Segmenting Retinal Blood Vessels With<?Pub _newline

IEEE Transactions on Medical Imaging 35, 2369-2380

DOI: 10.1109/tmi.2016.2546227

Citation Report

#	Article	IF	CITATIONS
1	Advanced deep learning for blood vessel segmentation in retinal fundus images. , 2017, , .		1
2	Fully Automated Deep Learning System for Bone Age Assessment. Journal of Digital Imaging, 2017, 30, 427-441.	1.6	317
3	Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 2017, 20, 70-79.	1.5	196
4	Contrast normalization steps for increased sensitivity of a retinal image segmentation method. Signal, Image and Video Processing, 2017, 11, 1509-1517.	1.7	37
5	DeepPap: Deep Convolutional Networks for Cervical Cell Classification. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 1633-1643.	3.9	317
6	Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey. Pattern Analysis and Applications, 2017, 20, 927-961.	3.1	46
7	Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 2181-2193.	1.7	140
8	Augmenting data when training a CNN for retinal vessel segmentation: How to warp?., 2017,,.		26
9	A review of feature-based retinal image analysis. Expert Review of Ophthalmology, 2017, 12, 207-220.	0.3	24
10	Recent Advancements in Retinal Vessel Segmentation. Journal of Medical Systems, 2017, 41, 70.	2.2	100
11	Spatial Enhancement by Dehazing for Detection of Microcalcifications with Convolutional Nets. Lecture Notes in Computer Science, 2017, , 288-298.	1.0	9
12	Multiâ€level deep neural network for efficient segmentation of blood vessels in fundus images. Electronics Letters, 2017, 53, 1096-1098.	0.5	37
13	Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic model. Computer Methods and Programs in Biomedicine, 2017, 151, 139-149.	2.6	16
14	Detection of Curved Lines with B-COSFIRE Filters: A Case Study on Crack Delineation. Lecture Notes in Computer Science, 2017, , 108-120.	1.0	17
15	Segmentation of Retinal Blood Vessels Using Dictionary Learning Techniques. Lecture Notes in Computer Science, 2017, , 83-91.	1.0	2
16	Delineation of line patterns in images using B-COSFIRE filters. , 2017, , .		12
17	Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. Scientific Reports, 2017, 7, 6620.	1.6	65
18	Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 2017, 420, 66-76.	4.0	210

#	ARTICLE	IF	CITATIONS
19	Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Computers in Biology and Medicine, 2017, 89, 150-161.	3.9	71
20	Towards Detecting High-Uptake Lesions from Lung CT Scans Using Deep Learning. Lecture Notes in Computer Science, 2017, , 310-320.	1.0	6
21	Fingerprint Segmentation via Convolutional Neural Networks. Lecture Notes in Computer Science, 2017, , 324-333.	1.0	6
22	Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis. Journal of Digital Imaging, 2017, 30, 487-498.	1.6	134
23	A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. , 2017, , .		162
24	Semantic Category-Based Classification Using Nonlinear Features and Wavelet Coefficients of Brain Signals. Cognitive Computation, 2017, 9, 702-711.	3. 6	11
25	Segment 2D and 3D Filaments by Learning Structured and Contextual Features. IEEE Transactions on Medical Imaging, 2017, 36, 596-606.	5.4	39
26	Segmentation of carbon nanotube images through an artificial neural network. Soft Computing, 2017, 21, 611-625.	2.1	19
27	The Effect of Mammogram Preprocessing on Microcalcification Detection with Convolutional Neural Networks. , 2017, , .		9
28	Illumination Correction by Dehazing for Retinal Vessel Segmentation. , 2017, , .		17
29	Blood vessel segmentation in eye fundus images. , 2017, , .		3
30	Boosting Sensitivity of a Retinal Vessel Segmentation Algorithm with Convolutional Neural Network. , 2017, , .		34
31	Retinal blood vessel segmentation based on the Gaussian matched filter and U-net. , 2017, , .		26
32	A pilot study to utilize a deep convolutional network to segment lungs with complex opacities. , 2017,		3
33	Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation., 2017,,.		38
34	Retinal blood vessel extraction method based on basic filtering schemes. , 2017, , .		6
35	Blood vessels segmentation using thresholding approach for fundus image analysis., 2017,,.		4
36	Microvasculature segmentation of arterioles using deep CNN., 2017,,.		13

#	Article	IF	Citations
37	Extracting retinal vascular networks using deep learning architecture., 2017,,.		7
38	A retinal vessel detection approach using convolution neural network. , 2017, , .		9
39	Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomedical Optics Express, 2017, 8, 2732.	1.5	396
40	A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images. Symmetry, 2017, 9, 235.	1.1	32
41	Multi-scale morphological analysis for retinal vessel detection in wide-field fluorescein angiography. , 2017, , .		10
42	Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement. Symmetry, 2017, 9, 276.	1.1	11
43	Cracks Detection Using Iterative Phase Congruency. Journal of Mathematical Imaging and Vision, 2018, 60, 1065-1080.	0.8	2
44	Automatic Tobacco Plant Detection in UAV Images via Deep Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 876-887.	2.3	74
45	Automated coronary artery tree segmentation in X-ray angiography using improved Hessian based enhancement and statistical region merging. Computer Methods and Programs in Biomedicine, 2018, 157, 179-190.	2.6	32
46	Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation. IEEE Transactions on Biomedical Engineering, 2018, 65, 1912-1923.	2.5	309
47	Retinal vessel extraction using dynamic multi-scale matched filtering and dynamic threshold processing based on histogram fitting. Machine Vision and Applications, 2018, 29, 655-666.	1.7	8
48	End-to-End Adversarial Retinal Image Synthesis. IEEE Transactions on Medical Imaging, 2018, 37, 781-791.	5.4	277
49	A Survey of Graph Cuts/Graph Search Based Medical Image Segmentation. IEEE Reviews in Biomedical Engineering, 2018, 11, 112-124.	13.1	81
50	Impact of ICA-Based Image Enhancement Technique on Retinal Blood Vessels Segmentation. IEEE Access, 2018, 6, 3524-3538.	2.6	86
51	Hookworm Detection in Wireless Capsule Endoscopy Images With Deep Learning. IEEE Transactions on Image Processing, 2018, 27, 2379-2392.	6.0	121
52	Learning to Play <i>Othello</i> With Deep Neural Networks. IEEE Transactions on Games, 2018, 10, 354-364.	1.2	12
53	Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network. Computer Methods and Programs in Biomedicine, 2018, 159, 59-69.	2.6	49
54	Blood vessel segmentation algorithms $\hat{a}\in$ " Review of methods, datasets and evaluation metrics. Computer Methods and Programs in Biomedicine, 2018, 158, 71-91.	2.6	369

#	ARTICLE	IF	CITATIONS
55	Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 2018, 68, 1-15.	3. 5	158
56	Joint solution for PET image segmentation, denoising, and partial volume correction. Medical Image Analysis, 2018, 46, 229-243.	7.0	31
57	A Review of Retinal Vessel Segmentation and Artery/Vein Classification. Lecture Notes in Electrical Engineering, 2018, , 727-737.	0.3	1
58	Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal, Image and Video Processing, 2018, 12, 263-270.	1.7	39
59	Deep Learning for Medical Image Processing: Overview, Challenges and the Future. Lecture Notes in Computational Vision and Biomechanics, 2018, , 323-350.	0.5	561
60	Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing. Medical Image Analysis, 2018, 43, 214-228.	7.0	72
61	Patch-Based Semantic Segmentation for Detecting Arterioles and Venules in Epifluorescence Imagery. , 2018, 2018, .		2
62	Retinal Vessel Segmentation via A Coarse-to-fine Convolutional Neural Network. , 2018, , .		7
63	Using 3-D CNNs and Local Blood Flow Information to Segment Cerebral Vasculature. , 2018, , .		8
64	Architecture and Factor Design of Fully Convolutional Neural Networks for Retinal Vessel Segmentation., 2018,,.		4
65	Automatic Retinal Blood Vessel Segmentation Based on Multi-Level Convolutional Neural Network. , 2018, , .		10
66	A Coarse-to-Fine Fully Convolutional Neural Network for Fundus Vessel Segmentation. Symmetry, 2018, 10, 607.	1.1	27
67	Weighted Res-UNet for High-Quality Retina Vessel Segmentation. , 2018, , .		381
68	Mask Convolution for Filtering on Irregular-Shaped Image. , 2018, , .		2
69	Extraction of Blood Vessels in Retina. Journal of Information Technology Research, 2018, 11, 122-136.	0.3	2
70	Pathology study for blood vessel of ocular fundus images by photoacoustic tomography. , 2018, , .		1
71	Quantification of Longitudinal Changes in Retinal Vasculature from Wide-Field Fluorescein Angiography via a Novel Registration and Change Detection Approach. , 2018, , .		4
72	Retinal Blood Vessel Segmentation Using Residual Block Incorporated U-Net Architecture and Fuzzy Inference System., 2018,,.		11

#	Article	IF	CITATIONS
73	A Convolutional Encoder-Decoder Architecture for Retinal Blood Vessel Segmentation in Fundus Images. , $2018, , .$		1
74	Diabetic Retinopathy: Present and Past. Procedia Computer Science, 2018, 132, 1432-1440.	1.2	39
75	Deep Learning-Based Approach for the Semantic Segmentation of Bright Retinal Damage. Lecture Notes in Computer Science, 2018, , 164-173.	1.0	3
76	Human Blastocyst's Zona Pellucida segmentation via boosting ensemble of complementary learning. Informatics in Medicine Unlocked, 2018, 13, 112-121.	1.9	11
77	Sensitivity of Cross-Trained Deep CNNs for Retinal Vessel Extraction. , 2018, 2018, 2736-2739.		7
78	Deep Classification and Segmentation Model for Vessel Extraction in Retinal Images. Lecture Notes in Computer Science, 2018, , 250-258.	1.0	2
79	Fast Skin Lesion Segmentation via Fully Convolutional Network with Residual Architecture and CRF. , 2018, , .		4
80	DISCERN: Generative Framework for Vessel Segmentation using Convolutional Neural Network and Visual Codebook., 2018, 2018, 5934-5937.		15
81	Retinal Vessel Detection in Wide-Field Fluorescein Angiography with Deep Neural Networks: A Novel Training Data Generation Approach. , 2018, , .		7
82	Retinal Blood Vessel Segmentation using combination of top-hat and h-maxima methods. , 2018, , .		O
83	Retinal Vessel Segmentation Using Morphological Top Hat Approach On Diabetic Retinopathy Images. , 2018, , .		10
84	Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation. , 2018, , .		7
85	Low Complexity Convolutional Neural Network for Vessel Segmentation in Portable Retinal Diagnostic Devices. , 2018, , .		22
86	Skeletal Bone Age Assessment Based onÂDeep Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, , 408-417.	1.0	6
87	Retinal Vessel Segmentation viaÂMultiscaled Deep-Guidance. Lecture Notes in Computer Science, 2018, , 158-168.	1.0	6
88	Deep Supervision with Additional Labels for Retinal Vessel Segmentation Task. Lecture Notes in Computer Science, 2018, , 83-91.	1.0	76
89	A Modified Dolph-Chebyshev Type II Function Matched Filter for Retinal Vessels Segmentation. Symmetry, 2018, 10, 257.	1,1	5
90	Blood Vessels Segmentation by Using CDNet. , 2018, , .		4

