Frequency-Agile Pathloss Models for Urban Street Car

IEEE Transactions on Antennas and Propagation 64, 1941-1951 DOI: 10.1109/tap.2016.2536170

Citation Report

#	Article	IF	CITATIONS
1	Spatio-temporal channel sounding in a street canyon at 15, 28 and 60 GHz. , 2016, , .		14
2	Radio propagation modeling for 5G mobile and wireless communications. IEEE Communications Magazine, 2016, 54, 144-151.	4.9	72
3	Towards a Comprehensive Ray-Tracing Modeling of an Urban City With Open-Trench Drains for Mobile Communications. IEEE Access, 2017, 5, 2300-2307.	2.6	9
4	Multiple-Screen Diffraction Measurement at 10–18 GHz. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2002-2005.	2.4	5
5	Outdoor-to-Indoor Empirical Path Loss Models: Analysis for Pico and Femto Cells in Street Canyons. IEEE Wireless Communications Letters, 2017, 6, 542-545.	3.2	12
6	5C: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE Journal on Selected Areas in Communications, 2017, 35, 1201-1221.	9.7	1,536
7	Microcellular Radio Channel Characterization at 60 GHz for 5G Communications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1476-1479.	2.4	14
8	Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Transactions on Antennas and Propagation, 2017, 65, 6213-6230.	3.1	1,025
9	Millimeter-Wave Channel Measurements and Analysis for Statistical Spatial Channel Model in In-Building and Urban Environments at 28 GHz. IEEE Transactions on Wireless Communications, 2017, 16, 5853-5868.	6.1	104
10	Dynamic Multi-Connectivity Performance in Ultra-Dense Urban mmWave Deployments. IEEE Journal on Selected Areas in Communications, 2017, 35, 2038-2055.	9.7	98
11	NLOS and LOS of the 28 GHz bands millimeter-wave in 5G cellular networks. , 2017, , .		6
12	Spatially Consistent Street-by-Street Path Loss Model for 28-GHz Channels in Micro Cell Urban Environments. IEEE Transactions on Wireless Communications, 2017, 16, 7538-7550.	6.1	51
13	Experimental Characterization and Multipath Cluster Modeling for 13–17 GHz Indoor Propagation Channels. IEEE Transactions on Antennas and Propagation, 2017, 65, 6549-6561.	3.1	14
15	Geometrical-Based Modeling for Millimeter-Wave MIMO Mobile-to-Mobile Channels. IEEE Transactions on Vehicular Technology, 2018, 67, 2848-2863.	3.9	166
16	Performance Analysis of Millimeter-Wave Relaying: Impacts of Beamwidth and Self-Interference. IEEE Transactions on Communications, 2018, 66, 589-600.	4.9	43
17	Path Loss Measurements and Models at 28 CHz for 90% Outdoor Suburban Coverage. , 2018, , .		1
18	Path Loss and Blockage Modeling for Vehicle to Vehicle Channel above 6 GHz. , 2018, , .		0
19	Measurement and Characterization of 28 GHz High-Speed Train Backhaul Channels in Rural Propagation Scenarios. , 2018, , .		4

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Suburban Residential Building Penetration Loss at 28 GHz for Fixed Wireless Access. IEEE Wireless Communications Letters, 2018, 7, 890-893.	3.2	28
21	Modeling the Multipath Cross-Polarization Ratio for 5–80-GHz Radio Links. IEEE Transactions on Wireless Communications, 2019, 18, 4768-4778.	6.1	7
22	Modal Expansion Approach for Electromagnetic Propagation in Street Canyons. IEEE Transactions on Antennas and Propagation, 2019, 67, 2103-2117.	3.1	2
23	Suburban Fixed Wireless Access Channel Measurements and Models at 28 GHz for 90% Outdoor Coverage. IEEE Transactions on Antennas and Propagation, 2020, 68, 411-420.	3.1	20
24	Reciprocal Formulation of the Modal Expansion Approach for Aroundâ€theâ€Corner Propagation in Street Canyons. Radio Science, 2020, 55, e2019RS006967.	0.8	1
25	Positioning Based on Noise-Limited Censored Path Loss Data. , 2020, , .		1
26	Influence of Noise-Limited Censored Path Loss on Model Fitting and Path Loss-Based Positioning. Sensors, 2021, 21, 987.	2.1	0
27	Image Transmission Using SC-FDMA System Over mmWave Measured Channel at 29.5 GHz. International Journal of Sensors, Wireless Communications and Control, 2021, 10, 827-836.	0.5	0
28	Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 471-487.	1.5	7
29	Directional Measurements in Urban Street Canyons From Macro Rooftop Sites at 28 GHz for 90% Outdoor Coverage. IEEE Transactions on Antennas and Propagation, 2021, 69, 3459-3469.	3.1	16
30	Evaluation of Line-of-Sight Probability Models for Enclosed Indoor Environments at 14 to 22 GHz. , 2021, , .		4
31	Universal Path Gain Laws for Common Wireless Communication Environments. IEEE Transactions on Antennas and Propagation, 2022, 70, 2928-2941.	3.1	3
33	Wireless Network Coverage Simulation, Measurement, and Propagation Model Correction. , 2020, , .		1
34	Channel Measurements and Large Scale Parameter Estimation in a Production Hall. , 2021, , .		5
35	Crashing Waves: An Empirical Vehicle-to-Barrier Communication Channel Model via Crash Tests. , 2021, , ,		2
36	Measurementâ€based delay, angular dispersion and propagation loss characteristics of outdoor propagation in beam domain and multiâ€beam operation at 38ÂGHz for 5â€G communication systems. IET Microwaves, Antennas and Propagation, 2022, 16, 257-271.	0.7	0
37	A Review of Millimeter Wave Device-Based Localization and Device-Free Sensing Technologies and Applications. IEEE Communications Surveys and Tutorials, 2022, 24, 1708-1749.	24.8	24
38	ELAA Channel Characterization with Parameter Estimation Based on a Generalized Array Manifold Model. Electronics (Switzerland), 2022, 11, 3442.	1.8	Ο

#	Article	IF	CITATIONS
39	Accurate Empirical Path Loss Models with Route Classification for mmWave Communications. International Journal of Antennas and Propagation, 2022, 2022, 1-9.	0.7	1
40	A Realistic Path Loss Model for Cell-Free Massive MIMO in Urban Environments. , 2022, , .		1
41	Multifrequency Wireless Channel Measurements and Characterization in Large Indoor Office Environments. IEEE Transactions on Antennas and Propagation, 2023, 71, 5221-5234.	3.1	2
43	Research on Wireless Channel Modeling for Complex Water Surface Environments. , 2023, , .		0

CITATION REPORT