Bedaquiline and Pyrazinamide Treatment Responses An Heterogeneity in <i>Mycobacterium tuberculosis</i>

ACS Infectious Diseases 2, 251-267 DOI: 10.1021/acsinfecdis.5b00127

Citation Report

#	Article	IF	CITATIONS
1	Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infectious Diseases, 2016, 2, 616-626.	1.8	83
2	Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. DMM Disease Models and Mechanisms, 2016, 9, 779-88.	1.2	49
3	Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models. Journal of Antimicrobial Chemotherapy, 2016, 72, dkw467.	1.3	27
4	Population pharmacokinetics, optimised design and sample size determination for rifampicin, isoniazid, ethambutol and pyrazinamide in the mouse. European Journal of Pharmaceutical Sciences, 2016, 93, 319-333.	1.9	9
5	Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infectious Diseases, 2016, 2, 552-563.	1.8	110
6	Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis, 2017, 105, 96-107.	0.8	34
7	Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infectious Diseases, 2017, 3, 807-819.	1.8	52
8	Ethambutol Partitioning in Tuberculous Pulmonary Lesions Explains Its Clinical Efficacy. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	65
9	Preclinical Efficacy Testing of New Drug Candidates. Microbiology Spectrum, 2017, 5, .	1.2	49
10	Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. Journal of Antimicrobial Chemotherapy, 2017, 72, 338-353.	1.3	103
11	Preclinical Efficacy Testing of New Drug Candidates. , 0, , 269-293.		3
12	Visualization of Mycobacterial Biomarkers and Tuberculosis Drugs in Infected Tissue by MALDI-MS Imaging. Analytical Chemistry, 2018, 90, 6275-6282.	3.2	55
13	Bedaquiline has potential for targeting tuberculosis reservoirs in the central nervous system. RSC Advances, 2018, 8, 11902-11907.	1.7	19
14	Combinations of Respiratory Chain Inhibitors Have Enhanced Bactericidal Activity against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	31
15	Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS ONE, 2018, 13, e0207469.	1.1	20
16	An explant technique for high-resolution imaging and manipulation of mycobacterial granulomas. Nature Methods, 2018, 15, 1098-1107.	9.0	43
17	Imaging and spatially resolved quantification of drug distribution in tissues by mass spectrometry. Current Opinion in Chemical Biology, 2018, 44, 93-100.	2.8	33
18	Drug permeation and metabolism in <i>Mycobacterium tuberculosis</i> : Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life, 2018, 70, 926-937.	1.5	27

#	Article	IF	CITATIONS
19	Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental Medicine, 2018, 215, 1975-1986.	4.2	29
20	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	37
21	The present state of the tuberculosis drug development pipeline. Current Opinion in Pharmacology, 2018, 42, 81-94.	1.7	70
22	mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen Interactions <i>In Vivo</i> . MSphere, 2019, 4, .	1.3	0
23	Radiosynthesis and PET Bioimaging of ⁷⁶ Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infectious Diseases, 2019, 5, 1996-2002.	1.8	29
24	Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science, 2019, 364, 1279-1282.	6.0	117
25	Targeting drugs for tuberculosis. Science, 2019, 364, 1234-1235.	6.0	7
26	Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends in Pharmacological Sciences, 2019, 40, 930-940.	4.0	35
27	Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	62
28	Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	23
29	Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Medicine, 2019, 16, e1002773.	3.9	139
30	Efficacy and Improved Resistance Potential of a Cofactor-Independent InhA Inhibitor of Mycobacterium tuberculosis in the C3HeB/FeJ Mouse Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	10
31	Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine, 2019, 49, 374-380.	2.7	20
32	Alâ€Enabled Parabolic Response Surface Approach Identifies Ultra Shortâ€Course Nearâ€Universal TB Drug Regimens. Advanced Therapeutics, 2020, 3, 1900086.	1.6	3
33	The Acid–Base Equilibrium of Pyrazinoic Acid Drives the pH Dependence of Pyrazinamide-Induced <i>Mycobacterium tuberculosis</i> Growth Inhibition. ACS Infectious Diseases, 2020, 6, 3004-3014.	1.8	7
34	Integrating High-Resolution MALDI Imaging into the Development Pipeline of Anti-Tuberculosis Drugs. Journal of the American Society for Mass Spectrometry, 2020, 31, 2277-2286.	1.2	15
35	Accumulation of TB-Active Compounds in Murine Organs Relevant to Infection by Mycobacterium tuberculosis. Frontiers in Pharmacology, 2020, 11, 724.	1.6	6
36	OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	60