#	Article	IF	CITATIONS
91	A novel retinal vessel detection approach based on multiple deep convolution neural networks. Computer Methods and Programs in Biomedicine, 2018, 167, 43-48.	2.6	44
92	Retinal Blood Vessel Segmentation Using a Fully Convolutional Network – Transfer Learning from Patch- to Image-Level. Lecture Notes in Computer Science, 2018, , 170-178.	1.0	4
93	Multiscale Network Followed Network Model for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2018, , 119-126.	1.0	100
94	Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. Biomedical Optics Express, 2018, 9, 3740.	1.5	41
95	Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Experimental and Therapeutic Medicine, 2018, 16, 2511-2521.	0.8	27
96	Segmentation Implementation using Adaptive Conditional Random Field Model Considering Fundus Images for Diabetic Retinopathy Detection. , 2018, , .		1
97	Automatic Coronary Artery Segmentation in X-ray Angiograms by Multiple Convolutional Neural Networks. , $2018, \ldots$		12
98	Segmentation of histological images and fibrosis identification with a convolutional neural network. Computers in Biology and Medicine, 2018, 98, 147-158.	3.9	41
99	Bone age assessment using convolutional neural networks. , 2018, , .		29
100	Vessel Recognition of Retinal Fundus Images Based on Fully Convolutional Network., 2018,,.		8
101	Combining Convolutional Neural Network With Recursive Neural Network for Blood Cell Image Classification. IEEE Access, 2018, 6, 36188-36197.	2.6	198
102	Retinal Lesion Detection With Deep Learning Using Image Patches. , 2018, 59, 590.		135
103	Retinal Vessels Segmentation Techniques and Algorithms: A Survey. Applied Sciences (Switzerland), 2018, 8, 155.	1.3	79
104	Retinal vessel segmentation using convolutional neural networks. , 2018, , .		4
105	Toward Improving Safety in Neurosurgery with an Active Handheld Instrument. Annals of Biomedical Engineering, 2018, 46, 1450-1464.	1.3	29
106	Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing, 2018, 309, 179-191.	3.5	253
107	Retinal artery/vein classification using genetic-search feature selection. Computer Methods and Programs in Biomedicine, 2018, 161, 197-207.	2.6	41
108	Multichannel Fully Convolutional Network for Coronary Artery Segmentation in X-Ray Angiograms. IEEE Access, 2018, 6, 44635-44643.	2.6	53

#	Article	IF	CITATIONS
109	Retinal Blood Vessels Segmentation using Gabor Filters. , 2018, , .		3
110	Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels. Physics in Medicine and Biology, 2018, 63, 17LT01.	1.6	11
111	An Intelligent Model for Blood Vessel Segmentation in Diagnosing DR Using CNN. Journal of Medical Systems, 2018, 42, 175.	2.2	30
112	Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and Expectation Maximization. Applied Mathematics and Computation, 2018, 339, 568-587.	1.4	56
113	A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images. Biomedical Signal Processing and Control, 2018, 44, 110-126.	3.5	27
114	Skeletal Maturity Recognition Using a Fully Automated System With Convolutional Neural Networks. IEEE Access, 2018, 6, 29979-29993.	2.6	37
115	A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising. PLoS ONE, 2018, 13, e0192203.	1.1	31
116	Retinal vessel segmentation based on Fully Convolutional Neural Networks. Expert Systems With Applications, 2018, 112, 229-242.	4.4	217
117	Binary Filter for Fast Vessel Pattern Extraction. Neural Processing Letters, 2019, 49, 979-993.	2.0	2
118	Automatic Retinal Vessel Segmentation via Deeply Supervised and Smoothly Regularized Network. IEEE Access, 2019, 7, 57717-57724.	2.6	44
119	Machine learning approach for homolog chromosome classification. International Journal of Imaging Systems and Technology, 2019, 29, 161-167.	2.7	18
120	Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artificial Intelligence in Medicine, 2019, 99, 101701.	3.8	176
121	Comparative Analysis of Vessel Segmentation Techniques in Retinal Images. IEEE Access, 2019, 7, 114862-114887.	2.6	76
122	CycleGAN for style transfer in X-ray angiography. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1785-1794.	1.7	22
123	Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions. IEEE Access, 2019, 7, 99540-99572.	2.6	167
124	Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Computer Methods and Programs in Biomedicine, 2019, 178, 289-301.	2.6	107
125	A Novel Assessment Technique for the Degree of Facial Symmetry Before and After Orthognathic Surgery Based on Three-Dimensional Contour Features Using Deep Learning Algorithms. , 2019, , .		2
126	Multi-proportion channel ensemble model for retinal vessel segmentation. Computers in Biology and Medicine, 2019, 111, 103352.	3.9	26

#	Article	IF	Citations
127	Cerebrovascular Network Segmentation of MRA Images With Deep Learning. , 2019, , .		27
128	Multilevel and Multiscale Deep Neural Network for Retinal Blood Vessel Segmentation. Symmetry, 2019, 11, 946.	1.1	34
129	Scale-space approximated convolutional neural networks for retinal vessel segmentation. Computer Methods and Programs in Biomedicine, 2019, 178, 237-246.	2.6	47
130	Fully automatic catheter segmentation in MRI with 3D convolutional neural networks: application to MRI-guided gynecologic brachytherapy. Physics in Medicine and Biology, 2019, 64, 165008.	1.6	47
131	Local Phase U-net for Fundus Image Segmentation. , 2019, , .		7
132	Joint optic disc and cup segmentation using semi-supervised conditional GANs. Computers in Biology and Medicine, 2019, 115, 103485.	3.9	44
133	Computer aided detection of deep inferior epigastric perforators in computed tomography angiography scans. Computerized Medical Imaging and Graphics, 2019, 77, 101648.	3.5	3
134	U-GAN: Generative Adversarial Networks with U-Net for Retinal Vessel Segmentation. , 2019, , .		20
135	Detection and Classification of Chronic Total Occlusion lesions using Deep Learning. , 2019, 2019, 828-831.		5
136	Retinal Vessel Segmentation using Round-wise Features Aggregation on Bracket-shaped Convolutional Neural Networks., 2019, 2019, 36-39.		19
137	Self-Supervised Deep Learning for Retinal Vessel Segmentation Using Automatically Generated Labels from Multimodal Data. , 2019, , .		7
138	Micro-Vessel Image Segmentation Based on the AD-UNet Model. IEEE Access, 2019, 7, 143402-143411.	2.6	37
139	Automatic Retinal Blood Vessel Segmentation Based on Fully Convolutional Neural Networks. Symmetry, 2019, 11, 1112.	1.1	62
140	Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC Medical Informatics and Decision Making, 2019, 19, 198.	1.5	100
141	Abdominal artery segmentation method from CT volumes using fully convolutional neural network. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 2069-2081.	1.7	20
142	Multi-Scale Regularized Deep Network for Retinal Vessel Segmentation. , 2019, , .		3
143	S-UNet: A Bridge-Style U-Net Framework With a Saliency Mechanism for Retinal Vessel Segmentation. IEEE Access, 2019, 7, 174167-174177.	2.6	53
144	Deep vessel segmentation by learning graphical connectivity. Medical Image Analysis, 2019, 58, 101556.	7.0	140

#	ARTICLE	IF	CITATIONS
145	Precise estimation of renal vascular dominant regions using spatially aware fully convolutional networks, tensor-cut and Voronoi diagrams. Computerized Medical Imaging and Graphics, 2019, 77, 101642.	3.5	18
146	Deep Convolutional Neural Network-Based Diabetic Retinopathy Detection in Digital Fundus Images. Advances in Intelligent Systems and Computing, 2019, , 201-209.	0.5	3
147	Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems With Applications, 2019, 134, 36-52.	4.4	81
148	An improved vessel extraction scheme from retinal fundus images. Multimedia Tools and Applications, 2019, 78, 25221-25239.	2.6	17
149	Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network. IEEE Access, 2019, 7, 76342-76352.	2.6	69
150	Medical image segmentation algorithm based on feedback mechanism convolutional neural network. Biomedical Signal Processing and Control, 2019, 53, 101589.	3.5	23
151	Segmentation and suppression of pulmonary vessels in lowâ€dose chest CT scans. Medical Physics, 2019, 46, 3603-3614.	1.6	16
152	Deep Learning Models for Retinal Blood Vessels Segmentation: A Review. IEEE Access, 2019, 7, 71696-71717.	2.6	92
153	VesselNet: A deep convolutional neural network with multi pathways for robust hepatic vessel segmentation. Computerized Medical Imaging and Graphics, 2019, 75, 74-83.	3.5	62
154	Towards Automatic Crack Detection by Deep Learning and Active Thermography. Lecture Notes in Computer Science, 2019, , 151-162.	1.0	2
155	SDFN: Segmentation-based deep fusion network for thoracic disease classification in chest X-ray images. Computerized Medical Imaging and Graphics, 2019, 75, 66-73.	3.5	75
156	Improved cGAN based linear lesion segmentation in high myopia ICGA images. Biomedical Optics Express, 2019, 10, 2355.	1.5	12
157	GGM classifier with multi-scale line detectors for retinal vessel segmentation. Signal, Image and Video Processing, 2019, 13, 1667-1675.	1.7	11
158	Retinal vessel segmentation by a divide-and-conquer funnel-structured classification framework. Signal Processing, 2019, 165, 104-114.	2.1	19
159	DUNet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 2019, 178, 149-162.	4.0	535
160	Finger-Vein Verification Based on LSTM Recurrent Neural Networks. Applied Sciences (Switzerland), 2019, 9, 1687.	1.3	18
161	Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 2019, 176, 135-148.	2.6	51
162	Using Convolutional Neural Networks to Detect and Extract Retinal Blood Vessels in Fundoscopic Images. , 2019, , .		3

#	Article	IF	CITATIONS
163	Deep Q Learning Driven CT Pancreas Segmentation With Geometry-Aware U-Net. IEEE Transactions on Medical Imaging, 2019, 38, 1971-1980.	5.4	105
164	Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound. IEEE Transactions on Medical Imaging, 2019, 38, 2768-2778.	5.4	126
165	Development of a deep neural network for generating synthetic dual-energy chest x-ray images with single x-ray exposure. Physics in Medicine and Biology, 2019, 64, 115017.	1.6	12
166	Brain-Inspired Robust Delineation Operator. Lecture Notes in Computer Science, 2019, , 555-565.	1.0	4
167	CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2281-2292.	5.4	1,266
168	Retinal Blood Vessels Extraction of Challenging Images. Communications in Computer and Information Science, 2019, , 347-359.	0.4	8
169	Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse. Medical and Biological Engineering and Computing, 2019, 57, 1481-1496.	1.6	18
170	PixelBNN: Augmenting the PixelCNN with Batch Normalization and the Presentation of a Fast Architecture for Retinal Vessel Segmentation. Journal of Imaging, 2019, 5, 26.	1.7	44
171	Classification of Metaphase Chromosomes Using Deep Convolutional Neural Network. Journal of Computational Biology, 2019, 26, 473-484.	0.8	30
172	Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neurolmage, 2019, 196, 1-15.	2.1	111
173	An Iterative Deep Neural Network for Hand-Vein Verification. IEEE Access, 2019, 7, 34823-34837.	2.6	29
174	BTS-DSN: Deeply supervised neural network with short connections for retinal vessel segmentation. International Journal of Medical Informatics, 2019, 126, 105-113.	1.6	126
175	Multiple convolutional layers fusion framework for hyperspectral image classification. Neurocomputing, 2019, 339, 149-160.	3.5	40
176	\$n\$ D Variational Restoration of Curvilinear Structures With Prior-Based Directional Regularization. IEEE Transactions on Image Processing, 2019, 28, 3848-3859.	6.0	9
177	Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning. Scientific Reports, 2019, 9, 3058.	1.6	53
178	Joint segmentation and classification of retinal arteries/veins from fundus images. Artificial Intelligence in Medicine, 2019, 94, 96-109.	3.8	78
179	On Retinal Vessel Segmentation Using FCN. , 2019, , .		1
180	Morphology Reconstruction of Obstructed Coronary Artery in Angiographic Images. , 2019, , .		1

