Full-Color Light-Emitting Carbon Dots with a Surface-S Mechanism

ACS Nano 10, 484-491 DOI: 10.1021/acsnano.5b05406

Citation Report

#	Article	IF	CITATIONS
5	Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. Nanomaterials, 2016, 6, 157.	1.9	126
6	Making few-layer graphene photoluminescent by UV ozonation. Optical Materials Express, 2016, 6, 3527.	1.6	7
7	Fluorescenceâ€Converging Carbon Nanodotsâ€Hybridized Silica Nanosphere. Small, 2016, 12, 4702-4706.	5.2	63
8	Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp ² â€Đomain Controlling and Surface Charges Engineering. Advanced Materials, 2016, 28, 3516-3521.	11.1	583
9	Eu ³⁺ -doped ionogel-functionalized carbon dot monoliths with bright white photoluminescence. RSC Advances, 2016, 6, 72149-72154.	1.7	8
10	Synthesis of broad photoluminescence carbon nanodots by femtosecond laser ablation in liquid. , 2016, , .		2
11	Carbon dots decorated vertical SnS2 nanosheets for efficient photocatalytic oxygen evolution. Applied Physics Letters, 2016, 109, .	1.5	20
12	Color-Multiplexing-Based Fluorescent Test Paper: Dosage-Sensitive Visualization of Arsenic(III) with Discernable Scale as Low as 5 ppb. Analytical Chemistry, 2016, 88, 6105-6109.	3.2	145
13	Large-Scale Ultrasonic Fabrication of White Fluorescent Carbon Dots. Industrial & Engineering Chemistry Research, 2016, 55, 5335-5341.	1.8	129
14	Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting. Journal of Materials Chemistry C, 2016, 4, 9027-9035.	2.7	119
15	Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chemical Communications, 2016, 52, 11912-11914.	2.2	83
16	Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. Journal of Materials Chemistry B, 2016, 4, 6366-6372.	2.9	92
17	Carbon Dots/NiCo ₂ O ₄ Nanocomposites with Various Morphologies for High Performance Supercapacitors. Small, 2016, 12, 5927-5934.	5.2	190
18	Carbon dots as inhibitors of virus by activation of type l interferon response. Carbon, 2016, 110, 278-285.	5.4	121
19	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	2.9	396
20	Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New Journal of Chemistry, 2016, 40, 8110-8117.	1.4	40
21	Free-Radical-Assisted Rapid Synthesis of Graphene Quantum Dots and Their Oxidizability Studies. Langmuir, 2016, 32, 8641-8649.	1.6	37
22	Green Synthesis of Redâ€Emitting Carbon Nanodots as a Novel "Turnâ€on―Nanothermometer in Living Cells. Chemistry - A European Journal, 2016, 22, 14475-14479.	1.7	88

#	Article	IF	CITATIONS
23	C ₉₆ H ₃₀ tailored single-layer and single-crystalline graphene quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 25002-25009.	1.3	17
24	Yellow emitting carbon dots with superior colloidal, thermal, and photochemical stabilities. Journal of Materials Chemistry C, 2016, 4, 9798-9803.	2.7	50
25	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
26	Electrostatic fabrication of RGO-g-SSS/CdTe graphene/quantum dot nanocomposites with enhanced optoelectronic properties. RSC Advances, 2016, 6, 65443-65449.	1.7	5
27	Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Physical Chemistry Chemical Physics, 2016, 18, 28274-28280.	1.3	143
28	Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots. ACS Applied Materials & amp; Interfaces, 2016, 8, 25454-25460.	4.0	75
29	Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2854-2860.	2.1	25
30	Synthesis of Selfâ€Assembled Spermidine arbon Quantum Dots Effective against Multidrugâ€Resistant Bacteria. Advanced Healthcare Materials, 2016, 5, 2545-2554.	3.9	151
31	Direct demonstration of photoluminescence originated from surface functional groups in carbon nanodots. Carbon, 2016, 108, 268-273.	5.4	64
32	Hydrothermal Synthesis of Photoluminescent Nanocarbon from Hydroxylic Acids and Amines. Journal of Solution Chemistry, 2016, 45, 1560-1570.	0.6	3
33	Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. Chemistry of Materials, 2016, 28, 8659-8668.	3.2	451
34	One-step preparation of carbon dot-grafted trisodium citrate dihydrate for tunable photoluminescence and white light-emitting diodes. RSC Advances, 2016, 6, 104724-104730.	1.7	4
35	Gadolinium functionalized carbon dots for fluorescence/magnetic resonance dual-modality imaging of mesenchymal stem cells. Journal of Materials Chemistry B, 2016, 4, 7472-7480.	2.9	46
36	Carbon Dot-Based Platform for Simultaneous Bacterial Distinguishment and Antibacterial Applications. ACS Applied Materials & Interfaces, 2016, 8, 32170-32181.	4.0	285
37	Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Scientific Reports, 2016, 6, 35795.	1.6	124
38	Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices. Chemistry of Materials, 2016, 28, 8221-8227.	3.2	270
39	Facile synthesis of nitrogen-doped carbon dots with robust fluorescence in a strongly alkaline solution and a reversible fluorescence â€~off–on' switch between strongly acidic and alkaline solutions. RSC Advances, 2016, 6, 108203-108208.	1.7	14
40	Hydrophobic Carbon Nanodots with Rapid Cell Penetrability and Tunable Photoluminescence Behavior for in Vitro and in Vivo Imaging. Langmuir, 2016, 32, 12221-12229.	1.6	45

ARTICLE IF CITATIONS # Surface passivation of carbon nanoparticles with p-phenylenediamine towards photoluminescent 1.7 30 41 carbon dots. RSC Advances, 2016, 6, 56944-56951. Improving the functionality of carbon nanodots: doping and surface functionalization. Journal of 42 5.2 379 Materials Chemistry A, 2016, 4, 11582-11603. Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs 43 1.3 18 with excellent color rendering properties. Nanotechnology, 2016, 27, 295202. Nitrogen-doped carbon dots derived from polyamindoamine dendrimer. RSC Advances, 2016, 6, 44 59702-59707. Facilely prepared carbon dots and rare earth ion doped hybrid composites for ratio-metric pH sensing 45 1.7 32 and white-light emission. RSC Advances, 2016, 6, 61468-61472. Microwave synthesis of carbon dots with multi-response using denatured proteins as carbon source. 1.7 RSC Advancés, 2016, 6, 11711-11718. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum 47 1.3 55 confinement. Physical Chemistry Chemical Physics, 2016, 18, 12065-12073. Insight into the effect of functional groups on visible-fluorescence emissions of graphene quantum 48 2.7 dots. Journal of Materials Chemistry C, 2016, 4, 2235-2242. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other 49 2.8 393 graphene oxide derivates: consensus, debates and challenges. Nanoscale, 2016, 8, 7794-7807. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and 2.5 114 peroxynitrite. Mikrochimica Acta, 2016, 183, 1769-1777. Excitation wavelength independent visible color emission of carbon dots. Nanoscale, 2017, 9, 1909-1915. 51 370 2.8 Insights into the role of nanostructure in the sensing properties of carbon nanodots for improved sensitivity to reactive oxygen species in living cells. Chemical Communications, 2017, 53, 2122-2125. 2.2 One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective 53 antibacterial agent against multidrug-resistant<i>Staphylococcus aureus</i>. Nanotechnology, 2017, 1.3 80 28,095102. Carbonâ€Nanodot Solar Cells from Renewable Precursors. ChemSusChem, 2017, 10, 1004-1013. 54 3.6 Luminescent Difluoroboron Î²-Diketonate PLA–PEG Nanoparticle. Biomacromolecules, 2017, 18, 551-561. 55 30 2.6 Cu_{1.8}S-Passivated carbon dots for enhancing photocatalytic activity. Chemical 2.2 Communications, 2017, 53, 2343-2346. Review on Carbon Dots and Their Applications. Chinese Journal of Analytical Chemistry, 2017, 45, 57 0.9 317 139-150. Cu(<scp>i</scp>)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions. Green Chemistry, 2017, 19, 1494-1498.

#	Article	IF	CITATIONS
59	Microwave-assisted synthesis of fluorescent carbon quantum dots from an A ₂ /B ₃ monomer set. RSC Advances, 2017, 7, 12663-12669.	1.7	60
60	Onâ^'offâ^'on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C. Mikrochimica Acta, 2017, 184, 1315-1324.	2.5	28
61	Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs. ACS Omega, 2017, 2, 554-562.	1.6	59
62	Production of yellow-emitting carbon quantum dots from fullerene carbon soot. Science China Materials, 2017, 60, 141-150.	3.5	53
63	One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods and Applications in Fluorescence, 2017, 5, 015003.	1.1	75
64	Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chemistry of Materials, 2017, 29, 1779-1787.	3.2	242
65	Nearâ€Infrared Photoluminescent Polymer–Carbon Nanodots with Twoâ€Photon Fluorescence. Advanced Materials, 2017, 29, 1603443.	11.1	645
66	Fluorescent carbon dots and their sensing applications. TrAC - Trends in Analytical Chemistry, 2017, 89, 163-180.	5.8	590
67	Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry Letters, 2017, 8, 1044-1052.	2.1	186
68	Seamless aqueous arc discharge process for producing graphitic carbon nanostructures. Carbon, 2017, 120, 83-88.	5.4	16
69	The emerging roles of carbon dots in solar photovoltaics: a critical review. Environmental Science: Nano, 2017, 4, 1216-1263.	2.2	128
70	Morphology Tunable Hybrid Carbon Nanosheets with Solvatochromism. Advanced Materials, 2017, 29, 1701075.	11.1	42
71	Highly N,P-doped carbon dots: Rational design, photoluminescence and cellular imaging. Mikrochimica Acta, 2017, 184, 2933-2940.	2.5	72
72	Construction of full-color light-emitting N-based carbon nanodots and their efficient solid-state materials via tape-casting technology for warm WLED. Chemical Engineering Journal, 2017, 324, 194-202.	6.6	42
73	Red Emissive Sulfur, Nitrogen Codoped Carbon Dots and Their Application in Ion Detection and Theraonostics. ACS Applied Materials & amp; Interfaces, 2017, 9, 18549-18556.	4.0	369
74	Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots. Solar Energy Materials and Solar Cells, 2017, 168, 183-200.	3.0	46
75	Electrostatic Assembly Guided Synthesis of Highly Luminescent Carbonâ€Nanodots@BaSO ₄ Hybrid Phosphors with Improved Stability. Small, 2017, 13, 1602055.	5.2	118
76	Theranostic carbon dots â€~clathrate-like' nanostructures for targeted photo-chemotherapy and bioimaging of cancer. Journal of Industrial and Engineering Chemistry, 2017, 56, 62-73.	2.9	21

#	Article	IF	Citations
77	Facile preparation of full-color emissive carbon dots and their applications in imaging of the adhesion of erythrocytes to endothelial cells. Journal of Materials Chemistry B, 2017, 5, 5259-5264.	2.9	18
78	Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of Materials Chemistry B, 2017, 5, 5272-5277.	2.9	209
79	One-step extraction of highly fluorescent carbon quantum dots by a physical method from carbon black. New Journal of Chemistry, 2017, 41, 5267-5270.	1.4	21
80	Long Life-time Room-temperature Phosphorescence of Carbon Dots in Aluminum Sulfate. ChemistrySelect, 2017, 2, 4058-4062.	0.7	31
81	Dual-Colored Carbon Dot Ratiometric Fluorescent Test Paper Based on a Specific Spectral Energy Transfer for Semiquantitative Assay of Copper Ions. ACS Applied Materials & Interfaces, 2017, 9, 18897-18903.	4.0	133
82	Inhibition of Cancer Cell Proliferation by Carbon Dots Derived from Date Pits at Low-Dose. ChemistrySelect, 2017, 2, 4079-4083.	0.7	25
83	Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale, 2017, 9, 9056-9064.	2.8	56
84	Carbon dots derived from fungus for sensing hyaluronic acid and hyaluronidase. Sensors and Actuators B: Chemical, 2017, 251, 503-508.	4.0	70
85	Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces, 2017, 9, 18429-18433.	4.0	268
86	Towards full-colour tunable photoluminescence of monolayer MoS ₂ /carbon quantum dot ultra-thin films. Journal of Materials Chemistry C, 2017, 5, 6352-6358.	2.7	13
87	High-Efficient Excitation-Independent Blue Luminescent Carbon Dots. Nanoscale Research Letters, 2017, 12, 399.	3.1	36
88	Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 2017, 5, 3794-3809.	2.9	264
89	Exact roles of individual chemical forms of nitrogen in the photoluminescent properties of nitrogen-doped carbon dots. Applied Materials Today, 2017, 7, 190-200.	2.3	44
90	Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon, 2017, 117, 437-446.	5.4	91
91	Red Emission B, N, S- <i>co</i> -Doped Carbon Dots for Colorimetric and Fluorescent Dual Mode Detection of Fe ³⁺ lons in Complex Biological Fluids and Living Cells. ACS Applied Materials & Interfaces, 2017, 9, 12663-12672.	4.0	437
92	Selective determination of Ag+ using Salecan derived nitrogen doped carbon dots as a fluorescent probe. Materials Science and Engineering C, 2017, 77, 508-512.	3.8	28
93	Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 13887-13899.	4.0	190
94	Self-exothermic reaction prompted synthesis of single-layered graphene quantum dots at room temperature. Chemical Communications, 2017, 53, 4958-4961.	2.2	59

#	Article	IF	CITATIONS
95	In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield. Journal of Materials Chemistry C, 2017, 5, 3536-3541.	2.7	39
96	Identification and Quantitation of Circulating Tumor Cells. Annual Review of Analytical Chemistry, 2017, 10, 321-343.	2.8	49
97	Preparation of Yellow-Green-Emissive Carbon Dots and Their Application in Constructing a Fluorescent Turn-On Nanoprobe for Imaging of Selenol in Living Cells. Analytical Chemistry, 2017, 89, 1734-1741.	3.2	120
98	Molecular Fluorescence in Citric Acid-Based Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 2014-2022.	1.5	517
99	Facile heat reflux synthesis of blue luminescent carbon dots as optical nanoprobes for cellular imaging. New Journal of Chemistry, 2017, 41, 702-708.	1.4	6
100	Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.	5.2	853
101	Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7, 5251-5261.	1.7	115
102	Graphene Quantum Dots from <i>Mangifera indica</i> : Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustainable Chemistry and Engineering, 2017, 5, 1382-1391.	3.2	273
103	Efficient and stable white fluorescent carbon dots and CD-based glass thin-films via screen-printing technology for use in W-LEDs. RSC Advances, 2017, 7, 49542-49547.	1.7	10
104	The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Materials Today Chemistry, 2017, 6, 13-25.	1.7	188
105	Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology, 2017, 28, 485705.	1.3	81
106	Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. Journal of Materials Chemistry C, 2017, 5, 10785-10793.	2.7	115
107	Rapid Screening of Oxygen States in Carbon Quantum Dots by Chemiluminescence Probe. Analytical Chemistry, 2017, 89, 12520-12526.	3.2	71
108	A novel carbon dots derived from reduced <scp>l</scp> -glutathione as fluorescent probe for the detection of the <scp>l</scp> -d-arginine. New Journal of Chemistry, 2017, 41, 15216-15228.	1.4	33
109	High Quantum Yield Green-Emitting Carbon Dots for Fe(ІІІ) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Scientific Reports, 2017, 7, 14866.	1.6	146
110	Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 2017, 9, 17849-17858.	2.8	132
111	Purification, Selection, and Partition Coefficient of Highly Oxidized Carbon Dots in Aqueous Two-Phase Systems Based on Polymer–Salt Pairs. Langmuir, 2017, 33, 12235-12243.	1.6	10
112	Full olor Emission Polymer Carbon Dots with Quenchâ€Resistant Solidâ€&tate Fluorescence. Advanced Science, 2017, 4, 1700395.	5.6	196

#	Article	IF	Citations
113	Visible detection of copper ions using a fluorescent probe based on red carbon dots and zirconium metal–organic frameworks. Dalton Transactions, 2017, 46, 15080-15086.	1.6	29
114	Solid-State Fluorescence of Fluorine-Modified Carbon Nanodots Aggregates Triggered by Poly(ethylene glycol). ACS Applied Materials & Interfaces, 2017, 9, 37981-37990.	4.0	70
115	Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. Langmuir, 2017, 33, 12635-12642.	1.6	222
116	A novel dual-emission QDs/PCDs assembled composite nanoparticle for high sensitive visual detection of Hg ²⁺ . RSC Advances, 2017, 7, 49330-49336.	1.7	5
117	Highly fluorescent N,S-co-doped carbon dots: synthesis and multiple applications. New Journal of Chemistry, 2017, 41, 11125-11137.	1.4	59
118	High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots. Journal of Materials Chemistry C, 2017, 5, 9629-9637.	2.7	62
119	Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands. Nanoscale, 2017, 9, 12618-12627.	2.8	87
120	Acid-assisted hydrothermal synthesis of red fluorescent carbon dots for sensitive detection ofÂFe(<scp>iii</scp>). RSC Advances, 2017, 7, 40952-40956.	1.7	43
121	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017, 364, 465-472.	4.0	27
122	2D Arrangement of Polymer Microsphere Photonic Cavities Doped with Novel Nâ€Rich Carbon Quantum Dots Display Enhanced One―and Twoâ€Photon Luminescence Driven by Optical Resonances. Advanced Optical Materials, 2017, 5, 1700695.	3.6	21
123	Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon, 2017, 124, 429-472.	5.4	253
124	A facile and high-efficient approach to yellow emissive graphene quantum dots from graphene oxide. Carbon, 2017, 124, 342-347.	5.4	44
125	Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes. Optical Materials, 2017, 73, 319-329.	1.7	42
126	Carbon dot-silica composite nanoparticle: an excitation-independent fluorescence material with tunable fluorescence. RSC Advances, 2017, 7, 43839-43844.	1.7	20
127	Ultrahigh-yield synthesis of N-doped carbon nanodots that down-regulate ROS in zebrafish. Journal of Materials Chemistry B, 2017, 5, 7848-7860.	2.9	31
128	Understanding the Capsanthin Tails in Regulating the Hydrophilic–Lipophilic Balance of Carbon Dots for a Rapid Crossing Cell Membrane. Langmuir, 2017, 33, 10259-10270.	1.6	27
129	A Ratiometric Fluorescence Universal Platform Based on N, Cu Codoped Carbon Dots to Detect Metabolites Participating in H ₂ O ₂ -Generation Reactions. ACS Applied Materials & Interfaces, 2017, 9, 33011-33019.	4.0	154
130	Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing. Journal of Materials Chemistry C, 2017, 5, 9849-9853.	2.7	46

#	Article	IF	CITATIONS
131	Cationic Carbon Dots for Modification-Free Detection of Hyaluronidase via an Electrostatic-Controlled Ratiometric Fluorescence Assay. Analytical Chemistry, 2017, 89, 8384-8390.	3.2	106
132	Carbon Dot Based, Naphthalimide Coupled FRET Pair for Highly Selective Ratiometric Detection of Thioredoxin Reductase and Cancer Screening. ACS Applied Materials & Interfaces, 2017, 9, 25847-25856.	4.0	64
133	Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.	1.6	68
134	Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped carbon quantum dots. Mikrochimica Acta, 2017, 184, 3883-3891.	2.5	52
135	Carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe3+ and Cu2+ ions. Sensors and Actuators B: Chemical, 2017, 253, 928-933.	4.0	90
136	Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	3.6	360
137	Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A ₃ /B ₂ Polyamidation Monomer Set. ACS Applied Materials & Interfaces, 2017, 9, 27883-27893.	4.0	50
138	53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm Whiteâ€Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1702910.	11.1	563
139	Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection. Materials Science and Engineering C, 2017, 81, 213-223.	3.8	63
140	A solid reaction towards in situ hybridization of carbon dots and conjugated polymers for enhanced light absorption and conversion. Chemical Communications, 2017, 53, 9426-9429.	2.2	25
141	Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors. Journal of Agricultural and Food Chemistry, 2017, 65, 7553-7559.	2.4	50
142	A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale, 2017, 9, 13042-13051.	2.8	251
143	In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications. Journal of Materials Chemistry B, 2017, 5, 7328-7334.	2.9	93
144	Excitation-Independent Dual-Color Carbon Dots: Surface-State Controlling and Solid-State Lighting. ACS Photonics, 2017, 4, 2352-2358.	3.2	91
145	Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale, 2017, 9, 13195-13202.	2.8	117
146	Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching. Journal of Luminescence, 2017, 192, 761-766.	1.5	18
147	The Role of Glutathione and Ethanol in Dictating the Emission Dynamics of Natural Resourcesâ€Đerived Highly Luminescent Carbon Nanodots. ChemistrySelect, 2017, 2, 11255-11264.	0.7	6
148	Modulating the fluorescent color of carbon nanodots via photon reabsorption and carbonization degree. Applied Physics Letters, 2017, 111, .	1.5	7

#	Article	IF	CITATIONS
149	Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores. Nano Letters, 2017, 17, 7710-7716.	4.5	236
150	Carbon Dots from a Single Source Exhibiting Tunable Luminescent Colors through the Modification of Surface Functional Groups in ORMOSIL Films. Journal of Physical Chemistry C, 2017, 121, 28106-28116.	1.5	55
151	Ratiometric Detection of Intracellular Lysine and pH with One-Pot Synthesized Dual Emissive Carbon Dots. Analytical Chemistry, 2017, 89, 13626-13633.	3.2	247
152	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 27546-27554.	1.5	31
153	Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Scientific Reports, 2017, 7, 15858.	1.6	151
154	Effect of nitrogen atomÂpositioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nature Communications, 2017, 8, 1401.	5.8	208
155	Charge-Driven Fluorescence Blinking in Carbon Nanodots. Journal of Physical Chemistry Letters, 2017, 8, 5751-5757.	2.1	43
156	Pulse laser-induced fragmentation of carbon quantum dots: a structural analysis. Nanoscale, 2017, 9, 18359-18367.	2.8	8
157	Large Emission Red-Shift of Carbon Dots by Fluorine Doping and Their Applications for Red Cell Imaging and Sensitive Intracellular Ag ⁺ Detection. Journal of Physical Chemistry C, 2017, 121, 26558-26565.	1.5	125
158	Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano, 2017, 11, 12402-12410.	7.3	550
159	Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots. Scientific Reports, 2017, 7, 14463.	1.6	1
160	Excitationâ€Ðependent Photoluminescence from Single arbon Dots. Small, 2017, 13, 1702098.	5.2	102
161	Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale, 2017, 9, 10948-10960.	2.8	167
162	Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale, 2017, 9, 9210-9217.	2.8	37
163	Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chemistry, 2017, 19, 3611-3617.	4.6	141
164	Zinc-Reduced CQDs with Highly Improved Stability, Enhanced Fluorescence, and Refined Solid-State Applications. Chemistry of Materials, 2017, 29, 5957-5964.	3.2	33
165	Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale, 2017, 9, 2150-2161.	2.8	155
166	Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale, 2017, 9, 491-496.	2.8	203

#	Article	IF	CITATIONS
167	Stable Fluorescence of Greenâ€Emitting Carbon Nanodots as a Potential Nanothermometer in Biological Media. Particle and Particle Systems Characterization, 2017, 34, 1600197.	1.2	17
168	A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosensors and Bioelectronics, 2017, 90, 501-507.	5.3	119
169	Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1436.	3.3	48
170	Nitrogen and phosphorus co-doped graphene quantum dots as a nano-sensor for highly sensitive and selective imaging detection of nitrite in live cell. Sensors and Actuators B: Chemical, 2017, 240, 604-612.	4.0	82
171	Controlling speciation of nitrogen in nitrogen-doped carbon dots by ferric ion catalysis for enhancing fluorescence. Carbon, 2017, 111, 133-141.	5.4	98
172	Activatable fluorescence: From small molecule to nanoparticle. Advanced Drug Delivery Reviews, 2017, 113, 97-121.	6.6	75
173	Carbon Quantum Dots. Carbon Nanostructures, 2017, , .	0.1	61
174	Characterization and Physical Properties of Carbon-Dots. Carbon Nanostructures, 2017, , 29-46.	0.1	25
175	Facile synthesis of amine-functionalized graphene quantum dots with highly pH-sensitive photoluminescence. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 704-709.	1.0	28
176	Multicolour Emission States from Charge Transfer between Carbon Dots and Surface Molecules. Materials, 2017, 10, 165.	1.3	20
177	Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method. Nanomaterials, 2017, 7, 176.	1.9	14
178	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie, 2018, 130, 5156-5161.	1.6	23
179	Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottomâ€Up Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5062-5067.	7.2	66
180	One‣tep Hydrothermal Synthesis of Nitrogenâ€Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small, 2018, 14, e1703919.	5.2	317
181	Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 10664-10677.	4.0	266
182	One-pot synthesis of N-doped carbon dots by pyrolyzing the gel composed of ethanolamine and 1-carboxyethyl-3-methylimidazolium chloride and their selective fluorescence sensing for Cr(<scp>vi</scp>) ions. Analyst, The, 2018, 143, 1906-1915.	1.7	46
183	β-C ₃ N ₄ Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity. Chemistry of Materials, 2018, 30, 1695-1700.	3.2	76
184	Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensors and Actuators B: Chemical, 2018, 264, 193-201.	4.0	42

