation/[2+2] Cycloaddition Reactions. Angewandte Chemie - International Edition, 2018, 57, 5110-5114.	7.2	79
90	Intramolecular Photocycloaddition of 2(5 <i>H</i>)-Furanones to Temporarily Tethered Terminal Alkenes as a Stereoselective Source of Enantiomerically Pure Polyfunctionalyzed Cyclobutanes. Journal of Organic Chemistry, 2018, 83, 3188-3199.	1.7	2
91	Photochemical Reaction Cascade from <i>O</i> Pent-4-enyl-Substituted Salicylates to Complex Multifunctional Scaffolds. Journal of Organic Chemistry, 2018, 83, 3069-3077.	1.7	25

#	ARTICLE	IF	CITATIONS
92	Synthesis of (â^')â€Hebelophylleneâ€E: An Entry to Geminal Dimethyl yclobutanes by [2+2] Cycloaddition of Alkenes and Allenoates. Angewandte Chemie - International Edition, 2018, 57, 4647-4651.	7.2	32
94	Sequential Photoredox Catalysis for Cascade Aerobic Decarboxylative Povarov and Oxidative Dehydrogenation Reactions of <i>N</i> â€Aryl αâ€Amino Acids. Advanced Synthesis and Catalysis, 2018, 360, 1754-1760.	2.1	56
95	Dual C(sp ³)â^'H Bond Functionalization of Nâ€Heterocycles through Sequential Visibleâ€Light Photocatalyzed Dehydrogenation/[2+2] Cycloaddition Reactions. Angewandte Chemie, 2018, 130, 5204-5208.	1.6	21
96	Synthesis of (â^')â€Hebelophylleneâ€E: An Entry to Geminal Dimethylâ€Cyclobutanes by [2+2] Cycloaddition of Alkenes and Allenoates. Angewandte Chemie, 2018, 130, 4737-4741.	1.6	11
97	Photochemical Synthesis of Heterocycles: Merging Flow Processing and Metal-Catalyzed Visible Light Photoredox Transformations. Topics in Heterocyclic Chemistry, 2018, , 103-132.	0.2	3
98	Boron Tribromideâ€Assisted Chiral Phosphoric Acid Catalysts for Enantioselective [2+2] Cycloaddition. Chemistry - an Asian Journal, 2018, 13, 2373-2377.	1.7	27
99	Catalytic Asymmetric Dearomatization by Visibleâ€Lightâ€Activated [2+2] Photocycloaddition. Angewandte Chemie, 2018, 130, 6350-6354.	1.6	40
100	Catalytic Asymmetric Dearomatization by Visibleâ€Lightâ€Activated [2+2] Photocycloaddition. Angewandte Chemie - International Edition, 2018, 57, 6242-6246.	7.2	153
101	Conjugate Addition–Enantioselective Protonation of <i>N</i> -Aryl Glycines to α-Branched 2-Vinylazaarenes via Cooperative Photoredox and Asymmetric Catalysis. Journal of the American Chemical Society, 2018, 140, 6083-6087.	6.6	225
102	Photocatalysis with Quantum Dots and Visible Light for Effective Organic Synthesis. Chemistry - A European Journal, 2018, 24, 11530-11534.	1.7	71
103	Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. Angewandte Chemie - International Edition, 2018, 57, 6592-6596.	7.2	25
104	Let There Be Light: Hypothesis-Driven Investigation of Ligand Effects in Photoredox Catalysis for the Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 2018, 95, 872-875.	1.1	5
105	Visibleâ€Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angewandte Chemie - International Edition, 2018, 57, 10034-10072.	7.2	1,459
106	Visible light sensitizer-catalyzed highly selective photo oxidation from thioethers into sulfoxides under aerobic condition. Scientific Reports, 2018, 8, 2205.	1.6	64
107	Supramolecular Photochirogenesis Driven by Higher-Order Complexation: Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate to Slipped Cyclodimers via a 2:2 Complex with \hat{l}^2 -Cyclodextrin. Journal of the American Chemical Society, 2018, 140, 3959-3974.	6.6	88
108	An atmosphere and light tuned highly diastereoselective synthesis of cyclobuta/penta[$<$ i $>$ b $<$ /i $>$]indoles from aniline-tethered alkylidenecyclopropanes with alkynes. Chemical Communications, 2018, 54, 2870-2873.	2.2	24
110	Stereoselective Photodimerization of 3-Arylindenones in Solution and in the Solid State. Journal of Organic Chemistry, 2018, 83, 2256-2262.	1.7	10
111	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie, 2018, 130, 2196-2200.	1.6	19

#	Article	IF	Citations
112	Solid state [2 + 2] photocycloaddition for constructing dimers of <i>N</i> , <i>N</i> ,6>2-diacyl-1,4-dihydropyrazines based on thiourea-induced assembly. CrystEngComm, 2018, 20, 1151-1157.	1.3	9
113	Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules, 2018, 51, 1189-1197.	2.2	37
114	Template-Directed Photochemical $[2+2]$ Cycloaddition in Crystalline Materials: A Useful Tool to Access Cyclobutane Derivatives. Crystal Growth and Design, 2018, 18, 553-565.	1.4	63
115	Photoinduced Rearrangement of Dienones and Santonin Rerouted by Amines. Angewandte Chemie - International Edition, 2018, 57, 904-908.	7.2	7
116	Enantioselective Desymmetrization of Cyclobutanones Enabled by Synergistic Palladium/Enamine Catalysis. Angewandte Chemie, 2018, 130, 2737-2741.	1.6	22
117	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2174-2178.	7.2	53
118	Enantioselective Desymmetrization of Cyclobutanones Enabled by Synergistic Palladium/Enamine Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2707-2711.	7.2	55
119	Enantioselective Total Syntheses of (+)-Hippolachnin A, (+)-Gracilioether A, (\hat{a}^{*}) -Gracilioether E, and (\hat{a}^{*}) -Gracilioether F. Journal of the American Chemical Society, 2018, 140, 1937-1944.	6.6	50
120	Visibleâ€Lightâ€Promoted Decarboxylative Giese Reactions of αâ€Aryl Ethenylphosphonates and the Application in the Synthesis of Fosmidomycin Analogue. Advanced Synthesis and Catalysis, 2018, 360, 1352-1357.	2.1	24
121	Photochemical Synthesis of 2-Azabicyclo [3.2.0] heptanes: Advanced Building Blocks for Drug Discovery. Synthesis of 2,3-Ethanoproline. Journal of Organic Chemistry, 2018, 83, 1394-1401.	1.7	28
122	Using batch reactor results to calculate optimal flow rates for the scale-up of UV photochemical reactions. Reaction Chemistry and Engineering, 2018, 3, 86-93.	1.9	22
123	Photoinduced Rearrangement of Dienones and Santonin Rerouted by Amines. Angewandte Chemie, 2018, 130, 916-920.	1.6	1
124	Visible light mediated aerobic photocatalytic activation of C H bond by riboflavin tetraacetate and N -hydroxysuccinimide. Tetrahedron Letters, 2018, 59, 658-662.	0.7	29
125	Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. Angewandte Chemie, 2018, 130, 6702-6706.	1.6	10
126	DFT Studies on the Dirhodium-Catalyzed $[3+2]$ and $[3+3]$ Cycloaddition Reactions of Enol Diazoacetates with Isoquinolinium Methylide: Mechanism, Selectivity, and Ligand Effect. Organometallics, 2018, 37, 1373-1380.	1.1	18
127	Contrast Solid-State Photoreactive Behavior of Two Two-Dimensional Zn(II) Coordination Polymers. Crystal Growth and Design, 2018, 18, 3693-3696.	1.4	6
128	A Facile Synthesis of <i>C</i> ₂ -Symmetric Macrocyclic Polyethers by Photodimerization of Covalently-linked Flavonoid Derivatives. Chemistry Letters, 2018, 47, 160-162.	0.7	1
129	Benign catalysis with iron: facile assembly of cyclobutanes and cyclohexenes <i>via</i> intermolecular radical cation cycloadditions. Green Chemistry, 2018, 20, 1743-1747.	4.6	28

#	Article	IF	CITATIONS
130	[2+2]-Photocycloaddition of $\langle i \rangle N \langle i \rangle$ -Benzylmaleimide to Alkenes As an Approach to Functional 3-Azabicyclo[3.2.0]heptanes. Journal of Organic Chemistry, 2018, 83, 6275-6289.	1.7	46
131	Asymmetric Total Synthesis of Dragonbloodins A1 and A2. Organic Letters, 2018, 20, 1819-1823.	2.4	16
132	Photocatalytic Oxidative Bromination of Electronâ€Rich Arenes and Heteroarenes by Anthraquinone. Advanced Synthesis and Catalysis, 2018, 360, 626-630.	2.1	60
133	Flavin Photocatalysts for Visibleâ€Light [2+2] Cycloadditions: Structure, Reactivity and Reaction Mechanism. ChemCatChem, 2018, 10, 849-858.	1.8	23
134	Catalytic approaches to assemble cyclobutane motifs in natural product synthesis. Organic Chemistry Frontiers, 2018, 5, 254-259.	2.3	92
135	Hinweise auf eine Triplettâ€Sensibilisierung in der [2+2]â€Photocycloaddition von Eniminiumionen mit sichtbarem Licht. Angewandte Chemie, 2018, 130, 835-839.	1.6	29
136	A Photochemical Route to 3- and 4-Hydroxy Derivatives of 2-Aminocyclobutane-1-carboxylic Acid with an <i>all-cis</i> Geometry. Journal of Organic Chemistry, 2018, 83, 527-534.	1.7	21
137	Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. Chemical Reviews, 2018, 118, 4592-4630.	23.0	139
138	Molecular dynamics and metadynamics simulations of [2 + 2] photocycloaddition. International Journal of Quantum Chemistry, 2018, 118, e25534.	1.0	7
139	lminium and enamine catalysis in enantioselective photochemical reactions. Chemical Society Reviews, 2018, 47, 278-290.	18.7	218
140	Catalytic Photoreduction Induced by Visible Light. ChemPhotoChem, 2018, 2, 703-714.	1.5	26
141	Diastereoselective solid-state crossed photocycloaddition of olefins in a 3D Zn(<scp>ii</scp>) coordination polymer. Chemical Communications, 2018, 54, 13861-13864.	2.2	20
142	Stereoselective Intermolecular [2 + 2] Cycloadditions of Erlenmeyer–Plöchl Azlactones Using Visible Light Photoredox Catalysis. Journal of Organic Chemistry, 2018, 83, 15144-15154.	1.7	22
143	Photosensitization and Photocatalysisâ€"Perspectives in Organic Synthesis. ACS Catalysis, 2018, 8, 12046-12055.	5.5	157
144	A [2 + 2] Photocycloaddition–Fragmentation Approach toward the Carbon Skeleton of <i>ci>cis</i> -Fused Lycorine-type Alkaloids. Organic Letters, 2018, 20, 7674-7678.	2.4	7
145	Uranyl-Organic Coordination Compounds Incorporating Photoactive Vinylpyridine Moieties: Synthesis, Structural Characterization, and Light-Induced Fluorescence Attenuation. Inorganic Chemistry, 2018, 57, 14772-14785.	1.9	18
146	Harnessing sun for catalyst and sensitizer free regio- and stereo-selective [2+2] cycloaddition. Tetrahedron, 2018, 74, 7326-7334.	1.0	4
147	Templating and Catalyzing [2+2] Photocycloaddition in Solution Using a Dynamic Gâ€Quadruplex. Angewandte Chemie, 2018, 130, 17392-17396.	1.6	4