#	Article	IF	CITATIONS
181	M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Real-World Applications. , 2019, , .		63
182	Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions. , 2019, , .		209
183	Domain-Enriched Deep Network for Micro-CT Image Segmentation. , 2019, , .		4
184	The Use of Fourier Phase Symmetry for Thin Vessel Detection in Retinal Fundus Images. , 2019, , .		9
185	Unsupervised Microvascular Image Segmentation Using an Active Contours Mimicking Neural Network. , 2019, , .		31
186	Retinal Vessel Segmentation Based on Multi-scale Line Detection and Morphological Transformation. , 2019, , .		O
187	Vessel Intensity Profile Uniformity Improvement for Retinal Vessel Segmentation. Procedia Computer Science, 2019, 163, 370-380.	1.2	7
188	DA-U-Net: Densely Connected Convolutional Networks and Decoder with Attention Gate for Retinal Vessel Segmentation. IOP Conference Series: Materials Science and Engineering, 2019, 533, 012053.	0.3	12
189	Retinal vascular analysis: Segmentation, tracing, and beyond. , 2019, , 95-120.		1
190	Artificial intelligence and deep learning in retinal image analysis. , 2019, , 379-404.		5
191	Impact of Image Enhancement Technique on CNN Model for Retinal Blood Vessels Segmentation. IEEE Access, 2019, 7, 158183-158197.	2.6	50
192	Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension. IET Image Processing, 2019, 13, 2538-2547.	1.4	20
193	SD-Unet: A Structured Dropout U-Net for Retinal Vessel Segmentation. , 2019, , .		53
194	Unsupervised Method for Retinal Vessel Segmentation Based on Gabor Wavelet and Multiscale Line Detector. IEEE Access, 2019, 7, 167221-167228.	2.6	32
195	DRPAN: A novel Adversarial Network Approach for Retinal Vessel Segmentation. , 2019, , .		9
196	A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images. IEEE Transactions on Image Processing, 2019, 28, 2367-2377.	6.0	87
197	Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches. Computers in Biology and Medicine, 2019, 104, 29-42.	3.9	28
198	Robust retinal blood vessel segmentation using hybrid active contour model. IET Image Processing, 2019, 13, 440-450.	1.4	44

#	Article	IF	CITATIONS
199	Automated techniques for blood vessels segmentation through fundus retinal images: A review. Microscopy Research and Technique, 2019, 82, 153-170.	1.2	45
200	Automatic Needle Segmentation and Localization in MRI With 3-D Convolutional Neural Networks: Application to MRI-Targeted Prostate Biopsy. IEEE Transactions on Medical Imaging, 2019, 38, 1026-1036.	5.4	42
201	A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1427-1436.	3.9	244
202	Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms. Pattern Recognition, 2019, 87, 38-54.	5.1	29
203	A recursive Bayesian approach to describe retinal vasculature geometry. Pattern Recognition, 2019, 87, 157-169.	5.1	14
204	Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 2019, 88, 331-341.	5.1	97
205	A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Analysis and Applications, 2019, 22, 767-802.	3.1	59
206	Boosting sensitivity of a retinal vessel segmentation algorithm. Pattern Analysis and Applications, 2019, 22, 583-599.	3.1	25
207	Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Systems, 2019, 25, 109-118.	3.0	54
208	Multi-label chest X-ray image classification via category-wise residual attention learning. Pattern Recognition Letters, 2020, 130, 259-266.	2.6	109
209	Topology Optimization Using Multiple-Possibility Fusion for Vasculature Extraction. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 442-456.	5.6	14
210	Dilated Deep Neural Network for Segmentation of Retinal Blood Vessels in Fundus Images. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2020, 44, 505-518.	1.5	36
211	Automatic Catheter and Tube Detection in Pediatric X-ray Images Using a Scale-Recurrent Network and Synthetic Data. Journal of Digital Imaging, 2020, 33, 181-190.	1.6	30
212	CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing, 2020, 392, 268-276.	3.5	95
213	Bin loss for hard exudates segmentation in fundus images. Neurocomputing, 2020, 392, 314-324.	3.5	32
214	A framework for hierarchical division of retinal vascular networks. Neurocomputing, 2020, 392, 221-232.	3.5	17
215	GC-Net: Global context network for medical image segmentation. Computer Methods and Programs in Biomedicine, 2020, 190, 105121.	2.6	50
216	Parallel Architecture of Fully Convolved Neural Network for Retinal Vessel Segmentation. Journal of Digital Imaging, 2020, 33, 168-180.	1.6	16

#	Article	IF	CITATIONS
217	Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images. Computer Methods and Programs in Biomedicine, 2020, 186, 105201.	2.6	26
218	A neural network approach to segment brain blood vessels in digital subtraction angiography. Computer Methods and Programs in Biomedicine, 2020, 185, 105159.	2.6	13
219	Multiscale dense convolutional neural network for DSA cerebrovascular segmentation. Neurocomputing, 2020, 373, 123-134.	3.5	38
220	Fast and robust retinal biometric key generation using deep neural nets. Multimedia Tools and Applications, 2020, 79, 6823-6843.	2.6	10
221	Application of deep learning for retinal image analysis: A review. Computer Science Review, 2020, 35, 100203.	10.2	117
222	Dense Dilated Network With Probability Regularized Walk for Vessel Detection. IEEE Transactions on Medical Imaging, 2020, 39, 1392-1403.	5.4	96
223	Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 2020, 102, 101758.	3.8	125
224	Cerebrovascular segmentation from TOF-MRA using model- and data-driven method via sparse labels. Neurocomputing, 2020, 380, 162-179.	3.5	25
225	Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Medical Image Analysis, 2020, 60, 101623.	7.0	26
226	Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artificial Intelligence in Medicine, 2020, 102, 101769.	3.8	46
227	An unsupervised approach to improve contrast and segmentation of blood vessels in retinal images using CLAHE, 2D Gabor wavelet, and morphological operations. Research on Biomedical Engineering, 2020, 36, 67-75.	1.5	17
228	Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection. Computers in Biology and Medicine, 2020, 127, 104049.	3.9	8
229	A multipleâ€channel and atrous convolution network for ultrasound image segmentation. Medical Physics, 2020, 47, 6270-6285.	1.6	16
230	Retinal blood vessels detection for diabetic retinopathy with Ridgelet transform and convolution neural network. International Journal of Wavelets, Multiresolution and Information Processing, 2020, 18, 2050048.	0.9	1
231	A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography. IEEE Transactions on Image Processing, 2020, 29, 6561-6573.	6.0	36
232	Wavelet based Fine-to-Coarse Retinal Blood Vessel Extraction using U-net Model. , 2020, , .		5
233	M-GAN: Retinal Blood Vessel Segmentation by Balancing Losses Through Stacked Deep Fully Convolutional Networks. IEEE Access, 2020, 8, 146308-146322.	2.6	73
234	Machine Learning Techniques for Ophthalmic Data Processing: A Review. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3338-3350.	3.9	38

#	ARTICLE	IF	CITATIONS
235	Analysis of Video Retinal Angiography With Deep Learning and Eulerian Magnification. Frontiers in Computer Science, 2020, 2, .	1.7	2
236	Prognostic Value and Reproducibility of Al-assisted Analysis of Lung Involvement in COVID-19 at Low-Dose Submillisievert Chest CT: Sample Size Implications for Clinical Trials. Radiology: Cardiothoracic Imaging, 2020, 2, e200441.	0.9	19
237	Exploiting Residual Edge Information in Deep Fully Convolutional Neural Networks For Retinal Vessel Segmentation. , 2020, , .		13
238	Enforcing artificial neural network in the early detection of diabetic retinopathy OCTA images analysed by multifractal geometry. Journal of Taibah University for Science, 2020, 14, 1067-1076.	1.1	6
239	Shallow Vessel Segmentation Network for Automatic Retinal Vessel Segmentation. , 2020, , .		14
240	Weakly-Supervised Vessel Detection in Ultra-Widefield Fundus Photography via Iterative Multi-Modal Registration and Learning. IEEE Transactions on Medical Imaging, 2021, 40, 2748-2758.	5.4	27
241	Automated Pterygium Detection Using Deep Neural Network. IEEE Access, 2020, 8, 191659-191672.	2.6	18
242	Effects of Image Enhancement Techniques on CNNs Based Algorithms for Segmentation of Blood Vessels: A Review. , 2020, , .		2
243	Efficient BFCN for Automatic Retinal Vessel Segmentation. Journal of Ophthalmology, 2020, 2020, 1-14.	0.6	5
244	Segmentation of Cerebrovascular Anatomy from TOF-MRA Using Length-Strained Enhancement and Random Walker. BioMed Research International, 2020, 2020, 1-16.	0.9	3
245	Comparative Analysis of Pre-process Pipelines For Automatic Retinal Vessel Segmentation. , 2020, , .		0
246	Overview of Machine Learning Approaches Applied in Disease Profiling. , 2020, , .		1
247	A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation. Entropy, 2020, 22, 811.	1.1	30
248	Automated Artery Localization and Vessel Wall Segmentation Using Tracklet Refinement and Polar Conversion. IEEE Access, 2020, 8, 217603-217614.	2.6	14
249	Retinal Blood Vessel Extraction Based on Adaptive Segmentation Algorithm. , 2020, , .		4
250	ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3507-3519.	3.9	43
251	MRU-NET: A U-Shaped Network for Retinal Vessel Segmentation. Applied Sciences (Switzerland), 2020, 10, 6823.	1.3	9
252	A Neural Network for Interpolating Light-Sources. , 2020, , .		0