#	Article	IF	CITATIONS
185	Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta, 2018, 184, 50-57.	2.9	34
186	Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites. Chemical Physics Letters, 2018, 700, 27-35.	1.2	27
187	Design of Pyrrolic-N-Rich Carbon Dots with Absorption in the First Near-Infrared Window for Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 2368-2375.	2.4	94
188	Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 3107-3115.	2.9	35
189	One-step synthesis of nitrogen, sulfur co-doped carbon nanodots and application for Fe ³⁺ detection. Journal of Materials Chemistry B, 2018, 6, 3549-3554.	2.9	24
190	Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 200, 226-234.	2.0	52
191	Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B, 2018, 6, 3219-3234.	2.9	155
192	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16005-16014.	4.0	147
193	Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale, 2018, 10, 8139-8145.	2.8	109
194	Semi-quantitative and visual assay of copper ions by fluorescent test paper constructed with dual-emission carbon dots. RSC Advances, 2018, 8, 12708-12713.	1.7	17
195	Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Colloids and Surfaces B: Biointerfaces, 2018, 167, 126-133.	2.5	147
196	Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. Journal of Materials Chemistry B, 2018, 6, 3181-3187.	2.9	54
197	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	2.4	64
198	Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Science China Chemistry, 2018, 61, 490-496.	4.2	72
199	Time-resolved spectroscopy of the ensembled photoluminescence of nitrogen- and boron/nitrogen-doped carbon dots. Physical Chemistry Chemical Physics, 2018, 20, 11673-11681.	1.3	27
200	Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta, 2018, 185, 542-549.	2.9	61
201	Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: Analytical and bioimaging applications. Sensors and Actuators B: Chemical, 2018, 267, 494-501.	4.0	55
202	Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents. Optical Materials, 2018, 78, 118-125.	1.7	20

#	Article	IF	CITATIONS
203	Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chemistry of Materials, 2018, 30, 1878-1887.	3.2	203
204	Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for Curcumin determination in real sample and cellular imaging. Talanta, 2018, 183, 61-69.	2.9	77
205	Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta, 2018, 182, 314-323.	2.9	33
206	Carbon nanodots with intense emission from green to red and their multifunctional applications. Journal of Alloys and Compounds, 2018, 742, 212-219.	2.8	26
207	Discrimination and detection of benzaldehyde derivatives using sensor array based on fluorescent carbon nanodots. Sensors and Actuators B: Chemical, 2018, 261, 271-278.	4.0	23
208	Label-free fluorescent detection of alkaline phosphatase with vegetable waste-derived green carbon probes. Sensors and Actuators B: Chemical, 2018, 262, 469-476.	4.0	24
209	Largeâ€Scale Oneâ€Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material. Advanced Optical Materials, 2018, 6, 1701150.	3.6	76
210	Concentration effect on optical properties of carbon dots at room temperature. Journal of Luminescence, 2018, 198, 215-219.	1.5	41
211	In Situ Timeâ€Dependent and Progressive Oxidation of Reduced State Functionalities at the Nanoscale of Carbon Nanoparticles for Polarityâ€Driven Multiscale Nearâ€Infrared Imaging. Advanced Biology, 2018, 2, 1800009.	3.0	20
212	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	11.1	349
213	Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles. Journal of Colloid and Interface Science, 2018, 518, 11-20.	5.0	18
214	The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection. Sensors and Actuators B: Chemical, 2018, 263, 327-335.	4.0	68
215	Yellow-Emissive Carbon Dot-Based Optical Sensing Platforms: Cell Imaging and Analytical Applications for Biocatalytic Reactions. ACS Applied Materials & amp; Interfaces, 2018, 10, 7737-7744.	4.0	87
216	Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Advances, 2018, 8, 6053-6062.	1.7	45
217	Facile preparation and characterization of new green emitting carbon dots for sensitive and selective off/on detection of Fe3+ ion and ascorbic acid in water and urine samples and intracellular imaging in living cells. Talanta, 2018, 183, 122-130.	2.9	105
218	Mesoporous fullerene C ₇₀ cubes with highly crystalline frameworks and unusually enhanced photoluminescence properties. Materials Horizons, 2018, 5, 285-290.	6.4	59
219	Biomolecule-derived Fluorescent Carbon Nanoparticle as Bioimaging Probe. MRS Advances, 2018, 3, 779-788.	0.5	8
220	Phosphorus induced crystallinity in carbon dots for solar light assisted seawater desalination. Journal of Materials Chemistry A, 2018, 6, 4111-4118.	5.2	53

#	Article	IF	CITATIONS
221	N-doped carbon dots from phenol derivatives for excellent colour rendering WLEDs. RSC Advances, 2018, 8, 4850-4856.	1.7	28
222	Probing and Quantifying the Food-Borne Pathogens and Toxins: From <i>In Vitro</i> to <i>In Vivo</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 1061-1066.	2.4	27
223	Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging. ACS Applied Materials & Interfaces, 2018, 10, 7901-7909.	4.0	91
224	Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance. Journal of Colloid and Interface Science, 2018, 518, 242-251.	5.0	39
225	Mechanochemical synthesis of fluorescent carbon dots from cellulose powders. Nanotechnology, 2018, 29, 165604.	1.3	16
226	Excitationâ€Dependent Theranostic Nanosheet for Cancer Treatment. Advanced Healthcare Materials, 2018, 7, e1701123.	3.9	11
227	Rapid Visualization of Latent Fingerprints with Colorâ€Tunable Solid Fluorescent Carbon Dots. Particle and Particle Systems Characterization, 2018, 35, 1700387.	1.2	43
228	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie - International Edition, 2018, 57, 1893-1897.	7.2	86
229	A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon, 2018, 130, 153-163.	5.4	132
230	Single Source Precursor Chemical Vapor Decomposition Method to Fabricate Stable, Bright Emissive Aluminum Hydroxide Phosphors for UVâ€Pumped White Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1701115.	3.6	8
231	Fluorescent Carbon Nanoparticles in Medicine for Cancer Therapy: An Update. ACS Medicinal Chemistry Letters, 2018, 9, 4-5.	1.3	12
232	Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells. Materials Science and Engineering C, 2018, 85, 1-6.	3.8	39
233	Electrochemical Cutting in Weak Aqueous Electrolytes: The Strategy for Efficient and Controllable Preparation of Graphene Quantum Dots. Langmuir, 2018, 34, 250-258.	1.6	71
234	Controlled synthesis of 3D flower-like MgWO ₄ :Eu ³⁺ hierarchical structures and fluorescence enhancement through introduction of carbon dots. CrystEngComm, 2018, 20, 608-614.	1.3	22
235	Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices. Nanotechnology, 2018, 29, 085705.	1.3	77
236	Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging-Guided Photothermal Therapy of Glioma. ACS Applied Materials & Interfaces, 2018, 10, 4031-4040.	4.0	63
237	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Red‧hifted Photoluminescence. Angewandte Chemie, 2018, 130, 1911-1915.	1.6	4
238	Highly selective and sensitive fluorescence sensing of nanomolar Zn2+ ions in aqueous medium using Calix[4]arene passivated Carbon Quantum Dots based on fluorescence enhancement: Real-time monitoring and intracellular investigation. Analytica Chimica Acta, 2018, 1009, 1-11.	2.6	22

#	Article	IF	CITATIONS
239	Carbon Dots: Bottomâ€Up Syntheses, Properties, and Lightâ€Harvesting Applications. Chemistry - an Asian Journal, 2018, 13, 586-598.	1.7	101
240	RedÂemitting and highly stable carbon dots with dual response to pHÂvalues and ferric ions. Mikrochimica Acta, 2018, 185, 83.	2.5	94
241	Exploring the binding of carbon dots to calf thymus DNA: From green synthesis to fluorescent molecular probe. Carbon, 2018, 130, 257-266.	5.4	24
242	Solvent ontrolled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small, 2018, 14, e1800612.	5.2	449
243	One-step synthesis of nanocarbon-decorated MnO 2 with superior activity for indoor formaldehyde removal at room temperature. Applied Catalysis B: Environmental, 2018, 235, 158-167.	10.8	131
244	Towards efficient and stable multi-color carbon nanoparticle phosphors: synergy between inner polar groups and outer silica matrix. Science China Materials, 2018, 61, 1191-1200.	3.5	10
245	Multiple‣timuli Responsive and Tunable Luminescent Supramolecular Assembly by Oligo(<i>p</i> â€phenylvinylene) and Surfactant. Chinese Journal of Chemistry, 2018, 36, 526-530.	2.6	8
246	Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Applied Surface Science, 2018, 453, 192-203.	3.1	133
247	Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes. Nanotechnology, 2018, 29, 245702.	1.3	30
248	Ratiometric fluorescent detection of chromium(VI) in real samples based on dual emissive carbon dots. Talanta, 2018, 185, 249-257.	2.9	106
249	Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale, 2018, 10, 6734-6743.	2.8	208
250	The effect of carbon chain length of starting materials on the formation of carbon dots and their optical properties. Materials Research Express, 2018, 5, 045603.	0.8	6
251	Inverse Pickering emulsions stabilized by carbon quantum dots: Influencing factors and their application as templates. Chemical Engineering Journal, 2018, 345, 209-220.	6.6	24
252	Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today, 2018, 19, 201-218.	6.2	536
253	Green synthesis of carbon quantum dots from lignite coal and the application in Fe ³⁺ detection. IOP Conference Series: Earth and Environmental Science, 2018, 113, 012063.	0.2	19
254	Graphene quantum dots derived from hollow carbon nano-onions. Nano Research, 2018, 11, 174-184.	5.8	22
255	Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1483.	3.3	113
256	Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica. Carbon, 2018, 126, 426-436.	5.4	109

#	Article	IF	CITATIONS
257	Selective toxicity of hydroxyl-rich carbon nanodots for cancer research. Nano Research, 2018, 11, 2204-2216.	5.8	24
258	Naturalâ€Productâ€Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11, 11-24.	3.6	278
259	Particulate, Structural, and Optical Properties of D-Glucose-Derived Carbon Dots Synthesized by Microwave-Assisted Hydrothermal Treatment. ECS Journal of Solid State Science and Technology, 2018, 7, R3034-R3039.	0.9	25
260	Nitrogenâ€doped carbon dots as a fluorescent probe for the highly sensitive detection of Ag ⁺ and cell imaging. Luminescence, 2018, 33, 243-248.	1.5	56
261	Understanding and manipulating luminescence in carbon nanodots. Carbon, 2018, 126, 58-64.	5.4	29
262	One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing. Applied Surface Science, 2018, 427, 1118-1123.	3.1	64
263	Engineering carbon quantum dots for photomediated theranostics. Nano Research, 2018, 11, 1-41.	5.8	216
264	iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging. Journal of Colloid and Interface Science, 2018, 509, 515-521.	5.0	95
265	Nitrogen, sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives. Sensors and Actuators B: Chemical, 2018, 257, 586-593.	4.0	73
266	Supramolecular Cross-Link-Regulated Emission and Related Applications in Polymer Carbon Dots. ACS Applied Materials & Interfaces, 2018, 10, 12262-12277.	4.0	110
267	Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. Chemical Record, 2018, 18, 491-505.	2.9	119
268	Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon, 2018, 128, 78-85.	5.4	147
269	Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Advanced Materials, 2018, 30, 1704740.	11.1	778
270	Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions. Sensors and Actuators B: Chemical, 2018, 258, 637-647.	4.0	53
271	Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose, 2018, 25, 377-389.	2.4	60
272	Subcellular fluorescence imaging for BHK cell and multiple sensing based on carbon dots with two strong emission peaks. Sensors and Actuators B: Chemical, 2018, 258, 757-765.	4.0	16
273	Carbon Dots with Red Emission for Sensing of Pt ²⁺ , Au ³⁺ , and Pd ²⁺ and Their Bioapplications in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 1147-1154.	4.0	272
274	Electrochemiluminescence of nitrogen- and sulfur-doped graphene quantum dots. Carbon, 2018, 129, 45-53.	5.4	177

#	Article	IF	CITATIONS
275	Luminescent Oil-Soluble Carbon Dots toward White Light Emission: A Spectroscopic Study. Journal of Physical Chemistry C, 2018, 122, 839-849.	1.5	43
276	S,N-doped carbon dots as a fluorescent probe for bilirubin. Mikrochimica Acta, 2018, 185, 11.	2.5	96
277	Emerging functional nanomaterials for the detection of food contaminants. Trends in Food Science and Technology, 2018, 71, 94-106.	7.8	72
278	Copper-catalyzed three-component synthesis of pyrimidines from amidines and alcohols. Organic and Biomolecular Chemistry, 2018, 16, 9487-9491.	1.5	25
279	A simple preparation method of carbon dots by weak power bathroom lamp irradiation and their application for nimesulide detection and bioimaging. RSC Advances, 2018, 8, 36090-36095.	1.7	1
280	Ultra-highly fluorescentÂN doped carbon dots-CdTe QDs nanohybrids with excitation-independent emission in the blue-violet region. RSC Advances, 2018, 8, 35700-35705.	1.7	4
281	A fluorescent sensor constructed from nitrogen-doped carbon nanodots (N-CDs) for pH detection in synovial fluid and urea determination. RSC Advances, 2018, 8, 41432-41438.	1.7	27
282	Sludge degradation and microbial community structures analysis in a microbial electrolysis cell-coupled up flow anaerobic blanket reactor with an ultrasound treatment system. RSC Advances, 2018, 8, 42032-42040.	1.7	3
283	Surface state modulation of red emitting carbon dots for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 12631-12637.	2.7	73
284	Engineered fluorescent carbon dots as promising immune adjuvants to efficiently enhance cancer immunotherapy. Nanoscale, 2018, 10, 22035-22043.	2.8	42
285	Insights on the solvatochromic effects in N-doped yellow-orange emissive carbon dots. New Journal of Chemistry, 2018, 42, 19837-19843.	1.4	35
286	Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: from the mechanism to application in intracellular pH imaging. Nanoscale, 2018, 10, 22484-22492.	2.8	75
287	A novel highly fluorescent S,ÂN, O co-doped carbon dots for biosensing and bioimaging of copper ions in live cells. RSC Advances, 2018, 8, 42246-42252.	1.7	18
288	Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes. New Carbon Materials, 2018, 33, 276-288.	2.9	54
289	Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. Nanoscale, 2018, 10, 21809-21817.	2.8	31
290	Sulfuric Acid Assisted Preparation of Red-Emitting Carbonized Polymer Dots and the Application of Bio-Imaging. Nanoscale Research Letters, 2018, 13, 272.	3.1	29
291	6. Light scattering nanospectral probes. , 2018, , 141-180.		0
292	Orange, yellow and blue luminescent carbon dots controlled by surface state for multicolor cellular imaging, light emission and illumination. Mikrochimica Acta, 2018, 185, 539.	2.5	44

#	Article	IF	CITATIONS
293	Bright Yellow Fluorescent Carbon Dots as a Multifunctional Sensing Platform for the Label-Free Detection of Fluoroquinolones and Histidine. ACS Applied Materials & Interfaces, 2018, 10, 42915-42924.	4.0	121
294	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	6.2	181
295	Tuning Carbon Dots' Optoelectronic Properties with Polymers. Polymers, 2018, 10, 1312.	2.0	19
296	Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.	1.4	137
297	Exopolysaccharide-Derived Carbon Dots for Microbial Viability Assessment. Frontiers in Microbiology, 2018, 9, 2697.	1.5	29
298	Highly Green Emissive Nitrogen-Doped Carbon Dots with Excellent Thermal Stability for Bioimaging and Solid-State LED. Inorganic Chemistry, 2018, 57, 15229-15239.	1.9	65
299	Colloidal N-Doped Graphene Quantum Dots with Tailored Luminescent Downshifting and Detection of UVA Radiation with Enhanced Responsivity. ACS Omega, 2018, 3, 16260-16270.	1.6	36
300	One-step solvothermal synthesis of red emissive carbonized polymer dots for latent fingerprint imaging. Optical Materials, 2018, 86, 79-86.	1.7	22
301	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
302	Facile and Rapid Synthesis of Yellow-Emission Carbon Dots for White Light-Emitting Diodes. Journal of Electronic Materials, 2018, 47, 7497-7504.	1.0	14
303	Photoluminescent and pH-responsive supramolecular structures from co-assembly of carbon quantum dots and zwitterionic surfactant micelles. Journal of Materials Chemistry B, 2018, 6, 7021-7032.	2.9	27
304	Highly Fluorescent and Stable Black Phosphorus Quantum Dots in Water. Small, 2018, 14, e1803132.	5.2	58
305	A genosensor for detection of HTLV-I based on photoluminescence quenching of fluorescent carbon dots in presence of iron magnetic nanoparticle-capped Au. Scientific Reports, 2018, 8, 15593.	1.6	29
306	Carbon Dots in Water and Mesoporous Matrix: Chasing the Origin of their Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 25638-25650.	1.5	50
307	Subgram-Scale Synthesis of Biomass Waste-Derived Fluorescent Carbon Dots in Subcritical Water for Bioimaging, Sensing, and Solid-State Patterning. ACS Omega, 2018, 3, 13211-13218.	1.6	40
308	Full-Color Tunable Fluorescent and Chemiluminescent Supramolecular Nanoparticles for Anti-counterfeiting Inks. ACS Applied Materials & amp; Interfaces, 2018, 10, 39214-39221.	4.0	137
309	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 2018, 10, 37835-37845.	4.0	58
310	Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Letters, 2018, 10, 72.	14.4	133

IF ARTICLE CITATIONS # Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & amp; Interfaces, 2018, 10, 39205-39213. 3114.0 51 Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004. Photoluminescence Enhancement of Carbon Dots by Surfactants at Room Temperature. Chemistry - A 313 1.7 19 European Journal, 2018, 24, 15806-15811. Highly Luminescent Organic Nanorods from Air Oxidation of <i>paraâ€</i>Substituted Anilines for Freestanding Deepâ€Red Color Filters. Advanced Optical Materials, 2018, 6, 1800577. 314

CITATION REPORT

The Effect of Ligands and Solvents on Nonradiative Transitions in Semiconductor Quantum Dots (A) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

316	A nanocomposite probe consisting of carbon quantum dots and phosphotungstic acid for fluorometric determination of chromate(VI) with improved selectivity. Mikrochimica Acta, 2018, 185, 470.	2.5	20
317	Ordered–Disordered BaZrO _{3â^'Î′} Hollow Nanosphere/Carbon Dot Hybrid Nanocomposite: A New Visible-Light-Driven Efficient Composite Photocatalyst for Hydrogen Production and Dye Degradation. ACS Omega, 2018, 3, 10980-10991.	1.6	15
318	Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chemical Communications, 2018, 54, 11312-11315.	2.2	42
319	Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. Journal of Industrial and Engineering Chemistry, 2018, 66, 387-395.	2.9	50
320	Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration-Induced Quenching. ACS Applied Materials & Interfaces, 2018, 10, 34184-34192.	4.0	58
321	Exploring of multicolor emissive carbon dots with novel double emission mechanism. Sensors and Actuators B: Chemical, 2018, 277, 373-380.	4.0	52
322	Tailoring Blue-Green Double Emissions in Carbon Quantum Dots via Co-Doping Engineering by Competition Mechanism between Chlorine-Related States and Conjugated π-Domains. Nanomaterials, 2018, 8, 635.	1.9	16
323	Synthesis of Highly Fluorescent Yellowâ€Green Nâ€Doped Carbon Nanorings for pH Variation Detection and Bioimaging. Particle and Particle Systems Characterization, 2018, 35, 1800276.	1.2	10
324	Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon, 2018, 140, 508-520.	5.4	68
325	Dynamically Long-Term Imaging of Cellular RNA by Fluorescent Carbon Dots with Surface Isoquinoline Moieties and Amines. Analytical Chemistry, 2018, 90, 11358-11365.	3.2	43
326	Polymethyldopa Nanoparticles-Based Fluorescent Sensor for Detection of Tyrosinase Activity. ACS Sensors, 2018, 3, 1855-1862.	4.0	48
327	Synthesis of single-particle level white-light-emitting carbon dots <i>via</i> a one-step microwave method. Journal of Materials Chemistry C, 2018, 6, 6691-6697.	2.7	37
328	Semiconductor MQWs Photo-Electronic Logic Devices. , 2018, , 35-68.		1

#	Article	IF	CITATIONS
329	Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 2018, 10, 11211-11221.	2.8	67
330	Identifying three routes of the sensing mechanism for casein-directed gold nanoclusters. Colloids and Surfaces B: Biointerfaces, 2018, 169, 348-355.	2.5	2
331	Tricolor White-Light-Emitting Carbon Dots with Multiple-Cores@Shell Structure for WLED Application. ACS Applied Materials & amp; Interfaces, 2018, 10, 19796-19805.	4.0	88
332	Carbon nanodots as efficient photosensitizers to enhance visible-light driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 53-58.	2.0	35
333	Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. Journal of Colloid and Interface Science, 2018, 528, 281-288.	5.0	54
334	Controllable two-dimensional luminescence tuning in Eu ²⁺ ,Mn ²⁺ doped (Ca,Sr) ₉ Sc(PO ₄) ₇ based on crystal field regulation and energy transfer. Journal of Materials Chemistry C, 2018, 6, 6714-6725.	2.7	47
335	Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem, 2018, 19, 2589-2597.	1.0	49
336	Brightly Fluorescent Zinc-Doped Red-Emitting Carbon Dots for the Sunlight-Induced Photoreduction of Cr(VI) to Cr(III). ACS Omega, 2018, 3, 5187-5194.	1.6	95
337	Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots. Nanoscale, 2018, 10, 10650-10656.	2.8	18
338	Ratiometric fluorescent test paper based on silicon nanocrystals and carbon dots for sensitive determination of mercuric ions. Royal Society Open Science, 2018, 5, 171922.	1.1	14
339	Multicolor carbon nanodots from food waste and their heavy metal ion detection application. RSC Advances, 2018, 8, 23657-23662.	1.7	39
340	Strategy to Enhance the Luminescence of Lanthanide Ions Doped MgWO ₄ Nanosheets through Incorporation of Carbon Dots. Inorganic Chemistry, 2018, 57, 8662-8672.	1.9	44
341	A self-quenching-resistant carbon dots powder with tunable solid-state fluorescence and their applications in light-emitting diodes and fingerprints detection. Dyes and Pigments, 2018, 159, 245-251.	2.0	47
342	Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond. Green Chemistry, 2018, 20, 4245-4259.	4.6	112
343	Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells. Talanta, 2018, 189, 8-15.	2.9	79
344	Optimizing the Synthesis of Red-Emissive Nitrogen-Doped Carbon Dots for Use in Bioimaging. ACS Applied Nano Materials, 2018, 1, 3682-3692.	2.4	80
345	Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Scientific Reports, 2018, 8, 9770.	1.6	158
346	Up-Conversion Fluorescence of Phosphorous and Nitrogen Co-Doped Carbon Quantum Dots (CDs) Coupled with Weak LED Light Source for Full-Spectrum Driven Photocatalytic Degradation via ZnO-CDs Nanocomposites. Catalysis Letters, 2018, 148, 2746-2755.	1.4	37