#	Article	IF	CITATIONS
148	Photon and Electron Induced Macromolecular Synthesis on Insulating Surfaces., 2018,, 361-369.		1
149	Synthesis of cage [4.4.2] propellanes and $\{D_{3}\}$ D 3 -trishomocubanes bearing spiro linkage. Journal of Chemical Sciences, 2018, 130, 1.	0.7	6
150	Cationâ^Ï€ Interactions in Organic Synthesis. Chemical Reviews, 2018, 118, 11353-11432.	23.0	143
151	Catalyst- and Substituent-Controlled Switching of Chemoselectivity for the Enantioselective Synthesis of Fully Substituted Cyclobutane Derivatives via 2 + 2 Annulation of Vinylogous Ketone Enolates and Nitroalkene. Organic Letters, 2018, 20, 7835-7839.	2.4	44
152	Development of an Alkyne Analogue of the deâ€Mayo Reaction: Synthesis of Mediumâ€Sized Carbacycles and Cyclohepta[<i>b</i>)indoles. Angewandte Chemie - International Edition, 2018, 57, 15553-15557.	7.2	31
153	Intermolecular [2+2] photocycloaddition of chalcones with 2,3-dimethyl-1,3-butadiene under neat reaction conditions. Tetrahedron, 2018, 74, 6694-6703.	1.0	7
154	Realizing the Photoene Reaction with Alkenes under Visible Light Irradiation and Bypassing the Favored [2 + 2]-Photocycloaddition. Journal of the American Chemical Society, 2018, 140, 13185-13189.	6.6	22
155	Templating and Catalyzing [2+2] Photocycloaddition in Solution Using a Dynamic Gâ€Quadruplex. Angewandte Chemie - International Edition, 2018, 57, 17146-17150.	7.2	12
156	Allenoates in Enantioselective [2+2] Cycloadditions: From a Mechanistic Curiosity to a Stereospecific Transformation. Journal of the American Chemical Society, 2018, 140, 15943-15949.	6.6	49
157	Development of an Alkyne Analogue of the deâ€Mayo Reaction: Synthesis of Mediumâ€Sized Carbacycles and Cyclohepta[b]indoles. Angewandte Chemie, 2018, 130, 15779-15783.	1.6	10
158	Photocatalysis with nucleic acids and peptides. Physical Sciences Reviews, 2018, 3, .	0.8	0
159	Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. Organic Letters, 2018, 20, 6808-6811.	2.4	8
160	Catalyst―and Templateâ€Free Ultrafast Visibleâ€Lightâ€Triggered Dimerization of Vinylpyridineâ€Functionalized Tetraarylaminoborane: Intriguing Deepâ€Blue Delayed Fluorescence. Angewandte Chemie, 2018, 130, 17048-17052.	1.6	4
161	Catalyst―and Templateâ€Free Ultrafast Visibleâ€Lightâ€Triggered Dimerization of Vinylpyridineâ€Functionalized Tetraarylaminoborane: Intriguing Deepâ€Blue Delayed Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 16806-16810.	7.2	27
162	Enantioselective Lewis Acid Catalyzed <i>ortho</i> Photocycloaddition of Olefins to Phenanthreneâ€9â€carboxaldehydes. Angewandte Chemie - International Edition, 2018, 57, 14593-14596.	7.2	74
163	Enantioselektive Lewisâ€6äreâ€katalysierte <i>ortho</i> à€Photocycloaddition von Phenanthrenâ€9â€carbaldehyden. Angewandte Chemie, 2018, 130, 14801-14805.	1.6	21
164	Stereo- and regioselective photocycloaddition of extended alkenes using \hat{I}^3 -cyclodextrin. Organic and Biomolecular Chemistry, 2018, 16, 6870-6875.	1.5	2
165	Chromophoraktivierung von α,βâ€ungesÃŧtigten Carbonylverbindungen und ihre Anwendung in enantioselektiven Photoreaktionen. Angewandte Chemie, 2018, 130, 14536-14547.	1.6	23

#	Article	IF	CITATIONS
166	Chromophore Activation of $\hat{l}\pm\hat{l}^2\hat{a}\in U$ nsaturated Carbonyl Compounds and Its Application to Enantioselective Photochemical Reactions. Angewandte Chemie - International Edition, 2018, 57, 14338-14349.	7.2	82
167	Molecular Acrobatics in Polycyclic Frames: Synthesis of Functionalized <i>D</i> ₃ -Trishomocubanes via the Rearrangement Approach. Journal of Organic Chemistry, 2018, 83, 6315-6324.	1.7	15
168	Toward the Synthesis of Sceptrin and Benzosceptrin: Solvent Effect in Stereo―and Regioselective [2+2] Photodimerization and Easy Access to the Fully Substituted Benzobutane. European Journal of Organic Chemistry, 2018, 2018, 5861-5868.	1.2	7
169	Tandem catalysis for asymmetric coupling of ethylene and enynes to functionalized cyclobutanes. Science, 2018, 361, 68-72.	6.0	100
170	Dearomative Cascade Photocatalysis: Divergent Synthesis through Catalyst Selective Energy Transfer. Journal of the American Chemical Society, 2018, 140, 8624-8628.	6.6	148
171	Building C(sp3)-rich complexity by combining cycloaddition and C–C cross-coupling reactions. Nature, 2018, 560, 350-354.	13.7	68
172	A solid-state $[2\hat{a}\in\%+\hat{a}\in\%2]$ photodimerization involving coordination of Ag(I) ions to 2-pyridyl groups. Journal of Coordination Chemistry, 2018, 71, 2875-2883.	0.8	6
173	Light on the Horizon: Current Research and Future Perspectives in Flow Photochemistry. Organic Process Research and Development, 2018, 22, 1045-1062.	1.3	139
174	Capturing the Organic Species Derived from the C–C Cleavage and in Situ Oxidation of 1,2,3,4-Tetra(pyridin-4-yl)cyclobutane by [CuCN] _{<i>n</i>} -Based MOFs. Inorganic Chemistry, 2018, 57, 9160-9166.	1.9	9
175	Visibleâ€Lightâ€Promoted Redoxâ€Neutral Cyclopropanation Reactions of αâ€Substituted Vinylphosphonates and Other Michael Acceptors with Chloromethyl Silicate as Methylene Transfer Reagent. Advanced Synthesis and Catalysis, 2018, 360, 4459-4463.	2.1	43
176	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie - International Edition, 2018, 57, 11786-11791.	7.2	23
177	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie, 2018, 130, 11960-11965.	1.6	8
178	Anellierte Cyclobutane durch Feâ€katalysierte Cycloisomerisierung von Eninacetaten. Angewandte Chemie, 2018, 130, 13519-13522.	1.6	2
179	Detection of an Energy-Transfer Pathway in Cr-Photoredox Catalysis. ACS Catalysis, 2018, 8, 9216-9225.	5.5	22
180	Asymmetric synthesis of polysubstituted methylenecyclobutanes <i>via</i> catalytic [2+2] cycloaddition reactions of <i>N</i> -allenamides. Chemical Communications, 2018, 54, 10511-10514.	2.2	23
181	Annelated Cyclobutanes by Feâ€Catalyzed Cycloisomerization of Enyne Acetates. Angewandte Chemie - International Edition, 2018, 57, 13335-13338.	7.2	13
182	Organocatalytic Asymmetric Cascade Aerobic Oxidation and Semipinacol Rearrangement Reaction: A Visible Lightâ€Induced Approach to Access Chiral 2,2â€Disubstituted Indolinâ€3â€ones. Chemistry - an Asian Journal, 2018, 13, 2382-2387.	1.7	53
183	X-Shaped Cyclobutane-Linked Tetraporphyrins through a Thermal [2+2] Cycloaddition of Etheno-Fused Diporphyrins. Journal of the American Chemical Society, 2018, 140, 8392-8395.	6.6	10

#	Article	IF	CITATIONS
184	Visibleâ€Lightâ€Induced Organic Photochemical Reactions through Energyâ€Transfer Pathways. Angewandte Chemie - International Edition, 2019, 58, 1586-1604.	7.2	739
185	Mit sichtbarem Licht induzierte, organische photochemische Reaktionen $\tilde{A}^{1}\!\!/\!\!4$ ber Energietransferrouten. Angewandte Chemie, 2019, 131, 1600-1619.	1.6	137
186	Photochemical Alkene Isomerization for the Synthesis of Polysubstituted Furans and Pyrroles under Neutral Conditions. Chemistry - A European Journal, 2019, 25, 13114-13118.	1.7	17
187	6â€Methylenebicyclo[3.2.1]octâ€1â€enâ€3â€one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angewandte Chemie - International Edition, 2019, 58, 15731-15735.	7.2	25
188	Direct and Metal-Catalyzed Photochemical Dimerization of the Phthalide ($\langle i \rangle Z \langle i \rangle$)-Ligustilide Leading to Both [2 + 2] and [4 + 2] Cycloadducts: Application to Total Syntheses of Tokinolides Aâ \in "C and Riligustilide. Organic Letters, 2019, 21, 6295-6299.	2.4	16
189	BODIPY‣abeled Cyclobutanes by Secondary C(sp 3)â^H Arylations for Liveâ€Cell Imaging. Chemistry - A European Journal, 2019, 25, 12712-12718.	1.7	11
190	Photocycloaddition of <i>S</i> , <i>S</i> -Dioxo-benzothiophene-2-methanol, Reactivity in the Solid State and in Solution: Mechanistic Studies and Diastereoselective Formation of Cyclobutyl Rings. Journal of Organic Chemistry, 2019, 84, 9714-9725.	1.7	10
191	Photoredoxâ€Catalyzed Cyclopropanation of 1,1â€Disubstituted Alkenes via Radicalâ€Polar Crossover Process. Advanced Synthesis and Catalysis, 2019, 361, 4215-4221.	2.1	36
192	Photodriven solid-state multiple [2 + 2] cycloaddition strategies for the construction of polycyclobutane derivatives. CrystEngComm, 2019, 21, 4673-4683.	1.3	25
193	Visible light-mediated intermolecular $[2+2]$ photocycloaddition of 1-aryl-2-nitroethenes and olefins. Organic and Biomolecular Chemistry, 2019, 17, 7192-7203.	1.5	13
194	Stereocontrolled Preparation of Diversely Trifunctionalized Cyclobutanes. Journal of Organic Chemistry, 2019, 84, 10518-10525.	1.7	8
195	Robust and Scalable Approach to 1,3â€Disubstituted Pyridylcyclobutanes. European Journal of Organic Chemistry, 2019, 2019, 5937-5949.	1.2	6
196	Functionalized 1,3â€Diaminotruxillic Acids by Pdâ€Mediated C–H Activation and [2+2]â€Photocycloaddition of 5(4 <i>H</i>)â€Oxazolones. European Journal of Inorganic Chemistry, 2019, 2019, 3481-3489.	1.0	9
197	miRNA–Microbiota Interaction in Gut Homeostasis and Colorectal Cancer. Trends in Cancer, 2019, 5, 666-669.	3.8	35
198	Convenient Access to Conformationally Rigid Sultams. Organic Letters, 2019, 21, 8909-8914.	2.4	13
199	4-ï€-Photocyclization of 1,2-Dihydropyridazines: An Approach to Bicyclic 1,2-Diazetidines with Rich Synthetic Potential. Organic Letters, 2019, 21, 9232-9235.	2.4	12
200	Light-Induced Intramolecular Iodine-Atom Transfer Radical Addition of Alkyne: An Approach from Aryl Iodide to Alkenyl Iodide. Organic Letters, 2019, 21, 9133-9137.	2.4	19
201	Direct Dearomatization of Pyridines via an Energy-Transfer-Catalyzed Intramolecular [4+2] Cycloaddition. CheM, 2019, 5, 2854-2864.	5.8	68

#	ARTICLE	IF	CITATIONS
202	Escaping from Flatland: [2 + 2] Photocycloaddition; Conformationally Constrained sp ³ -rich Scaffolds for Lead Generation. ACS Medicinal Chemistry Letters, 2019, 10, 1512-1517.	1.3	37
203	6â€Methylenebicyclo[3.2.1]octâ€1â€enâ€3â€one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angewandte Chemie, 2019, 131, 15878-15882.	1.6	11
204	Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. European Journal of Medicinal Chemistry, 2019, 182, 111637.	2.6	47
205	Visible-light-initiated manganese-catalyzed Giese addition of unactivated alkyl iodides to electron-poor olefins. Chemical Communications, 2019, 55, 11707-11710.	2.2	37
206	Asymmetric Synthesis of Boryl-Functionalized Cyclobutanols. ACS Catalysis, 2019, 9, 9253-9258.	5.5	43
207	Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. Bulletin of the Chemical Society of Japan, 2019, 92, 1467-1473.	2.0	10
208	Catalytic Enantioselective Synthesis of Cyclobutenes from Alkynes and Alkenyl Derivatives. Journal of the American Chemical Society, 2019, 141, 15367-15377.	6.6	83
209	Photoinduced cycloaddition of biomass derivatives to obtain high-performance spiro-fuel. Green Chemistry, 2019, 21, 5886-5895.	4.6	26
210	Reversal of Regioselectivity during Photodimerization of 2-Anthracenecarboxylic Acid in a Water-Soluble Organic Cavitand. Organic Letters, 2019, 21, 7868-7872.	2.4	22
211	Achiral Zeolites as Reaction Media for Chiral Photochemistry. Molecules, 2019, 24, 3570.	1.7	7
212	Nickel-catalyzed [2 + 2] cycloaddition reaction using bisallenes. Tetrahedron Letters, 2019, 60, 151168.	0.7	6
213	Recent development on the [5+2] cycloadditions and their application in natural product synthesis. Chemical Communications, 2019, 55, 1859-1878.	2.2	65
214	Highly selective AlCl $<$ sub $>$ 3 $<$ /sub $>$ initiated intramolecular $\hat{l}\pm$ -alkylation of $\hat{l}\pm$, \hat{l}^2 -unsaturated lactams and lactones. Organic and Biomolecular Chemistry, 2019, 17, 49-52.	1.5	4
215	Self-assembly of cucurbiturils and cyclodextrins to supramolecular millstones with naphthalene derivatives capable of translocations in the host cavities. New Journal of Chemistry, 2019, 43, 3673-3689.	1.4	2
216	Visible light induced oxidative hydroxylation of boronic acids. Tetrahedron Letters, 2019, 60, 660-663.	0.7	15
217	Photoredox atalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angewandte Chemie, 2019, 131, 3910-3914.	1.6	29
218	Photoredox atalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angewandte Chemie - International Edition, 2019, 58, 3870-3874.	7.2	96
219	Intramolecular photocycloaddition reactions of 2- and 4-(5-arylpent-4-enyl)-1-cyanonaphthalenes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 173-184.	2.0	2