#	Article	IF	CITATIONS
253	Retinal Vessel Segmentation Under Extreme Low Annotation: A Gan Based Semi-Supervised Approach. , 2020, , .		13
254	Retinal Vessel Segmentation by Deep Residual Learning with Wide Activation. Computational Intelligence and Neuroscience, 2020, 2020, 1-11.	1.1	9
255	Sequential vessel segmentation via deep channel attention network. Neural Networks, 2020, 128, 172-187.	3.3	32
256	Inception Capsule Network for Retinal Blood Vessel Segmentation and Centerline Extraction. , 2020, , .		18
257	Retinal Vessel Segmentation via a Semantics and Multi-Scale Aggregation Network. , 2020, , .		13
258	Learning to Segment Vessels from Poorly Illuminated Fundus Images. , 2020, , .		5
259	CTF-Net: Retinal Vessel Segmentation via Deep Coarse-To-Fine Supervision Network., 2020,,.		22
260	Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Applied Soft Computing Journal, 2020, 93, 106353.	4.1	24
261	CPGAN: Conditional patchâ€based generative adversarial network for retinal vesselsegmentation. IET Image Processing, 2020, 14, 1081-1090.	1.4	13
262	Retinal Blood Vessel Segmentation Using Hybrid Features and Multi-Layer Perceptron Neural Networks. Symmetry, 2020, 12, 894.	1.1	34
263	Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Applied Soft Computing Journal, 2020, 94, 106452.	4.1	122
264	Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2586-2597.	1.9	16
265	A Fast and Efficient CAD System for Improving the Performance of Malignancy Level Classification on Lung Nodules. IEEE Access, 2020, 8, 40151-40170.	2.6	10
266	Learning the retinal anatomy from scarce annotated data using self-supervised multimodal reconstruction. Applied Soft Computing Journal, 2020, 91, 106210.	4.1	19
267	NFNK: A novel network followed network for retinal vessel segmentation. Neural Networks, 2020, 126, 153-162.	3.3	119
268	Echo state networkâ€based feature extraction for efficient color image segmentation. Concurrency Computation Practice and Experience, 2020, 32, e5719.	1.4	11
269	Block Level Skip Connections Across Cascaded V-Net for Multi-Organ Segmentation. IEEE Transactions on Medical Imaging, 2020, 39, 2782-2793.	5.4	51
270	Automatic Detection and Monitoring of Diabetic Retinopathy Using Efficient Convolutional Neural Networks and Contrast Limited Adaptive Histogram Equalization. IEEE Access, 2020, 8, 136668-136673.	2.6	69

#	Article	IF	CITATIONS
271	Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images. Symmetry, 2020, 12, 1067.	1.1	15
272	Hard Attention Net for Automatic Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3384-3396.	3.9	106
273	Convolutional neural networkâ€based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse. Medical Physics, 2020, 47, 4281-4293.	1.6	11
274	Deep Guidance Network for Biomedical Image Segmentation. IEEE Access, 2020, 8, 116106-116116.	2.6	75
275	From Local to Global: A Graph Framework for Retinal Artery/Vein Classification. IEEE Transactions on Nanobioscience, 2020, 19, 589-597.	2.2	3
276	A review of the application of deep learning in medical image classification and segmentation. Annals of Translational Medicine, 2020, 8, 713-713.	0.7	228
277	HRED-Net: High-Resolution Encoder-Decoder Network for Fine-Grained Image Segmentation. IEEE Access, 2020, 8, 38210-38220.	2.6	8
278	BSCN: bidirectional symmetric cascade network for retinal vessel segmentation. BMC Medical Imaging, 2020, 20, 20.	1.4	16
279	Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3321.	1.0	18
280	OCTRexpert: A Feature-Based 3D Registration Method for Retinal OCT Images. IEEE Transactions on Image Processing, 2020, 29, 3885-3897.	6.0	13
281	Deep Retinal Image Segmentation With Regularization Under Geometric Priors. IEEE Transactions on Image Processing, 2020, 29, 2552-2567.	6.0	44
282	Blood vessel detection from Retinal fundas images using GIFKCN classifier. Procedia Computer Science, 2020, 167, 2060-2069.	1.2	16
283	Dense Residual Convolutional Auto Encoder For Retinal Blood Vessels Segmentation. , 2020, , .		8
284	Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation. Journal of Clinical Medicine, 2020, 9, 1018.	1.0	37
285	Highâ€quality retinal vessel segmentation using generative adversarial network with a large receptive field. International Journal of Imaging Systems and Technology, 2020, 30, 828-842.	2.7	24
286	Retinal vasculature segmentation and measurement framework for color fundus and SLO images. Biocybernetics and Biomedical Engineering, 2020, 40, 865-900.	3.3	13
287	Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 2020, 63, 101693.	7.0	473
288	Holographic virtual staining of individual biological cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9223-9231.	3.3	54

#	Article	IF	CITATIONS
289	Lightweight Attention Convolutional Neural Network for Retinal Vessel Image Segmentation. IEEE Transactions on Industrial Informatics, 2021, 17, 1958-1967.	7. 2	153
290	State-of-the-Art Segmentation Techniques and Future Directions for Multiple Sclerosis Brain Lesions. Archives of Computational Methods in Engineering, 2021, 28, 951-977.	6.0	22
291	A New Deeply Convolutional Neural Network Architecture for Retinal Blood Vessel Segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35, 2157001.	0.7	2
292	A vessel segmentation technique for retinal images. International Journal of Imaging Systems and Technology, 2021, 31, 160-167.	2.7	4
293	Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 2021, 24, 271-283.	2.0	43
294	VSSC Net: Vessel Specific Skip chain Convolutional Network for blood vessel segmentation. Computer Methods and Programs in Biomedicine, 2021, 198, 105769.	2.6	71
295	A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Medical Image Analysis, 2021, 68, 101905.	7.0	86
296	CS <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup></mml:msup>-Net: Deep learning segmentation of curvilinear structures in medical imaging. Medical Image Analysis, 2021, 67, 101874.</mml:math>	7.0	166
297	Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks. Multimedia Tools and Applications, 2021, 80, 3505-3528.	2.6	29
298	Blood vessel segmentation and extraction using H-minima method based on image processing techniques. Multimedia Tools and Applications, 2021, 80, 2565-2582.	2.6	10
299	A Global and Local Enhanced Residual U-Net for Accurate Retinal Vessel Segmentation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 852-862.	1.9	46
301	Chest disease radiography in twofold: using convolutional neural networks and transfer learning. Evolving Systems, 2021, 12, 567-579.	2.4	19
302	U-Net based Multi-level Texture Suppression for Vessel Segmentation in Low Contrast Regions. , 2021, , .		3
303	BLU-GAN: Bi-directional ConvLSTM U-Net with Generative Adversarial Training for Retinal Vessel Segmentation. Communications in Computer and Information Science, 2021, , 3-13.	0.4	4
304	Intelligent and Integrated Framework for Exudate Detection in Retinal Fundus Images. Intelligent Automation and Soft Computing, 2021, 29, 663-672.	1.6	3
305	D-GaussianNet: Adaptive Distorted Gaussian Matched Filter with Convolutional Neural Network for Retinal Vessel Segmentation. Communications in Computer and Information Science, 2021, , 378-392.	0.4	16
306	Detection and Grading of Diabetic Retinopathy in Retinal Images Using Deep Intelligent Systems: A Comprehensive Review. Computers, Materials and Continua, 2021, 66, 2771-2786.	1.5	7
307	SimTriplet: Simple Triplet Representation Learning with a Single GPU. Lecture Notes in Computer Science, 2021, , 102-112.	1.0	17

#	Article	IF	CITATIONS
308	Robust Retinal Vessel Segmentation from a Data Augmentation Perspective. Lecture Notes in Computer Science, 2021, , 189-198.	1.0	13
309	Multi-Level Attention Network for Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 312-323.	3.9	43
310	Retinal Vessel Segmentation Using Joint Relative Entropy Thresholding on Bowler Hat Transform. Communications in Computer and Information Science, 2021, , 126-136.	0.4	0
311	Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study. BMJ Open, 2021, 11, e041139.	0.8	21
312	Deep Convolutional Neural Networks in Detecting Lung Mass From Chest X-Ray Images. International Journal of Applied Research in Bioinformatics, 2021, 11, 22-30.	0.8	2
313	Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm. IEEE Transactions on Medical Imaging, 2022, 41, 292-307.	5.4	41
314	SAT-Net: a side attention network for retinal image segmentation. Applied Intelligence, 2021, 51, 5146-5156.	3.3	24
315	W–net: A Convolutional Neural Network for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2021, , 355-368.	1.0	2
316	Identification of Diabetic Retinopathy for Retinal Images Using Feed Forward Neural Network. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 543-552.	0.5	0
317	Relationships Between Retinal Vascular Characteristics and Renal Function in Patients With Type 2 Diabetes Mellitus. Translational Vision Science and Technology, 2021, 10, 20.	1.1	11
318	Segmentation of retinal vasculature through composite features and supervised learning. Materials Today: Proceedings, 2021, , .	0.9	1
319	Pathological myopia classification with simultaneous lesion segmentation using deep learning. Computer Methods and Programs in Biomedicine, 2021, 199, 105920.	2.6	42
320	GlaucoNet: Patch-Based Residual Deep Learning Network for Optic Disc and Cup Segmentation Towards Glaucoma Assessment. SN Computer Science, 2021, 2, 1.	2.3	9
321	VC-Net: Deep Volume-Composition Networks for Segmentation and Visualization of Highly Sparse and Noisy Image Data. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 1301-1311.	2.9	21
322	Lightweight pyramid network with spatial attention mechanism for accurate retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 673-682.	1.7	9
323	Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images. Network Modeling Analysis in Health Informatics and Bioinformatics, 2021. 10. 1.	1.2	28
324	Diabetic Retinopathy Classification using a Combination of EfficientNets., 2021,,.		10
325	Encoding-decoding Network With Pyramid Self-attention Module For Retinal Vessel Segmentation. International Journal of Automation and Computing, 0 , 1 .	4.5	11

#	Article	IF	Citations
326	ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE Transactions on Medical Imaging, 2021, 40, 928-939.	5.4	137
327	An Intelligent Particle Swarm Optimization with Convolutional Neural Network for Diabetic Retinopathy Classification Model. Journal of Medical Imaging and Health Informatics, 2021, 11, 803-809.	0.2	26
328	Categorization of Diabetic Retinopathy and Identification of Characteristics to Assist Effective Diagnosis. , $2021, \dots$		1
329	Diameter Estimation of Fallopian Tubes Using Visual Sensing. Biosensors, 2021, 11, 100.	2.3	0
330	Assessing fairness in performance evaluation of publicly available retinal blood vessel segmentation algorithms. Journal of Medical Engineering and Technology, 2021, 45, 351-360.	0.8	1
331	Improvement of thin retinal vessel extraction using mean matting method. International Journal of Imaging Systems and Technology, 2021, 31, 1455-1467.	2.7	4
332	Vascular Patterning as Integrative Readout of Complex Molecular and Physiological Signaling by VESsel GENeration Analysis. Journal of Vascular Research, 2021, 58, 1-24.	0.6	9
333	"Keep it simple, scholar†an experimental analysis of few-parameter segmentation networks for retinal vessels in fundus imaging. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 967-978.	1.7	2
334	An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Computer Methods and Programs in Biomedicine, 2021, 201, 105949.	2.6	51
335	On the quantitative effects of compression of retinal fundus images on morphometric vascular measurements in VAMPIRE. Computer Methods and Programs in Biomedicine, 2021, 202, 105969.	2.6	7
336	CSU-Net: A Context Spatial U-Net for Accurate Blood Vessel Segmentation in Fundus Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1128-1138.	3.9	56
337	Learning-based algorithms for vessel tracking: A review. Computerized Medical Imaging and Graphics, 2021, 89, 101840.	3.5	29
338	Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach. Scientific Programming, 2021, 2021, 1-15.	0.5	6
339	Applications of deep learning in fundus images: A review. Medical Image Analysis, 2021, 69, 101971.	7.0	175
340	SCS-Net: A Scale and Context Sensitive Network for Retinal Vessel Segmentation. Medical Image Analysis, 2021, 70, 102025.	7.0	111
341	MC-Net: multi-scale context-attention network for medical CT image segmentation. Applied Intelligence, 2022, 52, 1508-1519.	3.3	22
342	A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing, 2021, 437, 118-130.	3 . 5	36
343	Retinal Vessel Segmentation Based on Recurrent Convolutional Skip Connection U-Net., 2021,,.		2