#	Article	IF	CITATIONS
347	Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C, 2018, 6, 7944-7970.	2.7	274
348	Red/Nearâ€Infrared Emissive Metalloporphyrinâ€Based Nanodots for Magnetic Resonance Imagingâ€Guided Photodynamic Therapy In Vivo. Particle and Particle Systems Characterization, 2018, 35, 1800208.	1.2	54
349	Preparation of graphene quantum dots through liquid phase exfoliation method. Journal of Luminescence, 2018, 204, 203-208.	1.5	20
350	Emerging technologies for optical spectral detection of reactive oxygen species. Analytical and Bioanalytical Chemistry, 2018, 410, 6079-6095.	1.9	24
351	Synthesis of the Cu-Doped Dual-Emission Fluorescent Carbon Dots and Its Analytical Application. Langmuir, 2018, 34, 9982-9989.	1.6	47
352	Phosphorus-doped carbon dots for sensing both Au (III) and I-methionine. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 178-184.	2.0	16
353	A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA. Analytical Chemistry, 2018, 90, 8969-8976.	3.2	153
354	Green and Facile Synthesis of Nitrogen and Phosphorus Co-Doped Carbon Quantum Dots towards Fluorescent Ink and Sensing Applications. Nanomaterials, 2018, 8, 386.	1.9	76
355	Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots across the Blood–Brain Barrier. ACS Omega, 2018, 3, 7888-7896.	1.6	27
356	Novel properties and applications of carbon nanodots. Nanoscale Horizons, 2018, 3, 565-597.	4.1	274
357	A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties. Royal Society Open Science, 2018, 5, 180245.	1.1	52
358	Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning. Nanoscale, 2018, 10, 15317-15323.	2.8	33
359	Amorphous carbon layer: An effective assistant for realizing near-infrared-activated photocatalysis. Journal of Colloid and Interface Science, 2018, 531, 47-55.	5.0	13
360	Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Materials Today Chemistry, 2018, 9, 103-113.	1.7	60
361	Sunlight-Induced Photocatalytic Degradation of Pollutant Dye by Highly Fluorescent Red-Emitting Mg-N-Embedded Carbon Dots. ACS Sustainable Chemistry and Engineering, 2018, 6, 9246-9256.	3.2	121
362	Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. Journal of Materials Chemistry C, 2018, 6, 5957-5963.	2.7	34
363	Precisely Controlled Up/Down onversion Liquid and Solid State Photoluminescence of Carbon Dots. Advanced Optical Materials, 2018, 6, 1800115.	3.6	79
364	Synthesis of multi-functional green fluorescence carbon dots and their applications as a fluorescent probe for Hg ²⁺ detection and zebrafish imaging. New Journal of Chemistry, 2018, 42, 10400-10405	1.4	18

#	Article	IF	CITATIONS
365	Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. Carbon, 2018, 135, 253-259.	5.4	68
366	Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 37, 1-22.	5.6	147
367	The Recognition of Sweat Latent Fingerprints with Green-Emitting Carbon Dots. Nanomaterials, 2018, 8, 612.	1.9	25
368	High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs. Journal of Materials Chemistry C, 2018, 6, 9631-9635.	2.7	50
369	Excitation-dependent carbon dots powders based on dehydration condensation by microwave–hydrothermal method. Journal of Materials Science, 2018, 53, 15907-15914.	1.7	24
370	A Facile Synthesis of Highly Nitrogen-Doped Carbon Dots for Imaging and Detection in Biological Samples. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-9.	0.7	15
371	Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. Journal of Materials Chemistry C, 2018, 6, 9636-9641.	2.7	107
372	Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and <i>in vivo</i> . Nanoscale, 2018, 10, 17834-17841.	2.8	43
373	Red C-dots and C-dot films: solvothermal synthesis, excitation-independent emission and solid-state-lighting. RSC Advances, 2018, 8, 29855-29861.	1.7	19
374	Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nature Communications, 2018, 9, 3442.	5.8	169
375	Long-lasting green, yellow, and red phosphorescence of carbon dots embedded on ZnAl ₂ O ₄ nanoparticles synthesized by a combustion method. Journal Physics D: Applied Physics, 2018, 51, 415104.	1.3	13
376	Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Analytica Chimica Acta, 2018, 1042, 125-132.	2.6	108
377	Ratiometric fluorescent detection of copper ions using coumarin-functionalized carbon dots based on FRET. Sensors and Actuators B: Chemical, 2018, 275, 86-94.	4.0	68
378	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	1.7	17
379	Bacteria-Derived Carbon Dots Inhibit Biofilm Formation of Escherichia coli without Affecting Cell Growth. Frontiers in Microbiology, 2018, 9, 259.	1.5	77
380	Carbonâ€Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1800525.	3.9	161
381	Carbon dots originated from methyl red with molecular state and surface state controlled emissions for sensing and imaging. Journal of Luminescence, 2018, 204, 303-311.	1.5	22
382	A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. New Journal of Chemistry, 2018, 42, 15671-15677.	1.4	25

#	Article	IF	CITATIONS
383	Carbon dots with induced surface oxidation permits imaging at single-particle level for intracellular studies. Nanoscale, 2018, 10, 18510-18519.	2.8	26
384	Quantum Dots for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 89-135.	0.1	6
385	Solid phase extraction for the purification of violet, blue, green and yellow emitting carbon dots. Nanoscale, 2018, 10, 11293-11296.	2.8	24
386	Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. Nanoscale, 2018, 10, 12788-12796.	2.8	97
387	Hydrogen Peroxideâ€Treated Carbon Dot Phosphor with a Bathochromicâ€Shifted, Aggregationâ€Enhanced Emission for Lightâ€Emitting Devices and Visible Light Communication. Advanced Science, 2018, 5, 1800369.	5.6	119
388	Hydrothermal Addition Polymerization for Ultrahighâ€Yield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chemistry - A European Journal, 2018, 24, 11303-11308.	1.7	117
389	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	7.3	135
390	Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 2249.	5.8	676
391	Porphyrin-Implanted Carbon Nanodots for Photoacoustic Imaging and in Vivo Breast Cancer Ablation. ACS Applied Bio Materials, 2018, 1, 110-117.	2.3	102
392	Transparent Wood Film Incorporating Carbon Dots as Encapsulating Material for White Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 9314-9323.	3.2	67
393	Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloids and Surfaces B: Biointerfaces, 2018, 170, 194-200.	2.5	72
394	Excellent luminescence films of excitation-independent carbon quantum dots toward non-rare-earth phosphor-based white light-emitting diodes. Journal of Alloys and Compounds, 2018, 764, 17-23.	2.8	11
395	Reversible "Off–On―Fluorescence of Zn ²⁺ -Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn ²⁺ . Langmuir, 2018, 34, 7767-7775.	1.6	69
396	A solvent-free gaseous detonation approach for converting benzoic acid into graphene quantum dots within milliseconds. Diamond and Related Materials, 2018, 87, 233-241.	1.8	9
397	Amphiphilic Graphene Quantum Dots as Selfâ€Targeted Fluorescence Probes for Cell Nucleus Imaging. Advanced Biology, 2018, 2, 1700191.	3.0	47
398	Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. Journal of Materials Chemistry C, 2018, 6, 7527-7532.	2.7	149
399	Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11, 19214-19224.	2.8	267
400	Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking. ACS Applied Materials & Interfaces, 2019, 11, 32647-32658.	4.0	163

	CITATION RE	PORT	
#	Article	IF	CITATIONS
401	Facile Preparation of Boron and Nitrogen Codoped Green Emission Carbon Quantum Dots for Detection of Permanganate and Captopril. Analytical Chemistry, 2019, 91, 11455-11460.	3.2	79
402	Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement. Journal of Physical Chemistry Letters, 2019, 10, 5111-5116.	2.1	66
403	Hydrophobic AgNPs: one-step synthesis in aqueous solution and their greatly enhanced performance for SERS detection. Journal of Materials Chemistry C, 2019, 7, 10465-10470.	2.7	18
404	Antiâ€VEGFâ€Aptamer Modified Câ€Dots—A Hybrid Nanocomposite for Topical Treatment of Ocular Vascular Disorders. Small, 2019, 15, e1902776.	5.2	49
405	A carbon dot-catalyzed transesterification reaction for the production of biodiesel. Journal of Materials Chemistry A, 2019, 7, 23794-23802.	5.2	43
406	Dual emission carbon dots from carotenoids: Converting a single emission to dual emission. Luminescence, 2019, 34, 790-795.	1.5	8
407	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	7.3	136
408	Construction of molecularly imprinted nanoplatforms with persistent luminescence for the in vitro specific adsorption and in vivo targeted regulation of food-borne biotoxins. New Journal of Chemistry, 2019, 43, 15097-15104.	1.4	3
409	Tailoring the Photoluminescence Excitation Dependence of the Carbon Dots via an Alkali Treatment. Journal of Physical Chemistry Letters, 2019, 10, 4596-4602.	2.1	26
410	Optically tunable fluorescent carbon nanoparticles and their application in fluorometric sensing of copper ions. Nano Research, 2019, 12, 2576-2583.	5.8	47
411	Solvent-controlled synthesis of multicolor photoluminescent carbon dots for bioimaging. RSC Advances, 2019, 9, 24057-24065.	1.7	24
412	Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry A, 2019, 123, 7420-7429.	1.1	19
413	Surface States Induced Photoluminescence Enhancement of Nitrogen-Doped Carbon Dots Via Post-Treatments. Nanoscale Research Letters, 2019, 14, 172.	3.1	40
414	A facile synthesis of self-doped carbon dots from 2-aminoterephthalic acid and their applications. Materials Today Communications, 2019, 20, 100599.	0.9	3
415	Photoluminescence of carbon dots prepared by ball milling and their application in Hela cell imaging. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
416	Controllable Fabrication, Photoluminescence Mechanism, and Novel Application of Green–Yellow–Orange Fluorescent Carbon-Based Nanodots. ACS Biomaterials Science and Engineering, 2019, 5, 5060-5071.	2.6	8
417	Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Science Bulletin, 2019, 64, 1285-1292.	4.3	240
418	The effect of pH in the synthesis of carbon quantum dots from rice husk on their photoluminescence properties. IOP Conference Series: Earth and Environmental Science, 2019, 268, 012087.	0.2	9

#	Article	IF	CITATIONS
419	Copper-based metal–organic framework nanoparticles for sensitive fluorescence detection of ferric ions. Analytical Methods, 2019, 11, 4382-4389.	1.3	29
420	Efficient Red/Nearâ€Infraredâ€Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Advanced Science, 2019, 6, 1900766.	5.6	121
421	A "sense-and-treat―ELISA using zeolitic imidazolate framework-8 as carriers for dual-modal detection of carcinoembryonic antigen. Sensors and Actuators B: Chemical, 2019, 297, 126760.	4.0	29
422	Solar-Enabled Water Remediation via Recyclable Carbon Dot/Hydrogel Composites. ACS Sustainable Chemistry and Engineering, 2019, 7, 13186-13194.	3.2	59
423	Insights into melanoidin conversion into fluorescent nanoparticles in the Maillard reaction. Food and Function, 2019, 10, 4414-4422.	2.1	19
424	Synthesis of green emissive carbon dots@montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers. Journal of Colloid and Interface Science, 2019, 554, 344-352.	5.0	53
425	Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. Journal of Materials Chemistry C, 2019, 7, 9709-9718.	2.7	71
426	Wash-induced multicolor tuning of carbon nano-dot/micro-belt hybrids with full recyclability and stable color convertibility. Nanoscale, 2019, 11, 14592-14597.	2.8	3
427	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	2.4	15
428	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
429	A Recyclable Nanocarbon White Emitter via the Synergy between Carbon Dots and Organic Sheet. ACS Sustainable Chemistry and Engineering, 2019, 7, 14677-14684.	3.2	3
430	Red-Emissive Carbon Dots for "Switch-On―Dual Function Sensing Platform Rapid Detection of Ferric Ions and <scp>l</scp> -Cysteine in Living Cells. ACS Omega, 2019, 4, 12575-12583.	1.6	40
431	Synthesis of high-efficient red carbon dots for pH detection. Journal of Luminescence, 2019, 215, 116640.	1.5	16
432	Carbon dot-protoporphyrin IX conjugates for improved drug delivery and bioimaging. PLoS ONE, 2019, 14, e0220210.	1.1	28
433	The fluorescence mechanismÂof carbon dots, and methods for tuning their emission color: a review. Mikrochimica Acta, 2019, 186, 583.	2.5	278
434	The structure-activity relationship of hydrophilic carbon dots regulated by the nature of precursor ionic liquids. Journal of Colloid and Interface Science, 2019, 554, 722-730.	5.0	13
435	White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 3849-3857.	2.1	53
436	Quantum dots from microfluidics for nanomedical application. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1567.	3.3	29

#	Article	IF	CITATIONS
437	Dramatic red fluorescence enhancement and emission red shift of carbon dots following Zn/ZnO decoration. Luminescence, 2019, 34, 759-766.	1.5	14
438	Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Analytica Chimica Acta, 2019, 1079, 212-219.	2.6	81
439	Carbon Quantum Dot as Electron Transporting Layer in Organic Light Emitting Diode. ChemistrySelect, 2019, 4, 7450-7454.	0.7	11
440	Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulkâ€State and Singleâ€Particle Level. Advanced Functional Materials, 2019, 29, 1902466.	7.8	57
441	In Situ Synthesis of Amino Acid Functionalized Carbon Dots with Tunable Properties and Their Biological Applications. ACS Applied Bio Materials, 2019, 2, 3393-3403.	2.3	82
442	Label-Free Pathogen Detection Based on Yttrium-Doped Carbon Nanoparticles up to Single-Cell Resolution. ACS Applied Materials & Interfaces, 2019, 11, 42943-42955.	4.0	30
443	Graphene setting the stage: tracking DNA hybridization with nanoscale resolution. 2D Materials, 2019, 6, 045056.	2.0	4
444	Ultrasensitive Fluorometric Angling Determination of <i>Staphylococcus aureus</i> in Vitro and Fluorescence Imaging in Vivo Using Carbon Dots with Full-Color Emission. Analytical Chemistry, 2019, 91, 14681-14690.	3.2	60
445	Orangeâ€Emissive Carbon Quantum Dots: Toward Application in Wound pH Monitoring Based on Colorimetric and Fluorescent Changing. Small, 2019, 15, e1902823.	5.2	142
446	Operative Mortality Prediction for Primary Rectal Cancer: Age Matters. Journal of the American College of Surgeons, 2019, 228, 627-633.	0.2	11
447	Use of Nitrogenâ€Doped Carbon Nanodots for the Photocatalytic Fluoroalkylation of Organic Compounds. Chemistry - A European Journal, 2019, 25, 16032-16036.	1.7	35
448	High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Science Bulletin, 2019, 64, 1788-1794.	4.3	147
449	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760
450	Concentration-dependent multicolor fluorescent carbon dots for colorimetric and fluorescent bimodal detections of Fe ³⁺ and <scp>I</scp> -ascorbic acid. Analytical Methods, 2019, 11, 669-676.	1.3	31
451	Long-Term Measurement of Solar Irradiance above, within, and under Sea Ice in Polar Environments by Using Fiber Optic Spectrometry. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1773-1787.	0.5	3
452	Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components. BMC Complementary and Alternative Medicine, 2019, 19, 275.	3.7	16
453	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	1.6	23
454	Fluorescence Solvatochromism of Carbon Dot Dispersions Prepared from Phenylenediamine and Optimization of Red Emission. Langmuir, 2019, 35, 15257-15266.	1.6	61

#	Article	IF	CITATIONS
455	Synthesis of Multicolor Carbon Dots Based on Solvent Control and Its Application in the Detection of Crystal Violet. Nanomaterials, 2019, 9, 1556.	1.9	32
456	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
457	On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. Journal of Carbon Research, 2019, 5, 60.	1.4	105
458	Ultrasonic-assisted melt blending for polyvinyl alcohol/carbon dots luminescent flexible films. AIP Conference Proceedings, 2019, , .	0.3	2
459	Luminescent carbon nanoparticles separation and purification. Advances in Colloid and Interface Science, 2019, 274, 102043.	7.0	25
460	Effect of a functional recombinant cytochrome P450 enzyme of Helicoverpa armigera on gossypol metabolism co-expressed with NADPH-cytochrome P450 reductase in Pichia pastoris. Pesticide Biochemistry and Physiology, 2019, 155, 15-25.	1.6	7
461	TBHP/NH ₄ I-Mediated Direct N–H Phosphorylation of Imines and Imidates. Journal of Organic Chemistry, 2019, 84, 14949-14956.	1.7	18
462	<p>LncRNA LINC01116 Promotes Cancer Cell Proliferation, Migration And Invasion In Gastric Cancer By Positively Interacting With IncRNA CASC11</p> . OncoTargets and Therapy, 2019, Volume 12, 8117-8123.	1.0	18
463	Polyol-Mediated Synthesis of Nitrogen-Containing Carbon-Dots from Tetracyanobenzene with Intense Red Fluorescence. Nanomaterials, 2019, 9, 1470.	1.9	3
464	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	7.2	125
465	Action growth of dyonic black holes and electromagnetic duality. Journal of High Energy Physics, 2019, 2019, 1.	1.6	7
466	Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. Applied Sciences (Switzerland), 2019, 9, 107.	1.3	7
467	Ultrastable Carbon Quantum Dots-Doped MAPbBr ₃ Perovskite with Silica Encapsulation. ACS Applied Materials & Interfaces, 2019, 11, 34348-34354.	4.0	19
468	Highly Yellow-Emitting Photoluminescent Carbon Dots Derived from Dendrimer Toward Fluorescent Nanocomposites and White LEDs. Nano, 2019, 14, 1950091.	0.5	4
469	Nanocorona Formation between Foodborne Nanoparticles Extracted from Roast Squid and Human Serum Albumin. Journal of Agricultural and Food Chemistry, 2019, 67, 10470-10480.	2.4	9
470	Hydrophobic Carbon Dots from Aliphatic Compounds with One Terminal Functional Group. Journal of Physical Chemistry C, 2019, 123, 22447-22456.	1.5	19
471	CDs@ZIF-8 Modified Thin Film Polyamide Nanocomposite Membrane for Simultaneous Enhancement of Chlorine-Resistance and Disinfection Byproducts Removal in Drinking Water. ACS Applied Materials & Interfaces, 2019, 11, 33033-33042.	4.0	39
472	pH-Responsive Mn-Doped Carbon Dots for White-Light-Emitting Diodes, Fingerprinting, and Bioimaging. ACS Applied Nano Materials, 2019, 2, 5900-5909.	2.4	51

#	Article	IF	CITATIONS
473	A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Mikrochimica Acta, 2019, 186, 644.	2.5	50
474	Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy, 2019, 66, 104093.	8.2	174
475	Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging. Analytica Chimica Acta, 2019, 1090, 133-142.	2.6	64
476	Highly Fluorescent Green Carbon Dots as a Fluorescent Probe for Detecting Mineral Water pH. Sensors, 2019, 19, 3801.	2.1	33
477	Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials, 2019, 9, 1330.	1.9	59
478	Regulating the properties of carbon dots via a solvent-involved molecule fusion strategy for improved sensing selectivity. Analytica Chimica Acta, 2019, 1088, 107-115.	2.6	21
479	Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chemical Communications, 2019, 55, 12164-12167.	2.2	33
480	Enhancing Nonradiative Energy Transfer between Nitridized Carbon Quantum Dots and Monolayer WS ₂ . Journal of Physical Chemistry C, 2019, 123, 25456-25463.	1.5	3
481	Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning. Scientific Reports, 2019, 9, 14004.	1.6	226
482	Copper-Doped Carbon Dots for Optical Bioimaging and Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 13394-13402.	1.9	87
483	Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode. Journal of Colloid and Interface Science, 2019, 557, 174-184.	5.0	29
484	Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Materials, 2019, 34, 390-402.	2.9	36
485	Carbon dots functionalized papers for high-throughput sensing of 4-chloroethcathinone and its analogues in crime sites. Royal Society Open Science, 2019, 6, 191017.	1.1	25
486	Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Advances, 2019, 1, 913-936.	2.2	42
487	Microwave-assisted fabrication of multicolor photoluminescent carbon dots as a ratiometric fluorescence sensor for iron ions. New Journal of Chemistry, 2019, 43, 853-861.	1.4	15
488	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	4.1	82
489	Designing highly crystalline multifunctional multicolor-luminescence nanosystem for tracking breast cancer heterogeneity. Nanoscale Advances, 2019, 1, 1021-1034.	2.2	6
490	Rational design and facile preparation of maleimide-based functional materials for imaging and optoelectronic applications. Materials Chemistry Frontiers, 2019, 3, 571-578.	3.2	16

#	Article	IF	CITATIONS
491	Red Room-Temperature Phosphorescence of CDs@Zeolite Composites Triggered by Heteroatoms in Zeolite Frameworks. ACS Central Science, 2019, 5, 349-356.	5.3	128
492	Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.	2.7	69
493	Carbon Quantum Dots in Nanobiotechnology. Advanced Structured Materials, 2019, , 145-179.	0.3	17
494	Mechanism insights into tunable photoluminescence of carbon dots by hydroxyl radicals. Journal of Materials Science, 2019, 54, 6140-6150.	1.7	28
495	Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication. Nanoscale, 2019, 11, 3489-3494.	2.8	61
496	One-pot synthesis of carbon dots co-doped with N and S: high quantum yield governed by molecular state and fluorescence detection of Ag+. Molecular Physics, 2019, 117, 2500-2510.	0.8	8
497	One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid. Talanta, 2019, 197, 548-552.	2.9	61
498	Atomically-tailored graphene oxide displaying enhanced fluorescence for the improved optical sensing of MMP-2. Sensors and Actuators B: Chemical, 2019, 284, 485-493.	4.0	3
499	Multifunctional N,S co-doped carbon dots for sensitive probing of temperature, ferric ion, and methotrexate. Analytical and Bioanalytical Chemistry, 2019, 411, 1647-1657.	1.9	45
500	Double-emission mechanism of laser-induced HOPG-exfoliated Graphene Quantum Dots (GQDs). Applied Physics Letters, 2019, 114, .	1.5	8
501	Study of chromatographic fractions from carbon dots isolated by column chromatography and a binary gradient elution <i>via</i> RP-HPLC. Analytical Methods, 2019, 11, 760-766.	1.3	14
502	Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 2019, 21, 449-471.	4.6	821
503	Interfacial engineering of carbon dots with benzenediboronic acid for fluorescent biosensing. Nanoscale Advances, 2019, 1, 765-771.	2.2	18
504	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	2.2	54
505	Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale, 2019, 11, 2056-2064.	2.8	94
506	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
507	Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale, 2019, 11, 6584-6590.	2.8	176
508	Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. Journal of Materials Chemistry C, 2019, 7, 1502-1509.	2.7	55

#	Article	IF	CITATIONS
509	Two photon excitable graphene quantum dots for structured illumination microscopy and imaging applications: lysosome specificity and tissue-dependent imaging. Chemical Communications, 2019, 55, 521-524.	2.2	64
510	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and ï€-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	2.1	61
511	Facile synthesis of photoluminescent MoS2 and WS2 quantum dots with strong surface-state emission. Journal of Luminescence, 2019, 214, 116554.	1.5	27
512	Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Analytical Chemistry, 2019, 91, 9292-9299.	3.2	319
513	Carbon Dots: Diverse Preparation, Application, and Perspective in Surface Chemistry. Langmuir, 2019, 35, 9115-9132.	1.6	70
514	Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Mikrochimica Acta, 2019, 186, 468.	2.5	32
515	Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers. Nanoscale, 2019, 11, 11577-11583.	2.8	66
516	Hydrophilic Food-Borne Nanoparticles from Beef Broth as Novel Nanocarriers for Zinc. Journal of Agricultural and Food Chemistry, 2019, 67, 6995-7004.	2.4	23
517	Origins of Efficient Multiemission Luminescence in Carbon Dots. Chemistry of Materials, 2019, 31, 4732-4742.	3.2	113
518	One step hydrothermal functionalization of gold nanoparticles with folic acid. Colloids and Surfaces B: Biointerfaces, 2019, 181, 533-538.	2.5	6
519	Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 2019, 7, 7175-7195.	2.7	270
520	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
521	Surface modification of carbon quantum dots by fluorescein derivative for dual-emission ratiometric fluorescent hypochlorite biosensing and in vivo bioimaging. Sensors and Actuators B: Chemical, 2019, 296, 126638.	4.0	37
522	Synthesis of multi-color fluorescent carbon quantum dots and solid state CQDs@SiO2 nanophosphors for light-emitting devices. Ceramics International, 2019, 45, 17387-17394.	2.3	51
523	Experimental methods in chemical engineering: Fluorescence emission spectroscopy. Canadian Journal of Chemical Engineering, 2019, 97, 2168-2175.	0.9	15
524	A Red Emissive Twoâ€Photon Fluorescence Probe Based on Carbon Dots for Intracellular pH Detection. Small, 2019, 15, e1901673.	5.2	150
525	Facile synthesis of porous nitrogen doped carbon dots (NCDs)@g-C3N4 for highly efficient photocatalytic and anti-counterfeiting applications. Applied Surface Science, 2019, 490, 592-597.	3.1	39
526	Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon	4.1	85