#	Article	IF	CITATIONS
220	Sensitized $[2 + 2]$ intramolecular photocycloaddition of unsaturated enones using UV LEDs in a continuous flow reactor: kinetic and preparative aspects. Reaction Chemistry and Engineering, 2019, 4, 828-837.	1.9	6
221	Triplet-sensitised di-ï€-methane rearrangement of <i>N</i> -substituted 2-azabarrelenones. Chemical Communications, 2019, 55, 302-305.	2.2	5
222	Blue and green emission bands in the enantiopure (S)-(-)-1-[(1-phenyl)-N-(biphen-2-yl)methylidene]ethylamine: Morphological, structural and optical properties. Optik, 2019, 185, 331-338.	1.4	6
223	Regioselective Photochemical Cycloaddition Reactions of Diolefinic Ligands in Coordination Polymers. Chemistry - an Asian Journal, 2019, 14, 3635-3641.	1.7	6
224	Visible-light-induced deboronative alkylarylation of acrylamides with organoboronic acids. Organic and Biomolecular Chemistry, 2019, 17, 6612-6619.	1.5	35
225	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. Journal of Organic Chemistry, 2019, 84, 9257-9269.	1.7	12
226	Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (â^^)-Nemorosone and (â^^)-6- <i>epi</i> -Garcimultiflorone A. Journal of the American Chemical Society, 2019, 141, 11315-11321.	6.6	43
227	Nd(OTf)3-catalyzed intramolecular-intermolecular cascade cyclization reaction: An access to phenanthro[9,10-b]furan derivatives. Journal of Saudi Chemical Society, 2019, 23, 1041-1048.	2.4	2
228	Photo-auxiliary approach to control excited state reactivity: Cross [2+2]-photocycloaddition of oxazolidinone based hydrazides. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111883.	2.0	3
229	Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 6936-6951.	1.5	236
230	Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. Journal of Organic Chemistry, 2019, 84, 8815-8836.	1.7	68
231	Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Organic Letters, 2019, 21, 4153-4158.	2.4	71
233	Radical Addition to Strained $\ddot{l}f$ -Bonds Enables the Stereocontrolled Synthesis of Cyclobutyl Boronic Esters. Journal of the American Chemical Society, 2019, 141, 9511-9515.	6.6	108
234	Total Syntheses of (+)â€Aquatolide and Related Humulanolides. Angewandte Chemie, 2019, 131, 9956-9960.	1.6	11
235	Catalytic and Asymmetric Process via P ^{III} /P ^V â•O Redox Cycling: Access to (Trifluoromethyl)cyclobutenes via a Michael Addition/Wittig Olefination Reaction. Journal of the American Chemical Society, 2019, 141, 10142-10147.	6.6	40
236	A new class of flavonoids bearing macrocyclic polyethers by stereoselective photochemical cycloaddition reaction. Tetrahedron, 2019, 75, 3911-3916.	1.0	2
237	Total Syntheses of (+)â€Aquatolide and Related Humulanolides. Angewandte Chemie - International Edition, 2019, 58, 9851-9855.	7.2	39
238	An Ultimate Stereocontrol in Supramolecular Photochirogenesis: Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Sulfur-Linked \hat{l}^2 -Cyclodextrin Dimers. Journal of the American Chemical Society, 2019, 141, 9225-9238.	6.6	70

#	ARTICLE	IF	CITATIONS
239	Hydrodealkenylative C(sp ³)–C(sp ²) bond fragmentation. Science, 2019, 364, 681-685.	6.0	75
240	The tetraalkylammonium-accelerated Norrish-Yang photocyclization of 2-substituted acetophenones. Tetrahedron Letters, 2019, 60, 1543-1546.	0.7	2
241	Thioallenoates in catalytic enantioselective [2+2]-cycloadditions with unactivated alkenes. Tetrahedron, 2019, 75, 3265-3271.	1.0	10
242	Radical Cation Dielsâ€Alder Reactions of Nonâ€Conjugated Alkenes as Dienophiles by Electrocatalysis. Chinese Journal of Chemistry, 2019, 37, 561-564.	2.6	9
243	Intramolecular [2+2] Photocycloaddition of Cyclic Enones: Selectivity Control by Lewis Acids and Mechanistic Implications. Chemistry - A European Journal, 2019, 25, 8135-8148.	1.7	45
244	Synthesis of 2-Substituted Propenes by Bidentate Phosphine-Assisted Methylenation of Acyl Fluorides and Acyl Chlorides with AlMe ₃ . Organic Letters, 2019, 21, 3640-3643.	2.4	15
245	Regiodivergent Electrophilic Cyclizations of Alkynylcyclobutanes for the Synthesis of Cyclobutane-Fused O-Heterocycles. Journal of Organic Chemistry, 2019, 84, 5712-5725.	1.7	13
246	Introduction of Cyclopropyl and Cyclobutyl Ring on Alkyl Iodides through Cobalt-Catalyzed Cross-Coupling. Organic Letters, 2019, 21, 2285-2289.	2.4	30
247	Catalytic asymmetric cycloaddition reactions of enoldiazo compounds. Organic and Biomolecular Chemistry, 2019, 17, 4183-4195.	1.5	45
248	Reversible networks of degradable polyesters containing weak covalent bonds. Polymer Chemistry, 2019, 10, 1848-1872.	1.9	39
249	A route to a cyclobutane-linked double-looped system <i>via</i> a helical macrocycle. Chemical Communications, 2019, 55, 4558-4561.	2.2	17
250	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie, 2019, 131, 6775-6779.	1.6	2
251	Intramolecular [2+2]â€Cycloaddition in the Synthesis of Polycyclic Tetrahydrothiopyran Derivatives Bearing a Cyclobutane Scaffold. Advanced Synthesis and Catalysis, 2019, 361, 2274-2279.	2.1	3
252	Dynamic PCBM:Dimer Population in Solar Cells under Light and Temperature Fluctuations. Advanced Energy Materials, 2019, 9, 1803948.	10.2	15
253	Photochemical, Metalâ€Free Sigmatropic Rearrangement Reactions of Sulfur Ylides. Chemistry - A European Journal, 2019, 25, 6703-6706.	1.7	64
254	Substitution Patternâ€Selective Olefin Crossâ€Couplings. ChemElectroChem, 2019, 6, 4165-4168.	1.7	10
255	Recent advances in the synthesis of <i>gem</i> -dimethylcyclobutane natural products. Natural Product Reports, 2019, 36, 1383-1393.	5. 2	25
256	Rapid and Multigram Synthesis of Vinylogous Esters under Continuous Flow: An Access to Transetherification and Reverse Reaction of Vinylogous Esters. Organic Process Research and Development, 2019, 23, 1034-1045.	1.3	3

#	Article	IF	CITATIONS
257	13 Flavins in Photocatalysis. , 2019, , .		0
258	16 Photocatalytic Cycloadditions. , 2019, , .		1
259	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie - International Edition, 2019, 58, 6703-6707.	7.2	20
260	Diastereoselective Photocycloaddition Reaction of Vinyl Ether Tethered to 1,4â€Naphthoquinone. ChemPhotoChem, 2019, 3, 243-250.	1.5	2
261	Thermally Induced trans â€to―cis Isomerization and Its Photoinduced Reversal Monitored using Absorption and Luminescence: Cooperative Effect of Metal Coordination and Steric Substituent. Chemistry - A European Journal, 2019, 25, 5177-5185.	1.7	8
262	A computational study into the origin of reactivity and selectivity of organocatalyzed [2Â+Â2] reactions between α,βâ€unsaturated aldehydes and nitroolefins. Journal of Physical Organic Chemistry, 2019, 32, e3943.	0.9	1
263	Reversible chemoselective transetherification of vinylogous esters using Fe-catalyst under additive free conditions. Organic and Biomolecular Chemistry, 2019, 17, 3258-3266.	1.5	2
264	Stereoselective Construction of Methylenecyclobutane-Fused Indolines through Photosensitized [2+2] Cycloaddition of Allene-Tethered Indole Derivatives. Organic Letters, 2019, 21, 1506-1510.	2.4	31
265	Photochemically Produced Aminocyclobutanes as Masked Dienes in Thermal Electrocyclic Cascade Reactions. Organic Letters, 2019, 21, 1463-1466.	2.4	16
266	Sequential Energy Transfer Catalysis: A Cascade Synthesis of Angularly-Fused Dihydrocoumarins. Organic Letters, 2019, 21, 9724-9728.	2.4	42
267	Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chemical Reviews, 2019, 119, 12422-12490.	23.0	156
268	Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nature Chemistry, 2019, 11, 1034-1040.	6.6	178
269	Enhanced irregular photodimers and switched enantioselectivity by solvent and temperature in the photocyclodimerization of 2-anthracenecarboxylate with modified \hat{l}^2 -cyclodextrins. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 374-381.	2.0	15
270	Visible Lightâ€Mediated Synthesis of Enantiopure γâ€Cyclobutane Amino and 3â€(Aminomethyl)â€5â€phenylpentanoic Acids. Advanced Synthesis and Catalysis, 2019, 361, 1400-1407.	2.1	13
271	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	1.3	52
272	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1789-1793.	7.2	68
273	Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. Journal of the American Chemical Society, 2019, 141, 2636-2644.	6.6	177
274	Biobased polymer networks by the thiol-ene photopolymerization of allylated p-coumaric and caffeic acids. Polymer Journal, 2019, 51, 461-470.	1.3	11

#	Article	IF	Citations
275	[6Ï€] Photocyclization to cis-Hexahydrocarbazol-4-ones: Substrate Modification, Mechanism, and Scope. Journal of Organic Chemistry, 2019, 84, 1139-1153.	1.7	23
276	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visibleâ€Light Catalysis. Chemistry - A European Journal, 2019, 25, 879-884.	1.7	13
277	Carbopalladation of C–C σ-bonds enabled by strained boronate complexes. Nature Chemistry, 2019, 11, 117-122.	6.6	140
278	Stereospecific [2â€+â€2]-cross-photocycloaddition in a supramolecular donor–acceptor complex. Tetrahedron Letters, 2019, 60, 150-153.	0.7	8
279	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2019, 131, 1803-1807.	1.6	22
280	Energy Transfer Catalysis by Visible Light: Atrop―and Regioâ€Selective Intermolecular [2+2]â€Photocycloaddition of Maleimide with Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1478-1481.	1.2	14
281	Pseudodimeric complexes of 4-styrylpyridine derivatives: Structure–property relationships and a stereospecific [2+2]-cross-photocycloaddition in solution. Dyes and Pigments, 2020, 172, 107825.	2.0	6
282	[2+2] Photochemical Cycloaddition in Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 1310-1326.	1.2	119
283	Intramolecular [2+2] Cycloaddition of Nâ€Allylcinnamamines and <i>N</i> àê€Allylcinnamamides by Visibleâ€Light Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 41-46.	1.2	16
284	Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angewandte Chemie - International Edition, 2020, 59, 6525-6528.	7.2	46
285	Recent advances in the total synthesis of cyclobutane-containing natural products. Organic Chemistry Frontiers, 2020, 7, 136-154.	2.3	129
286	Visibleâ€Lightâ€Driven Strainâ€Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angewandte Chemie, 2020, 132, 6587-6590.	1.6	18
287	Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 374-379.	2.3	20
288	Self-photosensitized [2 + 2] cycloaddition for synthesis of high-energy-density fuels. Sustainable Energy and Fuels, 2020, 4, 911-920.	2.5	14
289	<i>p</i> -Anisaldehyde-Photosensitized Sulfonylcyanation of Chiral Cyclobutenes: Enantioselective Access to Cyclic and Acyclic Systems Bearing All-Carbon Quaternary Stereocenters. Organic Letters, 2020, 22, 575-579.	2.4	14
290	Recent advances in the chemistry of bicyclo- and 1-azabicyclo[1.1.0]butanes. Pure and Applied Chemistry, 2020, 92, 751-765.	0.9	43
291	Towards Visible‣ight Photocatalytic Reduction of Hypercoordinated Silicon Species. Helvetica Chimica Acta, 2020, 103, e1900238.	1.0	2
292	Radicalâ€Cationâ€Induced Crossed [2+2] Cycloaddition of Electronâ€Deficient Anetholes Initiated by Iron(III) Salt. Advanced Synthesis and Catalysis, 2020, 362, 960-963.	2.1	12