#	Article	IF	CITATIONS
344	Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images. Journal of Visual Communication and Image Representation, 2021, 77, 103134.	1.7	11
345	BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation. Computer Methods and Programs in Biomedicine, 2021, 205, 106070.	2.6	35
346	R2AU-Net: Attention Recurrent Residual Convolutional Neural Network for Multimodal Medical Image Segmentation. Security and Communication Networks, 2021, 2021, 1-10.	1.0	33
347	An Enhanced Retinal vessel segmentation using Deep Convolution Neural Network. Journal of Physics: Conference Series, 2021, 1917, 012021.	0.3	0
348	Retinal vessel segmentation based on an improved deep forest. International Journal of Imaging Systems and Technology, 2021, 31, 1792-1802.	2.7	7
349	Fast and efficient retinal blood vessel segmentation method based on deep learning network. Computerized Medical Imaging and Graphics, 2021, 90, 101902.	3.5	52
350	Encoder Enhanced Atrous (EEA) Unet architecture for Retinal Blood vessel segmentation. Cognitive Systems Research, 2021, 67, 84-95.	1.9	61
352	A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Computer Methods and Programs in Biomedicine, 2021, 205, 106081.	2.6	46
353	Introducing frequency representation into convolution neural networks for medical image segmentation via twin-Kernel Fourier convolution. Computer Methods and Programs in Biomedicine, 2021, 205, 106110.	2.6	8
354	Content-Based Retrieval of COVID-19 Affected Chest X-rays with Siamese CNN. Studies in Systems, Decision and Control, 2022, , 3-16.	0.8	2
355	Simultaneous Detection of Optic Disc and Macular Concave Center Using Artificial Intelligence Target Detection Algorithms. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 8-15.	0.5	0
356	Multi-task learning for pre-processing of printed Devanagari document images with hyper-parameter optimization of the deep architecture using Taguchi method. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	1
357	Attention-Guided Deep Neural Network With Multi-Scale Feature Fusion for Liver Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2629-2642.	3.9	60
358	Joint Extraction of Retinal Vessels and Centerlines Based on Deep Semantics and Multi-Scaled Cross-Task Aggregation. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2722-2732.	3.9	12
359	Automatic vessel segmentation in X-ray angiogram using spatio-temporal fully-convolutional neural network. Biomedical Signal Processing and Control, 2021, 68, 102646.	3.5	7
360	Localization of Ocular Vessels with Context Sensitive Semantic Segmentation., 2021,,.		5
361	MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation. PLoS ONE, 2021, 16, e0253056.	1.1	10
362	Deep learning-enabled ultra-widefield retinal vessel segmentation with an automated quality-optimized angiographic phase selection tool. Eye, 2022, 36, 1783-1788.	1.1	5

#	Article	IF	Citations
363	Diabetic Retinopathy Diagnosis Through Computer-Aided Fundus Image Analysis: A Review. Archives of Computational Methods in Engineering, 2022, 29, 1673-1711.	6.0	6
364	DPN: detail-preserving network with high resolution representation for efficient segmentation of retinal vessels. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 5689-5702.	3.3	13
365	Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images. Artificial Intelligence in Medicine, 2021, 118, 102116.	3.8	22
366	IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation. Computers in Biology and Medicine, 2021, 135, 104551.	3.9	20
367	Traditional and New Methods of Bone Age Assessment-An Overview. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2021, 13, 251-262.	0.4	27
368	Blood Vessel Segmentation Based on the 3D Residual U-Net. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35, 2157007.	0.7	1
369	An Effective Approach to Classify White Blood Cell Using CNN. Advances in Intelligent Systems and Computing, 2022, , 633-641.	0.5	2
370	S-CCCapsule: Pneumonia detection in chest X-ray images using skip-connected convolutions and capsule neural network. Journal of Intelligent and Fuzzy Systems, 2021, 41, 757-781.	0.8	1
371	SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-16.	0.7	7
372	A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing, 2021, 448, 168-178.	3.5	68
373	Segmentation of Older Adults in the Acceptance of Social Networking Sites Using Machine Learning. Frontiers in Psychology, 2021, 12, 705715.	1.1	3
374	Detecting pulmonary Coccidioidomycosis with deep convolutional neural networks. Machine Learning With Applications, 2021, 5, 100040.	3.0	4
375	DF-Net: Deep fusion network for multi-source vessel segmentation. Information Fusion, 2022, 78, 199-208.	11.7	18
376	Impact of Novel Image Preprocessing Techniques on Retinal Vessel Segmentation. Electronics (Switzerland), 2021, 10, 2297.	1.8	5
377	Regularizer based on Euler characteristic for retinal blood vessel segmentation. Pattern Recognition Letters, 2021, 149, 83-90.	2.6	8
379	TA-Net: Triple attention network for medical image segmentation. Computers in Biology and Medicine, 2021, 137, 104836.	3.9	26
380	A nested U-shape network with multi-scale upsample attention for robust retinal vascular segmentation. Pattern Recognition, 2021, 120, 107998.	5.1	18
381	A Feature Selection Strategy to Optimize Retinal Vasculature Segmentation. Computers, Materials and Continua, 2022, 70, 2971-2989.	1.5	3

#	Article	IF	Citations
383	Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling. Applied Optics, 2021, 60, 239.	0.9	4
384	Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction. IET Image Processing, 2021, 15, 1484-1498.	1.4	10
385	Retinal Vessel Segmentation Using Deep Learning: A Review. IEEE Access, 2021, 9, 111985-112004.	2.6	65
386	A Novel Approach of Diabetic Retinopathy Early Detection Based on Multifractal Geometry Analysis for OCTA Macular Images Using Support Vector Machine. IEEE Access, 2021, 9, 22844-22858.	2.6	40
387	Comparative Analysis of Various Deep Learning Algorithms for Diabetic Retinopathy Images. Studies in Computational Intelligence, 2021, , 97-106.	0.7	0
389	Retinal blood vessels segmentation using classical edge detection filters and the neural network. Informatics in Medicine Unlocked, 2021, 23, 100521.	1.9	45
390	Let's Take a Walk on Superpixels Graphs: Deformable Linear Objects Segmentation and Model Estimation. Lecture Notes in Computer Science, 2019, , 662-677.	1.0	13
391	Fully Convolved Neural Network-Based Retinal Vessel Segmentation with Entropy Loss Function. , 2020, , 217-225.		1
392	A Survey on Supervised and Unsupervised Learning Techniques. , 2020, , 627-644.		10
393	A Single-Resolution Fully Convolutional Network for Retinal Vessel Segmentation in Raw Fundus Images. Lecture Notes in Computer Science, 2019, , 59-69.	1.0	1
394	Case Study: Deep Convolutional Networks in Healthcare. Studies in Computational Intelligence, 2020, , 61-89.	0.7	1
395	Unsupervised Ensemble Strategy for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2019, , 111-119.	1.0	18
396	Vessel-Net: Retinal Vessel Segmentation Under Multi-path Supervision. Lecture Notes in Computer Science, 2019, , 264-272.	1.0	69
397	CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation. Lecture Notes in Computer Science, 2019, , 721-730.	1.0	131
398	Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein Classification. Lecture Notes in Computer Science, 2019, , 769-778.	1.0	41
399	Fundus Image Based Retinal Vessel Segmentation Utilizing a Fast and Accurate Fully Convolutional Network. Lecture Notes in Computer Science, 2019, , 112-120.	1.0	12
400	Deep Learning Based Multi-modal Registration for Retinal Imaging. Lecture Notes in Computer Science, 2019, , 75-82.	1.0	7
401	U-Net with Attention Mechanism for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2019, , 668-677.	1.0	3

#	Article	IF	CITATIONS
402	Improve Unseen Domain Generalization via Enhanced Local Color Transformation. Lecture Notes in Computer Science, 2020, , 433-443.	1.0	3
403	Retinal Image Segmentation with a Structure-Texture Demixing Network. Lecture Notes in Computer Science, 2020, , 765-774.	1.0	7
404	RVSeg-Net: An Efficient Feature Pyramid Cascade Network for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2020, , 796-805.	1.0	30
405	A Deep Neural Network for Vessel Segmentation of Scanning Laser Ophthalmoscopy Images. Lecture Notes in Computer Science, 2017, , 507-515.	1.0	11
406	Adversarial Synthesis of Retinal Images from Vessel Trees. Lecture Notes in Computer Science, 2017, , 516-523.	1.0	8
407	Retinal Vessel Segmentation Through Denoising and Mathematical Morphology. Lecture Notes in Computer Science, 2017, , 267-276.	1.0	3
408	The Detection of Built-up Areas in High-Resolution SAR Images Based on Deep Neural Networks. Lecture Notes in Computer Science, 2017, , 646-655.	1.0	6
409	Retinal Blood Vessel Segmentation by Multi-channel Deep Convolutional Autoencoder. Advances in Intelligent Systems and Computing, 2019, , 37-46.	0.5	1
410	Computerized retinal image analysis - a survey. Multimedia Tools and Applications, 2020, 79, 22389-22421.	2.6	22
411	Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Research on Biomedical Engineering, 2020, 36, 107-119.	1.5	33
412	Unsupervised multiscale retinal blood vessel segmentation using fundus images. IET Image Processing, 2020, 14, 2616-2625.	1.4	18
415	Dense Residual Network for Retinal Vessel Segmentation. , 2020, , .		16
416	Cross-Domain Segmentation of Fundus Vessels Based on Feature Space Alignment. , 2020, , .		2
417	Segmenting localized corrosion from rust-removed metallic surface with deep learning algorithm. Journal of Electronic Imaging, 2019, 28, 1.	0.5	7
418	Tracking and diameter estimation of retinal vessels using Gaussian process and Radon transform. Journal of Medical Imaging, 2017, 4, 1.	0.8	14
419	Blood vessel segmentation in modern wide-field retinal images in the presence of additive Gaussian noise. Journal of Medical Imaging, 2018, 5, 1.	0.8	6
420	Deep convolutional neural network-based patch classification for retinal nerve fiber layer defect detection in early glaucoma. Journal of Medical Imaging, 2018, 5, 1.	0.8	19
421	Recurrent residual U-Net for medical image segmentation. Journal of Medical Imaging, 2019, 6, 1.	0.8	449