#	Article	IF	CITATIONS
527	Retrosynthesis of Tunable Fluorescent Carbon Dots for Precise Longâ€Term Mitochondrial Tracking. Small, 2019, 15, e1901517.	5.2	103
528	White light emitting lanthanide based carbon quantum dots as toxic Cr (VI) and pH sensor. Journal of Colloid and Interface Science, 2019, 553, 177-185.	5.0	75
529	Tunable excitation-independent emissions from graphene quantum dots through microplasma-assisted electrochemical synthesis. Nano Structures Nano Objects, 2019, 19, 100341.	1.9	18
530	Polymer-Assisted Self-Assembly of Multicolor Carbon Dots as Solid-State Phosphors for Fabrication of Warm, High-Quality, and Temperature-Responsive White-Light-Emitting Devices. ACS Applied Materials & Materials & Materials & Solid - State Phosphore Stat	4.0	51
531	Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of Amidine-Modified Carbon Dots by CO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 22851-22857.	4.0	7
532	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	5.2	169
533	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	8.3	221
534	Magnetic metal-organic frameworks/carbon dots as a multifunctional platform for detection and removal of uranium. Applied Surface Science, 2019, 491, 640-649.	3.1	49
535	Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study. Carbon, 2019, 152, 587-597.	5.4	71
536	Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchemical Journal, 2019, 149, 103981.	2.3	46
537	Water Dispersible Red Fluorescent Carbon Nanoparticles via Carbonization of Resorcinol. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	7
538	Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn ²⁺ and carbon dots. Nanoscale, 2019, 11, 12804-12816.	2.8	67
539	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	2.1	50
540	Stabilization of palladium nanoparticles on chitosan derived N-doped carbon for hydrogenation of various functional groups. Applied Surface Science, 2019, 487, 1307-1315.	3.1	35
541	Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: Synthesis, emission mechanism, Fe3+ probe and cell imaging. Chemical Engineering Journal, 2019, 373, 963-972.	6.6	75
542	N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting. Sensors and Actuators B: Chemical, 2019, 295, 12-21.	4.0	85
543	Multifunctional Nanohybrid of Palladium Nanoparticles Encapsulated by Carbonâ€Dots for Exploiting Synergetic Applications. Advanced Materials Interfaces, 2019, 6, 1900361.	1.9	9
544	Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens. Journal of Colloid and Interface Science, 2019, 552, 378-387.	5.0	42

#	Article	IF	CITATIONS
545	Single-step synthesis of highly photoluminescent carbon dots for rapid detection of Hg2+ with excellent sensitivity. Journal of Colloid and Interface Science, 2019, 551, 101-110.	5.0	93
546	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
547	A new green technology for direct synthesis of carbon nanodots with narrow size distribution. Journal of Industrial and Engineering Chemistry, 2019, 77, 365-370.	2.9	5
548	Optimizing the microwave-assisted hydrothermal synthesis of blue-emitting l-cysteine-derived carbon dots. Journal of Luminescence, 2019, 213, 6-14.	1.5	18
549	A traceable nanoplatform for enhanced chemo-photodynamic therapy by reducing oxygen consumption. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 101978.	1.7	24
550	Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Advances, 2019, 1, 2123-2138.	2.2	71
551	Visual multiple color emission of solid-state carbon dots. Journal of Materials Chemistry C, 2019, 7, 7806-7811.	2.7	15
552	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
553	Microwave synthesis of amphiphilic carbon dots from xylose and construction of luminescent composites with shape recovery performance. Journal of Luminescence, 2019, 213, 474-481.	1.5	20
554	Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. Journal of Rare Earths, 2019, 37, 903-915.	2.5	44
555	A facile approach to synthesize carbon quantum dots with pH-dependent properties. Dyes and Pigments, 2019, 169, 73-80.	2.0	31
556	A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications. Journal of Materials Chemistry B, 2019, 7, 3840-3845.	2.9	22
557	Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes. Journal of Alloys and Compounds, 2019, 793, 613-619.	2.8	51
558	Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. Nanoscale, 2019, 11, 9526-9532.	2.8	36
559	Dual-emission carbon dots as biocompatible nanocarrier for in vitro/in vivo cell microenvironment ratiometric pH sensing in broad range. Journal of the Iranian Chemical Society, 2019, 16, 2081-2092.	1.2	9
560	Color-tunable carbon dots via control the degree of self-assembly in solution at different concentration. Journal of Luminescence, 2019, 212, 69-75.	1.5	14
561	Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers, 2019, 11, 689.	2.0	118
562	Diamond-like carbon structure-doped carbon dots: A new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes. Carbon, 2019, 149, 342-349.	5.4	49

#	Article	IF	CITATIONS
563	Fluorescent enhancement of polyethyleneimine nano-polymers and the application in cellar imaging. Polymer Degradation and Stability, 2019, 163, 7-14.	2.7	14
564	Celery Stalk-Derived Carbon Dots for Detection of Copper Ions. Journal of Nanoscience and Nanotechnology, 2019, 19, 6077-6082.	0.9	9
565	Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Applied Bio Materials, 2019, 2, 2317-2338.	2.3	226
566	Ultrabroad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index. Chemical Communications, 2019, 55, 6531-6534.	2.2	62
567	Electroluminescent Warm White Lightâ€Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Advanced Science, 2019, 6, 1900397.	5.6	174
568	Labelâ€Free Fluorometric Detection of Adulterant Malachite Green Using Carbon Dots Derived from the Medicinal Plant Source <i>Ocimum tenuiflorum</i> . ChemistrySelect, 2019, 4, 4839-4847.	0.7	25
569	Oneâ€Step Synthesis of Silicaâ€Coated Carbon Dots with Controllable Solidâ€State Fluorescence for White Lightâ€Emitting Diodes. Small, 2019, 15, e1901161.	5.2	90
570	Solid-state silicon nanoparticles with color-tunable photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2019, 7, 5962-5969.	2.7	15
571	Switching Carbon Nanodots from Single Emission to Dual Emission by One-Step Electrochemical Tailoring in Alkaline Alcohols: Implications for Sensing and Bioimaging. ACS Applied Nano Materials, 2019, 2, 2776-2784.	2.4	8
572	Highly Emissive Carbon Dots in Solid State and Their Applications in Light-Emitting Devices and Visible Light Communication. ACS Sustainable Chemistry and Engineering, 2019, 7, 9301-9308.	3.2	81
573	UV lightâ€tunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing antiâ€counterfeiting. Luminescence, 2019, 34, 437-443.	1.5	27
574	Recent advances on fluorescent biomarkers of near-infrared quantum dots for <i>in vitro</i> and <i>in vivo</i> imaging. Science and Technology of Advanced Materials, 2019, 20, 337-355.	2.8	131
575	Engineered Bright Blue- and Red-Emitting Carbon Dots Facilitate Synchronous Imaging and Inhibition of Bacterial and Cancer Cell Progression via ¹ O ₂ -Mediated DNA Damage under Photoirradiation. ACS Biomaterials Science and Engineering, 2019, 5, 1987-2000.	2.6	27
576	Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 7047-7057.	3.2	65
577	A facile hydrothermal method for preparation of fluorescent carbon dots on application of Fe ³⁺ and fingerprint detection. Methods and Applications in Fluorescence, 2019, 7, 035001.	1.1	11
578	Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New Journal of Chemistry, 2019, 43, 6332-6342.	1.4	101
579	Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Analytical and Bioanalytical Chemistry, 2019, 411, 2619-2633.	1.9	33
580	Dye-sensitized solar cell (DSSC) coated with energy down shift layer of nitrogen-doped carbon quantum dots (N-CQDs) for enhanced current density and stability. Applied Surface Science, 2019, 483, 425-431.	3.1	79

ARTICLE IF CITATIONS Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. Science 581 3.9 25 of the Total Environment, 2019, 669, 579-589. Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion. Communications Chemistry, 2019, 2, Room-temperature synthesis of fluorescent carbon-based nanoparticles and their application in 583 4.0 31 multidimensional sensing. Sensors and Actuators B: Chemical, 2019, 288, 749-756. Boron Doped Carbon Dots with Unusually High Photoluminescence Quantum Yield for Ratiometric 584 Intracellular pH Sensing. ChemPhysChem, 2019, 20, 1018-1027. Carbon Dots: A Small Conundrum. Trends in Chemistry, 2019, 1, 235-246. 585 4.4 232 Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity. Applied Surface Science, 2019, 480, 1035-1046. 3.1 N-doped carbon dots under Xenon lamp irradiation: Fluorescence red-shift and its potential 587 2.0 7 mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 91-97. Hybrid carbon dots platform enabling opportunities for desired optical properties and redox characteristics by-design. Chemical Physics Letters, 2019, 724, 8-12. 588 1.2 589 Multi-color carbon dots for white light-emitting diodes. RSC Advances, 2019, 9, 9700-9708. 1.7 22 Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the 2.5 treatment of infected wounds. Colloids and Surfaces B: Biointerfaces, 2019, 179, 17-27. Facile preparation of orange-emissive carbon dots for the highly selective detection of silver ions. 591 1.4 14 New Journal of Chemistry, 2019, 43, 5070-5076. Low-voltage multicolor electroluminescence from all-inorganic carbon dots/Si-heterostructured light-emitting diodes. Journal of Materials Science, 2019, 54, 8492-8503. Hydrothermal synthesis of N-doped carbon dots from an ethanolamine–ionic liquid gel to construct label-free multifunctional fluorescent probes for Hg²⁺, Cu²⁺ and 593 1.7 43 S₂O₃^{2a[^]}. Analyst, The, 2019, 144, 3013-3022. Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe3+. Optical Materials, 2019, 91, 386-395. 594 1.7 106 Unveiling the interaction between carbon nanodot and IR light emitting fluorescent dyes inside the confined micellar environment. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 595 2.0 3 298-308. Carbon dots derived from algae as H₂O₂ sensors: the importance of 2.2 nutrients in biomass. Nanoscale Advances, 2019, 1, 2151-2156. Purification and structural elucidation of carbon dots by column chromatography. Nanoscale, 2019, 597 2.8 85 11, 8464-8474. Carbon quantum dots: synthesis, properties, and sensing applications as a potential clinical analytical 598 1.3 method. Analytical Methods, 2019, 11, 2240-2258.

#	Article	IF	CITATIONS
599	Multicolor photoluminescent carbon nanodots regulated by degree of oxidation for multicolor patterning, invisible inks, and detection of metal ions. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	3
600	Facet-Dependent Interfacial Charge Transfer in TiO2/Nitrogen-Doped Graphene Quantum Dots Heterojunctions for Visible-Light Driven Photocatalysis. Catalysts, 2019, 9, 345.	1.6	33
601	Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. Journal of Materials Science, 2019, 54, 9372-9384.	1.7	48
602	Engineering the Photoluminescence of CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm. ACS Applied Materials & Interfaces, 2019, 11, 14256-14265.	4.0	66
603	Colorimetric and fluorometric dual-signal determination of dopamine by the use of Cu-Mn-O microcrystals and C-dots. Sensors and Actuators B: Chemical, 2019, 290, 125-132.	4.0	33
604	Rapid preparation of homogeneous carbon dots with yellow fluorescence and formation mechanistic investigation. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	5
605	Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials, 2019, 9, 529.	1.9	70
606	Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. Journal of Luminescence, 2019, 211, 298-304.	1.5	82
607	Synthesis of polyethylene glycol modified carbon dots as a kind of excellent water-based lubricant additives. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 400-409.	1.0	15
608	Influence of precursor size in the hydrothermal synthesis of cellulose-based carbon nanodots and its application towards solar cell sensitization. Materials Chemistry and Physics, 2019, 228, 187-193.	2.0	26
609	Enhanced fluorescence of nano polyethylene glycol derived from the oxidation. Journal of Luminescence, 2019, 209, 404-410.	1.5	6
610	Hollow carbon nanospheres derived from biomass by-product okara for imaging-guided photothermal therapy of cancers. Journal of Materials Chemistry B, 2019, 7, 1920-1925.	2.9	24
611	Amphipathic carbon dots with solvent-dependent optical properties and sensing application. Optical Materials, 2019, 89, 224-230.	1.7	52
612	Carbon Dots as Optical Nanoprobes for Biosensors. , 2019, , 269-300.		10
613	Spectrally Tunable Solid State Fluorescence and Roomâ€∓emperature Phosphorescence of Carbon Dots Synthesized via Seeded Growth Method. Advanced Optical Materials, 2019, 7, 1801599.	3.6	122
614	Exploring the Antibacteria Performance of Multicolor Ag, Au, and Cu Nanoclusters. ACS Applied Materials & Interfaces, 2019, 11, 8461-8469.	4.0	66
615	<i>In situ</i> fabrication of carbon dots-based lubricants using a facile ultrasonic approach. Green Chemistry, 2019, 21, 2279-2285.	4.6	70
616	Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 2019, 9, 6460-6481.	1.7	314

#	Article	IF	CITATIONS
617	Ecoâ€Friendly Colloidal Quantum Dotâ€Based Luminescent Solar Concentrators. Advanced Science, 2019, 6, 1801967.	5.6	93
618	Photogenerated singlet oxygen over zeolite-confined carbon dots for shape selective catalysis. Science China Chemistry, 2019, 62, 434-439.	4.2	9
619	Recent Advances in Carbon Nanodots: Properties and Applications in Cancer Diagnosis and Treatment. Journal of Analysis and Testing, 2019, 3, 37-49.	2.5	20
620	Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Analytica Chimica Acta, 2019, 1063, 144-151.	2.6	160
621	Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. Journal of Pharmaceutical Analysis, 2019, 9, 209-216.	2.4	91
622	Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11, 4634-4652.	2.8	301
623	Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale, 2019, 11, 5072-5079.	2.8	29
624	Fluorescent carbon dots in baked lamb: Formation, cytotoxicity and scavenging capability to free radicals. Food Chemistry, 2019, 286, 405-412.	4.2	42
625	Experimental Methods in Chemical Engineering: Particle Size Distribution by Laser Diffraction—PSD. Canadian Journal of Chemical Engineering, 2019, 97, 1974-1981.	0.9	25
626	The bioelectrochemical synthesis of high-quality carbon dots with strengthened electricity output and excellent catalytic performance. Nanoscale, 2019, 11, 4428-4437.	2.8	19
627	Synthesis and Applications of Redâ \in Emissive Carbon Dots. Chemical Record, 2019, 19, 2083-2094.	2.9	56
628	Tetrabromothiophene-Derived Sulfur-Containing Polymer Dots with Deep-Blue Luminescence and High Sensitivity to Fe3+. Russian Journal of Physical Chemistry A, 2019, 93, 2534-2541.	0.1	0
629	Red-Emissive Guanylated Polyene-Functionalized Carbon Dots Arm Oral Epithelia against Invasive Fungal Infections. ACS Applied Materials & Interfaces, 2019, 11, 46591-46603.	4.0	15
630	Rapid synthesis of nitrogen doped carbon dots with green fluorescent for bio-imaging. Optical Materials, 2019, 98, 109486.	1.7	11
631	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
632	Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. Journal of Materials Chemistry B, 2019, 7, 7729-7735.	2.9	54
633	Fe ³⁺ -Catalyzed low-temperature preparation of multicolor carbon polymer dots with the capability of distinguishing D ₂ O from H ₂ O. Chemical Communications, 2019, 55, 12467-12470.	2.2	15
634	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	2.8	96

#	Article	IF	CITATIONS
635	A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging. Nanoscale, 2019, 11, 20917-20931.	2.8	36
636	A redox modulated ratiometric fluorometric method based on the use of dual-color carbon dots for determination of the activity of enzymes participating in ascorbic acid-related reactions. Mikrochimica Acta, 2019, 186, 818.	2.5	13
637	Carbon Dots as Fluorescent/Colorimetric Probes for Real-Time Detection of Hypochlorite and Ascorbic Acid in Cells and Body Fluid. Analytical Chemistry, 2019, 91, 15477-15483.	3.2	125
638	The Application of Green-Synthesis-Derived Carbon Quantum Dots to Bioimaging and the Analysis of Mercury(II). Journal of Analytical Methods in Chemistry, 2019, 2019, 1-9.	0.7	20
639	Carbon Dots: A Mystic Star in the World of Nanoscience. Journal of Nanomaterials, 2019, 2019, 1-19.	1.5	83
640	Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon, 2019, 5, e02940.	1.4	51
641	Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega, 2019, 4, 21658-21665.	1.6	63
642	Carbon Dots as Cosensitizers in Dye-Sensitized Solar Cells and Fluorescence Chemosensors for 2,4,6-Trinitrophenol Detection. Industrial & Engineering Chemistry Research, 2019, 58, 22771-22778.	1.8	24
643	Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission. Lab on A Chip, 2019, 19, 3974-3978.	3.1	33
644	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	2.2	36
645	One-step synthesis of red-emitting carbon dots <i>via</i> a solvothermal method and its application in the detection of methylene blue. RSC Advances, 2019, 9, 29533-29540.	1.7	43
646	A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices. RSC Advances, 2019, 9, 33789-33793.	1.7	52
647	Novel single excitation dual-emission carbon dots for colorimetric and ratiometric fluorescent dual mode detection of Cu ²⁺ and Al ³⁺ ions. RSC Advances, 2019, 9, 38568-38575.	1.7	25
648	Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. Journal of Materials Science, 2019, 54, 1171-1183.	1.7	74
649	Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chemistry, 2019, 280, 195-202.	4.2	64
650	Preparation of carbon dots with long-wavelength and photoluminescenceâ€ŧunable emission to achieve multicolor imaging in cells. Optical Materials, 2019, 88, 353-358.	1.7	16
651	A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2019, 196, 456-478.	2.9	336
652	Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sensors and Actuators B: Chemical, 2019, 284, 346-353.	4.0	23

			PORT	
# 653	ARTICLE Review on carbon dots in food safety applications. Talanta, 2019, 194, 809-821.		IF 2.9	Citations
654	Graphitic Nitrogen and Highâ€Crystalline Triggered Strong Photoluminescence and Roc Ferromagnetism in Carbonized Polymer Dots. Advanced Science, 2019, 6, 1801192.	omâ€Temperature	5.6	98
655	Carbon nanopowder directed synthesis of carbon dots for sensing multiple targets. Col Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 86-92.	loids and	2.3	23
656	Ln(III) chelates-functionalized carbon quantum dots: Synthesis, optical studies and mul bioimaging applications. Colloids and Surfaces B: Biointerfaces, 2019, 175, 272-280.	timodal	2.5	42
657	Gold conjugated carbon dots nano assembly: FRET paired fluorescence probe for cystei Sensors and Actuators B: Chemical, 2019, 282, 515-522.	ne recognition.	4.0	34
658	Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for c cellular imaging ofÂsilver ions and glutathione. Mikrochimica Acta, 2019, 186, 113.	letection and	2.5	98
659	Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceou nanoparticles: a review. Mikrochimica Acta, 2019, 186, 50.	IS	2.5	28
660	Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimizati cellular investigation. Nanotechnology, 2019, 30, 135101.	on and	1.3	38
661	Surface Engineering of Carbon Nanodots (C-Dots) for Biomedical Applications. , 2019,	, 137-188.		8
662	Amino-Functionalized Al–MOF for Fluorescent Detection of Tetracyclines in Milk. Jour Agricultural and Food Chemistry, 2019, 67, 1277-1283.	rnal of	2.4	208
663	Fluorescence Turn-On, Specific Detection of Cystine in Human Blood Plasma and Urine Nitrogen-Doped Carbon Quantum Dots. ACS Omega, 2019, 4, 1007-1014.	Samples by	1.6	47
664	Theranostic Carbon Dots with Innovative NIR-II Emission for in Vivo Renal-Excreted Opti and Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 4737-47	ical Imaging '44.	4.0	218
665	A yellow carbon dots-based phosphor with high efficiency for white light-emitting devic Luminescence, 2019, 206, 97-104.	es. Journal of	1.5	29
666	Efficient solid-state and dual-mode photoluminescence of carbon-dots/NaLuF4 microcry multifunctional applications. Journal of Alloys and Compounds, 2019, 775, 457-465.	ystals for	2.8	14
667	On the intriguing emission characteristics of size tunable carbon dots derived from fun- multi-walled carbon nanotubes. Materials Chemistry and Physics, 2019, 225, 8-15.	ctionalized	2.0	8
668	Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell a nanoprobes for cell imaging. Journal of the Taiwan Institute of Chemical Engineers, 201	ns targeted 9, 95, 495-503.	2.7	75
669	Synthesis of a fluorescent cation surfactant derived from carbon quantum dots. Materi 2019, 235, 161-163.	als Letters,	1.3	12
670	Real-time detection of alcohol vapors and volatile organic compounds via optical electrousing carbon dots prepared from rice husk and density functional theory calculation. Co Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 278-287.	onic nose olloids and	2.3	69

#	Article	IF	CITATIONS
671	Highly sensitive and selective detection of 4-nitrophenol, and on-off-on fluorescence sensor for Cr (VI) and ascorbic acid detection by glucosamine derived n-doped carbon dots. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112134.	2.0	44
672	Controllable synthesis highly efficient red, yellow and blue carbon nanodots for photo-luminescent light-emitting devices. Chemical Engineering Journal, 2020, 380, 122503.	6.6	38
673	Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon, 2020, 156, 558-567.	5.4	65
674	Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta, 2020, 208, 120375.	2.9	21
675	Carbon dots decorated hierarchical litchi-like In2O3 nanospheres for highly sensitive and selective NO2 detection. Sensors and Actuators B: Chemical, 2020, 304, 127272.	4.0	54
676	A sensitivity enhanced fluorescence method for the detection of ferrocyanide ions in foodstuffs using carbon nanoparticles as sensing agents. Food Chemistry, 2020, 308, 125590.	4.2	20
677	Manganeseâ€doped green teaâ€derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1616-1625.	1.6	39
678	Conjugated ternary doped carbon dots from vitamin B derivative: Multispectral nanoprobes for targeted melanoma bioimaging and photosensitization. Journal of Luminescence, 2020, 217, 116811.	1.5	14
679	One-step synthesis of carbon nanoparticles and yellow to blue fluorescent nanocarbons in flame reactors. Carbon, 2020, 156, 370-377.	5.4	17
680	Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity. Talanta, 2020, 208, 120460.	2.9	19
681	Highly selective antenna effect of graphene quantum dots (GQDs): A new fluorescent sensitizer for rare earth element terbium in aqueous media. Talanta, 2020, 209, 120504.	2.9	20
682	Multicolor emissive carbon dot with solvatochromic behavior across the entire visible spectrum. Carbon, 2020, 156, 110-118.	5.4	64
683	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	4.6	145
684	A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes and Pigments, 2020, 172, 107846.	2.0	75
685	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie, 2020, 132, 1279-1285.	1.6	18
686	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie - International Edition, 2020, 59, 1263-1269.	7.2	198
687	One-step synthesis of yellow-emissive carbon dots with a large Stokes shift and their application in fluorimetric imaging of intracellular pH. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117677.	2.0	25
688	pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging. Materials Science and Engineering C, 2020, 108, 110401.	3.8	28

#	Article	IF	CITATIONS
689	New insight into the engineering of green carbon dots: Possible applications in emerging cancer theranostics. Talanta, 2020, 209, 120547.	2.9	34
690	Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon. Cellulose, 2020, 27, 415-428.	2.4	46
691	Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in Colloid and Interface Science, 2020, 275, 102046.	7.0	117
692	Oxygen/nitrogen-related surface states controlled carbon nanodots with tunable full-color luminescence: Mechanism and bio-imaging. Carbon, 2020, 160, 298-306.	5.4	49
693	Carbon Dots Doped with N and S towards Controlling Emitting. Journal of Fluorescence, 2020, 30, 81-89.	1.3	15
694	Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state. Journal of Colloid and Interface Science, 2020, 565, 77-85.	5.0	57
695	Carbon Dots and a CdTe Quantum Dot Hybrid-Based Fluorometric Probe for Spermine Detection. Industrial & Engineering Chemistry Research, 2020, 59, 1723-1729.	1.8	56
696	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	1.7	9
697	Complexation and fluorescence behavior of proflavin with chemically engineered amine capped carbon nanodots and its subsequent release into DNA environments. New Journal of Chemistry, 2020, 44, 1045-1053.	1.4	2
698	Influence of the solvent environment on luminescent centers within carbon dots. Nanoscale, 2020, 12, 602-609.	2.8	47
699	Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors. Journal of Materials Chemistry A, 2020, 8, 3270-3279.	5.2	51
700	A solvent-governed surface state strategy for rational synthesis of N and S co-doped carbon dots with multicolour fluorescence. Molecular Physics, 2020, 118, e1710609.	0.8	5
701	A new generation of energy storage electrode materials constructed from carbon dots. Materials Chemistry Frontiers, 2020, 4, 729-749.	3.2	70
702	Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons, 2020, 5, 218-234.	4.1	192
703	Mechanisms behind excitation- and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale, 2020, 12, 591-601.	2.8	120
704	Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Materials Chemistry Frontiers, 2020, 4, 472-488.	3.2	79
705	Carbon dots: a booming material for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 821-836.	3.2	150
706	Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal, 2020, 386, 123913.	6.6	64