#	Article	IF	CITATIONS
293	Enantioselective Synthesis of 3â€Substituted Cyclobutenes by Catalytic Conjugate Addition/Trapping Strategies. Angewandte Chemie, 2020, 132, 2772-2776.	1.6	8
294	Enantioselective Synthesis of 3â€Substituted Cyclobutenes by Catalytic Conjugate Addition/Trapping Strategies. Angewandte Chemie - International Edition, 2020, 59, 2750-2754.	7.2	36
295	Pentacycloundecane (PCUD)â€Based Cage Frameworks as Potential Energetic Materials: Syntheses and Characterization. Asian Journal of Organic Chemistry, 2020, 9, 2116-2126.	1.3	11
296	Access to substituted cyclobutenes by tandem $[3,3]$ -sigmatropic rearrangement/ $[2+2]$ cycloaddition of dipropargylphosphonates under Ag/Co relay catalysis. Chemical Science, 2020, 11 , $12329-12335$.	3.7	3
297	Visible-Light-Induced Dearomatization via [2+2] Cycloaddition or 1,5-Hydrogen Atom Transfer: Divergent Reaction Pathways of Transient Diradicals. ACS Catalysis, 2020, 10, 12618-12626.	5.5	50
298	Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Communications Chemistry, 2020, 3, .	2.0	11
299	Advances in the catalytic asymmetric synthesis of quaternary carbon containing cyclobutanes. Organic Chemistry Frontiers, 2020, 7, 2576-2597.	2.3	25
300	Divergent Total Synthesis of Euphoranginolâ€C, Euphoranginoneâ€D, <i>ent</i> å€Trachylobanâ€3βâ€ol, <i>ent</i> å€Trachylobanâ€3â€one, Excoecarinâ€E, and <i>ent</i> å€16αâ€Hydroxyâ€atisaneâ€3â€one. Ange International Edition, 2020, 59, 19919-19923.	wanalte Cl	nemie -
301	Synthesis and [2+2]-photodimerisation of monothiomaleimide functionalised linear and brush-like polymers. Chemical Communications, 2020, 56, 9545-9548.	2,2	6
302	Thermal Elimination of Ethylene from Cyclobutyl Groups Characterized by Xâ€ray Crystallography in a Metal–Organic Framework Matrix. Chemistry - A European Journal, 2020, 26, 10321-10329.	1.7	5
303	Flow Chemistry for Cycloaddition Reactions. ChemSusChem, 2020, 13, 5138-5163.	3.6	15
304	Saturated Bioisosteres of <i>ortho</i> â€6ubstituted Benzenes. Angewandte Chemie, 2020, 132, 20696-20702.	1.6	12
305	Saturated Bioisosteres of <i>ortho</i> â€Substituted Benzenes. Angewandte Chemie - International Edition, 2020, 59, 20515-20521.	7.2	78
306	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.0	28
307	[2 + 2] Photodimerization of Sulfonate Derivative of <i>trans</i> Solid State ¹³ C NMR and Hybrid Material Inclusion. Crystal Growth and Design, 2020, 20, 7850-7861.	1.4	7
308	Manufacturing chemicals with light: any role in the circular economy?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190260.	1.6	5
309	Stereoselective formal $[3 + 3]$ annulation of 3-alkylidene-2-oxindoles with \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}^4 -keto esters. Organic and Biomolecular Chemistry, 2020, 18, 9852-9862.	1.5	2
310	Photosensitized Intramolecular [2+2] Cycloaddition of $1 < i > H < / i > -Pyrrolo[2,3-< i > b < / i >] pyridines Enabled by the Assistance of Lewis Acids. Journal of Organic Chemistry, 2020, 85, 15717-15725.$	1.7	11

#	Article	IF	CITATIONS
312	Recent advances in the synthesis of plakortin-type polyketides. Organic and Biomolecular Chemistry, 2020, 18, 9371-9384.	1.5	4
313	Triplet Energy Transfer Photocatalysis: Unlocking the Next Level. CheM, 2020, 6, 1888-1903.	5.8	304
314	High conversion and selectivity of photodimerization under air conditions by supramolecular oxidation restraint within a metallocage-like nanoreactor. CrystEngComm, 2020, 22, 5411-5415.	1.3	4
315	Photocatalytic Intramolecular [2 + 2] Cycloaddition of Indole Derivatives via Energy Transfer: A Method for Late-Stage Skeletal Transformation. ACS Catalysis, 2020, 10, 10149-10156.	5.5	59
316	Transitionâ€Metalâ€Catalyzed Cycloaddition Reactions to Access Sevenâ€Membered Rings. Chemistry - A European Journal, 2020, 26, 15354-15377.	1.7	51
317	Divergent Total Synthesis of Euphoranginolâ€C, Euphoranginoneâ€D, ent â€Trachylobanâ€3βâ€ol, ent â€Trachylobanâ€3â€one, Excoecarinâ€E, and ent â€16αâ€Hydroxyâ€atisaneâ€3â€one. Angewandte Chemie, 2 20091-20095.	020, 132,	13
318	Visible Light-Mediated Photochemical Reactions of 2-(2′-Alkenyloxy)cycloalk-2-enones. Journal of Organic Chemistry, 2020, 85, 11426-11439.	1.7	10
319	Rational Design of Triplet Sensitizers for the Transfer of Excited State Photochemistry from UV to Visible. Journal of the American Chemical Society, 2020, 142, 14947-14956.	6.6	72
320	Orthogonal Syntheses of 3.2.0 Bicycles from Enallenes Promoted by Visible Light. Organic Letters, 2020, 22, 6354-6359.	2.4	18
321	Iron(ii) coordination pyrazole complexes with aromatic sulfonate ligands: the role of ether. New Journal of Chemistry, 2020, 44, 13902-13912.	1.4	7
322	Gold-Catalyzed Synthesis of Small Rings. Chemical Reviews, 2021, 121, 8613-8684.	23.0	142
323	Synthesis of trisubstituted alkenes by Ni-catalyzed hydroalkylation of internal alkynes with cycloketone oxime esters. Chemical Communications, 2020, 56, 14191-14194.	2.2	11
324	Sequential Solidâ€State Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angewandte Chemie - International Edition, 2020, 59, 22372-22377.	7.2	21
325	Enantioselective Synthesis of (+)-Hippolide J and Reevaluation of Antifungal Activity. Organic Letters, 2020, 22, 7743-7746.	2.4	4
326	Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions. Nature Chemistry, 2020, 12, 898-905.	6.6	120
327	Sequential Solid‧tate Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angewandte Chemie, 2020, 132, 22558-22563.	1.6	2
328	Synthesis of Decahydrocyclobuta[cd]indene Skeletons: Rhodium(III)â€Catalyzed Hydroarylation and Relay Thiopheneâ€Promoted Intramolecular [2+2] Cycloaddition. Advanced Synthesis and Catalysis, 2020, 362, 4384-4390.	2.1	5
329	Visibleâ€Lightâ€Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition. Angewandte Chemie - International Edition, 2020, 59, 23020-23024.	7.2	29

#	Article	IF	Citations
330	Visibleâ€Lightâ€Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition. Angewandte Chemie, 2020, 132, 23220-23224.	1.6	5
331	Photochemical O–H Functionalization of Aryldiazoacetates with Phenols via Proton Transfer. Organic Letters, 2020, 22, 7225-7229.	2.4	36
332	Cage-confined photocatalysis for wide-scope unusually selective [2 + 2] cycloaddition through visible-light triplet sensitization. Nature Communications, 2020, 11, 4675.	5.8	63
333	Asymmetric Construction of Cyclobutanes via Direct Vinylogous Michael Addition/Cyclization of \hat{l}^2 , \hat{l}^3 -Unsaturated Amides. Organic Letters, 2020, 22, 7135-7140.	2.4	22
334	A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. Chemical Communications, 2020, 56, 12443-12446.	2.2	25
335	Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chemical Science, 2020, 11, 9309-9324.	3.7	8
336	Deal; Photoredox Catalysis for the Cycloaddition Reactions. ChemCatChem, 2020, 12, 6173-6185.	1.8	23
337	A Supramolecular Strategy for Enhancing Photochirogenic Performance through Host/Guest Modification: Dicationic I ³ -Cyclodextrin-Mediated Photocyclodimerization of 2,6-Anthracenedicarboxylate. Organic Letters, 2020, 22, 9757-9761.	2.4	11
338	Photoresponsive Styrylpyrene-Modified MOFs for Gated Loading and Release of Cargo Molecules. Chemistry of Materials, 2020, 32, 10621-10627.	3.2	20
339	Gold-Catalyzed Synthetic Strategies towards Four-Carbon Ring Systems. Catalysts, 2020, 10, 1178.	1.6	5
340	Crosslinking of Polylactide by High Energy Irradiation and Photo-Curing. Molecules, 2020, 25, 4919.	1.7	37
341	Design and Synthesis of Cage Molecules as High Energy Density Materials for Aerospace Applications. ChemCatChem, 2020, 12, 6131-6172.	1.8	11
342	Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Angewandte Chemie, 2020, 132, 9746-9755.	1.6	13
343	pH-Controlled Chirality Inversion in Enantiodifferentiating Photocyclodimerization of 2-Antharacenecarboxylic Acid Mediated by \hat{I}^3 -Cyclodextrin Derivatives. Organic Letters, 2020, 22, 5273-5278.	2.4	16
344	Photocatalyst-Free Singlet Oxygen-Induced Oxygenation: AÂStrategy for the Preparation of 5-Cyano-2-pyridones Driven by Blue-Light Irradiation. Journal of Organic Chemistry, 2020, 85, 8279-8286.	1.7	13
345	Visible-Light-Induced Dehydrohalogenative Coupling for Intramolecular α-Alkenylation: A Way to Build Seven- and Eight-Membered Rings. Organic Letters, 2020, 22, 4372-4377.	2.4	12
346	Total Synthesis of (±)-Sceptrin. Organic Letters, 2020, 22, 6698-6702.	2.4	8
347	Regio- and Stereoselective Synthesis of Highly Functionalized Tetrasubstituted Olefins by Iodine-Mediated Iodofunctionalization of Ferrocene-Containing Allenylphosphonates. Journal of Organic Chemistry, 2020, 85, 7358-7367.	1.7	2

#	ARTICLE	IF	CITATIONS
348	<scp>Iridium atalyzed</scp> Enantioselective C(sp ³)â€"H Borylation of Cyclobutanes. Chinese Journal of Chemistry, 2020, 38, 1533-1537.	2.6	48
349	Effect of Reaction Media on Photosensitized [2+2]â€Cycloaddition of Cinnamates. ChemistryOpen, 2020, 9, 649-656.	0.9	8
350	Fourâ€Component Borocarbonylation of Vinylarenes Enabled by Cooperative Cu/Pd Catalysis: Access to βâ€Boryl Ketones and βâ€Boryl Vinyl Esters. Angewandte Chemie - International Edition, 2020, 59, 17055-17061.	. 7.2	50
351	Desaturation via Redox-Neutral Hydrogen Transfer Process: Synthesis of 2-Allyl Anilines, Mechanism and Applications. IScience, 2020, 23, 101168.	1.9	1
352	Development and Execution of a Production-Scale Continuous [2 + 2] Photocycloaddition. Organic Process Research and Development, 2020, 24, 2139-2146.	1.3	31
353	Redox Potential Controlled Selective Oxidation of Styrenes for Regio- and Stereoselective Crossed Intermolecular [2 + 2] Cycloaddition <i>via</i> Organophotoredox Catalysis. Organic Letters, 2020, 22, 5207-5211.	2.4	21
354	Synthesis of azetidines by aza Paternò–Büchi reactions. Chemical Science, 2020, 11, 7553-7561.	3.7	73
355	Recent Advances in Photocatalytic Functionalization of Quinoxalinâ€2â€ones. European Journal of Organic Chemistry, 2020, 2020, 6148-6172.	1.2	70
356	A macrocycle directed total synthesis of di- $\langle i \rangle O \langle i \rangle$ -methylendiandrin A. Chemical Communications, 2020, 56, 8747-8749.	2.2	3
357	Fourâ€Component Borocarbonylation of Vinylarenes Enabled by Cooperative Cu/Pd Catalysis: Access to βâ€Boryl Ketones and βâ€Boryl Vinyl Esters. Angewandte Chemie, 2020, 132, 17203-17209.	1.6	5
358	Dearomative Cycloadditions Utilizing an Organic Photosensitizer: An Alternative to Iridium Catalysis. Organic Letters, 2020, 22, 5035-5040.	2.4	59
359	Reversible single crystal-to-single crystal double [2+2] cycloaddition induces multifunctional photo-mechano-electrochemical properties in framework materials. Nature Communications, 2020, 11, 2808.	5.8	46
360	Synthesis of esters of diaminotruxillic bis-amino acids by Pd-mediated photocycloaddition of analogs of the Kaede protein chromophore. Beilstein Journal of Organic Chemistry, 2020, 16, 1111-1123.	1.3	9
361	Synthesis of an anthraquinone-containing polymeric photosensitizer and its application in aerobic photooxidation of thioethers. RSC Advances, 2020, 10, 10661-10665.	1.7	6
362	Ring-Expansion Induced 1,2-Metalate Rearrangements: Highly Diastereoselective Synthesis of Cyclobutyl Boronic Esters. Journal of the American Chemical Society, 2020, 142, 5515-5520.	6.6	41
363	Photocatalytic [2 + 2] Cycloaddition in DNA-Encoded Chemistry. Organic Letters, 2020, 22, 2908-2913.	2.4	51
364	Photochemical [2 + 2] Cycloaddition of Alkenyl Boronic Derivatives: An Entry into 3-Azabicyclo[3.2.0]heptane Scaffold. Journal of Organic Chemistry, 2020, 85, 5927-5940.	1.7	26
365	Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Angewandte Chemie - International Edition, 2020, 59, 9659-9668.	7.2	59