#	Article	IF	CITATIONS
422	Retinal vessel segmentation using dense U-net with multiscale inputs. Journal of Medical Imaging, 2019, 6, 1.	0.8	21
423	Segmentation of retinal blood vessels based on feature-oriented dictionary learning and sparse coding using ensemble classification approach. Journal of Medical Imaging, 2019, 6, 1.	0.8	2
424	Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury. , 2019, 10949, .		12
425	RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. Biomedical Optics Express, 2019, 10, 3815.	1.5	30
426	Automated identification of cone photoreceptors in adaptive optics optical coherence tomography images using transfer learning. Biomedical Optics Express, 2018, 9, 5353.	1.5	16
427	Retinal Vessel Detection Using Deep Learning: A novel DirectNet Architecture. The Korean Journal of Vision Science, 2018, 20, 151-159.	0.1	3
428	Blood Vessel Segmentation from Fundus Images Using Modified U-net Convolutional Neural Network. Journal of Image and Graphics(United Kingdom), 2020, 8, 21-25.	3.1	39
429	Brain Tumor Detection from MR Images Employing Fuzzy Graph Cut Technique. Recent Advances in Computer Science and Communications, 2020, 13, 362-369.	0.5	62
430	Intelligent Image Synthesis for Accurate Retinal Diagnosis. Electronics (Switzerland), 2020, 9, 767.	1.8	4
431	A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation. Symmetry, 2021, 13, 24.	1.1	17
432	Skeletal bone age assessments for young children based on regression convolutional neural networks. Mathematical Biosciences and Engineering, 2019, 16, 6454-6466.	1.0	15
433	Segmentation of carotid arterial walls using neural networks. World Journal of Radiology, 2020, 12, 1-9.	0.5	10
434	MIA-UNet: Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation. CMES - Computer Modeling in Engineering and Sciences, 2021, 129, 805-828.	0.8	6
435	Bi-SANetâ€"Bilateral Network with Scale Attention for Retinal Vessel Segmentation. Symmetry, 2021, 13, 1820.	1.1	3
436	Quadratic polynomial guided fuzzy C-means and dual attention mechanism for medical image segmentation. Displays, 2021, 70, 102106.	2.0	65
437	A Multi-feature Fusion Method for Optic Cup Segmentation. Lecture Notes in Electrical Engineering, 2022, , 40-48.	0.3	0
438	Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation. Neural Computing and Applications, 2022, 34, 3151-3164.	3.2	5
439	Residualpath-res-dense-net for retinal vessel segmentation., 2021,,.		0

#	Article	IF	CITATIONS
440	Fundus image segmentation via hierarchical feature learning. Computers in Biology and Medicine, 2021, 138, 104928.	3.9	13
441	Retinal blood vessel segmentation in high resolution fundus photographs using automated feature parameter estimation., 2017,,.		2
442	Keras based CNN Model for Disease Extraction in Ultrasound Image. Journal of Digital Contents Society, 2018, 19, 1975-1980.	0.1	0
443	Deep Vesselness Measure from Scale-Space Analysis of Hessian Matrix Eigenvalues. Lecture Notes in Computer Science, 2019, , 473-484.	1.0	1
444	Patch-Based Generative Adversarial Network Towards Retinal Vessel Segmentation. Communications in Computer and Information Science, 2019, , 49-56.	0.4	3
445	U-Net with Graph Based Smoothing Regularizer for Small Vessel Segmentation on Fundus Image. Communications in Computer and Information Science, 2019, , 515-522.	0.4	3
446	Retinal Blood Vessels Segmentation: Improving State-of-the-Art Deep Methods. Communications in Computer and Information Science, 2019, , 5-16.	0.4	1
447	Image Analysis for Ophthalmology: Segmentation and Quantification of Retinal Vascular Systems. Modeling and Simulation in Science, Engineering and Technology, 2019, , 543-580.	0.4	4
448	Particle Swarm Optimization for Great Enhancement in Semi-supervised Retinal Vessel Segmentation with Generative Adversarial Networks. Lecture Notes in Computer Science, 2019, , 112-120.	1.0	4
450	Learning saliently temporal-spatial features for x-ray coronary angiography sequence segmentation. , 2019, , .		0
451	Pavement Crack Detection and Segmentation Based on Deep Neural Network. The Journal of Korean Institute of Information Technology, 2019, 17, 99-112.	0.1	3
452	Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks. Informacijos Mokslai, 0, 85, 135-147.	0.0	1
453	Comprehensive Study on Diabetic Retinopathy. Advances in Intelligent Systems and Computing, 2020, , 155-163.	0.5	3
454	Detection of Eye Ailments Using Segmentation of Blood Vessels from Eye Fundus Image. Lecture Notes in Electrical Engineering, 2020, , 515-531.	0.3	1
455	An Inception Inspired Deep Network to Analyse Fundus Images. , 2019, , .		0
457	Performance Analysis of Convolutional Neural Networks for Exudate Detection in Fundus Images. Advances in Intelligent Systems and Computing, 2020, , 371-380.	0.5	0
458	Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System. Current Medical Imaging, 2020, 16, 397-426.	0.4	2
459	Weakly supervised retinal vessel segmentation algorithm without groundtruth. Electronics Letters, 2020, 56, 1235-1237.	0.5	3

#	Article	IF	CITATIONS
460	JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for 3D Cerebrovascular Segmentation. Lecture Notes in Computer Science, 2020, , 106-116.	1.0	8
461	Enhancing Tiny Tissues Segmentation via Self-Distillation. , 2020, , .		2
462	Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks. Informacijos Mokslai, 0, 90, 116-128.	0.0	0
463	MSCAN: Multi-scale Channel Attention for Fundus Retinal Vessel Segmentation. , 2020, , .		2
464	A Novel Approach using Deep Neural Network Vessel Segmentation & Sectional Disease Detection. , 2020, , .		1
465	Local Adaptive U-net for Medical Image Segmentation. , 2020, , .		11
466	Retinal vessel segmentation based on taskâ€driven generative adversarial network. IET Image Processing, 2020, 14, 4599-4605.	1.4	4
467	Identification of interstitial lung diseases using deep learning. International Journal of Electrical and Computer Engineering, 2020, 10, 6283.	0.5	4
468	Encoder-Decoder Networks for Retinal Vessel Segmentation Using Large Multi-scale Patches. Lecture Notes in Computer Science, 2020, , 42-52.	1.0	0
469	Automated Retinal Vessel Segmentation Based on Morphological Preprocessing and 2D-Gabor Wavelets. Advances in Intelligent Systems and Computing, 2020, , 411-423.	0.5	3
470	A Subpixel Residual U-Net and Feature Fusion Preprocessing for Retinal Vessel Segmentation. Lecture Notes in Computer Science, 2020, , 239-250.	1.0	1
471	Visualization and Prediction of Trends of Covid-19 Pandemic During Early Outbreak in India Using DNN and SVR. Studies in Big Data, 2020, , 51-70.	0.8	1
472	Recent Techniques and Trends for Retinal Blood Vessel Extraction and Tortuosity Evaluation: A Comprehensive Review. IEEE Access, 2020, 8, 197787-197816.	2.6	10
473	In-vivo full-field measurement of microcirculatory blood flow velocity based on intelligent object identification. Journal of Biomedical Optics, 2020, 25, 1.	1.4	14
474	Classification of Ulcerative Colitis Severity in Colonoscopy Videos Using Vascular Pattern Detection. Lecture Notes in Computer Science, 2020, , 552-562.	1.0	6
475	Quantitative Methods in Ocular Fundus Imaging: Analysis of Retinal Microvasculature. Applied and Numerical Harmonic Analysis, 2020, , 157-174.	0.1	0
476	Influence of background preprocessing on the performance of deep learning retinal vessel detection. Journal of Medical Imaging, 2021, 8, 064001.	0.8	0
477	Segmentation of Retinal Vessels Based on DenseNet-Attention-Unet Model Network. , 2020, , .		4

#	Article	IF	Citations
478	Deep learning for coronary artery segmentation in x-ray angiograms using a patch-based training. , 2020, , .		0
479	Extracting heterogeneous vessels in X-ray coronary angiography via machine learning. , 2022, , 89-127.		3
480	A new baseline for retinal vessel segmentation: Numerical identification and correction of methodological inconsistencies affecting 100+ papers. Medical Image Analysis, 2022, 75, 102300.	7.0	9
481	MICaps: Multi-instance capsule network for machine inspection of Munro's microabscess. Computers in Biology and Medicine, 2022, 140, 105071.	3.9	4
482	Pigeon M etheuristic Optimized Generative Adversarial Networks and ARKFCM Algorithms for retinal V essel Segmentation and Classification. International Journal of Innovative Technology and Exploring Engineering, 2021, 11, 28-34.	0.2	0
483	Blood Vessel Segmentation of Retinal Image Based on Dense-U-Net Network. Micromachines, 2021, 12, 1478.	1.4	14
484	Coordinate Attention Residual Deformable U-Net forÂVessel Segmentation. Lecture Notes in Computer Science, 2021, , 345-356.	1.0	4
485	Retinal Vessel Segmentation Based onÂGated Skip-Connection Network. Communications in Computer and Information Science, 2021, , 731-738.	0.4	0
486	Mu-Net: Multi-Path Upsampling Convolution Network for Medical Image Segmentation. CMES - Computer Modeling in Engineering and Sciences, 2022, 131, 73-95.	0.8	7
487	Attention-inception-based U-Net for retinal vessel segmentation with advanced residual. Computers and Electrical Engineering, 2022, 98, 107670.	3.0	20
488	COVID-19Net: A Deep Neural Network for COVID-19 Diagnosis via Chest Radiographic Images., 2020,,.		2
489	Deep Fingerprint Classification in a Low-cost Environment. , 2020, , .		3
490	Vessels Segmentation Base on Mixed Filter for Retinal Image. , 2020, , .		1
491	Multi-Class Micro-CT Image Segmentation Using Sparse Regularized Deep Networks. , 2020, , .		1
492	Retinal Vessel Segmentation Using Blending-Based Conditional Generative Adversarial Networks. Lecture Notes in Computer Science, 2021, , 135-144.	1.0	0
493	DFUNET: A Residual Network for Retinal Vessel. , 2021, , .		0
494	A Fusion Based Approach for Blood Vessel Segmentation from Fundus Images by Separating Brighter Optic Disc. Pattern Recognition and Image Analysis, 2021, 31, 811-820.	0.6	1
495	AMF-NET: Attention-aware Multi-scale Fusion Network for Retinal Vessel Segmentation. , 2021, 2021, 3277-3280.		8

