Membrane Translocation and Organelle-Selective Deliv Zwitterionic Nanospheres

Biomacromolecules

17, 1523-1535

DOI: 10.1021/acs.biomac.6b00172

Citation Report

#	Article	IF	CITATIONS
1	Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomedicine and Pharmacotherapy, 2017, 87, 461-470.	5.6	17
2	pH-responsive polymersome based on PMCP-b-PDPA as a drug delivery system to enhance cellular internalization and intracellular drug release. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1352-1362.	3.8	17
3	Investigation of Various Cross-Linking Methods for the Immobilization of Cytosine Arabinoside on Bacterial Magnetosomes. Journal of Nanomaterials, 2017, 2017, 1-7.	2.7	4
4	Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	5
5	Fast and effective mitochondrial delivery of i‰-Rhodamine-B-polysulfobetaine-PEG copolymers. Scientific Reports, 2018, 8, 1128.	3.3	19
6	Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. Nanoscale, 2018, 10, 1716-1726.	5.6	19
7	Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. Langmuir, 2019, 35, 1056-1071.	3.5	98
8	Alkyl triphenylphosphonium surfactants as nucleic acid carriers: complexation efficacy toward DNA decamers, interaction with lipid bilayers and cytotoxicity studies. Physical Chemistry Chemical Physics, 2019, 21, 16706-16717.	2.8	32
9	Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. European Journal of Medicinal Chemistry, 2019, 181, 111557.	5.5	20
10	Assessment of the VDW interaction converting DMAPS from the thermal-motion form to the hydrogen-bonded form. Scientific Reports, 2019, 9, 13104.	3.3	6
11	Translocation Mechanisms of Cell-Penetrating Polymers Identified by Induced Proton Dynamics. Langmuir, 2019, 35, 8167-8173.	3.5	27
12	Amphiphilic Poly[poly(ethylene glycol) methacrylate]s with OH Groups in the PEG Side Chains for Controlling Solution/Rheological Properties and toward Bioapplication. ACS Applied Bio Materials, 2019, 2, 1920-1930.	4.6	6
13	Zwitterionic Stealth Dye-Loaded Polymer Nanoparticles for Intracellular Imaging. ACS Applied Materials & Samp; Interfaces, 2020, 12, 117-125.	8.0	18
14	Control of Mitochondrial Localization Using Thermoresponsive Sulfobetaine Polymer. Macromolecular Bioscience, 2020, 20, e2000205.	4.1	3
15	Phospholipid-mimicking cell-penetrating polymers: principles and applications. Journal of Materials Chemistry B, 2020, 8, 7633-7641.	5.8	18
16	Redoxâ€Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. Small, 2020, 16, e2001849.	10.0	16
17	Internalization Mechanisms of Pyridinium Sulfobetaine Polymers Evaluated by Induced Protic Perturbations on Cell Surfaces. Langmuir, 2020, 36, 9977-9984.	3.5	10
18	The Inhibition Property and Mechanism of a Novel Low Molecular Weight Zwitterionic Copolymer for Improving Wellbore Stability. Polymers, 2020, 12, 708.	4.5	76

#	Article	IF	CITATIONS
19	The Design of Sulfobetaine Polymers with Thermoresponsiveness under Physiological Salt Conditions. Macromolecular Chemistry and Physics, 2020, 221, 1900429.	2.2	12
21	Polymeric Nanoparticles for Mitochondria Targeting Mediated Robust Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 755727.	4.1	12
22	Effective Permeation of Anticancer Drugs into Glioblastoma Spheroids via Conjugation with a Sulfobetaine Copolymer. Biomacromolecules, 2020, 21, 5044-5052.	5.4	3
23	Development of a spheroid-permeable polymer. Drug Delivery System, 2021, 36, 248-255.	0.0	0
24	Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). Journal of Materials Chemistry B, 2022, 10, 2649-2660.	5.8	2
25	Cografting of Zwitterionic Sulfobetaines and Cationic Amines on Î ² -Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomaterials Science and Engineering, 2022, 8, 2463-2476.	5.2	6
26	Study on the Shale Hydration Inhibition Performance of Triethylammonium Acetate. Minerals (Basel,) Tj ETQq0 (0 0 <u>rg</u> BT /C	verlock 10 Tf
26	Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomaterials Science, 2022, 10, 3856-3877.	5.4	overlock 10 Tf
	Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to	2.0	2
27	Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomaterials Science, 2022, 10, 3856-3877. Passive Macromolecular Translocation Mechanism through Lipid Membranes. Journal of the American	5.4	7
27	Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomaterials Science, 2022, 10, 3856-3877. Passive Macromolecular Translocation Mechanism through Lipid Membranes. Journal of the American Chemical Society, 2022, 144, 15348-15354. Photoinduced micropatterning on biodegradable aliphatic polyester surfaces for anchoring dual brushes and its application in bacteria and cell patterning. Journal of Materials Chemistry B, 2022, 11,	5.4	7
27 28 29	Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomaterials Science, 2022, 10, 3856-3877. Passive Macromolecular Translocation Mechanism through Lipid Membranes. Journal of the American Chemical Society, 2022, 144, 15348-15354. Photoinduced micropatterning on biodegradable aliphatic polyester surfaces for anchoring dual brushes and its application in bacteria and cell patterning. Journal of Materials Chemistry B, 2022, 11, 83-98.	5.4 13.7 5.8	7 0