#	Article	IF	CITATIONS
366	<i>Vicinal</i> , Double C–H Functionalization of Alcohols via an Imidate Radical-Polar Crossover Cascade. Journal of the American Chemical Society, 2020, 142, 5429-5438.	6.6	42
367	Heterogeneous photoredox flow chemistry for the scalable organosynthesis of fine chemicals. Nature Communications, 2020, 11, 1239.	5.8	75
368	5. Photocatalysis with nucleic acids and peptides. , 2020, , 103-122.		0
369	Solidâ€State [2+2] Photodimerization of 1â€Arylâ€4â€pyridylbutadienes in Cationâ€Ï€â€Controlled Crystals. Chemistry - an Asian Journal, 2020, 15, 581-584.	1.7	6
370	Bromomethyl Silicate: A Robust Methylene Transfer Reagent for Radicalâ€Polar Crossover Cyclopropanation of Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1778-1781.	1.2	23
371	Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ringâ€Expansion Sequence with Indoles. Angewandte Chemie, 2020, 132, 9726-9732.	1.6	18
372	Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed $[2 + 2]$ Cycloaddition of Alkenes. Journal of the American Chemical Society, 2020, 142, 5314-5330.	6.6	36
373	Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 2020, 10, 73-92.	1.2	59
374	Aminomethylation of Oxabenzonorbornadienes via the Merger of Photoredox and Nickel Catalysis. Organic Letters, 2020, 22, 2442-2447.	2.4	17
375	Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ringâ€Expansion Sequence with Indoles. Angewandte Chemie - International Edition, 2020, 59, 9639-9645.	7.2	68
376	Scalable Continuous Vortex Reactor for Gram to Kilo Scale for UV and Visible Photochemistry. Organic Process Research and Development, 2020, 24, 201-206.	1.3	43
377	Synthesis of Cyclobutane-Fused Tetracyclic Scaffolds via Visible-Light Photocatalysis for Building Molecular Complexity. Journal of the American Chemical Society, 2020, 142, 3094-3103.	6.6	92
378	A Polymer with "Locked―Degradability: Superior Backbone Stability and Accessible Degradability Enabled by Mechanophore Installation. Journal of the American Chemical Society, 2020, 142, 2100-2104.	6.6	88
379	Cobalt-Catalyzed <i>Z</i> to <i>E</i> Isomerization of Alkenes: An Approach to (<i>E</i>)-β-Substituted Styrenes. Organic Letters, 2020, 22, 1193-1198.	2.4	18
380	Anti-inflammatory quinoline alkaloids from the root bark of Dictamnus dasycarpus. Phytochemistry, 2020, 172, 112260.	1.4	41
382	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie - International Edition, 2020, 59, 5365-5370.	7.2	37
383	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie, 2020, 132, 5403-5408.	1.6	8
384	Enantioselective Aminocatalytic [2 + 2] Cycloaddition through Visible Light Excitation. ACS Catalysis, 2020, 10, 5335-5346.	5.5	34

#	Article	IF	CITATIONS
385	Aerobic photooxidative hydroxylation of boronic acids catalyzed by anthraquinone-containing polymeric photosensitizer. RSC Advances, 2020, 10, 7927-7932.	1.7	7
386	Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin–pillar[5]arene-hybridized hosts. Chemical Communications, 2020, 56, 6197-6200.	2.2	21
387	Visible-Light-Mediated Enantioselective Photoreactions of 3-Alkylquinolones with 4- <i>O</i> -Tethered Alkenes and Allenes. Organic Letters, 2020, 22, 3618-3622.	2.4	35
388	Donor–acceptor fluorophores as efficient energy transfer photocatalysts for [2 + 2] photodimerization. Organic and Biomolecular Chemistry, 2020, 18, 3707-3716.	1.5	20
389	A Rational Approach to Organoâ€Photocatalysis: Novel Designs and Structureâ€Property Relationships. Angewandte Chemie - International Edition, 2021, 60, 1082-1097.	7.2	151
390	A Rational Approach to Organoâ€Photocatalysis: Novel Designs and Structureâ€Property Relationships. Angewandte Chemie, 2021, 133, 1096-1111.	1.6	32
391	Olefinâ€Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie - International Edition, 2021, 60, 3989-3993.	7.2	14
392	Enantioselective, Visible Light Mediated Aza Paternò–BÃ⅓chi Reactions of Quinoxalinones. Angewandte Chemie - International Edition, 2021, 60, 2684-2688.	7.2	45
393	Bicyclic Piperidines <i>via</i> [2 + 2] Photocycloaddition. Journal of Organic Chemistry, 2021, 86, 2200-2209.	1.7	9
394	Olefinâ€Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie, 2021, 133, 4035-4039.	1.6	2
395	Aggregation-mediated photo-responsive luminescence of cyanostilbene based cruciform AlEgens. Journal of Materials Chemistry C, 2021, 9, 975-981.	2.7	12
396	Enantioselective, Visible Light Mediated Aza Paternò–BÃ⅓chi Reactions of Quinoxalinones. Angewandte Chemie, 2021, 133, 2716-2720.	1.6	8
397	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie, 2021, 133, 4381-4387.	1.6	4
398	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4335-4341.	7.2	11
399	Photocatalyzed Intramolecular [2+2] Cycloaddition of <i>N</i> â€Alkylâ€ <i>Nâ€(</i> 2â€(1â€arylvinyl)aryl)cinnamamides. Chemistry - A European Journal, 2021, 27, 3722-3728.	1.7	12
400	Mediating Reaction Orthogonality in Polymer and Materials Science. Angewandte Chemie - International Edition, 2021, 60, 1748-1781.	7.2	49
401	Gesteuerte Reaktionsorthogonalitäin der Polymer―und Materialwissenschaft. Angewandte Chemie, 2021, 133, 1774-1809.	1.6	7
402	Fluorine as a robust balancer for tuning the reactivity of topo-photoreactions of chalcones and the photomechanical effects of molecular crystals. CrystEngComm, 2021, 23, 5856-5868.	1.3	21

#	Article	IF	CITATIONS
403	Regioselectivity and stereoselectivity of intramolecular $[2 + 2]$ photocycloaddition catalyzed by chiral thioxanthone: a quantum chemical study. Organic and Biomolecular Chemistry, 2021, 19, 1532-1540.	1.5	7
404	Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond <i>via</i> [2+2] cycloaddition and sequential transformations. Chemical Science, 2021, 12, 9991-9997.	3.7	22
405	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
406	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	4.6	64
407	de Mayo Reaction. , 2021, , 147-150.		0
408	Green light LED activated ligation of a scalable, versatile chalcone chromophore. Polymer Chemistry, 2021, 12, 4903-4909.	1.9	15
409	<i>ortho</i> -Ethynyl group assisted regioselective and diastereoselective [2 + 2] cross-photocycloaddition of alkenes under photocatalyst-, additive-, and solvent-free conditions. Organic Chemistry Frontiers, 2021, 8, 5872-5887.	2.3	20
410	Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Medicinal Chemistry, 2021, 12, 448-471.	1.7	167
411	Catalytic enantioselective synthesis of benzocyclobutenols and cyclobutanols <i>via</i> a sequential reduction/Câ€"H functionalization. Chemical Science, 2021, 12, 10598-10604.	3.7	9
412	Photochemical synthesis of 3-hydroxyphenanthro $[9,10-c]$ furan- $1(3H)$ -ones from \hat{l} ±-keto acids and alkynes. Organic Chemistry Frontiers, 2021, 8, 975-982.	2.3	8
413	Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Organic Chemistry Frontiers, 2021, 8, 4237-4287.	2.3	158
414	Photochemical solid-state reactions. , 2021, , 189-203.		2
415	Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies. Molecules, 2021, 26, 556.	1.7	5
416	A photoinduced arene–alkyne [3 + 2] cycloaddition cascade of 1-alkynylnaphthalen-2-ols for tunable synthesis of skeletally diverse bridged hexacycles. Organic Chemistry Frontiers, 2021, 8, 1952-1958.	2.3	11
417	Visible light-induced one-pot synthesis of CF ₃ /CF ₂ -substituted cyclobutene derivatives. Chemical Communications, 2021, 57, 7441-7444.	2.2	6
418	Synthesis of benzofused cyclobutaoxepanones via intramolecular annulation of o-cinnamyl chalcones. Organic and Biomolecular Chemistry, 2021, 19, 2254-2268.	1.5	2
419	Pseudodimeric Complexes of an (18-Crown-6)stilbene with Styryl Dyes Containing an Ammonioalkyl Group: Synthesis, Structure, and Stereospecific [2 + 2] Cross-Photocycloaddition. Journal of Organic Chemistry, 2021, 86, 3164-3175.	1.7	8
420	Employing Photocatalysis for the Design and Preparation of DNAâ€Encoded Libraries: A Case Study. Chemical Record, 2021, 21, 616-630.	2.9	14

#	ARTICLE	IF	CITATIONS
421	Photoconversions of 15-crown-5-containing styryl dye and its complex with barium cation in the presence of cucurbit[7,8]urils. Russian Chemical Bulletin, 2021, 70, 350-358.	0.4	4
422	Visibleâ€Lightâ€Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angewandte Chemie - International Edition, 2021, 60, 7036-7040.	7.2	44
423	Visibleâ€Lightâ€Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angewandte Chemie, 2021, 133, 7112-7116.	1.6	7
424	Hydroarylation of Activated Alkenes Enabled by Proton-Coupled Electron Transfer. ACS Catalysis, 2021, 11, 4422-4429.	5. 5	51
425	Intermolecular Crossed [2 + 2] Cycloaddition Promoted by Visible-Light Triplet Photosensitization: Expedient Access to Polysubstituted 2-Oxaspiro[3.3]heptanes. Journal of the American Chemical Society, 2021, 143, 4055-4063.	6.6	39
426	Visible Light-Induced Pericyclic Cascade Reaction for the Synthesis of Quinolinone Derivatives with an Oxabicyclo [4.2.0] octene Skeleton. Organic Letters, 2021, 23, 2959-2963.	2.4	6
427	Exploring the Electronic Properties of Extended Benzofuranâ€Cyanovinyl Derivatives Obtained from Lignocellulosic and Carbohydrate Platforms Raw Materials. ChemPlusChem, 2021, 86, 475-482.	1.3	10
428	Advances in the synthesis of three-dimensional molecular architectures by dearomatizing photocycloadditions. Tetrahedron, 2022, 103, 132087.	1.0	12
429	(â^')â€ksoscopariusinâ€A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angewandte Chemie, 2021, 133, 12969-12977.	1.6	0
430	A Thorough Study on the Photoisomerization of Ferulic Acid Derivatives. European Journal of Organic Chemistry, 2021, 2021, 1737-1749.	1.2	6
431	(â^')â€Isoscopariusinâ€A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angewandte Chemie - International Edition, 2021, 60, 12859-12867.	7.2	24
432	Progress in Photoinduced Radical Reactions using Electron Donorâ€Acceptor Complexes. Asian Journal of Organic Chemistry, 2021, 10, 711-748.	1.3	77
433	Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters. Organic Letters, 2021, 23, 3496-3501.	2.4	29
434	Gold Catalysis Enabling Furan-Fused Cyclobutenes as a Platform toward Cross Cycloadditions. Organic Letters, 2021, 23, 3701-3705.	2.4	10
435	Total Synthesis and Computational Investigations of Sesquiterpene-Tropolones Ameliorate Stereochemical Inconsistencies and Resolve an Ambiguous Biosynthetic Relationship. Journal of the American Chemical Society, 2021, 143, 6006-6017.	6.6	32
436	N-Heterocyclic Carbene-Catalyzed Asymmetric Synthesis of Cyclopentenones. Organic Letters, 2021, 23, 3403-3408.	2.4	8
437	Ergopyrone, a Styrylpyrone-Fused Steroid with a Hexacyclic 6/5/6/6/6/5 Skeleton from a Mushroom <i>Gymnopilus orientispectabilis </i> i>Cyganic Letters, 2021, 23, 3315-3319.	2.4	25
438	Strain-release Difunctionalization of Câ \in "C Ï f - and Ï \in -bonds of an Organoboron Ate-complex through 1,2-Metallate Rearrangement. Chemistry Letters, 2021, 50, 792-799.	0.7	4

#	Article	IF	Citations
439	Rh(III)â€Catalyzed [3+2] Annulation and Câ^'H Alkenylation of Indoles with 1,3â€Diynes by Câ^'H Activation. European Journal of Organic Chemistry, 2021, 2021, 2223-2229.	1.2	22
440	Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. Journal of Organic Chemistry, 2021, 86, 5908-5921.	1.7	5
441	Titanoceneâ€Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. Angewandte Chemie - International Edition, 2021, 60, 14339-14344.	7.2	14
442	Recent advances in the total synthesis of natural products bearing the contiguous all-carbon quaternary stereocenters. Tetrahedron Letters, 2021, 71, 153029.	0.7	30
443	Single-crystal-to-single-crystal Transformations for the Preparation of Small Molecules, 1D and 2D Polymers Single Crystals. Chemistry Letters, 2021, 50, 1015-1029.	0.7	17
444	Heteroleptic copper(I) complexes as energy transfer photocatalysts for the intermolecular [2Â+Â2] photodimerization of chalcones, cinnamates and cinnamamides. Tetrahedron Letters, 2021, 72, 153091.	0.7	7
445	Role of Macrocyclic Conformational Steering in a Kinetic Route toward Bielschowskysin. Journal of the American Chemical Society, 2021, 143, 7566-7577.	6.6	7
446	Titanoceneâ€Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. Angewandte Chemie, 2021, 133, 14460-14465.	1.6	4
447	Scalability of photochemical reactions in continuous flow mode. Journal of Flow Chemistry, 2021, 11, 223-241.	1.2	80
448	Supramolecular construction of a cyclobutane ring system with four different substituents in the solid state. Communications Chemistry, 2021, 4, .	2.0	6
449	Intermolecular Photoredox Coupling: Alternative to Norrish Type II Reaction and Yang Cyclization in Ketones with γ â^'H Bonds. European Journal of Organic Chemistry, 2021, 2021, 3665-3669.	1.2	0
450	Recent Visible Light and Metal Free Strategies in [2+2] and [4+2] Photocycloadditions. European Journal of Organic Chemistry, 2021, 2021, 3303-3321.	1.2	28
452	Synthesis of Cyclopentenones through Rhodium-Catalyzed C–H Annulation of Acrylic Acids with Formaldehyde and Malonates. Organic Letters, 2021, 23, 5054-5059.	2.4	18
453	Chemo- and stereoselective intermolecular $[2\hat{A}+2]$ photocycloaddition of conjugated dienes using colloidal nanocrystal photocatalysts. Chem Catalysis, 2021, 1, 106-116.	2.9	28
455	Enantioselective $[2+2]$ Photocycloaddition via Iminium Ions: Catalysis by a Sensitizing Chiral Br \tilde{A} ,nsted Acid. Journal of the American Chemical Society, 2021, 143, 9350-9354.	6.6	56
456	Effects of photophysical properties of 1,4-cyclohexadiene derivatives on their $[2 + 2]$ photocycloaddition reactivities: Experimental and theoretical studies. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113336.	2.0	3
457	<scp>PyUNIxMD</scp> : A <scp>Pythonâ€based</scp> excited state molecular dynamics package. Journal of Computational Chemistry, 2021, 42, 1755-1766.	1.5	24
458	Intermolecular [2 + 2] Photocycloaddition of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Sulfones: Catalyst-Free Reaction and Catalytic Variants. Organic Letters, 2021, 23, 5674-5678.	2.4	11