#	Article	IF	Citations
496	HT-Net: hierarchical context-attention transformer network for medical ct image segmentation. Applied Intelligence, 2022, 52, 10692-10705.	3.3	19
497	Challenges for ocular disease identification in the era of artificial intelligence. Neural Computing and Applications, 2023, 35, 22887-22909.	3.2	3
498	Robust Deep 3D Blood Vessel Segmentation Using Structural Priors. IEEE Transactions on Image Processing, 2022, 31, 1271-1284.	6.0	7
499	Color fundus image registration using a learning-based domain-specific landmark detection methodology. Computers in Biology and Medicine, 2022, 140, 105101.	3.9	10
500	A holistic overview of deep learning approach in medical imaging. Multimedia Systems, 2022, 28, 881-914.	3.0	37
501	Pancreas segmentation by two-view feature learning and multi-scale supervision. Biomedical Signal Processing and Control, 2022, 74, 103519.	3.5	12
502	Bridge-Net: Context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Systems With Applications, 2022, 195, 116526.	4.4	48
503	Supervised learning-based retinal vascular segmentation by M-UNet full convolutional neural network. Signal, Image and Video Processing, 2022, 16, 1755-1761.	1.7	5
505	Retinal vessel classification to predict diabetic retinopathy and retinitis pigmentosa using a deep learning pipeline. AIP Conference Proceedings, 2022, , .	0.3	1
506	Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography. , 2022, , .		4
507	A Survey of Deep Learning for Retinal Blood Vessel Segmentation Methods: Taxonomy, Trends, Challenges and Future Directions. IEEE Access, 2022, 10, 38202-38236.	2.6	19
508	Glaucoma screening using CNN classification. AIP Conference Proceedings, 2022, , .	0.3	0
509	Retinal vessel segmentation based on U-Net network. , 2022, , .		1
510	DCU-net: a deformable convolutional neural network based on cascade U-net for retinal vessel segmentation. Multimedia Tools and Applications, 2022, 81, 15593-15607.	2.6	14
511	Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques. Sensors, 2022, 22, 1803.	2.1	21
512	<scp>MRâ€UNet</scp> : An <scp>UNet</scp> model using multiâ€scale and residual convolutions for retinal vessel segmentation. International Journal of Imaging Systems and Technology, 2022, 32, 1588-1603.	2.7	5
513	Fundus Retinal Vessels Image Segmentation Method Based on Improved U-Net. Irbm, 2022, 43, 628-639.	3.7	6
514	A deep dataâ€driven approach for enhanced segmentation of blood vessel for diabetic retinopathy. International Journal of Imaging Systems and Technology, 2022, 32, 1696-1708.	2.7	4

#	Article	IF	CITATIONS
515	SS-net: split and spatial attention network for vessel segmentation of retinal OCT angiography. Applied Optics, 2022, 61, 2357.	0.9	1
516	Retinal Vessel Automatic Segmentation Using SegNet. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-11.	0.7	6
517	Retinal Vessel Extraction via Assisted Multi-Channel Feature Map and U-Net. Frontiers in Public Health, 2022, 10, 858327.	1.3	20
518	A Few-Shot Learning-Based Retinal Vessel Segmentation Method for Assisting in the Central Serous Chorioretinopathy Laser Surgery. Frontiers in Medicine, 2022, 9, 821565.	1.2	3
519	Self-attentional microvessel segmentation via squeeze-excitation transformer Unet. Computerized Medical Imaging and Graphics, 2022, 97, 102055.	3.5	15
520	DilUnet: A U-net based architecture for blood vessels segmentation. Computer Methods and Programs in Biomedicine, 2022, 218, 106732.	2.6	15
521	Learning feature-rich integrated comprehensive context networks for automated fundus retinal vessel analysis. Neurocomputing, 2022, 491, 132-143.	3.5	5
522	Iterative, Deep, and Unsupervised Synthetic Aperture Sonar Image Segmentation. , 2021, , .		1
523	Multiple Multi-Scale Neural Networks Knowledge Transfer and Integration for Accurate Pixel-Level Retinal Blood Vessel Segmentation. Applied Sciences (Switzerland), 2021, 11, 11907.	1.3	0
524	Detecting Chronic Vascular Damage with Attention-Guided Neural System. , 2021, , .		2
525	Thin Semantics Enhancement via High-Frequency Priori Rule for Thin Structures Segmentation. , 2021, , .		0
526	Retinal Blood Vessel Segmentation using a Multi-Scale Layer in Deep Learning. , 2021, , .		2
527	DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images. PLoS ONE, 2021, 16, e0261698.	1.1	6
528	A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation. Electronics (Switzerland), 2022, 11, 60.	1.8	17
529	Multi-Feature Extraction with Ensemble Network for Tracing Chronic Retinal Disorders. , 2021, , .		3
530	Multi-Task Model for Esophageal Lesion Analysis Using Endoscopic Images: Classification with Image Retrieval and Segmentation with Attention. Sensors, 2022, 22, 283.	2.1	11
531	RFARN: Retinal vessel segmentation based on reverse fusion attention residual network. PLoS ONE, 2021, 16, e0257256.	1.1	5
532	MLFF: Multiple Low-Level Features Fusion Model forÂRetinal Vessel Segmentation. Communications in Computer and Information Science, 2022, , 271-281.	0.4	1

#	ARTICLE	IF	Citations
533	Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss. IEEE Transactions on Medical Imaging, 2022, 41, 2238-2251.	5.4	26
534	LightEyes: A Lightweight Fundus Segmentation Network for Mobile Edge Computing. Sensors, 2022, 22, 3112.	2.1	7
535	State-of-the-art retinal vessel segmentation with minimalistic models. Scientific Reports, 2022, 12, 6174.	1.6	33
541	A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimedia Tools and Applications, 2022, 81, 25613-25655.	2.6	40
542	Review on diabetic retinopathy with deep learning methods. Journal of Medical Imaging, 2021, 8, 060901.	0.8	5
543	Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-11.	2.2	9
544	Dilated Deep Neural Architectures for Improving Retinal Vessel Extraction. Wireless Personal Communications, 2022, 125, 3641-3659.	1.8	1
545	HRNet:A hierarchical recurrent convolution neural network for retinal vessel segmentation. Multimedia Tools and Applications, 2022, 81, 39829-39851.	2.6	4
546	A Detailed Systematic Review on Retinal Image Segmentation Methods. Journal of Digital Imaging, 2022, 35, 1250-1270.	1.6	4
547	How to design a deep neural network for retinal vessel segmentation: an empirical study. Biomedical Signal Processing and Control, 2022, 77, 103761.	3.5	4
548	Backtracking Reconstruction Network for Three-Dimensional Compressed Hyperspectral Imaging. Remote Sensing, 2022, 14, 2406.	1.8	3
549	A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images. Scientific Reports, 2022, 12, .	1.6	6
550	DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet. Lecture Notes in Computer Science, 2022, , 198-210.	1.0	8
551	Retinal Blood Vessels Segmentation Using Deep Learning Model-A Review., 2022,,.		0
554	Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells. Biocybernetics and Biomedical Engineering, 2022, 42, 797-814.	3.3	14
555	A Morphological Image Preprocessing Method Based on the Geometrical Shape of Lesions to Improve the Lesion Recognition Performance of Convolutional Neural Networks. IEEE Access, 2022, 10, 70919-70936.	2.6	1
557	Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4623-4634.	3.9	36
558	Parallel Network - A Deep Learning Approach for Blood Vessel Segmentation in Retinal fundus Images. , 2022, , .		0

#	ARTICLE	IF	CITATIONS
559	Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis. Frontiers in Pharmacology, 0, 13, .	1.6	4
560	Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?. Life, 2022, 12, 973.	1.1	4
561	An analysis of the influence of transfer learning when measuring the tortuosity of blood vessels. Computer Methods and Programs in Biomedicine, 2022, 225, 107021.	2.6	2
562	Analysis of retinal blood vessel segmentation techniques: a systematic survey. Multimedia Tools and Applications, 2023, 82, 7679-7733.	2.6	7
564	CSGNet: Cascade semantic guided net for retinal vessel segmentation. Biomedical Signal Processing and Control, 2022, 78, 103930.	3.5	9
566	Retinal Vessel Segmentation in Fundus Image Using Low-Cost Multiple U-Net Architecture. Lecture Notes in Computational Vision and Biomechanics, 2023, , 159-166.	0.5	1
567	Machine Learning in Diagnosing Middle Ear Disorders Using Tympanic Membrane Images: A <scp>Metaâ€Analysis</scp> . Laryngoscope, 2023, 133, 732-741.	1.1	7
568	Vessel Maps: A Survey of Mapâ€Like Visualizations of the Cardiovascular System. Computer Graphics Forum, 2022, 41, 645-673.	1.8	4
569	Learning multi-scale deep fusion for retinal blood vessel extraction in fundus images. Visual Computer, 2023, 39, 4445-4457.	2.5	1
570	Atrous Fully Convolved Depth Concatenated Neural Network with Enriched Encoder for Retinal Arteryâ€"Vein Classification. IETE Journal of Research, 0, , 1-10.	1.8	0
571	AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images. Translational Vision Science and Technology, 2022, 11, 7.	1.1	8
572	Joint 2D attention gate and channel-spatial attention network for retinal vessel segmentation of OCT-angiography images. Signal, Image and Video Processing, 0, , .	1.7	0
573	A review on the use of deep learning for medical images segmentation. Neurocomputing, 2022, 506, 311-335.	3.5	30
574	ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images. Biomedical Signal Processing and Control, 2023, 79, 104087.	3.5	44
575	Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions. Sensors, 2022, 22, 6780.	2.1	24
576	Optimization of Vessel Segmentation Using Genetic Algorithms. Lecture Notes in Computer Science, 2022, , 391-400.	1.0	1
577	GUNet: A GCN-CNN Hybrid Model forÂRetinal Vessel Segmentation byÂLearning Graphical Structures. Lecture Notes in Computer Science, 2022, , 33-42.	1.0	1
578	A Novel Approach for Early Intervention of Retinal Disorders Using Machine Learning Techniques. Lecture Notes in Networks and Systems, 2022, , 345-355.	0.5	0

#	Article	IF	CITATIONS
579	Towards Occlusion-Aware Pose Estimation of Surgical Suturing Threads. IEEE Transactions on Biomedical Engineering, 2023, 70, 581-591.	2.5	0
580	Learning based multi-scale feature fusion for retinal blood vessels segmentation. Journal of Algorithms and Computational Technology, 2022, 16, 174830262110653.	0.4	O
581	eXtreme Gradient Boosting Scheme forÂFundus Vessels Separation. Communications in Computer and Information Science, 2022, , 45-58.	0.4	0
582	AGC-UNet:A Global Context Feature Fusion Method Based On U-Net for Retinal Vessel Segmentation. , 2022, , .		3
583	Pixel Rows and Columns Relationship Modeling Network based on Transformer for Retinal Vessel Segmentation. , 2022, , .		0
584	BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs. Journal of Medical Imaging, 2022, 9, .	0.8	1
585	Multi-stage Synthetic Image Generation forÂtheÂSemantic Segmentation ofÂMedical Images. Intelligent Systems Reference Library, 2023, , 79-104.	1.0	0
586	Staircase-Net: a deep learning based architecture for retinal blood vessel segmentation. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	3
587	Guided Random Mask: Adaptively Regularizing Deep Neural Networks for Medical Image Analysis by Potential Lesions. Applied Sciences (Switzerland), 2022, 12, 9099.	1.3	1
588	A survey on adversarial attacks and defenses for object detection and their applications in autonomous vehicles. Visual Computer, 2023, 39, 5293-5307.	2.5	4
590	Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection. Evolutionary Intelligence, 0, , .	2.3	3
591	Ophthalmologic problems correlates with cognitive impairment in patients with Parkinson's disease. Frontiers in Neuroscience, 0, 16 , .	1.4	1
592	Multi-layer segmentation of retina OCT images via advanced U-net architecture. Neurocomputing, 2023, 515, 185-200.	3.5	3
593	A novel MCF-Net: Multi-level context fusion network for 2D medical image segmentation. Computer Methods and Programs in Biomedicine, 2022, 226, 107160.	2.6	4
594	Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation. Journal of Imaging, 2022, 8, 291.	1.7	2
595	Automated segmentation of multiple sclerosis lesions based on convolutional neural networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 1359-1377.	1.3	1
596	Dual Attention Multiscale Network for Vessel Segmentation in Fundus Photography. Mathematics, 2022, 10, 3687.	1.1	0
597	A novel 3D deep learning model to automatically demonstrate renal artery segmentation and its validation in nephron-sparing surgery. Frontiers in Oncology, $0,12,.$	1.3	1

