Dense Granular Columns in Liquefiable Ground. I: Shea Ratio Reduction

Journal of Geotechnical and Geoenvironmental Engineering - A 142,

DOI: 10.1061/(asce)gt.1943-5606.0001474

Citation Report

#	Article	IF	Citations
1	Dense Granular Columns in Liquefiable Ground. II: Effects on Deformations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	22
2	Effects of drainage control on densification as a liquefaction mitigation technique. Soil Dynamics and Earthquake Engineering, 2018, 110, 212-231.	1.9	14
3	Evaluating 2D numerical simulations of granular columns in level and gently sloping liquefiable sites using centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2018, 110, 232-243.	1.9	19
4	Influence of Dense Granular Columns on the Performance of Level and Gently Sloping Liquefiable Sites. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	1.5	37
5	Effect of Columnar Sand Inclusions on the Cyclic Resistance of Anisotropically-Consolidated Clay. , 2018, , .		0
6	Response of pile groups with X and circular cross-sections subject to lateral spreading: 3D numerical simulations. Soil Dynamics and Earthquake Engineering, 2019, 126, 105774.	1.9	20
7	Numerical investigation of seismic performance of high modulus columns under earthquake loading. Earthquake Engineering and Engineering Vibration, 2019, 18, 811-822.	1.1	7
8	The Ground Improvement Toolbox for Liquefaction Hazard Mitigation: Three Case Histories. , 2019, , .		O
9	Using Stone Columns to Mitigate Lateral Deformation in Uniform and Stratified Liquefiable Soil Strata. International Journal of Geomechanics, 2019, 19, .	1.3	18
10	Blast-induced liquefaction in silty sands for full-scale testing of ground improvement methods: Insights from a multidisciplinary study. Engineering Geology, 2020, 265, 105437.	2.9	24
11	Parametric investigation of effectiveness of high modulus columns in liquefaction mitigation. Soil Dynamics and Earthquake Engineering, 2020, 139, 106337.	1.9	5
12	Reliability assessment of the performance of granular column in the nonuniform liquefiable ground to mitigate the liquefaction-induced ground deformation. Georisk, 2020, , 1-20.	2.6	2
13	Performance of Embankments on Liquefiable Soils Improved with Dense Granular Columns: Observations from Case Histories and Centrifuge Experiments. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	20
14	Load bearing and settlement characteristics of Geosynthetic Encased Columns under seismic loads. Soil Dynamics and Earthquake Engineering, 2020, 136, 106244.	1.9	8
15	Seismic analysis of stone column improved liquefiable ground using a plasticity model for coarse-grained soil. Computers and Geotechnics, 2020, 125, 103690.	2.3	25
16	Numerical Analysis of Shallow Foundations Resting on Granular Columns Embedded in Liquefiable Soil. Journal of Earthquake and Tsunami, 2021, 15, .	0.7	2
17	Seismic performance of pervious concrete column improved ground in mitigating liquefaction. IOP Conference Series: Materials Science and Engineering, 2021, 1114, 012015.	0.3	1
18	Dynamic response of timber pile ground improvement: 3D numerical simulations. Soil Dynamics and Earthquake Engineering, 2021, 143, 106614.	1.9	5

#	Article	IF	CITATIONS
19	Liquefaction Mitigation Potential of Improved Ground Using Pervious Concrete Columns. Indian Geotechnical Journal, 2022, 52, 205-226.	0.7	5
20	Adaptive Ground Improvement Design for an Elevated Water Tank. , 2021, , .		0
21	Probabilistic Predictive Model for Liquefaction Triggering in Layered Sites Improved with Dense Granular Columns. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	8
22	A large-scale shaking table model test for acceleration and deformation response of geosynthetic encased stone column composite ground. Geotextiles and Geomembranes, 2021, 49, 1407-1418.	2.3	16
23	ESTIMATING LIQUEFACTION RESISTANCE IMPROVEMENT DUE TO STONE COLUMNS FROM QUALITY CONTROL TESTS. International Journal of GEOMATE, 2021, 21, .	0.1	0
24	Seismic Pore Water Pressure Relief Wells for Gravel Column–Bed System. Journal of Engineering and Technological Sciences, 2017, 49, 57-74.	0.3	1
26	CPT-Based Assessment of Densification After Ground Improvement with Rigid Inclusions and Rammed Aggregate Piers® (RAP). Springer Series in Geomechanics and Geoengineering, 2020, , 831-840.	0.0	0
27	Influence of extent of remedial ground densification on seismic site effects via 2-D site response analyses. Soil Dynamics and Earthquake Engineering, 2022, 152, 107041.	1.9	2
28	Efficacy of Pervious Concrete Columns Vis-A-Vis Stone Columns in Sandy Strata in Mitigating Liquefaction. Lecture Notes in Civil Engineering, 2022, , 473-482.	0.3	0
29	Influence of Earthquake Characteristics on Pervious Concrete Column Improved Ground. Geotechnical and Geological Engineering, 2022, 40, 2615-2630.	0.8	1
30	Effect of shear strain compatibility and incompatibility approaches in the design of high modulus columns against liquefaction: A case study in Christchurch, New Zealand. Bulletin of Earthquake Engineering, 0, , .	2.3	0
31	Multi-Factor Influence Analysis on the Liquefaction Mitigation of Stone Columns Composite Foundation. Applied Sciences (Switzerland), 2022, 12, 7308.	1.3	4
32	Evaluation of the Liquefaction Hazard for Sites and Embankments Improved with Dense Granular Columns. Geotechnical, Geological and Earthquake Engineering, 2022, , 826-833.	0.1	0
33	Physical Modeling and Reliability Assessment of Effectiveness of Granular Columns in the Nonuniform Liquefiable Ground to Mitigate the Liquefaction-Induced Ground Deformation. Geotechnical, Geological and Earthquake Engineering, 2022, , 1587-1606.	0.1	O
34	Seismic Liquefaction of Saturated Calcareous Sands: Dynamic Centrifuge Test and Numerical Simulation. Applied Sciences (Switzerland), 2022, 12, 8701.	1.3	1
35	Liquefaction-Induced Lateral Spreading Mitigation Using Pervious Concrete Column Inclusion in Sloping Strata. Journal of Earthquake Engineering, 2023, 27, 3089-3114.	1.4	O
36	Observations on the Seismic Loading of Rigid Inclusions based on 3D Numerical Simulations. DFI Journal, 2023, 17, .	0.2	1
37	Contribution of geosynthetic to the shear strength of geosynthetic encased stone columns. Geosynthetics International, 0, , 1-14.	1.5	4

ΙF CITATIONS ARTICLE

Numerical Study of the Dynamic Response of Stone Column and Geosynthetic Encased Stone Column in Soft Clay. , 2023, , . 0 38