#	Article	IF	CITATIONS
459	9a-Phenyl-2,3,3a,3b,9a,9b-hexahydro-4H-furo[3 ,2':3,4]cyclobuta- [1,2-b]chromen-4-one: A Flavone-Based + 2]-Photocycloadduct. MolBank, 2021, 2021, M1256.	20.2	3
460	Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nature Chemistry, 2021, 13, 743-750.	6.6	115
461	Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chemical Reviews, 2022, 122, 1626-1653.	23.0	197
462	Visible-Light-Induced Dearomatization of Indoles/Pyrroles with Vinylcyclopropanes: Expedient Synthesis of Structurally Diverse Polycyclic Indolines/Pyrrolines. Journal of the American Chemical Society, 2021, 143, 13441-13449.	6.6	50
463	Reactivity of (Z)-4-Aryliden-5(4H)-thiazolones: [2 + 2]-Photocycloaddition, Ring-Opening Reactions, and Influence of the Lewis Acid BF3. Journal of Organic Chemistry, 2021, 86, 12119-12140.	1.7	3
464	Stereospecific Synthesis of Enantioenriched Alkylidenecyclobutanones via Formal Vinylidene Insertion into Cyclopropanone Equivalents. Organic Letters, 2021, 23, 6482-6487.	2.4	7
465	Interrupted reactions in chemical synthesis. Nature Reviews Chemistry, 2021, 5, 604-623.	13.8	19
466	Enantioselective Cyclobutenylation of Olefins Using $\langle i \rangle N \langle i \rangle$ -Sulfonyl-1,2,3-Triazoles as Vicinal Dicarbene Equivalents. Organic Letters, 2021, 23, 6530-6535.	2.4	15
467	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
468	Advances in the <i>E ↠Z</i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	23.0	184
469	Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chemical Reviews, 2022, 122, 1752-1829.	23.0	93
470	Studies on The Application of The Paternòâ€Büchi Reaction to The Synthesis of Novel Fluorinated Scaffolds. Chemistry - A European Journal, 2021, 27, 15722-15729.	1.7	8
471	Selective Photochemical Reaction by Fixing Reactant as a MOF Building Block. Chemistry Letters, 2021, 50, 1987-1989.	0.7	0
472	Newâ€Generation Ligand Design for the Goldâ€Catalyzed Asymmetric Activation of Alkynes. ChemPlusChem, 2021, 86, 1283-1296.	1.3	40
473	Integrated Multistep Photochemical and Thermal Continuous Flow Reactions: Production of Bicyclic Lactones with Kilogram Productivity. Organic Process Research and Development, 2021, 25, 2052-2059.	1.3	3
474	Template-Directed Photochemical Homodimerization and Heterodimerization Reactions of Cinnamic Acids. Journal of Organic Chemistry, 2021, 86, 13118-13128.	1.7	6
475	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	2.5	93
476	Synthesis of Functionalized Cyclobutenes and Spirocycles <i>via</i> Asymmetric P(III)/P(V) Redox Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 4805-4810.	2.1	6

#	Article	IF	CITATIONS
477	Insight into functionalized-macrocycles-guided supramolecular photocatalysis. Beilstein Journal of Organic Chemistry, 2021, 17, 139-155.	1.3	20
478	Single-crystal to single-crystal transformation of a coordination chain to a two-dimensional coordination network through a photocycloaddition reaction. CrystEngComm, 2021, 23, 2783-2787.	1.3	8
479	Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chemical Communications, 2021, 57, 3046-3049.	2.2	14
480	Breaking the bottleneck: stilbene as a model compound for optimizing 6Ï€ e ^{â^'} photocyclization efficiency. RSC Advances, 2021, 11, 6504-6508.	1.7	3
481	Probing the origin of the stereoselectivity and enantioselectivity of cobalt-catalyzed $[2+2]$ cyclization of ethylene and enynes. Organic Chemistry Frontiers, 2021, 8, 1531-1543.	2.3	8
482	Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Organic and Biomolecular Chemistry, 2021, 19, 7737-7753.	1.5	32
483	Tunable photochemical 6Ï€ heterocyclization reactions mediated by a boron Lewis acid. New Journal of Chemistry, 2021, 45, 18924-18932.	1.4	2
484	Visibleâ€Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cageâ€Confined Nanospace Merging Chirality with Tripletâ€State Photosensitization. Angewandte Chemie, 2020, 132, 8739-8747.	1.6	16
485	Evidence for Triplet Sensitization in the Visibleâ€Lightâ€Induced [2+2]â€Photocycloaddition of Eniminium lons. Angewandte Chemie - International Edition, 2018, 57, 827-831.	7.2	80
486	Visibleâ€Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cageâ€Confined Nanospace Merging Chirality with Tripletâ€State Photosensitization. Angewandte Chemie - International Edition, 2020, 59, 8661-8669.	7.2	92
487	Monitoring the Progress of a Photochemical Reaction Performed in Supercritical Fluid Carbon Dioxide Using a Continuously Stirred Reaction Cell Interfaced to On-Line SFC. Chromatographia, 2017, 80, 1179-1188.	0.7	8
488	Photocatalytic Dearomative Intermolecular [2 + 2] Cycloaddition of Heterocycles for Building Molecular Complexity. Journal of Organic Chemistry, 2021, 86, 1730-1747.	1.7	45
489	Renewable Cyclobutane-1,3-dicarboxylic Acid (CBDA) Building Block Synthesized from Furfural via Photocyclization. ACS Sustainable Chemistry and Engineering, 2020, 8, 8909-8917.	3.2	22
490	Photoredox ketone catalysis for the direct C–H imidation and acyloxylation of arenes. Chemical Science, 2017, 8, 5622-5627.	3.7	58
491	Synthesis of cyclobutane-fused oxygen-containing tricyclic framework <i>via</i> thermally promoted intramolecular cycloaddition of cyclohexadienone-tethered allenes. Chemical Communications, 2020, 56, 3405-3408.	2.2	15
492	C(sp ³)â€"H arylation to construct all- <i>syn</i> cyclobutane-based heterobicyclic systems: a novel fragment collection. Chemical Communications, 2020, 56, 7423-7426.	2.2	7
493	Light-induced [2 + 2] cycloadditions for the construction of cyclobutane-fused pyridinyl sulfonyl fluorides. Organic and Biomolecular Chemistry, 2020, 18, 4019-4023.	1.5	15
495	Design and Synthesis of Pentacycloundecane Cage Compound Containing Oxazole Moiety. Heterocycles, 2020, 100, 1623.	0.4	3

#	Article	IF	CITATIONS
496	Synthesis of Polycyclic Compounds by Using Photocycloaddition Reactions to Aromatic Rings. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 241-254.	0.0	2
497	Non-peptide secondary metabolites from poisonous mushrooms: overview of chemistry, bioactivity, and biosynthesis. Natural Product Reports, 2022, 39, 512-559.	5 . 2	9
498	Ï€â€Łewisâ€Baseâ€Catalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angewandte Chemie - International Edition, 2021, 60, 26762-26768.	7.2	40
499	Ï€â€Lewis Baseâ€Catalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angewandte Chemie, 0, , .	1.6	0
500	Synthesis of New 4â€Vinylâ€1,2,3â€Thiadiazoles. ChemistrySelect, 2021, 6, 10527-10531.	0.7	2
501	Asymmetric Photochemical Synthesis Based on Selective Excitation of Charge-Transfer Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 144-152.	0.0	0
502	Lewis Acid Catalysis in Intermolecular [2+2] Photocycloaddition of Coumarin-3-carboxamide Bearing 2-Oxazolidinone Auxiliary with n-Propyl Vinyl Ether and Vinyl Pivalate. Heterocycles, 2018, 97, 591.	0.4	0
504	Synthesis of Bicyclic $\langle i \rangle N \langle i \rangle$ -Heterocycles via Photoredox Cycloaddition of Imino-Alkynes and Imino-Alkenes. ACS Catalysis, 2021, 11, 13670-13679.	5.5	13
505	Nickel-Catalyzed Regiodivergent Asymmetric Cycloadditions of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carbonyl Compounds. CCS Chemistry, 2022, 4, 3122-3133.	4.6	14
506	Emissive and reactive excimers in a covalently-linked supramolecular multi-chromophoric system with a balanced rigid-flexible structure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120565.	2.0	5
507	Tricyclic Systems: Central Carbocyclic Ring With Fused Five-Membered Rings. , 2020, , .		0
508	Construction of Polysubstituted Spiro[2.3] or [3.3] Cyclic Frameworks Fused with a Tosylated Pyrrolidine Promoted by Visible-Light-Induced Photosensitization. Organic Chemistry Frontiers, 0, , .	2.3	4
509	Synthesis of Cyclobutanones by Gold(I)-Catalyzed [2 + 2] Cycloaddition of Ynol Ethers with Alkenes. Organic Letters, 2021, 23, 8989-8993.	2.4	9
510	Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. Journal of the American Chemical Society, 2021, 143, 18864-18870.	6.6	60
511	Gold self-relay catalysis for accessing functionalized cyclopentenones bearing an all-carbon quaternary stereocenter. Organic Chemistry Frontiers, 2021, 9, 140-146.	2.3	12
512	Dimeric Cyclobutane Formation Under Continuous Flow Conditions Using Organophotoredox atalysed [2+2] Cycloaddition**. ChemPhotoChem, 2022, 6, .	1.5	1
513	Tandem Ring Opening/Intramolecular [2 + 2] Cycloaddition Reaction for the Synthesis of Cyclobutane Fused Thiazolino-2-Pyridones. Journal of Organic Chemistry, 2021, 86, 16582-16592.	1.7	2
514	Gold <scp>Selfâ€Relay</scp> Catalysis Enabling [3,3]â€Sigmatropic Rearrangement/Nazarov Cyclization and Allylic Alkylation Cascade for Constructing <scp>Allâ€Carbon</scp> Quaternary Stereocenters. Chinese Journal of Chemistry, 2022, 40, 687-692.	2.6	13

#	Article	IF	Citations
515	Mechanisms of the Cu(l)-Catalyzed Intermolecular Photocycloaddition Reaction Revealed by Optical and X-ray Transient Absorption Spectroscopies. Journal of the American Chemical Society, 2021, 143, 19356-19364.	6.6	7
516	Recent Applications of Rare Earth Complexes in Photoredox Catalysis for Organic Synthesis. Current Organic Chemistry, 2022, 26, 6-41.	0.9	9
517	Machine-Learning Photodynamics Simulations Uncover the Role of Substituent Effects on the Photochemical Formation of Cubanes. Journal of the American Chemical Society, 2021, 143, 20166-20175.	6.6	24
518	Dehydrogenation/(3+2) Cycloaddition of Saturated Aza-Heterocycles via Merging Organic Photoredox and Lewis Acid Catalysis. Organic Letters, 2021, 23, 8942-8946.	2.4	17
519	Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis. ACS Organic & Inorganic Au, 2022, 2, 99-125.	1.9	9
520	Mechanism of Silver-Catalyzed [2+2] Cycloaddition between Siloxy-Alkynes and Carbonyl Compound: A Silylium Ion Migration Approach. Chinese Journal of Organic Chemistry, 2021, 41, 4327.	0.6	1
521	Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chemical Society Reviews, 2021, 50, 13410-13440.	18.7	20
522	Visible light enabled [4+2] annulation reactions for anthracenone-furans from 2,3-dibromonaphthoquinone and phenylbenzofurans. RSC Advances, 2021, 11, 38235-38238.	1.7	3
523	Selective 1,4-arylsulfonation of 1,3-enynes <i>via</i> photoredox/nickel dual catalysis. Organic Chemistry Frontiers, 2022, 9, 788-794.	2.3	14
524	Asymmetric Hydroaminoalkylation of Alkenylazaarenes via Cooperative Photoredox and Chiral Hydrogenâ€Bonding Catalysis. Angewandte Chemie - International Edition, 2022, 61, e202115110.	7.2	38
525	An imidazoacridine-based TADF material as an effective organic photosensitizer for visible-light-promoted [2 + 2] cycloaddition. Chemical Science, 2022, 13, 2296-2302.	3.7	20
526	Stereoselective synthesis of fused-, spiro- and bridged heterocycles <i>via</i> cyclization of isoquinolinium salts: a recent update. Organic and Biomolecular Chemistry, 2022, 20, 1838-1868.	1.5	20
527	High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. Journal of the American Chemical Society, 2022, 144, 963-976.	6.6	42
528	Enantioselective crossed intramolecular [2+2] photocycloaddition reactions mediated by a chiral chelating Lewis acid. Chemical Science, 2022, 13, 2378-2384.	3.7	16
529	Enantioselective $[2+2]$ cycloaddition of 1,2-dihydroquinolines with 3-olefinic oxindoles via Br \tilde{A} ,nsted acid catalysis. Organic Chemistry Frontiers, 0, , .	2.3	7
530	A combined experimental and theoretical study on the reactivity of nitrenes and nitrene radical anions. Nature Communications, 2022, 13, 86.	5.8	24
531	Asymmetric Hydroaminoalkylation of Alkenylazaarenes via Cooperative Photoredox and Chiral Hydrogenâ€Bonding Catalysis. Angewandte Chemie, 2022, 134, .	1.6	8
532	Hexafluoroisopropanolâ€Promoted or Brønsted Acidâ€Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. ChemSusChem, 2022, 15, .	3.6	18