#	Article	IF	CITATIONS
37	Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clinical Microbiology Reviews, 2020, 33, .	5.7	63
38	Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BioMed Research International, 2020, 2020, 1-21.	0.9	28
39	Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks. Scientific Reports, 2020, 10, 6047.	1.6	13
40	The Bewildering Antitubercular Action of Pyrazinamide. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	37
41	Both Pharmacokinetic Variability and Granuloma Heterogeneity Impact the Ability of the First-Line Antibiotics to Sterilize Tuberculosis Granulomas. Frontiers in Pharmacology, 2020, 11, 333.	1.6	26
42	Exploiting Fluorescent Proteins to Understand Mycobacterium tuberculosis Biology. Methods in Molecular Biology, 2021, 2314, 365-383.	0.4	5
43	Predictive Modeling to Study the Treatment-Shortening Potential of Novel Tuberculosis Drug Regimens, Toward Bundling of Preclinical Data. Journal of Infectious Diseases, 2022, 225, 1876-1885.	1.9	10
45	One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Frontiers in Cellular and Infection Microbiology, 2021, 11, 613149.	1.8	17
46	Visualizing the dynamics of tuberculosis pathology using molecular imaging. Journal of Clinical Investigation, 2021, 131, .	3.9	12
48	Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nature Communications, 2021, 12, 2899.	5.8	38
49	Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nature Communications, 2021, 12, 3816.	5.8	39
50	Bedaquiline: Current status and future perspectives. Journal of Global Antimicrobial Resistance, 2021, 25, 48-59.	0.9	43
51	The Treatment of Tuberculosis. Clinical Pharmacology and Therapeutics, 2021, 110, 1455-1466.	2.3	49
52	Targeting Mycobacterium tuberculosis response to environmental cues for the development of effective antitubercular drugs. PLoS Biology, 2021, 19, e3001355.	2.6	13
53	Adjunctive surgery versus medical treatment among patients with cavitary multidrug-resistant tuberculosis. European Journal of Cardio-thoracic Surgery, 2021, 60, 1279-1285.	0.6	6
54	Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 Inhibitors TBA-7371, PBTZ169, and OPC-167832. Antimicrobial Agents and Chemotherapy, 2021, 65, e0058321.	1.4	33
55	Systematic measurement of combination-drug landscapes to predict inÂvivo treatment outcomes for tuberculosis. Cell Systems, 2021, 12, 1046-1063.e7.	2.9	31
56	Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrobial Agents and Chemotherapy, 2021, 65, e0002421.	1.4	12