#	Article	IF	CITATIONS
707	Ultrasensitive visual detection of mycotoxin citrinin with yellow-light emitting carbon dot and Congo red. Food Chemistry, 2020, 312, 126076.	4.2	23
708	Interface electron collaborative migration of Co–Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane. Journal of Energy Chemistry, 2020, 48, 43-53.	7.1	79
709	Enzyme-induced in situ generation of polymer carbon dots for fluorescence immunoassay. Sensors and Actuators B: Chemical, 2020, 306, 127583.	4.0	41
710	Nitrogen-Doped Carbon Quantum Dots-Decorated Mg-Al Layered Double Hydroxide-Supported Gold Nanocatalysts for Efficient Base-Free Oxidation of Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2020, 59, 636-646.	1.8	16
711	Photoactivated Fluorescence Enhancement in F,Nâ€Doped Carbon Dots with Piezochromic Behavior. Angewandte Chemie - International Edition, 2020, 59, 9986-9991.	7.2	139
712	Deciphering the interaction of solvents with dual emissive carbon dots: A photoluminescence study and its response for different metal ions. Materials Science and Engineering C, 2020, 108, 110443.	3.8	17
713	Multicolor emissive sulfur, nitrogen co-doped carbon dots and their application in ion detection and solid lighting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117859.	2.0	18
714	Pattern-based recognition of proteins by an array of fluorescent carbon-nanodot receptors. Talanta, 2020, 209, 120551.	2.9	7
715	The formation mechanism and fluorophores of carbon dots synthesized <i>via</i> a bottom-up route. Materials Chemistry Frontiers, 2020, 4, 400-420.	3.2	166
716	Pyridine functionalized carbon dots for specific detection of tryptophan in human serum samples and living cells. Microchemical Journal, 2020, 154, 104579.	2.3	11
717	Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Research, 2020, 13, 52-60.	5.8	126
718	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie, 2020, 132, 3123-3129.	1.6	11
719	A universal strategy to separate hydrophilic hybrid-light carbon quantum dots using pure water as eluent. Applied Materials Today, 2020, 18, 100528.	2.3	10
720	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
721	A synthesis of graphene quantum dots/hollow TiO2 nanosphere composites for enhancing visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1430-1441.	1.1	10
722	Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation. Applied Surface Science, 2020, 507, 145027.	3.1	31
723	Ratiometric pH Sensing in Living Cells Using Carbon Dots. Particle and Particle Systems Characterization, 2020, 37, 1900430.	1.2	14
724	Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Materials Research Bulletin, 2020, 124, 110730.	2.7	134

ARTICLE IF CITATIONS # Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia 725 7.2 97 Method. Angewandte Chemie - International Edition, 2020, 59, 3099-3105. Photoactivated Fluorescence Enhancement in F,Nâ€Doped Carbon Dots with Piezochromic Behavior. 1.6 Angewandte Chemie, 2020, 132, 10072-10077. Surface structure and fluorescence characteristics of concentrated carbon point. Colloids and 727 2.3 4 Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124201. One step synthesis of N-doped carbon dots/hydroxyapatite:Eu,Gd composite with dual-emissive and 3.1 solid-state photoluminescence. Applied Surface Science, 2020, 508, 144862. Multiway data analysis approach toward understanding of photoluminescence and energy transfer in 729 1.5 5 carbon nanodots. Luminescence, 2020, 35, 385-392. Fluorescent silicon nanoparticles as dually emissive probes for copper(II) and for visualization of latent fingerprints. Mikrochimica Acta, 2020, 187, 65. 2.5 Multi-sensing function integrated nitrogen-doped fluorescent carbon dots as the platform toward 731 2.9 47 multi-mode detection and bioimaging. Talanta, 2020, 210, 120653. Full-color fluorescent carbon quantum dots. Science Advances, 2020, 6, . 344 Hollow N-doped carbon @ O-vacancies NiCo2O4 nanocages with a built-in electric field as 734 42 2.6 high-performance cathodes for hybrid supercapacitor. Electrochimica Acta, 2020, 364, 137260. Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical 1.7 review. Talanta Open, 2020, 2, 100006. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances 736 314 7.3and Future Challenges. ACS Nano, 2020, 14, 14417-14492. Preparation and application of carbon dots with tunable luminescence by controlling surface functionalization. Optical Materials, 2020, 108, 110450. An "on–off–on―selective fluorescent probe based on nitrogen and sulfur co-doped carbon dots for 738 1.3 23 detecting Cu²⁺ and GSH in living cells. Analytical Methods, 2020, 12, 5110-5119. Application Progress of Fluorescent Carbon Quantum Dots in Food Analysis. Chinese Journal of Analytical Chemistry, 2020, 48, 1288-1296. Indole Carbonized Polymer Dots Boost Full-Color Emission by Regulating Surface State. IScience, 2020, 740 1.9 17 23, 101546. Stealth and Bright Monomolecular Fluorescent Organic Nanoparticles Based on Folded Amphiphilic 741 29 Polymer. ACS Nano, 2020, 14, 13924-13937. Label-free detection of creatinine using nitrogen-passivated fluorescent carbon dots. RSC Advances, 742 1.7 26 2020, 10, 36253-36264. Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Applied Nano 743 2.4 Materials, 2020, 3, 8182-8191.

#	Article	IF	CITATIONS
744	Dual-Mode Optical Nanosensor Based on Gold Nanoparticles and Carbon Dots for Visible Detection of As(III) in Water. ACS Applied Nano Materials, 2020, 3, 8224-8231.	2.4	33
745	Charge transfer mediated photoluminescence enhancement in carbon dots embedded in TiO2 nanotube matrix. Carbon, 2020, 161, 535-541.	5.4	19
746	Optimization of fluorescence and surface adsorption of citric acid/ethanolamine carbon nanoparticles for subsurface tracers. Carbon, 2020, 169, 395-402.	5.4	7
747	<i>Ligusticum Striatum</i> -Derived Carbon Dots as Nanocarriers to Deliver Methotrexate for Effective Therapy of Cancer Cells. ACS Applied Bio Materials, 2020, 3, 8786-8794.	2.3	7
748	Nitrogen and sulfur co-doped fluorescent carbon dots for the trapping of Hg(<scp>ii</scp>) ions from water. Materials Advances, 2020, 1, 3009-3021.	2.6	10
749	DES-N-doped oxygenated carbon dot colloidal solutions for light harvesting and bio-imaging applications. Materials Advances, 2020, 1, 3476-3482.	2.6	4
750	Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis. Journal of Physical Chemistry Letters, 2020, 11, 10439-10445.	2.1	9
751	A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials, 2020, 10, 2316.	1.9	181
752	Red-Emitting Carbon Nanodot-Based Wide-Range Responsive Nanothermometer for Intracellular Temperature Sensing. Analytical Chemistry, 2020, 92, 15632-15638.	3.2	54
753	Doped Carbon Dots for the Selective Sensing of Hexavalent Chromium in Water. Journal of the Institution of Engineers (India): Series E, 2022, 103, 157-165.	0.5	8
754	Discriminatory Interaction Behavior of Lipid Vesicles toward Diversely Emissive Carbon Dots Synthesized from Ortho, Meta, and Para Isomeric Carbon Precursors. Langmuir, 2020, 36, 10628-10637.	1.6	7
755	Exploiting molecular probes to perform nearâ€infrared fluorescenceâ€guided surgery. View, 2020, 1, 20200068.	2.7	29
756	Improved Quantum Yield and Excellent Luminescence Stability of Europiumâ€Incorporated Polymeric Hydrogenâ€Bonded Heptazine Frameworks Due to an Efficient Hydrogenâ€Bonding Effect. Advanced Functional Materials, 2020, 30, 2003656.	7.8	20
757	Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Research, 2020, 13, 3012-3018.	5.8	48
758	Rhombic-like Al nanosupporter-based fluorescent immunochromatographic assay for the sensitive detection of tetracycline. Sensors and Actuators B: Chemical, 2020, 324, 128721.	4.0	23
759	Synthesis of Lanthanide-Functionalized Carbon Quantum Dots for Chemical Sensing and Photocatalytic Application. Catalysts, 2020, 10, 833.	1.6	9
760	Synthesis of Novel Fluorescent Carbon Quantum Dots From Rosa roxburghii for Rapid and Highly Selective Detection of o-nitrophenol and Cellular Imaging. Frontiers in Chemistry, 2020, 8, 665.	1.8	16
761	Erlotinib Conjugated Nitrogen Doped Carbon Nanodots for Targeted Fluorescence Imaging of Human Pancreatic Cancer Cells. ChemistrySelect, 2020, 5, 9269-9276.	0.7	2

#	Article	IF	CITATIONS
762	Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: Characterized, fluorescence mechanism, and potential applications. Dyes and Pigments, 2020, 183, 108725.	2.0	32
763	Quaternized Cationic Carbon Dots as Antigen Delivery Systems for Improving Humoral and Cellular Immune Responses. ACS Applied Nano Materials, 2020, 3, 9449-9461.	2.4	15
764	Microplasma-enabled nanocarbon assembly for the diameter-selective synthesis of colloidal graphene quantum dots. Chemical Communications, 2020, 56, 10365-10368.	2.2	10
765	Facile pH-sensitive optical detection of pathogenic bacteria and cell imaging using multi-emissive nitrogen-doped carbon dots. Microchemical Journal, 2020, 159, 105324.	2.3	14
766	Rare-earth-free zinc aluminium borate white phosphors for LED lighting. Journal of Materials Chemistry C, 2020, 8, 11839-11849.	2.7	13
767	Properties of Carbon Dots Synthesized Solvothermally from Citric Acid and Urea. Journal of Structural Chemistry, 2020, 61, 811-817.	0.3	5
768	Optimization of Ionic Liquid-Mediated Red-Emission Carbon Dots and Their Imaging Application in Living Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 16979-16989.	3.2	25
769	Enhanced Proton Conductivity across Protein Biopolymers Mediated by Doped Carbon Nanoparticles. Small, 2020, 16, e2005526.	5.2	9
770	Multicolor nitrogen dots for rapid detection of thiram and chlorpyrifos in fruit and vegetable samples. Analytica Chimica Acta, 2020, 1136, 72-81.	2.6	18
771	Synthesis and characterization of nanocomposite based on reduced graphene oxide-gold nanoparticles-carbon dots: electroanalytical determination of dihydroxybenzene isomers simultaneously. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	10
772	Yellow-Emitting Hydrophobic Carbon Dots via Solid-Phase Synthesis and Their Applications. ACS Omega, 2020, 5, 22587-22595.	1.6	10
773	Carbon dots based ratiometric fluorescent sensing platform for food safety. Critical Reviews in Food Science and Nutrition, 2022, 62, 244-260.	5.4	70
774	Nitrogen-Doped Carbon Quantum Dots from Poly(ethyleneimine) for Optical Dual-Mode Determination of Cu ²⁺ and <scp>l</scp> -Cysteine and Their Logic Gate Operation. ACS Applied Materials & Interfaces, 2020, 12, 47245-47255.	4.0	52
775	Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields. ACS Nano, 2020, 14, 14761-14768.	7.3	143
776	One-pot fabrication of dual-emission and single-emission biomass carbon dots for Cu2+ and tetracycline sensing and multicolor cellular imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 7481-7489.	1.9	36
777	Engineering Inorganic Nanoflares with Elaborate Enzymatic Specificity and Efficiency for Versatile Biofilm Eradication. Small, 2020, 16, e2002348.	5.2	49
778	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	2.1	34
779	Investigation of Heavy Atom Effect on Fluorescence of Carbon Dots: NCDs and S,N-CDs. Journal of Fluorescence, 2020, 30, 1337-1344.	1.3	9

#	Article	IF	CITATIONS
780	Molecular Fluorophores Self-Organize into C-Dot Seeds and Incorporate into C-Dot Structures. Journal of Physical Chemistry Letters, 2020, 11, 8252-8258.	2.1	24
781	Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 2020, 6, 2179-2195.	5.3	793
782	High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Scientific Reports, 2020, 10, 21262.	1.6	107
783	A rapid <i>in situ</i> synthesis of wide-spectrum CD@BaCl ₂ phosphors <i>via</i> anti-solvent recrystallization for white LEDs. Inorganic Chemistry Frontiers, 2020, 7, 4845-4853.	3.0	8
784	A New Anti-counterfeiting Feature Relying on Invisible Non-toxic Fluorescent Carbon Dots. Journal of Analysis and Testing, 2020, 4, 307-315.	2.5	15
785	Carbonâ€Based Quantum Dots with Solidâ€State Photoluminescent: Mechanism, Implementation, and Application. Small, 2020, 16, e2004621.	5.2	141
786	In Situ Chromophore Doping: A New Mechanism for the Long-Wavelength Emission of Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 10638-10646.	1.5	27
787	Preparation of Biomass-Based Carbon Dots with Aggregation Luminescence Enhancement from Hydrogenated Rosin for Biological Imaging and Detection of Fe ³⁺ . ACS Omega, 2020, 5, 11842-11848.	1.6	25
788	One-step synthesis of mitochondrion-targeted fluorescent carbon dots and fluorescence detection of silver ions. Analytical Methods, 2020, 12, 2835-2840.	1.3	24
789	Nonlinear Optics to Glucose Sensing: Multifunctional Nitrogen and Boron Doped Carbon Dots with Solidâ€5tate Fluorescence in Nanoporous Silica Films. Particle and Particle Systems Characterization, 2020, 37, 2000093.	1.2	15
790	Ordered structures of alkylated carbon dots and their applications in nonlinear optics. Journal of Materials Chemistry C, 2020, 8, 8980-8991.	2.7	20
791	Spectroscopic Study of Ensemble and Individual Graphene Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 12112-12119.	1.5	5
793	A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale, 2020, 12, 10987-10993.	2.8	46
794	Benefit of porous silica nanoreactor in preparation of fluorescence carbon dots from citric acid. Nano Express, 2020, 1, 010011.	1.2	8
795	Novel Processing for Color-Tunable Luminescence Carbon Dots and Their Advantages in Biological Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 8585-8592.	3.2	49
796	Fluorescent nanoparticles for sensing. Frontiers of Nanoscience, 2020, 16, 117-149.	0.3	16
797	Deep Eutectic Solvent-assisted Synthesis of Nitrogen-doped Carbon Quantum Dots for Cell Imaging. Chemical Research in Chinese Universities, 2020, 36, 955-961.	1.3	11
798	Fluorescent Carbon Dots for in Situ Monitoring of Lysosomal ATP Levels. Analytical Chemistry, 2020, 92, 7940-7946.	3.2	82

#	Article	IF	CITATIONS
799	Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 2020, 10, 930.	1.9	87
800	Highly luminescent N-doped carbon dots as a fluorescence detecting platform for Fe ³⁺ in solutions and living cells. Analyst, The, 2020, 145, 4931-4936.	1.7	20
801	Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118462.	2.0	61
802	Microscale Polarization Color Pixels from Liquid Crystal Elastomers. Advanced Optical Materials, 2020, 8, 1902098.	3.6	29
803	A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. Nanoscale, 2020, 12, 11971-11978.	2.8	12
804	Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Materials Advances, 2020, 1, 119-138.	2.6	37
805	Mushroom-Derived Carbon Dots for Toxic Metal Ion Detection and as Antibacterial and Anticancer Agents. ACS Applied Nano Materials, 2020, 3, 5910-5919.	2.4	146
806	Endogenous Fluorescence Carbon Dots Derived from Food Items. Innovation(China), 2020, 1, 100009.	5.2	37
807	An excitation-dependent ratiometric dual-emission strategy for the large-scale enhancement of fluorescent tint control. Nanoscale, 2020, 12, 12773-12778.	2.8	9
808	Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Applied Microbiology and Biotechnology, 2020, 104, 7187-7200.	1.7	56
809	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	1.1	180
810	Tunable dual fluorescence emissions with high photoluminescence quantum yields modulated by Na ion dispersion method for purely solid state N-doped carbon dots. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112548.	2.0	14
811	Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. Nanomaterials, 2020, 10, 1063.	1.9	15
812	Terbium(<scp>iii</scp>)-coated carbon quantum dots for the detection of clomipramine through aggregation-induced emission from the analyte. New Journal of Chemistry, 2020, 44, 10536-10544.	1.4	22
813	Amphiphilic Carbon Dots with Excitationâ€Independent Doubleâ€Emissions. Particle and Particle Systems Characterization, 2020, 37, 2000146.	1.2	13
814	Rational Design of Far-Red to Near-Infrared Emitting Carbon Dots for Ultrafast Lysosomal Polarity Imaging. ACS Applied Materials & Interfaces, 2020, 12, 31738-31744.	4.0	71
815	An ultrasonic-assisted synthesis of leather-derived luminescent graphene quantum dots: catalytic reduction and switch on–off probe for nitro-explosives. RSC Advances, 2020, 10, 22959-22965.	1.7	7
816	Potential of Graphene Nanodots in Cellular Imaging and Raman Mapping. Nano, 2020, 15, 2050098.	0.5	1

#	Article	IF	CITATIONS
817	A mitochondrion-targeting fluorescent probe for hypochlorite anion in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118564.	2.0	13
818	Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer. Biomaterials, 2020, 255, 120110.	5.7	79
819	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	5.4	164
820	Ultraviolet Carbon Nanodots Providing a Dual-Mode Spectral Matching Platform for Synergistic Enhancement of the Fluorescent Sensing. Molecules, 2020, 25, 2679.	1.7	3
821	Complementary Oligonucleotide Conjugated Multicolor Carbon Dots for Intracellular Recognition of Biological Events. ACS Applied Materials & amp; Interfaces, 2020, 12, 16137-16149.	4.0	34
822	Excitation-Independent Blue-Emitting Carbon Dots from Mesoporous Aminosilica Nanoreactor for Bioanalytical Application. ACS Applied Nano Materials, 2020, 3, 3652-3664.	2.4	16
823	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	3.2	208
824	Preparation of tunable fullâ€color emission carbon dots and their optical applications in ions detection and bioâ€imaging. Journal of the American Ceramic Society, 2020, 103, 4507-4516.	1.9	18
825	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	11.1	271
826	Recent advance of carbon dots in bio-related applications. JPhys Materials, 2020, 3, 022003.	1.8	36
827	Oneâ€pot synthesis of carbon dots@ZrO 2 nanoparticles with tunable solidâ€state fluorescence. Polymers for Advanced Technologies, 2020, 31, 1744-1751.	1.6	6
828	Preparation and Biomedical Applications of Multicolor Carbon Dots: Recent Advances and Future Challenges. Particle and Particle Systems Characterization, 2020, 37, 1900489.	1.2	27
829	Confined synthesis of carbon dots with tunable long-wavelength emission in a 2-dimensional layered double hydroxide matrix. Nanoscale, 2020, 12, 7888-7894.	2.8	15
830	A label-free yellow-emissive carbon dot-based nanosensor for sensitive and selective ratiometric detection of chromium (VI) in environmental water samples. Materials Chemistry and Physics, 2020, 248, 122912.	2.0	27
831	Surface metal-ion-functionalized carbon dots and their application in pH sensing. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
832	Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS ONE, 2020, 15, e0230646.	1.1	67
833	The effect of hydrothermal conditions on photoluminescence properties of rice husk-derived silica-carbon quantum dots for methylene blue degradation. Biomass Conversion and Biorefinery, 2021, 11, 2641-2654.	2.9	18
834	Visual and ratiometric fluorescent determination of Al3+ by a red-emission carbon dot-quercetin system. Microchemical Journal, 2020, 156, 104807.	2.3	30

#	Article	IF	CITATIONS
835	High-performance thermoplastic polyurethane elastomer/carbon dots bulk nanocomposites with strong luminescence. High Performance Polymers, 2020, 32, 857-867.	0.8	14
836	Chemically Functionalized Twoâ€Dimensional Carbon Materials. Chemistry - an Asian Journal, 2020, 15, 2316-2328.	1.7	15
837	Photochemically Synthesized Ruthenium Nanoparticle-Decorated Carbon-Dot Nanochains: An Efficient Catalyst for Synergistic Redox Reactions. ACS Applied Materials & Interfaces, 2020, 12, 13759-13769.	4.0	17
838	Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale, 2020, 12, 6852-6860.	2.8	50
839	Optical and electrochemical tuning of hydrothermally synthesized nitrogen-doped carbon dots. Nanoscale Advances, 2020, 2, 3375-3383.	2.2	8
840	Chitosan derived nitrogen-doped carbon dots suppress osteoclastic osteolysis <i>via</i> downregulating ROS. Nanoscale, 2020, 12, 16229-16244.	2.8	43
841	Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion. Nanoscale, 2020, 12, 15823-15831.	2.8	39
842	High green-emission carbon dots and its optical properties: Microwave power effect. AIP Advances, 2020, 10, .	0.6	22
843	Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydrate Polymers, 2020, 247, 116721.	5.1	37
844	Efficient fabrication of ratiometric fluorescence imprinting sensors based on organic-inorganic composite materials and highly sensitive detection of oxytetracycline in milk. Microchemical Journal, 2020, 157, 105053.	2.3	28
845	Plasmonic/magnetic molybdenum trioxide and graphitic carbon nitride quantum dots-based fluoroimmunosensing system for influenza virus. Sensors and Actuators B: Chemical, 2020, 321, 128494.	4.0	42
846	Biomass-Based Polymer Nanoparticles With Aggregation-Induced Fluorescence Emission for Cell Imaging and Detection of Fe3+ Ions. Frontiers in Chemistry, 2020, 8, 563.	1.8	6
847	Effects of polydopamine-passivation on the optical properties of carbon dots and its potential use <i>in vivo</i> . Physical Chemistry Chemical Physics, 2020, 22, 16595-16605.	1.3	14
848	Interparticle distance as a key factor for controlling the dual-emission properties of carbon dots. Physical Chemistry Chemical Physics, 2020, 22, 20227-20237.	1.3	22
849	Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. Journal of Colloid and Interface Science, 2020, 580, 88-98.	5.0	31
850	Design of Red Emissive Carbon Dots: Robust Performance for Analytical Applications in Pesticide Monitoring. Analytical Chemistry, 2020, 92, 3198-3205.	3.2	129
851	One-step hydrothermal preparation of highly stable N doped oxidized carbon dots for toxic organic pollutants sensing and bioimaging. Chemical Engineering Journal, 2020, 401, 126097.	6.6	50
852	Nitrogen/sulfur Co-doping strategy to synthesis green-yellow emitting carbon dots derived from xylose: Toward application in pH sensing. Journal of Luminescence, 2020, 227, 117489.	1.5	11

#	Article	IF	CITATIONS
853	Ultra-Bright 2D Assembled Copper Nanoclusters: Fluorescence Mechanism Exploration and LED Application. Materials Science Forum, 2020, 996, 20-25.	0.3	0
854	Nitrogen and Phosphorus Co-Doped Carbon Dots for Selective Detection of Nitro Explosives. ACS Omega, 2020, 5, 2710-2717.	1.6	39
856	Computational and Experimental Analysis of Carbon Functional Nanomaterials. , 2020, , 269-311.		0
857	Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosensors and Bioelectronics, 2020, 156, 112085.	5.3	99
858	Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020, 12, 5494-5500.	2.8	68
859	Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. Analyst, The, 2020, 145, 2982-2987.	1.7	26
860	Water-soluble carbon dots with blue, yellow and red emissions: mechanism investigation and array-based fast sensing application. Chemical Communications, 2020, 56, 4074-4077.	2.2	30
861	Synthesis of multiple-color emissive carbon dots towards white-light emission. Nanotechnology, 2020, 31, 245001.	1.3	7
862	Lipophilic Red-Emitting Oligomeric Organic Dots for Moisture Detection and Cell Imaging. ACS Applied Nano Materials, 2020, 3, 1942-1949.	2.4	7
863	Optical properties of graphene quantum dots: the role of chiral symmetry. 2D Materials, 2020, 7, 025041.	2.0	6
864	Porphin-Based Carbon Dots for "Turn Off–On―Phosphate Sensing and Cell Imaging. Nanomaterials, 2020, 10, 326.	1.9	28
865	Facile synthesis of yellow emissive carbon dots with high quantum yield and their application in construction of fluorescence-labeled shape memory nanocomposite. Journal of Alloys and Compounds, 2020, 834, 154399.	2.8	39
866	Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 2218-2229.	2.3	33
867	Carbon Dot-Sensitized Photoanodes for Visible Light-Driven Organic Transformations. ACS Applied Nano Materials, 2020, 3, 2756-2765.	2.4	7
868	Facile and Efficient Fabrication of Bandgap Tunable Carbon Quantum Dots Derived From Anthracite and Their Photoluminescence Properties. Frontiers in Chemistry, 2020, 8, 123.	1.8	34
869	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 9826-9840.	7.2	169
870	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie, 2020, 132, 9910-9924.	1.6	36
871	Bidirectional Photochromism via Anchoring of Carbon Dots to TiO ₂ Porous Films. ACS Applied Materials & Interfaces, 2020, 12, 6262-6267.	4.0	13