#	Article	IF	CITATIONS
533	Hydrogen bond serving as a protecting group to enable the photocatalytic [2+2] cycloaddition of redox-active aliphatic-amine-containing indole derivatives. Chemical Communications, 2022, 58, 3194-3197.	2.2	10
534	Thermoneutral synthesis of spiro-1,4-cyclohexadienes by visible-light-driven dearomatization of benzylmalonates. Green Chemistry, 2022, 24, 2772-2776.	4.6	8
535	Visible lightâ€driven acridone catalysis for atom transfer radical polymerization. Journal of Polymer Science, 2022, 60, 1588-1594.	2.0	4
536	Dancing on Ropes ―Enantioselective Functionalization of Preformed <scp>Fourâ€Membered</scp> Carbocycles. Chinese Journal of Chemistry, 2022, 40, 1346-1358.	2.6	25
537	Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5(4H)-oxazolones. Journal of Organic Chemistry, 2022, , .	1.7	6
538	PhIO-Mediated Oxidative Câ•€ Bond Cleavage and Reassembly toward Highly Functionalized Oxazolones. Organic Letters, 2022, 24, 1323-1328.	2.4	1
539	Asymmetric [3 + 2] photocycloadditions of cyclopropylamines with electron-rich and electron-neutral olefins. Chemical Science, 2022, 13, 3787-3795.	3.7	20
540	A Photochemical Microfluidic Reactor for Photosensitized [2+2] Cycloadditions. Synlett, 0, , .	1.0	0
541	Skeletal contraction: A novel strategy to access multisubstituted cyclobutane. Green Synthesis and Catalysis, 2022, 3, 1-3.	3.7	5
542	Pd(II)-Catalyzed Enantioselective C(sp ³)â€"H Arylation of Cyclopropanes and Cyclobutanes Guided by Tertiary Alkylamines. Journal of the American Chemical Society, 2022, 144, 3939-3948.	6.6	23
543	Cooperative Stereoinduction in Asymmetric Photocatalysis. Journal of the American Chemical Society, 2022, 144, 4206-4213.	6.6	24
545	Dinitrogen extrusion from diazene in organic synthesis. Chinese Chemical Letters, 2022, 33, 3695-3700.	4.8	4
546	Puckering the Planar Landscape of Fragments: Design and Synthesis of a 3D Cyclobutane Fragment Library. ChemMedChem, 2022, 17, .	1.6	6
547	On the Origins of Stereo- and Regio-Selectivities in the Formation of Fullerene–Fluorene Dyads. Journal of Organic Chemistry, 2022, 87, 4702-4711.	1.7	2
549	Using Restricted Bond Rotations to Enforce Excited-State Behavior of Organic Molecules. Synlett, 2022, 33, 1123-1134.	1.0	4
550	Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature, 2022, 605, 477-482.	13.7	107
551	Synthesis of advanced fuel with density higher than 1Åg/mL by photoinduced $[2\text{Å}+\text{Å}2]$ cycloaddition of norbornene. Fuel, 2022, 318, 123629.	3.4	6
552	Mechanistic study of cobalt(I)â€catalyzed asymmetric coupling of ethylene and enynes to functionalized cyclobutanes. Journal of Computational Chemistry, 2022, 43, 440-447.	1.5	0

#	Article	IF	CITATIONS
554	Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Organic Letters, 2022, 24, 137-141.	2.4	11
555	Independent trajectory mixed quantum-classical approaches based on the exact factorization. Journal of Chemical Physics, 2022, 156, 174109.	1.2	11
556	Total Synthesis of (+)â€Cochlearolâ€B by an Approach Based on a Catellani Reaction and Visibleâ€Lightâ€Enabled [2+2] Cycloaddition**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
557	Total Synthesis of (+)â€Cochlearolâ€B by an Approach Based on a Catellani Reaction and Visibleâ€Lightâ€Enabled [2+2] Cycloaddition**. Angewandte Chemie, 2022, 134, .	1.6	4
558	Photosensitized [2+2]â€Cycloadditions of Alkenylboronates and Alkenes. Angewandte Chemie - International Edition, 2022, 61, e202200725.	7.2	22
559	Visible-light-mediated defluorinative cyclization of α-fluoro-β-enamino esters catalyzed by 4-CzIPN. Organic Chemistry Frontiers, 2022, 9, 3499-3505.	2.3	4
560	Contemporary synthesis of bioactive cyclobutane natural products. Green Synthesis and Catalysis, 2023, 4, 1-6.	3.7	2
561	Excitedâ€State Distortions Promote the Photochemical 4Ï€â€Electrocyclizations of Fluorobenzenes via Machine Learning Accelerated Photodynamics Simulations. Chemistry - A European Journal, 2022, 28, .	1.7	6
562	Photosensitized [2+2]â€Cycloadditions of Alkenylboronates and Alkenes. Angewandte Chemie, 2022, 134, .	1.6	7
563	Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
564	Visibleâ€Lightâ€Induced [2+2+1] Dearomative Cascade Cyclization of Indole/Furan Alkynes to Synthesize Sulfonyl Polycycles. Advanced Synthesis and Catalysis, 2022, 364, 2197-2204.	2.1	5
565	Cyclobutane-containing scaffolds in bioactive small molecules. Trends in Chemistry, 2022, 4, 677-681.	4.4	5
566	Transition Metalâ€Free Radical αâ€Oxy Câ^'H Cyclobutylation via Photoinduced Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2022, 364, 2140-2145.	2.1	10
567	Programming Rapid Functional Group Diversification into a Solidâ€State Reaction: Aryl Nitriles for Selfâ€Assembly, Click Reactivity, and Discovery of Coexisting Supramolecular Synthons. Chemistry - A European Journal, 2022, 28, .	1.7	1
568	Multigram Scale Synthesis of Piperarborenines C-E. Organic Process Research and Development, 0, , .	1.3	2
569	Concise synthesis of piperarborenine B. Bioorganic and Medicinal Chemistry, 2022, 67, 116817.	1.4	1
570	Dual-state emission <i>versus</i> no emission by manipulating the molecular structures of cyanovinyl–benzofuran derivatives. Molecular Systems Design and Engineering, 2022, 7, 1119-1128.	1.7	8
571	Controllable multiple-step configuration transformations in a thermal/photoinduced reaction. Nature Communications, 2022, 13, .	5.8	32

#	Article	IF	CITATIONS
572	Hydroarylation of terminal alkynes with arylboronic acids catalyzed by low loadings of palladium. Chinese Chemical Letters, 2023, 34, 107534.	4.8	3
573	Keeping the name clean: [2 + 2] photocycloaddition. Photochemical and Photobiological Sciences, 2022, 21, 1333-1340.	' 1.6	1
574	Photosensitized [2 + 2]-Cycloaddition of Complex Acceptor–Donor Combinations: A Regio/Diastereoselectivity Study. Journal of Organic Chemistry, 2022, 87, 8028-8033.	1.7	2
575	Access to high value sp ³ -rich frameworks using photocatalyzed [2 + 2]-cycloadditions of γ-alkylidene–γ-lactams. Chemical Communications, 2022, 58, 8085-8088.	2.2	7
576	The Impact of Boron Hybridisation on Photocatalytic Processes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
577	The Impact of Boron Hybridisation on Photocatalytic Processes. Angewandte Chemie, 0, , .	1.6	2
578	Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2â€+â€2] cycloaddition and mechanistic insight. Chinese Chemical Letters, 2023, 34, 107624.	4.8	6
579	Photomechanochemical control over stereoselectivity in the [2Â+ 2] photodimerization of acenaphthylene. Faraday Discussions, 0, 241, 266-277.	1.6	10
580	Photochemical Ring Contraction of 5,5-Dialkylcyclopent-2-enones and <i>in situ</i> Trapping by Primary Amines. Journal of Organic Chemistry, 2023, 88, 6294-6303.	1.7	4
581	Methodology-driven efficient synthesis of cytotoxic (\hat{A}_{\pm})-piperarborenine B. Green Synthesis and Catalysis, 2022, 3, 339-348.	3.7	1
582	Direct Access to Unnatural Cyclobutane α-Amino Acids through Visible Light Catalyzed [2+2]-Cycloaddition. ACS Organic & Inorganic Au, 2022, 2, 496-501.	1.9	4
583	Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Accounts of Chemical Research, 2022, 55, 2510-2525.	7.6	61
584	Construction of 3,12-Diazatetracyclododecane-dienes through Unexpected Visible-Light-Induced Radical Cascade Cyclization. Journal of Organic Chemistry, 2022, 87, 10937-10946.	1.7	2
585	Reversible Photoisomerization of <scp>Norbornadieneâ€Quadricyclane</scp> within a Confined Capsule. Photochemistry and Photobiology, 0, , .	1.3	2
586	A Stereoselective Photoinduced Cycloisomerization Inspired by Ophiobolin A. Organic Letters, 2022, 24, 6499-6504.	2.4	5
587	Stereoselective [2+2]-Cycloadditions of chiral allenic ketones and alkenes: Applications towards the synthesis of benzocyclobutenes and endiandric acids. Tetrahedron, 2022, 122, 132932.	1.0	3
588	Competitive Processes of Energy Transfer and Opening of the Four-Membered Cycle in Cyclobutanes Formed in [2+2] Photocycloaddition Reaction of Bis(styrylbenzoquinoline) Dyads. High Energy Chemistry, 2022, 56, 299-307.	0.2	2
589	Enhancing luminescence in the solid state and varying the luminescence colour by manipulating halogen interactions in furan-cyanovinyl derivatives. Dyes and Pigments, 2022, 207, 110698.	2.0	5

#	Article	IF	CITATIONS
590	Bicyclobutanes: from curiosities to versatile reagents and covalent warheads. Chemical Science, 2022, 13, 11721-11737.	3.7	42
591	Tuning the photoreactivity of photocycloaddition by halochromismâ€. Australian Journal of Chemistry, 2022, , .	0.5	2
592	Enantioselective intermolecular [2 + 2] photocycloadditions of vinylazaarenes with triplet-state electron-deficient olefins. Chinese Journal of Catalysis, 2022, 43, 2732-2742.	6.9	6
593	[2+2] Photocycloaddition in a bichromophoric dyad: photochemical concerted forward reaction following Woodward–Hoffmann rules and photoinduced stepwise reverse reaction of the ring opening ⟨i⟩via ⟨ i⟩predissociation. Physical Chemistry Chemical Physics, 2022, 24, 24137-24145.	1.3	3
594	Ring contraction in synthesis of functionalized carbocycles. Chemical Society Reviews, 2022, 51, 8652-8675.	18.7	8
595	Tetraolefin stereospecific photodimerization and photopolymerization in coordination polymers. Science China Chemistry, 2022, 65, 1867-1872.	4.2	5
596	Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nature Reviews Chemistry, 2022, 6, 745-755.	13.8	27
597	Role of an Ice Surface in the Photoreaction of Coumarins. Langmuir, 2022, 38, 11346-11353.	1.6	3
598	Regio―and Diastereoselective Formal [2+2] Cycloaddition of Allenes with Aminoâ€Functionalized Alkenes by Rareâ€Earthâ€Catalyzed C(sp ^{)â^'H Activation. Angewandte Chemie - International Edition, 2022, 61, .}	7.2	11
599	Regio†and Diastereoselective Formal [2+2] Cycloaddition of Allenes with Aminoâ€Functionalized Alkenes by Rareâ€Earthâ€Catalyzed C(sp2)–H Activation. Angewandte Chemie, 0, , .	1.6	0
600	Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature, 2022, 611, 715-720.	13.7	54
601	Synthesis of cycloheptanoids through catalytic enantioselective (4 + 3)-cycloadditions of 2-aminoallyl cations with dienol silyl ethers. , 2022, 1, 883-891.		8
602	Enantioselective [2+2] Cycloaddition of Allenyl Imide with Mono―or Disubstituted Alkenes. Angewandte Chemie, 2022, 134, .	1.6	0
603	Synthesis of Imidized Cyclobutene Derivatives by Strain Release of [1.1.1]Propellane. Organic Letters, 2022, 24, 7323-7327.	2.4	11
604	Enantioselective [2+2] Cycloaddition of Allenyl Imide with Mono―or Disubstituted Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
605	Boronic Ester Enabled $[2 + 2]$ -Cycloadditions by Temporary Coordination: Synthesis of Artochamin J and Piperarborenine B. Journal of the American Chemical Society, 2022, 144, 18790-18796.	6.6	11
606	[2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Natural Product Reports, 2023, 40, 1094-1129.	5.2	23
607	Topological structural transformation of a two-dimensional coordination polymer <i>via</i> single-crystal to single-crystal photoreaction. Dalton Transactions, 2022, 51, 17235-17240.	1.6	1