#	Article	IF	CITATIONS
57	Emergence of bedaquiline resistance in a high tuberculosis burden country. European Respiratory Journal, 2022, 59, 2100621.	3.1	48
58	Preclinical Evaluation of Inhalational Spectinamide-1599 Therapy against Tuberculosis. ACS Infectious Diseases, 2021, 7, 2850-2863.	1.8	8
59	Emerging Therapeutics, Technologies, and Drug Development Strategies to Address Patient Nonadherence and Improve Tuberculosis Treatment. Annual Review of Pharmacology and Toxicology, 2022, 62, 197-210.	4.2	9
60	Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiology Spectrum, 2021, 9, e0043421.	1.2	6
61	Superior Efficacy of a Bedaquiline, Delamanid, and Linezolid Combination Regimen in a Mouse Tuberculosis Model. Journal of Infectious Diseases, 2021, 224, 1039-1047.	1.9	11
63	Modeling and Simulation of Pretomanid Pharmacodynamics in Pulmonary Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	9
64	Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	159
65	Correlative light electron ion microscopy reveals in vivo localisation of bedaquiline in Mycobacterium tuberculosis–infected lungs. PLoS Biology, 2020, 18, e3000879.	2.6	13
66	The biodistribution of 5-[18F]fluoropyrazinamide in Mycobacterium tuberculosis-infected mice determined by positron emission tomography. PLoS ONE, 2017, 12, e0170871.	1.1	16
67	High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. ELife, 2018, 7, .	2.8	45
68	On-Slide Heat Sterilization Enables Mass Spectrometry Imaging of Tissue Infected with High-Threat Pathogens Outside of Biocontainment: A Study Directed at <i>Mycobacterium tuberculosis</i> . Journal of the American Society for Mass Spectrometry, 2021, 32, 2664-2674.	1.2	6
69	Bacterial growth dynamics and pharmacokinetic–pharmacodynamic relationships of rifampicin and bedaquiline in BALB/c mice. British Journal of Pharmacology, 2022, 179, 1251-1263.	2.7	5
73	Sudapyridine (WX-081), a Novel Compound against Mycobacterium tuberculosis. Microbiology Spectrum, 2022, 10, e0247721.	1.2	20
74	Novel Regimens of Bedaquiline-Pyrazinamide Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine Tuberculosis Models. Antimicrobial Agents and Chemotherapy, 2022, 66, e0239821.	1.4	15
75	Do Anti-tuberculosis Drugs Reach Their Target?─High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Analytical Chemistry, 2022, 94, 5483-5492.	3.2	12
77	Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathogens, 2022, 18, e1010459.	2.1	21
78	In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Frontiers in Immunology, 2022, 13, 820134.	2.2	19
79	Types and functions of heterogeneity in mycobacteria. Nature Reviews Microbiology, 2022, 20, 529-541.	13.6	19

#	Article	IF	Citations
80	Prediction of lung exposure to anti-tubercular drugs using plasma pharmacokinetic data: Implications for dose selection. European Journal of Pharmaceutical Sciences, 2022, 173, 106163.	1.9	2
82	Interleukin-13-Overexpressing Mice Represent an Advanced Preclinical Model for Detecting the Distribution of Antimycobacterial Drugs within Centrally Necrotizing Granulomas. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0158821.	1.4	2
84	Tuberculosis Drug Discovery: Challenges and New Horizons. Journal of Medicinal Chemistry, 2022, 65, 7489-7531.	2.9	59
85	PET/CT imaging of CSF1R in a mouse model of tuberculosis. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4088-4096.	3.3	1
86	Colocation of Lipids, Drugs, and Metal Biomarkers Using Spatially Resolved Lipidomics with Elemental Mapping. Analytical Chemistry, 0, , .	3.2	3
87	Spatial quantitation of antibiotics in bone tissue compartments by laser-capture microdissection coupled with UHPLC-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 0, , .	1.9	0
88	Superior Efficacy of a TBI-166, Bedaquiline, and Pyrazinamide Combination Regimen in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	4
89	Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
90	Pharmacodynamics and Bactericidal Activity of Combination Regimens in Pulmonary Tuberculosis: Application to Bedaquiline-Pretomanid-Pyrazinamide. Antimicrobial Agents and Chemotherapy, 0, , .	1.4	0
91	Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opinion on Drug Discovery, 2023, 18, 83-97.	2.5	6
92	Efficacy of Replacing Linezolid with OTB-658 in Anti-Tuberculosis Regimens in Murine Models. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	3
93	Dynamic 18F-Pretomanid PET imaging in animal models of TB meningitis and human studies. Nature Communications, 2022, 13, .	5.8	14
94	Î-Î interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models. Journal of Controlled Release, 2023, 354, 851-868.	4.8	3
95	A Novel Tool to Identify Bactericidal Compounds against Vulnerable Targets in Drug-Tolerant M. tuberculosis found in Caseum. MBio, 2023, 14, .	1.8	4
96	The use of multiplex imaging techniques to characterize tuberculous granuloma heterogeneity. WIREs Mechanisms of Disease, 0, , .	1.5	0
98	Predictions of Bedaquiline and Pretomanid Target Attainment in Lung Lesions of Tuberculosis Patients using Translational Minimal Physiologically Based Pharmacokinetic Modeling. Clinical Pharmacokinetics, 2023, 62, 519-532.	1.6	2