# 872	ARTICLE Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from <i>p</i> -phenylenediamine. Chemical Communications, 2020, 56, 2174-2177.	IF 2.2	Citations
873	Reversible Oxygen Sensing Based on Multi-Emission Fluorescence Quenching. Sensors, 2020, 20, 477.	2.1	9
874	Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen. Applied Surface Science, 2020, 510, 145405.	3.1	36
875	Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chemical Engineering Journal, 2020, 388, 124199.	6.6	74
876	Ordered mesoporous silica encapsulated carbon quantum dots and its application in Fe3+ detection. Ceramics International, 2020, 46, 11115-11123.	2.3	20
877	Graphene quantum dots: efficient mechanosynthesis, white-light and broad linear excitation-dependent photoluminescence and growth inhibition of bladder cancer cells. Dalton Transactions, 2020, 49, 2308-2316.	1.6	12
878	Recent advances in white light-emitting diodes of carbon quantum dots. Nanoscale, 2020, 12, 4826-4832.	2.8	98
879	Carbon Nanolights in Piezopolymers are Selfâ€Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting. Small, 2020, 16, e1905703.	5.2	13
880	Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process. Chemical Engineering Journal, 2020, 388, 124285.	6.6	57
881	Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO ^{â^'} . Analyst, The, 2020, 145, 2212-2218.	1.7	22
882	Synergistic Enhancement Effects of Carbon Quantum Dots and Au Nanoclusters for Cathodic ECL and Nonâ€enzyme Detections of Glucose. Electroanalysis, 2020, 32, 1155-1159.	1.5	23
883	Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. Advanced Optical Materials, 2020, 8, 1901938.	3.6	74
884	Silica–carbon quantum dots decorated titanium dioxide as sunlight-driven photocatalyst to diminish acetaminophen from aquatic environment. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112436.	2.0	22
885	Synthesis and modulation of the optical properties of carbon quantum dots using microwave radiation. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 724-731.	1.0	19
886	Toward near-white electroluminescence with enhanced blue emission from carbon dots in PEDOT:PSS/ZnO organic/inorganic hybrid heterojunctions. Journal of Luminescence, 2020, 224, 117230.	1.5	10
887	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	2.6	92
888	Cellulose-Based Photoluminescent Nanocomposites. , 2020, , 117-170.		3
889	Carbon dots with concentration-modulated fluorescence: Aggregation-induced multicolor emission. Journal of Colloid and Interface Science, 2020, 573, 241-249.	5.0	58

#	Article	IF	CITATIONS
890	Photoluminescence properties of l-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents. Journal of Luminescence, 2020, 224, 117260.	1.5	8
891	Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 2020, 124, 8894-8904.	1.5	63
892	Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS Omega, 2020, 5, 8219-8229.	1.6	9
893	Enhancing photoluminescence of carbon quantum dots doped PVA films with randomly dispersed silica microspheres. Scientific Reports, 2020, 10, 5710.	1.6	9
894	Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. Journal of Materials Chemistry A, 2020, 8, 7508-7535.	5.2	201
895	Unraveling the Fluorescence Mechanism of Carbon Dots with <i>Sub</i> -Single-Particle Resolution. ACS Nano, 2020, 14, 6127-6137.	7.3	152
896	A pH sensitive fluorescent carbon dots for urea and urease detection. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 752-760.	1.0	20
897	A green carbon dots-based fluorescent sensor for selective and visual detection of nitrite triggered by the nitrite–thiol reaction. New Journal of Chemistry, 2020, 44, 8503-8511.	1.4	35
898	The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon, 2020, 165, 306-316.	5.4	89
899	Sensitive fluorescence detection of atorvastatin by doped carbon dots synthesized in deep eutectic media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118341.	2.0	14
900	Near Infrared-Emitting Nanoparticles for Biomedical Applications. , 2020, , .		20
901	Tunable Photoluminescence of Carbon Dots used for Homogeneous Glucose Sensing Assay. Biochemical Engineering Journal, 2020, 159, 107580.	1.8	8
902	Orange-red, green, and blue fluorescence carbon dots for white light emitting diodes. Journal of Materials Science and Technology, 2020, 50, 184-191.	5.6	40
903	UV–Vis–NIR Fullâ€Range Responsive Carbon Dots with Large Multiphoton Absorption Cross Sections and Deepâ€Red Fluorescence at Nucleoli and In Vivo. Small, 2020, 16, e2000680.	5.2	143
904	Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. Journal of Hazardous Materials, 2020, 395, 122695.	6.5	88
905	Fluorescence mechanism of xylan-derived carbon dots: Toward investigation on excitation-related emission behaviors. Journal of Luminescence, 2020, 223, 117199.	1.5	14
906	The electronic, adsorption, and catalytic properties of Bi-, Sb-, and As-nanoclusters. Catalysis Today, 2021, 376, 126-133.	2.2	15
907	Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing. Journal of Colloid and Interface Science, 2021, 586, 683-691.	5.0	35

#	Article	IF	CITATIONS
908	Effects of fluorescent carbon dots from the baked lamb on energy and lipid metabolism. Food Chemistry, 2021, 338, 127832.	4.2	17
909	Applications of carbon dots in environmental pollution control: A review. Chemical Engineering Journal, 2021, 406, 126848.	6.6	238
910	Efficient one step synthesis of green carbon quantum dots catalyzed by tin oxide. Materials Today Communications, 2021, 26, 101762.	0.9	8
911	Musselâ€inspired polydopamineâ€encapsulated carbon dots with dual emission for detection of 4â€nitrophenol and Fe ³⁺ . Luminescence, 2021, 36, 431-442.	1.5	11
912	Optically excited threshold switching synapse characteristics on nitrogen-doped graphene oxide quantum dots (N-GOQDs). Journal of Alloys and Compounds, 2021, 855, 157514.	2.8	19
913	Mass production of highly fluorescent full color carbon dots from the petroleum coke. Chinese Chemical Letters, 2021, 32, 1532-1536.	4.8	34
914	High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta, 2021, 222, 121663.	2.9	71
915	Visual detection using quantum dots sensing platforms. Coordination Chemistry Reviews, 2021, 429, 213637.	9.5	43
916	Conjugate area-controlled synthesis of multiple-color carbon dots and application in sensors and optoelectronic devices. Sensors and Actuators B: Chemical, 2021, 329, 129263.	4.0	28
917	Preparation, characterization and in vitro anticancer performance of nanoconjugate based on carbon quantum dots and 5-Fluorouracil. Materials Science and Engineering C, 2021, 120, 111781.	3.8	40
918	The utility of carbon dots for photocatalysis. , 2021, , 123-160.		0
919	Rational Design of Multi olorâ€Emissive Carbon Dots in a Single Reaction System by Hydrothermal. Advanced Science, 2021, 8, 2001453.	5.6	194
920	Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioactive Materials, 2021, 6, 1541-1554.	8.6	160
921	Green synthesis of a deep-ultraviolet carbonized nanoprobe for ratiometric fluorescent detection of feroxacin and enrofloxacin in food and serum samples. Analyst, The, 2021, 146, 874-881.	1.7	6
922	A deep investigation into the structure of carbon dots. Carbon, 2021, 173, 433-447.	5.4	128
923	One-step synthesis of N, P Co-doped orange carbon quantum dots with novel optical properties for bio-imaging. Optical Materials, 2021, 111, 110618.	1.7	50
924	Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchemical Journal, 2021, 161, 105773.	2.3	10
925	Optically induced insulator-to-semiconductor transition in fluorescent carbon quantum dots measured by terahertz time-domain spectroscopy. Carbon, 2021, 174, 741-749.	5.4	12

#	Article	IF	CITATIONS
926	Single optical sensor to multiple functions: Ratiometric sensing for SO32â^ and dual signal determination for copper (II). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119219.	2.0	2
927	Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119282.	2.0	49
928	Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2021, 330, 129330.	4.0	66
929	Orange red-emitting carbon dots for enhanced colorimetric detection of Fe ³⁺ . Analyst, The, 2021, 146, 1032-1039.	1.7	26
930	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
931	Striking luminescence phenomena of carbon dots and their applications as a double ratiometric fluorescence probes for H2S detection. Materials Today Physics, 2021, 17, 100328.	2.9	40
932	Hyaluronan-Conjugated Carbon Quantum Dots for Bioimaging Use. ACS Applied Materials & Interfaces, 2021, 13, 277-286.	4.0	64
933	Static interaction between colloidal carbon nano-dots and aniline: A novel platform for ultrasensitive detection of aniline in aqueous media. Materials Research Bulletin, 2021, 134, 111119.	2.7	23
934	Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 2021, 66, 839-856.	4.3	288
935	Seeking brightness from nature: Sustainable carbon dots-based AIEgens with tunable emission wavelength from natural rosin. Chemical Engineering Journal, 2021, 413, 127457.	6.6	34
936	Facile synthesis of orange fluorescence multifunctional carbon dots for label-free detection of vitamin B12 and endogenous/exogenous peroxynitrite. Journal of Hazardous Materials, 2021, 408, 124422.	6.5	28
937	One-step synthesis of self-quenching-resistant biomass-based solid-state fluorescent carbon dots with high yield for white lighting emitting diodes. Dyes and Pigments, 2021, 185, 108953.	2.0	33
938	Voltammetric determination of ethinylestradiol using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers. Talanta, 2021, 224, 121804.	2.9	40
939	Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 349-370.	6.8	23
940	Concentration-dependent emission of nitrogen-doped carbon dots and its use in hazardous metal-ion detection. Carbon Letters, 2021, 31, 523-536.	3.3	9
941	Hydrothermal synthesis of nitrogen-doped carbon quantum dots from lignin for formaldehyde determination. RSC Advances, 2021, 11, 29178-29185.	1.7	16
942	<i>Quo Vadis</i> , Nanoparticle-Enabled <i>In Vivo</i> Fluorescence Imaging?. ACS Nano, 2021, 15, 1917-1941.	7.3	33
944	Carbon Nanodots With Nearly Unity Fluorescent Efficiency Realized via Localized Excitons. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
945	From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose, 2021, 28, 1647-1661.	2.4	35
946	Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. Nanoscale, 2021, 13, 17236-17253.	2.8	38
947	Preparation and Applications of Carbonâ€Based Fluorescent Nanothermometers. Particle and Particle Systems Characterization, 2021, 38, 2000261.	1.2	11
948	Study and Comparison on Purification Methods of Multicolor Emission Carbon Dots. Chemistry - an Asian Journal, 2021, 16, 348-354.	1.7	18
949	Ratiometric detection of <i>p</i> -nitrophenol and its derivatives using a dual-emissive neuron cell-like carbonized probe based on a Ï€â<Ï€ stacking quenching mechanism. Analyst, The, 2021, 146, 4566-4575.	1.7	7
950	Shedding light on predicting and controlling emission chromaticity in multicomponent photoluminescent systems. Chemical Science, 2021, 12, 12092-12097.	3.7	7
951	Fluorescence quenching mechanism and the application of green carbon nanodots in the detection of heavy metal ions: a review. New Journal of Chemistry, 2021, 45, 2326-2360.	1.4	65
952	Emerging Potential of Nano-Based Techniques for Dye Removal. , 2021, , 165-191.		0
953	Size-focusing results in highly photoluminescent sulfur quantum dots with a stable emission wavelength. Nanoscale, 2021, 13, 2519-2526.	2.8	35
954	Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators. Materials Chemistry Frontiers, 2021, 5, 4746-4755.	3.2	21
955	Categorization of Quantum Dots, Clusters, Nanoclusters, and Nanodots. Journal of Chemical Education, 2021, 98, 703-709.	1.1	22
957	Highly fluorescent nitrogen and boron doped carbon quantum dots for selective and sensitive detection of Fe ³⁺ . Journal of Materials Chemistry B, 2021, 9, 4654-4662.	2.9	38
958	Water-soluble green-emitting carbon nanodots with enhanced thermal stability for biological applications. Nanoscale, 2021, 13, 4301-4307.	2.8	20
959	Silicon Nanoparticles and Carbon Dots. RSC Nanoscience and Nanotechnology, 2021, , 355-392.	0.2	0
960	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	3.7	82
961	N, B-Codoping Induces High-Efficiency Solid-State Fluorescence and Dual Emission of Yellow/Orange Carbon Dots. ACS Sustainable Chemistry and Engineering, 2021, 9, 2224-2236.	3.2	76
962	Carbon–nitrogen conjugate-composited Cu _{1.8} S with enhanced peroxidase-like activity for the colorimetric detection of hydrogen peroxide and glutathione. Analytical Methods, 2021, 13, 1706-1714.	1.3	1
963	Bi-functional gold nanoparticles composites regulated by graphene quantum dots with various surface states. Results in Chemistry, 2021, 3, 100171.	0.9	0

#	Article	IF	CITATIONS
964	A scalable <i>waste-free</i> biorefinery inspires revenue from holistic lignocellulose valorization. Green Chemistry, 2021, 23, 6008-6019.	4.6	11
965	A sandwich-type ECL immunosensor for the sensitive determination of CEA content based on red emission carbon quantum dots as luminophores. New Journal of Chemistry, 2021, 45, 12613-12621.	1.4	7
966	Red, green, and blue light-emitting carbon dots prepared from <i>o</i> -phenylenediamine. RSC Advances, 2021, 11, 26915-26919.	1.7	29
967	One-step hydrothermal synthesis of nitrogen-doped carbon dots for high-sensitivity visual detection of nitrite and ascorbic acid. Analytical Methods, 2021, 13, 3685-3692.	1.3	10
968	Yellow emission N-doped fluorescent carbon dots as fluorescent nanoprobes for the detection of L-threonine in real samples. New Journal of Chemistry, 2021, 45, 10798-10801.	1.4	5
969	Biomass derived carbon dot decorated ssDNA for a †turn-on' fluorescent assay for detection of <i>Staphylococcus aureus</i> MNase. New Journal of Chemistry, 2021, 45, 5890-5896.	1.4	11
970	Fundamental photophysical properties of fluorescent carbon dots and their applications in metal ion sensing and bioimaging. , 2021, , 159-209.		0
971	Where is the best substitution position for amino groups on carbon dots: a computational strategy toward long-wavelength red emission. Journal of Materials Chemistry C, 2021, 9, 14444-14452.	2.7	9
972	Nitrogen and sulfur Co-doped carbon dots as ecofriendly and effective corrosion inhibitors for Q235 carbon steel in 1 M HCl solution. RSC Advances, 2021, 11, 21607-21621.	1.7	28
973	Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.	2.8	49
974	Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Applied Nano Materials, 2021, 4, 911-948.	2.4	29
975	Manganese-Doped Carbon Dots with Redshifted Orange Emission for Enhanced Fluorescence and Magnetic Resonance Imaging. ACS Applied Bio Materials, 2021, 4, 1969-1975.	2.3	36
976	Properties and molecular structure of carbon quantum dots derived from empty fruit bunch biochar using a facile microwave-assisted method for the detection of Cu2+ ions. Optical Materials, 2021, 112, 110801.	1.7	23
977	Insights into Fluorophores of Dual-Emissive Carbon Dots Derived by Naphthalenediol Solvothermal Synthesis. Journal of Physical Chemistry C, 2021, 125, 5207-5216.	1.5	18
978	Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. Journal of Drug Delivery Science and Technology, 2021, 61, 102118.	1.4	20
979	Carbon Dotâ^'NaCl Crystals for White‣ight Generation and Fabryâ€Perot Lasing. Chemistry - an Asian Journal, 2021, 16, 783-792.	1.7	8
980	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	5.6	141
981	Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On–Off Metal Ions Nanosensing. ACS Sustainable Chemistry and Engineering, 2021, 9, 2559-2569.	3.2	50

#	Article	IF	CITATIONS
982	Afterglow Carbon Dots: From Fundamentals to Applications. Research, 2021, 2021, .	2.8	30
983	Oxygen-less Carbon Nanodots with an Absolute Quantum Yield of 80% for Display Applications. ACS Applied Nano Materials, 2021, 4, 2462-2469.	2.4	9
984	Preparation of Yellow Fluorescent N,O-CDs and its Application in Detection of ClOâ ^{-,} Journal of Fluorescence, 2021, 31, 659-666.	1.3	6
985	Preparation and characterization of F-, O-, and N-containing carbon nanoparticles for pH sensing. Applied Nanoscience (Switzerland), 0, , 1.	1.6	7
986	Quantitatively Switchable pH-Sensitive Photoluminescence of Carbon Nanodots. Journal of Physical Chemistry Letters, 2021, 12, 2727-2735.	2.1	27
987	Ultrafast nanometric imaging of energy flow within and between single carbon dots. Proceedings of the United States of America, 2021, 118, .	3.3	16
988	Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coordination Chemistry Reviews, 2021, 431, 213686.	9.5	187
989	Carbon Dots and Stability of Their Optical Properties. Particle and Particle Systems Characterization, 2021, 38, 2000271.	1.2	45
990	Design and Synthesis of Nanosensor Based on Unsaturated Double Bond Functional Carbon Dots for Phenylephrine Detection Using Bromine As a Bridge. Analytical Chemistry, 2021, 93, 5145-5150.	3.2	21
991	Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Applied Materials Today, 2021, 22, 100924.	2.3	57
992	Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe3+ detection and bioimaging. Chinese Chemical Letters, 2021, 32, 3189-3194.	4.8	26
993	Carbon Dots as an Indicator of Acid–Base Titration and a Fluorescent Probe for Endoplasm Reticulum Imaging. ACS Applied Bio Materials, 2021, 4, 3623-3629.	2.3	28
994	Construction of green fluorescent carbon dots with high quantum yield for cancer cell recognition and Fe3+ detection. Optical Materials, 2021, 113, 110892.	1.7	12
995	Copper doped carbon dots as the multi-functional fluorescent sensing platform for tetracyclines and pH. Sensors and Actuators B: Chemical, 2021, 330, 129360.	4.0	84
996	Study on luminescence mechanism of nitrogen-doped carbon quantum dots with different fluorescence properties and application in Fe3+ detection. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	7
997	Novel and Reliable Chemosensor Based on C. dots from Sunflower seeds for the Distinct Detection of Picric Acid and Bilirubin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119354.	2.0	15
998	A Review on Multifunctional Carbon-Dots Synthesized From Biomass Waste: Design/ Fabrication, Characterization and Applications. Frontiers in Energy Research, 2021, 9, .	1.2	54
999	Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity. Chinese Chemical Letters, 2021, 32, 3646-3651.	4.8	25

#	Article	IF	CITATIONS
1000	Smartphone-based fluorometer for pH detection using green synthesized carbon dots. Nano Structures Nano Objects, 2021, 26, 100722.	1.9	15
1001	Regulation of fluorescence emission of carbon dots via hydrogen bonding assembly. Inorganic Chemistry Communication, 2021, 126, 108500.	1.8	4
1002	Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Materials Science and Engineering C, 2021, 123, 111971.	3.8	73
1003	Optical nanosensors based on fluorescent carbon dots for the detection of water contaminants: a review. Environmental Chemistry Letters, 2021, 19, 3229-3241.	8.3	33
1004	Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation. Research on Chemical Intermediates, 2021, 47, 3469-3485.	1.3	18
1005	Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics. Journal of Drug Delivery Science and Technology, 2021, 62, 102363.	1.4	13
1006	Sniffing Bacteria with a Carbon-Dot Artificial Nose. Nano-Micro Letters, 2021, 13, 112.	14.4	18
1007	Dual emissive carbon dots with one-pot synthesized and their tunable luminescence. Optik, 2021, 231, 166394.	1.4	5
1008	Facile Hydrothermal Synthesis of Chlorella-Derived Environmentally Friendly Fluorescent Carbon Dots for Differentiation of Living and Dead Chlorella. ACS Applied Bio Materials, 2021, 4, 3697-3705.	2.3	7
1009	Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Frontiers of Materials Science, 2021, 15, 253-265.	1.1	24
1010	Luminescent Liquid Crystals Based on Carbonized Polymer Dots and Their Polarized Luminescence Application. ACS Applied Materials & amp; Interfaces, 2021, 13, 26522-26532.	4.0	18
1011	Lighting up the Electrochemiluminescence of Carbon Dots through Pre―and Postâ€Synthetic Design. Advanced Science, 2021, 8, 2100125.	5.6	49
1012	Multicolor carbon dots: Induced by sp2-sp3 hybridized domains and their application in ion detection and WLED. Optical Materials, 2021, 115, 111064.	1.7	10
1013	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	9.5	116
1014	Improved Laser Ablation Method for the Production of Luminescent Carbon Particles in Liquids. Materials, 2021, 14, 2365.	1.3	1
1015	Photoluminescent chiral carbon dots derived from glutamine. Chinese Chemical Letters, 2021, 32, 3916-3920.	4.8	25
1016	Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119583.	2.0	55
1017	Effect of Solvent on Fluorescence Emission from Polyethylene Glycol-Coated Graphene Quantum Dots under Blue Light Illumination. Nanomaterials, 2021, 11, 1383.	1.9	12

#	Article	IF	CITATIONS
1018	Combinations of Superior Inorganic Phosphors for Levelâ€Tunable Information Hiding and Encoding. Advanced Optical Materials, 2021, 9, 2100281.	3.6	37
1019	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
1020	Emerging theranostic applications of carbon dots and its variants. View, 2022, 3, 20200089.	2.7	17
1021	Single, dual and multi-emission carbon dots based optosensing for food safety. Trends in Food Science and Technology, 2021, 111, 388-404.	7.8	43
1022	Simple and ecoâ€friendly synthesis of crude orangeâ€peelâ€derived carbon nanoparticles for detection of Fe ³⁺ and ascorbic acid. Luminescence, 2021, 36, 1385-1394.	1.5	6
1023	Carbon Quantum Dots as Fluorescence Nanochemosensors for Selective Detection of Amino Acids. ACS Applied Nano Materials, 2021, 4, 6250-6256.	2.4	28
1024	Fluorescent nitrogen-doped carbon nanodots synthesized through a hydrothermal method with different isomers. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 302-302.	2.7	13
1025	Trigonal Nitrogen Activates High-Brightness Chemiluminescent Carbon Nanodots. , 2021, 3, 826-837.		17
1026	Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chemistry - A European Journal, 2021, 27, 9466-9481.	1.7	25
1027	Interaction Promotes the Formation and Photothermal Conversion of Carbon Dots/Polydopamine Composite for Solarâ€Driven Water Evaporation. Advanced Materials Interfaces, 2021, 8, 2100332.	1.9	15
1028	Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Current Pharmaceutical Design, 2021, 27, .	0.9	4
1029	Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 5378.	1.8	23
1030	Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch. Journal of Fluorescence, 2021, 31, 1379-1392.	1.3	2
1031	An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation. Journal of Environmental Chemical Engineering, 2021, 9, 105199.	3.3	71
1032	Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity. Carbon, 2021, 182, 537-544.	5.4	25
1033	Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities. Renewable and Sustainable Energy Reviews, 2021, 143, 110869.	8.2	38
1034	Graphene quantum dots piecing together into graphene on nano Au for overall water splitting. Carbon, 2021, 178, 265-272.	5.4	17
1035	Red-emitting, self-oxidizing carbon dots for the preparation of white LEDs with super-high color rendering index. Science China Chemistry, 2021, 64, 1547-1553.	4.2	103