#	Article	IF	CITATIONS
608	From energy to electron transfer photocatalysis (PenT â†' PET): oxidative cyclobutane cleavage alters the product composition. Chemical Communications, 2022, 58, 12999-13002.	2.2	1
609	New Chemical Dualities Illustrated by Meso and C2 Symmetrical (CTS) Compounds. Asian Journal of Biochemistry Genetics and Molecular Biology, 0, , 15-34.	0.0	0
610	Asymmetric Photochemical $[2 + 2]$ -Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. Journal of the American Chemical Society, 2022, 144, 20109-20117.	6.6	8
611	Aqueous Amine-Tolerant [2+2] Photocycloadditions of Unactivated Olefins. Journal of the American Chemical Society, 2022, 144, 19689-19694.	6.6	7
612	Organophotocatalytic [2+2] Cycloaddition of Electronâ€Deficient Styrenes**. Chemistry - A European Journal, 2023, 29, .	1.7	8
613	Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. Journal of the American Chemical Society, 2022, 144, 20207-20213.	6.6	48
614	Investigations of an Unexpected [2+2] Photocycloaddition in the Synthesis of (â^')-Scabrolide A from Quantum Mechanics Calculations. Journal of Organic Chemistry, 2022, 87, 14115-14124.	1.7	3
615	Consecutive photochemical reactions enabled by a dual flow reactor coil strategy. Chemical Communications, 2022, 58, 13274-13277.	2.2	2
616	Recent Advances in Visible-Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids. Chinese Journal of Organic Chemistry, 2022, 42, 3335.	0.6	8
617	General Synthetic Approach to Diverse Taxane Cores. Journal of the American Chemical Society, 2022, 144, 21398-21407.	6.6	10
618	Preparation of Thietane Derivatives through Domino Photochemical Norrish Type II/Thia-Paternò–Büchi Reactions. Organic Letters, 2022, 24, 8375-8380.	2.4	6
619	Stereospecific Formation of the $\langle i \rangle$ rctt $\langle i \rangle$ Isomer of Bis-crown-Containing Cyclobutane upon [2 + 2] Photocycloaddition of an (18-Crown-6)stilbene Induced by Self-Assembly via Hydrogen Bonding. ACS Omega, 0, , .	1.6	1
620	Pushing Photochemistry into Water: Acceleration of the Diâ€Ï€â€Methane Rearrangement and the PaternÁ³â€BÃ1⁄4chi Reaction "Onâ€Water― Chemistry - A European Journal, 2023, 29, .	1.7	3
621	Strain-triggered acidification in a double-network hydrogel enabled by multi-functional transduction of molecular mechanochemistry. Materials Horizons, 2023, 10, 585-593.	6.4	3
622	Thermally-induced intramolecular [2 + 2] cycloaddition of allene-methylenecyclopropanes: expedient access to two separable spiropolycyclic heterocycles. Organic Chemistry Frontiers, 2023, 10, 440-447.	2.3	1
623	Sustainable Synthesis of Benzylidenemalononitrile Compounds Under Microwave-Irradiation. Current Organic Chemistry, 2022, 26, 1552-1564.	0.9	0
624	Bicyclo $[2.1.1]$ hexanes by Visible Light-Driven Intramolecular Crossed $[2+2]$ Photocycloadditions. Organic Letters, 2022, 24, 8821-8825.	2.4	22
625	Unveiling the impact of the light source and steric factors on $[2\hat{a}\in\%+\hat{a}\in\%2]$ heterocycloaddition reactions. , 2023, 2, 26-36.		17

#	Article	IF	CITATIONS
626	Rh(II)-catalyzed Ring Expansion of Cyclopropyl N-Tosylhydrazones to 1-Substituted Cyclobutenes. Synlett, $0, \dots$	1.0	3
627	Quantification of Photocyclization Kinetics and Its Temperature Dependence in a Cofacial Metal–Organic Framework. Chemistry of Materials, 2022, 34, 10495-10500.	3.2	2
628	Chemoselective Strain Release of Bicyclo[1.1.1]pentanyl Alcohols. Synlett, 0, , .	1.0	0
629	Collective Synthesis of Chiral Tetrasubstituted Cyclobutanes Enabled by Enantioconvergent Negishi Crossâ€Coupling of Cyclobutenones. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
630	Collective Synthesis of Chiral Tetrasubstituted Cyclobutanes Enabled by Enantioconvergent Negishi Crossâ€Coupling of Cyclobutenones. Angewandte Chemie, 2023, 135, .	1.6	1
631	Total Synthesis of Atrachinenins A and B. Journal of the American Chemical Society, 2022, 144, 22844-22849.	6.6	3
632	2 + 2 Trapping of Acyloxy-1,2-cyclohexadienes with Styrenes and Electron-Deficient Olefins. Organic Letters, 2022, 24, 9497-9501.	2.4	3
633	Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between <i>N</i> -Alkyl vs <i>N</i> -Aryl Maleimides. ACS Organic & Inorganic Au, 2023, 3, 96-103.	1.9	9
634	Visible Light-Triggered and Catalyst- and Template-Free <i>syn</i> -Selective [2 + 2] Cycloaddition of Chalcones: Solid-State Suspension Reaction in Water to Access <i>syn</i> -Cyclobutane Diastereomers. ACS Sustainable Chemistry and Engineering, 2022, 10, 16399-16407.	3.2	4
635	Insight for the photochemical reaction of 4-aryl-4H-pyran: Experimental and theoretical studies. Tetrahedron, 2022, , 133212.	1.0	O
636	Unsymmetrical relay Câ€"H alkenylation and [2 + 2] cycloaddition of <i>N</i> -arylsydnones with allenyl acetates leading to quinoline-fused cyclobutanes. Organic Chemistry Frontiers, 2023, 10, 1191-1197.	2.3	9
637	Molecular structure, spectroscopic and DFT computational studies on 3,9-diazatetraasteranes. Chemical Papers, 0, , .	1.0	0
638	Visible Light-Induced Diastereoselective Construction of Trifluoromethylated Cyclobutane Scaffolds through [2+2]-Photocycloaddition and Water-Assisted Hydrodebromination. Journal of Organic Chemistry, 2023, 88, 2521-2534.	1.7	3
639	Photosensitized Conia reaction directed synthesis of high-performance asymmetric polycyclic hydrocarbons from biomass-derived ketones and petroleum-derived norbornene. Fuel, 2023, 340, 127539.	3.4	O
640	An Oxidative [3+2+1] Cyclization of Enaminones and <i>N</i> à€Alkenylâ€2â€pyrrolidinone: Access to Polysubstituted 4â€Alkylated 1,4â€dihydropyridines. Advanced Synthesis and Catalysis, 2023, 365, 1217-1223.	2.1	5
641	Tetra-Dentate Cycloaddition Catalysts for Rapid Photopolymerization Reactions. Journal of Organic Chemistry, 2023, 88, 5359-5367.	1.7	1
642	Rh(I)-Catalyzed [5 + 2]/[2 + 2] Cycloaddition Cascade to Access a Cyclobutane-Fused [4–5–6–7] Tetracyclic Framework. Organic Letters, 2023, 25, 2405-2409.	2.4	1
643	(3+1)- and (3+3)-Cycloadditions. , 2022, , .		0

#	Article	IF	CITATIONS
644	Shrinkable/stretchable bis(calix[4]arenes) comprising photoreactive azobenzene or stilbene linkers. Organic Chemistry Frontiers, 2023, 10, 1470-1484.	2.3	3
645	Visibleâ€Lightâ€Mediated Direct Expeditious Photochemical Construction of Spirocyclicâ€Oxindoles. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	5
646	Construction of 3,9-diazatetraasteranes and 3,9-diazatetracyclododecanes by photocycloaddition reaction of 1,4-dihydropyridines: Experimental and theoretical investigation. Chinese Chemical Letters, 2023, 34, 108183.	4.8	2
647	Studies on the Oxidation of Aromatic Amines Catalyzed by Trametes versicolor Laccase. International Journal of Molecular Sciences, 2023, 24, 3524.	1.8	1
648	Construction of gel networks <i>via</i> [2+2] photocycloaddition. Journal of Materials Chemistry C, 2023, 11, 2826-2830.	2.7	1
649	Electrochemical Cycloaddition Reactions of Alkene Radical Cations: A Route toward Cyclopropanes and Cyclobutanes. Organic Letters, 2023, 25, 1142-1146.	2.4	2
650	Access to Azetidines via Gold Mediated Energy Transfer Photocatalysis. Organic Letters, 2023, 25, 1403-1408.	2.4	2
651	Intramolecular [2 + 2] Cycloaddition of Isocarbostyrils Catalyzed by an Iridium Visible-Light Photocatalyst. Journal of Organic Chemistry, 2023, 88, 4848-4853.	1.7	3
652	Expanding the †aplysinospin cascade' through DNA-templated [2+2] photocycloaddition. Chemical Communications, 2023, 59, 4221-4224.	2.2	5
653	Stereoselective [2 + 2] photodimerization: a viable strategy for the synthesis of enantiopure cyclobutane derivatives. Organic and Biomolecular Chemistry, 2023, 21, 2899-2904.	1.5	3
654	Gold-catalyzed <i>endo</i> -selective cyclization of alkynylcyclobutanecarboxamides: synthesis of cyclobutane-fused dihydropyridones. Organic and Biomolecular Chemistry, 2023, 21, 2705-2708.	1.5	0
655	Visible light-catalyzed intermolecular [2+2] cycloaddition of 1,2-dihydropyridines: A combined experimental and DFT study. Tetrahedron, 2023, 136, 133357.	1.0	0
656	Stereoretentive Formation of Cyclobutanes from Pyrrolidines: Lessons Learned from DFT Studies of the Reaction Mechanism. Journal of Organic Chemistry, 2023, 88, 4619-4626.	1.7	2
657	Selective photodimerization of acenaphthylene in polymersome nanoreactors. Chemical Communications, 2023, 59, 4782-4785.	2.2	0
658	Visibleâ€Lightâ€Mediated Photocatalytic Deracemization. Chemistry - A European Journal, 2023, 29, .	1.7	6
659	Biobased Epoxy Resin with Inherently Deep-UV Photodegradability for a Positive Photoresist and Anticounterfeiting. ACS Applied Polymer Materials, 2023, 5, 3138-3147.	2.0	1
660	Synergetic argentophilic and through space electronic interactions in single-crystal-to-single-crystal photocycloaddition reaction: a mechanistic study. Physical Chemistry Chemical Physics, 0, , .	1.3	0
661	Cyclobutane-Containing Meroditerpenoids, (+)-Isoscopariusins B and C: Structure Elucidation and Biomimetic Synthesis. Organic Letters, 2023, 25, 2981-2985.	2.4	2

#	Article	IF	CITATIONS
662	Synthesis of Bis(amino acids) Containing the Styryl-cyclobutane Core by Photosensitized [2+2]-Cross-cycloaddition of Allylidene-5(4H)-oxazolones. International Journal of Molecular Sciences, 2023, 24, 7583.	1.8	0
674	Pericyclische Reaktionen. , 2023, , 481-614.		0
678	Introduction and Remarks. , 2022, , .		0
679	Palladium-Catalyzed Synthesis of 1-Alkylidene-2-dialkylaminomethyl Cyclobutane Derivatives via Pd-Catalyzed Alkene Difunctionalization Reactions: Influence of Nucleophile and Water on the Reaction Mechanism. Organic Letters, 2023, 25, 3245-3248.	2.4	2
683	Diradical ring formation. Nature Chemistry, 2023, 15, 1058-1059.	6.6	1
685	Fluorinated 2-Azetines: Synthesis, Applications, Biological Tests, and Development of a Catalytic Process. Organic Letters, 2023, 25, 5140-5144.	2.4	2
688	Visible light-induced iridium($\langle scp \rangle$ iii $\langle scp \rangle$)-sensitized [2 + 2] and [3 + 2] photocycloadditions of 2-cyanochromone with alkenes. Organic and Biomolecular Chemistry, 2023, 21, 6103-6106.	1.5	1
696	Diastereoselectivity in Photochemistry. , 2023, , .		0
701	Computational Chemistry for Photochemical Reactions. , 2024, , 658-698.		0
731	Selected Diastereoselective Transition Metal-Catalyzed Cyclizations. , 2023, , .		0
732	Cycloaddition with asymmetric photoelectrocatalysis. Nature Catalysis, 2023, 6, 1107-1108.	16.1	0
734	Guiding excited state reactivity – the journey from the Paternò–Büchi reaction to transposed and aza Paternò–Büchi reactions. , 2023, , 562-579.		0
735	Asymmetric Photochemical Transformations Using a Chiral Lewis Acid or/and Chiral Photocatalyst. , 2024, , .		0
736	Asymmetric Photochemical Transformations Using a Chiral Hydrogen Bond Donor. , 2024, , .		0
743	Photochemical Synthesis of Fine Chemicals. , 2024, , .		0
744	Reversing the stereoselectivity of intramolecular [2+2] photocycloaddition utilizing cucurbit[8]uril as a molecular flask. Chemical Communications, 2024, 60, 3267-3270.	2.2	0
749	From Photochemical Activation to Single Enantiomer Products. , 2024, , .		0