Montelukast medicines of today and tomorrow: from m technological formulations

Drug Delivery 23, 3257-3265 DOI: 10.3109/10717544.2016.1170247

Citation Report

#	Article	IF	CITATIONS
1	Biliverdin Reductase inhibitors did not improve severe unconjugated hyperbilirubinemia in vivo. Scientific Reports, 2017, 7, 1646.	1.6	17
2	Metal-free quinolylation of the primary amino groups of amino acid derivatives and peptides with dihydrooxazolo[3,2-a]quinoliniums. Green Chemistry, 2019, 21, 4231-4237.	4.6	3
3	Montelukast promotes mitochondrial biogenesis via CREB/PGC-1α in human bronchial epithelial cells. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 4234-4239.	1.9	15
4	Preformulation Studies of the γ-Cyclodextrin and Montelukast Inclusion Compound Prepared by Comilling. Journal of Pharmaceutical Sciences, 2019, 108, 1837-1847.	1.6	4
5	Lecithin-based modified soft agglomerate composite microparticles for inhalable montelukast: Development, tolerability and pharmacodynamic activity. Powder Technology, 2020, 360, 1167-1176.	2.1	9
6	Leukotriene receptor antagonist reduces inflammation and alveolar bone loss in a rat model of experimental periodontitis. Journal of Periodontology, 2021, 92, e84-e93.	1.7	4
7	Cyclodextrins in Antiviral Therapeutics and Vaccines. Pharmaceutics, 2021, 13, 409.	2.0	24
8	Fabrication of pure-drug microneedles for delivery of montelukast sodium. Drug Delivery and Translational Research, 2021, , 1.	3.0	6
9	Improved Bioavailability of Montelukast through a Novel Oral Mucoadhesive Film in Humans and Mice. Pharmaceutics, 2021, 13, 12.	2.0	10
10	Inclusion of Montelukast in y-Cyclodextrin: Presenting a Mechanochemical Route to Improve Drug Stability and Solubility. Proceedings (mdpi), 2020, 78, .	0.2	0
12	Oral supramolecular nanovectors for dual natural medicine codelivery to prevent gastric mucosal lesion. Nanoscale, 2022, 14, 8967-8977.	2.8	3
13	Promises of Molecular Pharmaceutics in the Development of Novel Drug Delivery Formulations. Current Drug Delivery, 2022, 20, .	0.8	0
14	Silica xerogel carrier as encapsulating Material for the in-vitro controlled release of montelukast. Inorganic Chemistry Communication, 2023, 149, 110378.	1.8	1