#	Article	IF	CITATIONS
1036	Green synthesis of graphene quantum dots from Opuntia sp. extract and their application in phytic acid detection. Sensing and Bio-Sensing Research, 2021, 32, 100412.	2.2	15
1037	Long-wavelength (red to near-infrared) emissive carbon dots: Key factors for synthesis, fluorescence mechanism, and applications in biosensing and cancer theranostics. Chinese Chemical Letters, 2021, 32, 3653-3664.	4.8	27
1038	Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. Journal of Colloid and Interface Science, 2021, 591, 334-342.	5.0	29
1039	Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dots. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111698.	2.5	9
1040	A multifunctional carbon dots with near-infrared fluorescence for Au3+/Hg2+ and GSH detection and tumor diagnosis. Microchemical Journal, 2021, 165, 106033.	2.3	15
1041	Preparation of species-specific monoclonal antibody and development of fluorescence immunoassay based on fluorescence resonance energy transfer of carbon dots for accurate and sensitive detection of Alicyclobacillus acidoterrestris in apple juice. Food Chemistry, 2021, 347, 129069.	4.2	12
1042	Facile Synthesis of the Cu, N-CDs@GO-CS Hydrogel with Enhanced Antibacterial Activity for Effective Treatment of Wound Infection. Langmuir, 2021, 37, 7928-7935.	1.6	24
1043	Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors. New Carbon Materials, 2021, 36, 527-545.	2.9	16
1044	Gramâ€5cale Synthesis of Highly Efficient Rareâ€Earthâ€Elementâ€Free Red/Green/Blue Solidâ€State Bandgap Fluorescent Carbon Quantum Rings for White Lightâ€Emitting Diodes. Angewandte Chemie, 2021, 133, 16479-16484.	1.6	11
1045	Gramâ€Scale Synthesis of Highly Efficient Rareâ€Earthâ€Elementâ€Free Red/Green/Blue Solidâ€State Bandgap Fluorescent Carbon Quantum Rings for White Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2021, 60, 16343-16348.	7.2	70
1046	Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure. New Carbon Materials, 2021, 36, 625-631.	2.9	15
1047	Electrospun polyacrylonitrile nanofibers as graphene oxide quantum dot precursors with improved photoluminescent properties. Materials Science in Semiconductor Processing, 2021, 127, 105729.	1.9	9
1048	PEI modified orange emissive carbon dots with excitation-independent fluorescence emission for cellular imaging and siRNA delivery. Carbon, 2021, 177, 403-411.	5.4	57
1049	Multicolor Carbon Dots Prepared by Singleâ€Factor Control of Graphitization and Surface Oxidation for Highâ€Quality White Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100688.	3.6	79
1050	Solid-State Fluorescent Carbon Dots for Fluorimetric Sensing of Hg ²⁺ . ACS Applied Nano Materials, 2021, 4, 6386-6397.	2.4	39
1051	Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification. Chinese Chemical Letters, 2021, 32, 1953-1956.	4.8	70
1052	Controlled synthesis of fluorescent carbon materials with the assistance of capillary electrophoresis. Talanta, 2021, 228, 122224.	2.9	8
1053	Furfural and organic acid targeted carbon dot sensor array for the accurate identification of Chinese baijiu. Journal of Food Science, 2021, 86, 2924-2938.	1.5	14

#	Article	IF	CITATIONS
1054	Simple one step synthesis of dual-emissive heteroatom doped carbon dots for acetone sensing in commercial products and Cr (VI) reduction. Chemical Engineering Journal, 2021, 414, 128830.	6.6	34
1055	Optical nanomaterials with focus on rare earth doped oxide: A Review. Materials Today Communications, 2021, 27, 102277.	0.9	56
1056	Perception on aggregation induced multicolor emission and emission centers in carbon nanodots using successive dilution, anion exchange chromatography, and multi-way statistics. Scientific Reports, 2021, 11, 13996.	1.6	2
1057	Green synthesis of carbon quantum dots from corn stalk shell by hydrothermal approach in near-critical water and applications in detecting and bioimaging. Microchemical Journal, 2021, 166, 106250.	2.3	40
1058	Optimizing the Efficiency of a Cytocompatible Carbon-Dots-Based FRET Platform and Its Application as a Riboflavin Sensor in Beverages. Nanomaterials, 2021, 11, 1981.	1.9	6
1059	Carbon quantum dots for optical sensor applications: A review. Optics and Laser Technology, 2021, 139, 106928.	2.2	78
1060	Temperature triggered high-performance carbon dots with robust solvatochromic effect and self-quenching-resistant deep red solid state fluorescence for specific lipid droplet imaging. Chemical Engineering Journal, 2021, 415, 128984.	6.6	57
1061	Two-dimensional closely-packed gold nanoislands: A platform for optical data storage and carbon dot generation. Applied Surface Science, 2021, 555, 149586.	3.1	5
1062	Ultrafast Dynamics in Carbon Dots as Photosensitizers: A Review. ACS Applied Nano Materials, 2021, 4, 7587-7606.	2.4	17
1063	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	5.2	36
1064	Exploration of highly photoluminescent first-row transition metals (manganese, iron, cobalt, nickel,) Tj ETQq0 0 0 Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115145.	rgBT /Ove 1.7	erlock 10 Tf 5 14
1065	Carbon Quantum Dots for Energy Applications: A Review. ACS Applied Nano Materials, 2021, 4, 6515-6541.	2.4	145
1066	pH-Dependent surface properties of N–Cdots obtained by the hydrothermal method with multicolored emissions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126578.	2.3	8
1067	Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS Nano, 2021, 15, 14610-14617.	7.3	32
1068	State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir, 2021, 37, 9281-9301.	1.6	24
1069	Photoluminescent Recognition of Strong Alcoholic Beverages with Carbon Nanoparticles. ACS Omega, 2021, 6, 18802-18810.	1.6	8
1070	Carbon Dot/Cellulose-Based Transparent Films for Efficient UV and High-Energy Blue Light Screening. ACS Sustainable Chemistry and Engineering, 2021, 9, 9879-9890.	3.2	28
1071	Nitrogen-doped carbon dots for dual-wavelength excitation fluorimetric assay for ratiometric determination of phosalone. Mikrochimica Acta, 2021, 188, 247.	2.5	11

#	Article	IF	CITATIONS
1072	Yellow Fluorescent Nitrogen and Bromine Co-doped Graphene Quantum Dots for Bioimaging. ACS Applied Nano Materials, 2021, 4, 8564-8571.	2.4	14
1073	Multifunctional red-emission graphene quantum dots with tunable light emissions for trace water sensing, WLEDs and information encryption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126593.	2.3	18
1074	Synthesis of orange-emissive silicon nanoparticles as "off-on―fluorescence probe for sensitive and selective detection of l-methionine and copper. Talanta, 2021, 231, 122369.	2.9	25
1075	Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Analytica Chimica Acta, 2021, 1174, 338743.	2.6	18
1076	Modulation of red-light emission from carbon quantum dots in acid-based environment and the detection of chromium (â¢) ions. Journal of Materials Science and Technology, 2021, 83, 58-65.	5.6	22
1077	Unraveling the surface states related Stokes shift dependent electrocatalytic activity of N-doped carbon quantum dots for photovoltaic applications. Carbon, 2021, 181, 155-168.	5.4	23
1078	Theoretical Understanding of Structure–Property Relationships in Luminescence of Carbon Dots. Journal of Physical Chemistry Letters, 2021, 12, 7671-7687.	2.1	111
1079	Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. Journal of Physical Chemistry Letters, 2021, 12, 8080-8087.	2.1	26
1080	Solvatochromic Surface-Passivated Carbon Dots for Fluorometric Moisture Sensing in Organic Solvents. ACS Applied Nano Materials, 2021, 4, 7974-7987.	2.4	32
1081	3D-printed smartphone-based device for fluorimetric diagnosis of ketosis by acetone-responsive dye marker and red emissive carbon dots. Mikrochimica Acta, 2021, 188, 306.	2.5	8
1082	Room-temperature phosphorescent fluorine-nitrogen co-doped carbon dots: Information encryption and anti-counterfeiting. Carbon, 2021, 181, 9-15.	5.4	91
1083	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	5.2	93
1084	Study on the Origin of Fluorescence by Using Dual-Emission Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 18543-18551.	1.5	17
1085	Logic Gate Design Using Multicolor Fluorescent Carbon Nanodots for Smartphone-Based Information Extraction. ACS Applied Nano Materials, 2021, 4, 8184-8191.	2.4	11
1086	Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity. Renewable Energy, 2021, 174, 19-30.	4.3	38
1087	Determination of Fe(â¢) ion and cellular bioimaging based on a novel photoluminescent silicon nanoparticles. Talanta, 2021, 230, 122294.	2.9	8
1088	Advances, opportunities, and challenge for full-color emissive carbon dots. Chinese Chemical Letters, 2022, 33, 613-625.	4.8	75
1089	Polychromatic Carbon Dots Prepared from <i>m</i> -Phenylenediamine and Urea as Multifunctional Fluorescent Probes. ACS Applied Nano Materials, 2021, 4, 8500-8510.	2.4	15

#	Article	IF	CITATIONS
1090	Continuous response fluorescence sensor for three small molecules based on nitrogen-doped carbon quantum dots from prunus lannesiana and their logic gate operation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 257, 119774.	2.0	8
1091	Construction of a Carbon Dots/Cobalt Oxyhydroxide Nanoflakes Biosensing Platform for Detection of Acid Phosphatase. Langmuir, 2021, 37, 10529-10537.	1.6	13
1092	Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126673.	2.3	22
1093	Yttriumâ€mediated red fluorescent carbon dots for sensitive and selective detection of calcium ions. Luminescence, 2021, 36, 1969-1976.	1.5	8
1094	Red dual-emissive carbon dots for ratiometric sensing of veterinary drugs. Journal of Luminescence, 2021, 236, 118092.	1.5	19
1095	Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(â¥), Fe(â¢) and Cu(â¡) ions detection. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 417, 113359.	2.0	29
1096	Formulation of conductive nanocomposites by incorporating silverâ€doped carbon quantum dots for efficient charge extraction. International Journal of Energy Research, 2021, 45, 21324-21339.	2.2	5
1097	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	8.3	213
1099	Towards Red Emissive Systems Based on Carbon Dots. Nanomaterials, 2021, 11, 2089.	1.9	15
1100	Noble Metalâ€Free Surfaceâ€Enhanced Raman Scattering Enhancement from Bandgapâ€Controlled Graphene Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100128.	1.2	4
1101	Surface chemical engineering towards efficient and bright chemiluminescent carbon nanodots. Applied Surface Science, 2021, 559, 149947.	3.1	8
1102	Encapsulation of Carbon Dots in Silica Matrices Offers Narrow Emission in the Solid-State of Printed Fluorescent Inks. ACS Applied Nano Materials, 2021, 4, 9497-9507.	2.4	6
1103	Superoxide anion turns on the fluorescence of carbon dots-ferric complex for sensing. Microchemical Journal, 2021, 168, 106412.	2.3	8
1104	A microlagal-based carbonaceous sensor for enzymatic determination of glucose in blood serum. Journal of Industrial and Engineering Chemistry, 2021, 101, 195-204.	2.9	6
1105	One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy. Journal of Physical Chemistry Letters, 2021, 12, 8939-8946.	2.1	55
1106	Modulating Triplet Excited-State Energy in Phosphorescent Carbon Dots for Information Encryption and Anti-Counterfeiting. ACS Applied Materials & amp; Interfaces, 2021, 13, 43241-43246.	4.0	33
1107	Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS Omega, 2021, 6, 26499-26508.	1.6	26
1108	Transparent Hard Coatings with SiON-Encapsulated N-Doped Carbon Dots for Complete UV Blocking and White Light Emission. ACS Applied Electronic Materials, 2021, 3, 3761-3773.	2.0	13

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1109	Synthesis of blue emissive carbon quantum dots from Hibiscus Sabdariffa flower: Surfa functionalization analysis by FT-IR spectroscopy. Materialia, 2021, 19, 101182.	се	1.3	9
1110	Multi-color carbon dots from cis-butenedioic acid and urea and highly luminescent carb dots@Ca(OH)2 hybrid phosphors with excellent thermal stability for white light-emittir Journal of Luminescence, 2021, 237, 118202.		1.5	7
1111	Solvent-controlled synthesis of full-color carbon dots and its application as a fluorescer food-tasting sensor for specific recognition of jujube species. Sensors and Actuators B: 2021, 342, 129963.	it Chemical,	4.0	21
1112	One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent HClO and cellular imaging. Mikrochimica Acta, 2021, 188, 330.	sensing in	2.5	15
1113	Novel carbon quantum dot modified g-C3N4 nanotubes on carbon cloth for efficient de ciprofloxacin. Applied Surface Science, 2021, 559, 149967.	gradation of	3.1	31
1114	A highly sensitive SERS platform based on small-sized Ag/GQDs nanozyme for intracellu Chemical Engineering Journal, 2022, 430, 132687.	ılar analysis.	6.6	30
1115	Two-dimensional quantum dots for biological applications. Nano Research, 2021, 14, 3	820-3839.	5.8	50
1116	Sensitive Mechanofluorochromic Carbon Dotâ€Based AlEgens: Promising Reporting Co Selfâ€Sensing Plastics. Advanced Optical Materials, 2021, 9, 2101092.	omponents for	3.6	14
1117	Carbon Dot/Gold Nanocluster-Based Fluorescent Colorimetric Paper Strips for Quantita Detection of Iodide Ions in Urine. ACS Applied Nano Materials, 2021, 4, 9760-9767.	itive	2.4	38
1118	Facile synthesis of multifunctional carbon dots with 54.4% orange emission for label-fro of morin and endogenous/exogenous hypochlorite. Journal of Hazardous Materials, 202	ee detection 22, 424, 127289.	6.5	36
1119	Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalitie Applications. Particle and Particle Systems Characterization, 2021, 38, 2100170.	es and Related	1.2	48
1120	Fluorescent carbon dots with excellent moisture retention capability for moisturizing li Journal of Nanobiotechnology, 2021, 19, 299.	pstick.	4.2	22
1121	Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine A review. FlatChem, 2021, 29, 100271.	e applications:	2.8	24
1122	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	e and sensing	4.8	22
1123	Through-Space Interactions in Clusteroluminescence. Jacs Au, 2021, 1, 1805-1814.		3.6	116
1124	Multicolor Phenylenediamine Carbon Dots for Metal-Ion Detection with Picomolar Sens Applied Nano Materials, 2021, 4, 9919-9931.	itivity. ACS	2.4	31
1125	Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with br fluorescence and sensitive pH response. Industrial Crops and Products, 2021, 167, 113		2.5	43
1126	MXene-Derived Quantum Dots for Energy Conversion and Storage Applications. Energy 2021, 35, 14304-14324.	/ & Fuels,	2.5	41

#	Article	IF	CITATIONS
1127	A signal-off fluorescent strategy for deferasirox effective detection using carbon dots as probe and Cu2+ as medium. Analytica Chimica Acta, 2021, 1179, 338853.	2.6	15
1128	Dual-emitter polymer carbon dots with spectral selection towards nanomolar detection of iron and aluminum ions. Arabian Journal of Chemistry, 2021, 14, 103452.	2.3	12
1129	A label-free fluorescent sensor based on yellow-green emissive carbon quantum dots for ultrasensitive detection of congo red and cellular imaging. Microchemical Journal, 2021, 168, 106420.	2.3	12
1130	In situ simultaneous chemical activation and exfoliation of carbon quantum dots for atmospheric adsorption of H2S and CO2 at room temperature. Applied Surface Science, 2021, 559, 149892.	3.1	17
1131	Synthesis of N-doped carbon dots for highly selective and sensitive detection of metronidazole in real samples and its cytotoxicity studies. Environmental Technology (United Kingdom), 2021, , 1-14.	1.2	2
1132	Rational Building of Nonblinking Carbon Dots via Charged State Recovery. Journal of Physical Chemistry Letters, 2021, 12, 8614-8620.	2.1	6
1133	Full color fluorescent carbon quantum dots synthesized from triammonium citrate for cell imaging and white LEDs. Dyes and Pigments, 2021, 193, 109478.	2.0	31
1134	Detection of sialic acid using boronic-acid-functionalized metal organic framework UiO-66-NH2@B(OH)2. Talanta, 2021, 232, 122434.	2.9	18
1135	A novel cationic surfactant synthesized from carbon quantum dots and the versatility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127088.	2.3	7
1136	Turning single bubble sonoluminescence from blue in pure water to green by adding trace amount of carbon nanodots. Ultrasonics Sonochemistry, 2021, 78, 105727.	3.8	3
1137	Multifunctional carbon dots derived from dansyl chloride for ratiometric thermal sensor and reactive oxygen generation. Dyes and Pigments, 2021, 194, 109549.	2.0	8
1138	Competition of the roles of π-conjugated domain between emission center and quenching origin in the photoluminescence of carbon dots depending on the interparticle separation. Carbon, 2021, 183, 560-570.	5.4	28
1139	Carbon dots-based red fluorescence nanoprobe for caspase-1 activity assay and living cell imaging. Sensors and Actuators B: Chemical, 2021, 344, 130285.	4.0	6
1140	Origin of sonocatalytic activity of fluorescent carbon dots. Carbon, 2021, 184, 102-108.	5.4	16
1141	Long-wavelength emissive solid-state carbon dots in nanoporous glass with excellent thermal stability. Journal of Colloid and Interface Science, 2021, 599, 686-693.	5.0	21
1142	Highly stable yellow-emitting fluorescent film based on graphene quantum dots for white laser-emitting devices. Journal of Luminescence, 2021, 238, 118275.	1.5	4
1143	Graphene quantum dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. Journal of Drug Targeting, 2022, 30, 269-286.	2.1	5
1144	Oxidized plant leaf-derived carbon dots as novel electrochemiluminescent luminophores for ultrasensitive microRNA-21 detection. Sensors and Actuators B: Chemical, 2021, 346, 130529.	4.0	12

#	Article	IF	CITATIONS
1145	Microplasma nanoengineering of emission-tuneable colloidal nitrogen-doped graphene quantum dots as smart environmental-responsive nanosensors and nanothermometers. Carbon, 2021, 185, 501-513.	5.4	18
1146	Synthesis and modulation of multicolor fluorescent carbon dots from p-phenylenediamine and dansyl derivative for white light emitting diodes. Optical Materials, 2021, 121, 111502.	1.7	13
1147	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Materials, 2021, 42, 679-686.	9.5	43
1148	Tuning photoluminescence of boron nitride quantum dots via surface functionalization by femtosecond laser ablation. Journal of Molecular Structure, 2021, 1244, 130922.	1.8	21
1149	Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting. Giant, 2021, 8, 100077.	2.5	13
1150	Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchemical Journal, 2021, 171, 106835.	2.3	9
1151	A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120132.	2.0	56
1152	Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. Journal of Hazardous Materials, 2022, 422, 126881.	6.5	56
1153	Architecting ultra-bright silanized carbon dots by alleviating the spin-orbit coupling effect: a specific fluorescent nanoprobe to label dead cells. Chemical Engineering Journal, 2022, 428, 131168.	6.6	32
1154	Temperature-dependence on the optical properties of chitosan carbon dots in the solid state. RSC Advances, 2021, 11, 2767-2773.	1.7	18
1155	Transformation of random lasing to Fabry–Perot lasing: observation of high temperature lasing from carbon dots. Nanoscale, 2021, 13, 7566-7573.	2.8	15
1156	Graphene quantum dots induced porous orientation of holey graphene nanosheets for improved electrocatalytic activity. Carbon, 2021, 171, 493-506.	5.4	28
1157	Stimuli responsive multicolour fluorescence emission in carbon nanodots and application in metal free hydrogen evolution from water. Nanoscale Advances, 2021, 3, 611-617.	2.2	9
1158	Visible-light-driven photocatalytic degradation of RhB by carbon-quantum-dot-modified g-C ₃ N ₄ on carbon cloth. CrystEngComm, 2021, 23, 4782-4790.	1.3	10
1159	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
1160	Strategically integrating quantum dots into organic and perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 4505-4527.	5.2	26
1161	Applications of carbon dots on tumour theranostics. View, 2021, 2, 20200061.	2.7	30
1162	Preparation of N/S doped carbon dots and their application in nitrite detection. RSC Advances, 2021, 11, 10922-10928.	1.7	17

# 1163	ARTICLE The selective deprotonation of carbon quantum dots for fluorescence detection of phosphate and visualization of latent fingerprints. Nanoscale, 2021, 13, 13057-13064.	IF 2.8	CITATIONS 32
1164	Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. RSC Advances, 2021, 11, 29287-29297.	1.7	9
1165	Study on the fluorescence of double-emission carbon quantum dots by improved intercept method. Methods and Applications in Fluorescence, 2021, 9, 015004.	1.1	1
1166	Influence of carbon nano-dots in water on sonoluminescence. Nanoscale, 2021, 13, 14130-14138.	2.8	4
1167	Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays. ACS Omega, 2021, 6, 1741-1750.	1.6	23
1168	A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomaterials Science, 2021, 9, 2255-2261.	2.6	18
1169	Excitation dependence and independence of photoluminescence in carbon dots and graphene quantum dots: insights into the mechanism of emission. Nanoscale, 2021, 13, 16662-16671.	2.8	36
1170	Selfâ€Quenchingâ€Resistant Red Emissive Carbon Dots with High Stability for Warm White Lightâ€Emitting Diodes with a High Color Rendering Index. Advanced Optical Materials, 2020, 8, 2000251.	3.6	56
1171	Dualâ€Colorâ€Emitting Carbon Nanodots for Multicolor Bioimaging and Optogenetic Control of Ion Channels. Advanced Science, 2017, 4, 1700325.	5.6	31
1172	Carbon Nanolights as Optical Nanosensors for Water Contaminants. Environmental Chemistry for A Sustainable World, 2020, , 157-196.	0.3	2
1173	Synthesis, Characterization and Applications of Graphene Quantum Dots. Advanced Structured Materials, 2017, , 65-120.	0.3	3
1174	Carbon Dots from Renewable Resources: A Review on Precursor Choices and Potential Applications. Advanced Structured Materials, 2020, , 159-208.	0.3	3
1175	Red-emission carbon dots-quercetin systems as ratiometric fluorescent nanoprobes towards Zn2+ and adenosine triphosphate. Mikrochimica Acta, 2020, 187, 345.	2.5	25
1176	Surface state-regulated redox carbon nanodots for plasmonic morphology-dependent ratiometric sensing. Applied Surface Science, 2020, 526, 146715.	3.1	7
1177	Nano-enabled sensing approaches for pathogenic bacterial detection. Biosensors and Bioelectronics, 2020, 165, 112276.	5.3	74
1178	Facile synthesis of pH-responsive gadolinium(III)-doped carbon nanodots with red fluorescence and magnetic resonance properties for dual-readout logic gate operations. Carbon, 2020, 166, 265-272.	5.4	34
1179	Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode anti-counterfeiting. Chemical Engineering Journal, 2020, 397, 125487.	6.6	41
1180	Homogeneous fluorescent immunoassay for the simultaneous detection of chloramphenicol and amantadine via the duplex FRET between carbon dots and WS2 nanosheets. Food Chemistry, 2020, 327, 127107.	4.2	37

#	Article	IF	CITATIONS
1181	Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today, 2020, 35, 100954.	6.2	138
1182	Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano, 2020, 14, 6470-6497.	7.3	186
1183	Smartphone-Based Fluorescence Detection of Al ³⁺ and H ₂ O Based on the Use of Dual-Emission Biomass Carbon Dots. ACS Sustainable Chemistry and Engineering, 2020, 8, 8857-8867.	3.2	79
1184	Copper inter-nanoclusters distance-modulated chromism of self-assembly induced emission. Nanoscale, 2017, 9, 18845-18854.	2.8	29
1185	Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI Journal, 2019, 18, 454-466.	0.5	13
1186	Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process. Journal of Electrochemical Science and Technology, 2020, 11, 220-237.	0.9	16
1187	Carbon Quantum Dots: A Safe Tool to Learn about Quantum Phenomenon in Nanomaterials. Journal of Laboratory Chemical Education, 2017, 5, 48-54.	1.0	9
1188	An ink-jet printed dual-CD ratiometric fluorescent paper-based sensor for the visual detection of Cu ²⁺ . RSC Advances, 2021, 11, 33036-33047.	1.7	4
1189	pH-Responsive Size-Shrinkable and Golgi-Targeted Fluorescence Carbon Dots Derived from Metal-Organic Frameworks for Imaging Guided Drug Delivery and Tumor In-Deep Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1190	Surface Charge Alteration in Carbon Dots Governs the Interfacial Electron Transfer and Transport. Journal of Physical Chemistry C, 2021, 125, 23398-23408.	1.5	16
1191	Recent Advances in Functional Carbon Quantum Dots for Antitumour. International Journal of Nanomedicine, 2021, Volume 16, 7195-7229.	3.3	14
1192	Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Research, 2022, 15, 3548-3555.	5.8	68
1193	Carbon Quantum Dots. Engineering Materials, 2022, , 71-88.	0.3	1
1194	Dendritic Silica Nanospheres Loaded with Redâ€Emissive Enhanced Carbon Dots for Zika Virus Immunoassay. ChemistrySelect, 2021, 6, 9787-9793.	0.7	4
1195	Optical Spectroscopy of Hydrothermally Treated Soil for Organic Matter Monitoring. Communications in Soil Science and Plant Analysis, 2022, 53, 293-303.	0.6	1
1196	Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. Free Radical Biology and Medicine, 2021, 177, 167-180.	1.3	8
1197	Synthesis, solution and solid-state fluorescence of nitrogen self-doped carbon dots derived from Chlorella pyrenoidosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127741.	2.3	11
1198	Green synthesis of a novel carbon dots from red Korean ginseng and its application for Fe2+ sensing and preparation of nanocatalyst. Inorganic Chemistry Communication, 2021, 134, 108985.	1.8	15