#	Article	IF	CITATIONS
598	SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation. Journal of Healthcare Engineering, 2022, 2022, 1-12.	1.1	3
599	Recent trends and advances in fundus image analysis: A review. Computers in Biology and Medicine, 2022, 151, 106277.	3.9	24
600	Domain Knowledge Driven Semantic Communication for Image Transmission Over Wireless Channels. IEEE Wireless Communications Letters, 2023, 12, 55-59.	3.2	1
601	The study of retinal vessel segmentation based on improved U-net algorithm. , 2022, , .		0
602	Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Frontiers in Medicine, 0, 9, .	1.2	3
603	A Comprehensive Study of Machine Learning Techniques for Diabetic Retinopathy Detection. Lecture Notes in Networks and Systems, 2023, , 161-183.	0.5	0
604	Blood vessel segmentation using deep learning architectures for aid diagnosis of diabetic retinopathy. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 0, , 1-15.	1.3	2
605	Semantic Segmentation and 3D Reconstruction of Concrete Cracks. Remote Sensing, 2022, 14, 5793.	1.8	6
607	Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images. Computers in Biology and Medicine, 2023, 152, 106341.	3.9	16
608	GDF-Net: A multi-task symmetrical network for retinal vessel segmentation. Biomedical Signal Processing and Control, 2023, 81, 104426.	3.5	20
609	Retinal Vessel Segmentation Algorithm Based on Attention Mechanism. , 2022, , .		1
610	Deep Convolutional Neural Networks in Detecting Lung Mass From Chest X-Ray Images. , 2022, , 1415-1423.		0
611	CPMF-Net: Multi-Feature Network Based on Collaborative Patches for Retinal Vessel Segmentation. Sensors, 2022, 22, 9210.	2.1	0
612	Screening Retinal Images and Extraction of the Retinal Blood Vessel for Identifying Diseases and Classification of Arteries and Veins by using Deep Learning. Recent Advances in Electrical and Electronic Engineering, 2022, 16 , .	0.2	0
613	RADCU-Net: residual attention and dual-supervision cascaded U-Net for retinal blood vessel segmentation. International Journal of Machine Learning and Cybernetics, 2023, 14, 1605-1620.	2.3	9
614	MTNet: A combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images. PLoS ONE, 2022, 17, e0278126.	1.1	5
615	Deep Multi-Task Learning for an Autoencoder-Regularized Semantic Segmentation of Fundus Retina Images. Mathematics, 2022, 10, 4798.	1.1	1
616	3D-FVS: construction and application of three-dimensional fundus vascular structure model based on single image features. Eye, 0 , , .	1.1	O

#	Article	IF	CITATIONS
617	A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques. Archives of Computational Methods in Engineering, 2023, 30, 2211-2256.	6.0	6
618	Contrast Enhancement of RGB Retinal Fundus Images for Improved Segmentation of Blood Vessels Using Convolutional Neural Networks. Journal of Digital Imaging, 2023, 36, 414-432.	1.6	2
619	An efficient registration-based approach for retinal blood vessel segmentation using generalized Pareto and fatigue pdf. Medical Engineering and Physics, 2022, 110, 103936.	0.8	2
620	RAU-Net: U-Net network based on residual multi-scale fusion and attention skip layer for overall spine segmentation. Machine Vision and Applications, 2023, 34, .	1.7	1
621	Multi-Scale Deep Information and Adaptive Attention Mechanism Based Coronary Reconstruction of Superior Mesenteric Artery. IEEE Access, 2023, 11, 4042-4056.	2.6	2
622	Computational intelligence in eye disease diagnosis: a comparative study. Medical and Biological Engineering and Computing, 2023, 61, 593-615.	1.6	2
623	Vessels Segmentation in Angiograms Using Convolutional Neural Network: A Deep Learning Based Approach. CMES - Computer Modeling in Engineering and Sciences, 2023, 136, 241-255.	0.8	3
624	A deep ensemble learning method for single finger-vein identification. Frontiers in Neurorobotics, 0, 16, .	1.6	0
625	TP-Net: Two-Path Network for Retinal Vessel Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 1979-1990.	3.9	7
626	Impact of Retinal Vessel Image Coherence on Retinal Blood Vessel Segmentation. Electronics (Switzerland), 2023, 12, 396.	1.8	1
627	Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method. Computers in Biology and Medicine, 2023, 153, 106416.	3.9	7
628	Orientation and Context Entangled Network for Retinal Vessel Segmentation. Expert Systems With Applications, 2023, 217, 119443.	4.4	8
629	A Novel Dual-supervised Convolutional Network for Retinal Vessel Segmentation. , 2022, , .		1
631	Fovea and Diabetic Retinopathy: Understanding the Relationship Using a Deep Interpretable Classifier. SSRN Electronic Journal, 0, , .	0.4	0
632	MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image. Mathematical Biosciences and Engineering, 2023, 20, 6912-6931.	1.0	1
633	Detection and classification of Diabetic Retinopathy Lesions using deep learning., 2023,, 241-264.		2
634	Attention U-Net Based on Bi-ConvLSTM and Its Optimization for Smart Healthcare. IEEE Transactions on Computational Social Systems, 2023, 10, 1966-1974.	3.2	1
635	An evolutionary U-shaped network for Retinal Vessel Segmentation using Binary Teaching–Learning-Based Optimization. Biomedical Signal Processing and Control, 2023, 83, 104669.	3.5	7

#	Article	IF	CITATIONS
636	Blood Vessel Segmentation in Retinal Images Using Machine Learning Approach., 2022,,.		0
637	SDDC-Net: A U-shaped deep spiking neural P convolutional network for retinal vessel segmentation. , 2023, 136, 104002.		11
638	Featureâ€guided attention network for medical image segmentation. Medical Physics, 2023, 50, 4871-4886.	1.6	1
639	Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction. Sensors, 2023, 23, 1870.	2.1	2
640	Automatic vessel crossing and bifurcation detection based on multi-attention network vessel segmentation and directed graph search. Computers in Biology and Medicine, 2023, 155, 106647.	3.9	3
641	Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases. Frontiers in Physiology, 0, 14 , .	1.3	6
642	A population-based study to assess two convolutional neural networks for dental age estimation. BMC Oral Health, 2023, 23, .	0.8	2
643	STSANet: Retinal Vessel Segmentation via Spatial-Temporal and Self-Attention Encoding., 2022,,.		1
644	MF2ResU-Net: a multi-feature fusion deep learning architecture for retinal blood vessel segmentation. Digital Chinese Medicine, 2022, 5, 406-418.	0.5	0
645	Deep learning approaches for the retinal vasculature segmentation in fundus images. , 2023, , 139-155.		0
646	U-net autoencoder architectures for retinal blood vessels segmentation. , 2023, , 195-210.		0
647	Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Medical and Biological Engineering and Computing, 2023, 61, 1745-1755.	1.6	5
648	Automated Diabetic Retinopathy Grading based on the Modified Capsule Network Architecture. IETE Journal of Research, 0, , 1-12.	1.8	0
649	Automated Segmentation of Organs at Risk for Nasopharyngeal Carcinoma by Dropout U-Net., 2022,,.		0
650	A deep learning-based framework for retinal fundus image enhancement. PLoS ONE, 2023, 18, e0282416.	1.1	3
651	COVID-19 disease identification network based on weakly supervised feature selection. Mathematical Biosciences and Engineering, 2023, 20, 9327-9348.	1.0	0
652	Retinal Blood Vessel Segmentation Based on Modified CNN and Analyze the Perceptional Quality of Segmented Images. Communications in Computer and Information Science, 2023, , 609-625.	0.4	0
653	Attention-driven tree-structured convolutional LSTM for high dimensional data understanding. Frontiers in Physics, 0, 11, .	1.0	0

#	Article	IF	Citations
654	Automatic Detection and Classification of Diabetic Retinopathy using Modified UNET., 2023,,.		1
655	Block Attention and Switchable Normalization based Deep Learning Framework for Segmentation of Retinal Vessels. IEEE Access, 2023, , 1-1.	2.6	1
656	A lightweight network guided with differential matched filtering for retinal vessel segmentation. Computers in Biology and Medicine, 2023, 160, 106924.	3.9	5
657	Region Separated Vessel Segmentation inÂFundus Image Using Multi-scale Layer-Based Convolutional Neural Network. Lecture Notes in Networks and Systems, 2023, , 689-698.	0.5	0
658	Feather-Light Vessel Segregation Model. Lecture Notes in Networks and Systems, 2023, , 601-611.	0.5	0
663	Automated detection and multi-stage classification of diabetic retinopathy through CNN. AIP Conference Proceedings, 2023, , .	0.3	0
664	Comparative Analysis on Deep Learning Algorithms for Detecting Retinal Diseases Using OCT Images. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 511-521.	0.5	0
670	Retinal Vessel Segmentation using UNet++., 2023,,.		1
671	MFCTrans-net: a multi-scale fusion and channel transformer net for retinal vessel segmentation. , 2023, , .		0
681	Retinal vessel segmentation method based on improved U-Net. , 2023, , .		0
683	Retinal Vessel Segmentation byÂU-Net withÂVGG-16 Backbone onÂPatched Images withÂSmooth Blending. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 465-474.	0.5	0
684	CPA-Unet: A Solution for Left Ventricle Segmentation from Magnetic Resonance Images. , 2023, , .		0
686	Automated Computationally Intelligent Methods for Ocular Vessel Segmentation and Disease Detection: A Review. Archives of Computational Methods in Engineering, 2024, 31, 701-724.	6.0	0
691	An Intelligent Image Processing System forÂEnhancing Blood Vessel Segmentation onÂLow-Power SoC. Lecture Notes in Computer Science, 2023, , 123-138.	1.0	0
693	Severity diagnosis of diabetic retinopathy using transfer learning with googlenet convolution neural network architecture. AIP Conference Proceedings, 2023, , .	0.3	0
694	Improved Segmentation of Retinal Vessel Pathways Using Enhanced U-Net Model., 2023,,.		0
696	Smartphone Fundus Photography Enhancement for Retinopathy of Prematurity Disease Diagnosis Using Deep Learning., 2023,,.		0
697	Comparative analysis of performance parameters of a new hybrid algorithm used for segmentation of retinal images. AIP Conference Proceedings, 2023, , .	0.3	0

#	ARTICLE	IF	CITATIONS
698	TBENet:A two-branch boundary enhancement Network for cerebrovascular segmentation., 2023,,.		0
705	Estimation of diabetic retinopathy using deep learning. AIP Conference Proceedings, 2024, , .	0.3	0
708	Explainable Artificial Intelligence with Deep Learning Framework for Glaucoma Assessment on Fundus Images. , 2023, , .		0