#	Article	IF	CITATIONS
1199	Study on the Purification and Fluorescence Properties of Carbon Quantum Dots by Gel Penetrate Chromatography. Advances in Analytical Chemistry, 2018, 08, 103-111.	0.1	0
1200	Effect of the Hydrothermal Conditions on the Fluorescence Properties of Carbon Quantum Dots. Material Sciences, 2019, 09, 530-536.	0.0	0
1201	Facile formation of chiral nanofibers with excellent electrochemical performance via self-assembly of carbon dots and cysteine molecules. Nanoscale, 2020, 12, 12748-12752.	2.8	5
1202	Stable blue-emissive aluminum acetylacetonate nanocrystals with high quantum yield of over 80% and embedded in polymer matrix for remote UV-pumped white light–emitting diodes. Nanophotonics, 2020, 9, 1509-1518.	2.9	1
1203	Urea detection in milk by urease-assisted pH-sensitive carbon dots. Applied Optics, 2021, 60, 10421.	0.9	7
1204	Bacitracin-Ag Nanoclusters as a Novel Antibacterial Agent Combats Shigella flexneri by Disrupting Cell Membrane and Inhibiting Biofilm Formation. Nanomaterials, 2021, 11, 2928.	1.9	4
1205	Carbon dot with aggregation induced emission and pH triggered disintegration. Colloids and Interface Science Communications, 2021, 45, 100537.	2.0	14
1206	Metal free and sunlight driven g-C3N4 based photocatalyst using carbon quantum dots from Arabian dates: Green strategy for photodegradation of 2,4-dichlorophenol and selective detection of Fe3+. Diamond and Related Materials, 2021, 120, 108679.	1.8	14
1207	Carbon Dots as a Sustainable New Platform for Organic Light Emitting Diode. Coatings, 2021, 11, 5.	1.2	6
1208	A sensitive spectrofluorimetry method based on S and N dual-doped carbon nanoparticles for ultra-trace detection of ferrocyanide ion in food salt samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 195-207.	1.1	1
1209	The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon, 2022, 186, 91-127.	5.4	163
1210	Ratiometric fluorescence probe based on monochromatic dual-emission carbon nanodots with fluorescence spectral change. Dyes and Pigments, 2022, 197, 109883.	2.0	8
1211	Luminescent lanthanide single atom composite materials: Tunable full-color single phosphor and applications in white LEDs. Chemical Engineering Journal, 2022, 430, 132782.	6.6	18
1212	Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control, 2022, 133, 108591.	2.8	40
1213	On-site, rapid, and facile determination of gentamicin using a fluorescent resonance energy transfer sensor constructed from nitrogen-carbon quantum dots functionalized by 4,5-imidazole dicarboxylic acid. Food Chemistry, 2022, 371, 131366.	4.2	6
1214	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
1215	Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications. , 2020, , 133-161.		2
1216	Fluorescent Carbon Nanostructures. , 2020, , 357-399.		Ο

#	Article	IF	CITATIONS
1217	Revealing graphitic nitrogen participating in p–ĺ€ conjugated domain as emissive center of red carbon dots and applied to red room-temperature phosphorescence. New Journal of Chemistry, 2021, 45, 22335-22343.	1.4	18
1218	Fabrication of carbon quantum dots via ball milling and their application to bioimaging. Mendeleev Communications, 2021, 31, 647-650.	0.6	9
1219	Exploring the Role of Surface States in Emissive Carbon Nanodots: Analysis at Singleâ€Particle Level. Chemistry - an Asian Journal, 2021, 16, 4155-4164.	1.7	2
1220	Colorful, time-dependent carbon dot-based afterglow with ultralong lifetime. Chemical Engineering Journal, 2022, 431, 133373.	6.6	42
1221	Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. Journal of the American Chemical Society, 2021, 143, 18941-18951.	6.6	54
1222	Recent progress in the development of carbon quantum dots for cell imaging. Oxford Open Materials Science, 2020, 1, .	0.5	1
1223	Synthesis of color-tunable tannic acid-based carbon dots for multicolor/white light-emitting diodes. New Journal of Chemistry, 2021, 45, 22559-22563.	1.4	9
1224	A novel rapid synthesis of highly stable silver nanoparticle/carbon quantum dot nanocomposites derived from low-grade coal feedstock. New Journal of Chemistry, 2021, 46, 309-321.	1.4	19
1225	Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. Nanoscale Advances, 2021, 4, 138-149.	2.2	16
1226	Na-doped carbon nanodots: shed light on the concentration modulated photoluminescence and two-photon absorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127993.	2.3	3
1227	Carbon-dots from babassu coconut (Orbignya speciosa) biomass: Synthesis, characterization, and toxicity to Daphnia magna. Carbon Trends, 2021, 5, 100133.	1.4	7
1228	Lighting up Individual Organelles With Fluorescent Carbon Dots. Frontiers in Chemistry, 2021, 9, 784851.	1.8	7
1229	Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 2021, 12, 6856.	5.8	192
1230	Structure-performance relationships between amino acid-functionalized graphene quantum dots and self-cleaning nanofiltration membranes. Journal of Membrane Science, 2022, 644, 120068.	4.1	10
1231	Preparation and Fluorescent Wavelength Control of Multi-Color Nitrogen-Doped Carbon Nano-Dots. Nanomaterials, 2021, 11, 3190.	1.9	3
1232	Scalable production, cell toxicity assessment, and plant growth promotion activities of carbon quantum dots derived from low-quality coal feedstock. Chemical Engineering Journal, 2022, 433, 133633.	6.6	23
1233	Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging. ACS Omega, 2021, 6, 32904-32916.	1.6	17
1234	Green carbon dots with multifaceted applications– Waste to wealth strategy. FlatChem, 2022, 31, 100310.	2.8	26

#	Article	IF	CITATIONS
1235	Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS Applied Materials & Interfaces, 2021, 13, 54677-54689.	4.0	19
1236	Full-color-emission carbon quantum dots by controlling surface states in a system of solvent. Journal of Luminescence, 2022, 243, 118614.	1.5	8
1237	An eco-friendly green and facile synthesis of carbon dots from red propolis wax with photoluminescence dependent of reaction time and thermal treatment in solid state. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	7
1238	Carbon dots with polarity-tunable characteristics for the selective detection of sodium copper chlorophyllin and copper ions. Analytica Chimica Acta, 2022, 1191, 339311.	2.6	22
1239	Green Synthesis of Tunable Fluorescent Carbon Quantum Dots from Lignin and Their Application in Anti-Counterfeit Printing. ACS Applied Materials & amp; Interfaces, 2021, 13, 56465-56475.	4.0	82
1240	Carbon dots for virus detection and therapy. Mikrochimica Acta, 2021, 188, 430.	2.5	34
1241	A versatile and facile strategy for full-color emitting carbonized polymer dots. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	3
1242	Bovine Serum Albumin-Encapsulated Ultrasmall Gold Nanoclusters for Photodynamic Therapy of Tumors. ACS Applied Nano Materials, 2021, 4, 13818-13825.	2.4	15
1243	A colorimetric and fluorescent dual-readout probe based on red emission carbon dots for nitrite detection in meat products. Food Chemistry, 2022, 374, 131768.	4.2	31
1244	Regulating the photoluminescence of carbon dots <i>via</i> a green fluorine-doping-derived surface-state-controlling strategy. Journal of Materials Chemistry C, 2021, 9, 17357-17364.	2.7	11
1246	Rapid Synthesis of Rare-Earth-Element-Free Yellow-Emissive Carbon Quantum Ring-Based Crystals in a Large Scale for White Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 1195-1204.	3.2	8
1247	"Switch-Off-On―Detection of Fe3+ and Fâ^' Ions Based on Fluorescence Silicon Nanoparticles and Their Application to Food Samples. Nanomaterials, 2022, 12, 213.	1.9	1
1248	A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chemistry, 2022, 24, 675-700.	4.6	26
1249	Carbon dots: a novel platform for biomedical applications. Nanoscale Advances, 2022, 4, 353-376.	2.2	46
1250	Harnessing versatile dynamic carbon precursors for multi-color emissive carbon dots. Journal of Materials Chemistry C, 2022, 10, 1932-1967.	2.7	21
1251	N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128066.	2.3	10
1252	Nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents: Simultaneous detection and treatment of trace Co2+ under saline conditions. Science of the Total Environment, 2022, 811, 152389.	3.9	18
1253	A pH-controlled synthetic route to violet, green, and orange fluorescent carbon dots for multicolor light-emitting diodes. Chemical Engineering Journal, 2022, 431, 134172.	6.6	77

#	Article	IF	Citations
1254	Tunable full-color solid-state fluorescent carbon dots for light emitting diodes. Carbon, 2022, 190, 22-31.	5.4	79
1255	Solid-state nitrogen-doped carbon nanoparticles with tunable emission prepared by a microwave-assisted method. RSC Advances, 2021, 11, 39917-39923.	1.7	6
1256	Two-Photon Fluorescent Nanomaterials and Their Applications in Biomedicine. Journal of Biomedical Nanotechnology, 2021, 17, 509-528.	0.5	24
1257	Water stable, red emitting, carbon nanoparticles stimulate 3D cell invasion <i>via</i> clathrin-mediated endocytic uptake. Nanoscale Advances, 2022, 4, 1375-1386.	2.2	7
1258	Distinctive optical transitions of tunable multicolor carbon dots. Nanoscale Advances, 0, , .	2.2	6
1259	Red, green, and blue light-emitting carbon dots prepared from gallic acid for white light-emitting diode applications. Nanoscale Advances, 2021, 4, 14-18.	2.2	10
1260	One-pot synthesis of concentration and excitation dual-dependency truly full-color photoluminescence carbon dots. Chinese Chemical Letters, 2022, 33, 4116-4120.	4.8	14
1261	Phosphorene quantum dots: synthesis, properties and catalytic applications. Nanoscale, 2022, 14, 1037-1053.	2.8	9
1262	Construction of a photo-controlled fluorescent switching with diarylethene modified carbon dots. Nanotechnology, 2022, , .	1.3	4
1263	Fabrication of the water-soluble functionalized silicon nanoparticles for biomedical applications. Journal of Materials Science, 2022, 57, 4738-4753.	1.7	2
1264	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	5.0	374
1265	Carbon dots and carbon nitride composite for photocatalytic removal of uranium under air atmosphere. Chinese Chemical Letters, 2022, 33, 3573-3576.	4.8	10
1266	Self-carbonization synthesis of highly-bright red/near-infrared carbon dots by solvent-free method. Journal of Materials Chemistry C, 2022, 10, 3153-3162.	2.7	32
1267	Recycling Synthetic Route to Full-Color Fluorescent Carbon Nanodots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1624-1632.	3.2	13
1268	Dispersion-assisted tunable fluorescence from carbon dots. Nanotechnology, 2022, 33, 175705.	1.3	5
1269	Orange emissive N-doped carbon dots and their application in detection of water in organic solvents and the polyurethane composites. Optical Materials, 2022, 123, 111927.	1.7	2
1270	Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. Nanomaterials, 2022, 12, 298.	1.9	49
1271	Ultrasonic-Assisted Synthesis of N-Doped, Multicolor Carbon Dots toward Fluorescent Inks, Fluorescence Sensors, and Logic Gate Operations. Nanomaterials, 2022, 12, 312.	1.9	34

#	Article	IF	CITATIONS
1272	F,N-Doped carbon dots as efficient Type I photosensitizers for photodynamic therapy. Dalton Transactions, 2022, 51, 2296-2303.	1.6	43
1273	Construction of a Turn-off–on Fluorescent System Based On Aggregation Induced Emission of Acetaldehyde Using Carbonized Polymer dots and Tb3+. Journal of Fluorescence, 2022, 32, 759-770.	1.3	4
1274	A rational design of carbon dots <i>via</i> the combination of nitrogen and oxygen functional groups towards the first NIR window absorption. Journal of Materials Chemistry C, 2022, 10, 1394-1402.	2.7	13
1275	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114.		49
1276	Green synthesis of fluorescent carbon dots from canon ball fruit for sensitive detection of Fe3+ and catalytic reduction of textile dyes. Dyes and Pigments, 2022, 199, 110101.	2.0	11
1277	A comprehensive understanding of multiple emissive states in S and N doped carbon dots and the highly selective detection of Cr(VI). Journal of Luminescence, 2022, 244, 118767.	1.5	1
1278	N and S doped carbon dots as novel probes with fluorescence enhancement for fast and sensitive detection of Cr(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128164.	2.3	13
1279	Designing of nucleolus-targeted carbon dots by controlling the carbon and nitrogen sources. Dyes and Pigments, 2022, 200, 110116.	2.0	11
1280	Carbon Dot Films with Efficient Interdot Förster Resonant Energy Transfer for Optical Coding by Ultraviolet Photooxidation. SSRN Electronic Journal, 0, , .	0.4	0
1281	A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 2022, 12, 4714-4759.	1.7	62
1282	Orange/red dual-emissive boron- and nitrogen-codoped carbon dots for wash-free and selective staining of lipid droplets in live cells. Carbon, 2022, 191, 636-645.	5.4	28
1283	The parallel fluorescence determination of iron(III), terbium(III) and europium(III) ions using the coal-derived carbon dot. Microchemical Journal, 2022, 177, 107255.	2.3	7
1284	Microwave-Mediated Synthesis of Near-Infrared-Emitting Silver Ion-Modified Gold Nanoclusters for Ratiometric Sensing of Hydrosulfide in Environmental Water and Hydrogen Sulfide in Live Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 2461-2472.	3.2	23
1285	Yellowâ€Emissive Carbon Dots with High Solidâ€State Photoluminescence. Advanced Functional Materials, 2022, 32, .	7.8	84
1286	A high-performance composite CDs@Cu-HQCA/TiO2 flower photocatalyst: Synergy of complex-sensitization, TiO2-morphology control and carbon dot-surface modification. Chemical Engineering Journal, 2022, 436, 134978.	6.6	28
1287	Effect of ultra-trace Ag doping on the antibacterial performance of carbon quantum dots. Journal of Environmental Chemical Engineering, 2022, 10, 107112.	3.3	7
1288	Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 12107-12113.	2.1	8
1289	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51

#	Article	IF	CITATIONS
1290	High reaction activity enables carbon dots to construct multicomponent nanocomposites with superior catalytic performance. Inorganic Chemistry Frontiers, 2022, 9, 1761-1769.	3.0	5
1291	Controllable Synthesis of Carbon Dot@Caco3 Composites: Tunable Morphology, Uv Absorption Properties, and Application as Ultraviolet Absorber. SSRN Electronic Journal, 0, , .	0.4	0
1292	Carbon Dots: Fundamental Concepts and Biomedical Applications. Materials Horizons, 2022, , 83-108.	0.3	1
1293	Energy Transfer from Carbon Dots to Organic Dye. Springer Proceedings in Physics, 2022, , 189-194.	0.1	0
1294	RGB-multicolor fluorescent carbon dots by changing the reaction solvent type for white light-emitting diodes. New Journal of Chemistry, 2022, 46, 4979-4982.	1.4	10
1295	Small variations in reaction conditions tune carbon dot fluorescence. Nanoscale, 2022, 14, 6930-6940.	2.8	14
1296	Pomegranate seed polyphenol-based nanosheets as an efficient inhibitor of amyloid fibril assembly and cytotoxicity of HEWL. RSC Advances, 2022, 12, 8719-8730.	1.7	3
1297	Towards N–N-Doped Carbon Dots: A Combined Computational and Experimental Investigation. Materials, 2022, 15, 1468.	1.3	5
1298	Ratiometric fluorescence sensor for sensitive detection of inorganic phosphate in environmental samples. Analytical and Bioanalytical Chemistry, 2022, 414, 3507-3515.	1.9	12
1299	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
1300	What makes carbon nanoparticle a potent material for biological application?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1782.	3.3	8
1301	Visible-Light-Promoted Photocatalytic Applications of Carbon Dots: A Review. ACS Applied Nano Materials, 2022, 5, 3087-3109.	2.4	43
1302	Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production. Catalysts, 2022, 12, 211.	1.6	4
1303	Preparation, Properties, and Application of Lignocellulosicâ€Based Fluorescent Carbon Dots. ChemSusChem, 2022, 15, e202102486.	3.6	20
1304	Dual Role of MoS ₂ Quantum Dots in a Cross-Dehydrogenative Coupling Reaction. ACS Organic & Inorganic Au, 2022, 2, 205-213.	1.9	21
1305	Efficient Synthesis of Yellowâ€Green Carbon Quantum Dots as a Sensitive Fluorescent Probe of Folic Acid. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
1306	Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. , 2022, 136, 212756.		28
1307	Fluorescent Mechanism in Zero-Dimensional Carbon Nanomaterials: A Review. Journal of Fluorescence, 2022, 32, 887-906.	1.3	12

#	Article	IF	CITATIONS
1308	Highly luminescent nitrogen doped graphene quantum dots sensitized TiO2 nanorod arrays for enhanced photoelectrochemical performance. Journal of Electroanalytical Chemistry, 2022, 909, 116150.	1.9	18
1310	Tuning the photoluminescence by engineering surface states/size of S, N co-doped carbon dots for cellular imaging applications. Nanotechnology, 2022, 33, 235708.	1.3	10
1311	Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Science and Applications, 2022, 11, 56.	7.7	60
1312	Chiral carbon dots: synthesis, optical properties, and emerging applications. Light: Science and Applications, 2022, 11, 75.	7.7	105
1313	Highly sensitive detection of kinetin with electrochemical exfoliation of graphene nanosheets. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
1314	Mulberry‣eavesâ€Derived Redâ€Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Advanced Materials, 2022, 34, e2200152.	11.1	79
1315	Enhanced adsorption and visible-light photocatalysis on TiO2 with in situ formed carbon quantum dots. Environmental Science and Pollution Research, 2022, 29, 56379-56392.	2.7	7
1316	Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. Nano Convergence, 2022, 9, 15.	6.3	40
1317	Twins of Minimalistic Carbon Dots: Uniform Emittingâ€Units and Molecular Level Repeatable Photoluminescence. Advanced Optical Materials, 2022, 10, .	3.6	4
1318	Converting fruit waste into carbon dots for bioimaging applications. Materials Today Sustainability, 2022, 18, 100137.	1.9	17
1319	Graphene quantum dots alleviate ROS-mediated gastric damage. IScience, 2022, 25, 104062.	1.9	7
1320	Cyclooxygenase-2-targeting fluorescent carbon dots for the selective imaging of Golgi apparatus. Dyes and Pigments, 2022, 201, 110213.	2.0	11
1321	Preparation of multicolor carbon dots with high fluorescence quantum yield and application in white LED. Chemical Physics Letters, 2022, 794, 139497.	1.2	24
1322	A dual-mode immunosensing strategy for prostate specific antigen detection: Integration of resonance Raman scattering and photoluminescence properties of ZnS:Mn2+ nanoprobes. Analytica Chimica Acta, 2022, 1205, 339775.	2.6	1
1323	Deep blue photoluminescence and optical gain from sodium-doped carbon dots. Journal of Luminescence, 2022, 246, 118856.	1.5	6
1324	Indoor synthesis of carbon quantum dots and its potential applications study as tracers in oilfields. Journal of Petroleum Science and Engineering, 2022, 213, 110325.	2.1	4
1325	Near-infrared-II photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration. Journal of Colloid and Interface Science, 2022, 616, 595-604.	5.0	30
1326	Solvent-dependent red emissive carbon dots and their applications in sensing and solid-state luminescence. Sensors and Actuators B: Chemical, 2022, 360, 131645.	4.0	33

#	Article	IF	CITATIONS
1327	Luminescence color regulation of carbon quantum dots by surface modification. Journal of Luminescence, 2022, 246, 118811.	1.5	9
1328	Effect of heat diffusivity for driving chain stitching of dual-type hybrid organosilica-derived membranes. Separation and Purification Technology, 2022, 290, 120848.	3.9	5
1329	Seeking eye protection from biomass: Carbon dot-based optical blocking films with adjustable levels of blue light blocking. Journal of Colloid and Interface Science, 2022, 617, 44-52.	5.0	19
1330	Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors. Carbon, 2022, 194, 42-51.	5.4	63
1331	Polymer Precursor Strategy Toward the Precise Synthesis of Uniform Hairy Carbon Dots with Tunable Sizes and Size Effects over Their Fluorescence. Macromolecules, 2021, 54, 11497-11507.	2.2	10
1332	Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS Sustainable Chemistry and Engineering, 2022, 10, 245-258.	3.2	17
1333	<scp>Interfacial</scp> engineering of polydimethylsiloxane based dielectric elastomers with excellent electromechanical properties via incorporating polyphenol encapsulated multiwalled carbon nanotube. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
1334	Fluorescence Sensing Performance of Carbon Dots of Functionalization toward Sunset Yellow. Particle and Particle Systems Characterization, 2022, 39, .	1.2	4
1335	Radiative and Non-Radiative Decay Pathways in Carbon Nanodots toward Bioimaging and Photodynamic Therapy. Nanomaterials, 2022, 12, 70.	1.9	6
1336	Rational Design of Surface-State Controlled Multicolor Cross-Linked Carbon Dots with Distinct Photoluminescence and Cellular Uptake Properties. ACS Applied Materials & Interfaces, 2021, 13, 59747-59760.	4.0	13
1337	Ecoâ€friendly <scp>PCL</scp> @ <scp>CDs</scp> biomaterials via phytic acid, <scp>CDs</scp> ocatalyzed polymerization for rifapentin delivery. Journal of Applied Polymer Science, 2022, 139, 51984.	1.3	2
1338	Simple Strategy for Scalable Preparation Carbon Dots: RTP, Timeâ€Dependent Fluorescence, and NIR Behaviors. Advanced Science, 2022, 9, e2104278.	5.6	31
1339	Preparation of yellow emissive nitrogen-doped carbon dots from <i>o</i> -phenylenediamine and their application in curcumin sensing. New Journal of Chemistry, 2022, 46, 9543-9549.	1.4	7
1340	The fluorescence mechanism of carbon dots based on the separation and identification of small molecular fluorophores. RSC Advances, 2022, 12, 11640-11648.	1.7	8
1341	Ultra-bright carbon quantum dots for rapid cell staining. Analyst, The, 2022, 147, 2558-2566.	1.7	10
1342	Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO ₂ Enabling Infrared Light-Driven Overall Water Splitting. Research, 2022, 2022, 9781453.	2.8	10
1343	Aminolysis-assisted hydrothermal conversion of waste PET plastic to N-doped carbon dots with markedly enhanced fluorescence. Journal of Environmental Chemical Engineering, 2022, 10, 107749.	3.3	19
1344	Strong quantum-confined excitation and emission from violet phosphorus quantum dots. Applied Physics Letters, 2022, 120, 151904.	1.5	1

# 1345	ARTICLE Fabrication of novel carbon dots/cerium oxide nanocomposites for highly sensitive electrochemical detection of doxorubicin. Diamond and Related Materials, 2022, 125, 109037.	IF 1.8	Citations 8
1346	Nitrogen and phosphorus co-doped carbon dots as an effective fluorescence probe for the detection of doxorubicin and cell imaging. Optical Materials, 2022, 128, 112323.	1.7	15
1347	Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation. Chemical Engineering Journal, 2022, 443, 136473.	6.6	19
1351	Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8441-8458.	2.7	17
1352	Photostable Carbon Dots with Intense Green Emission in an Open Reactor Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
1353	Quantum dots as promising nanomaterials in agriculture. , 2022, , 243-296.		3
1354	The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. International Journal of Molecular Sciences, 2022, 23, 5001.	1.8	21
1355	Solvent-free synthesis of nitrogen doped carbon dots with dual emission and their biological and sensing applications. Materials Today Nano, 2022, 18, 100205.	2.3	9
1356	Carbon Dots Boost dsRNA Delivery in Plants and Increase Local and Systemic siRNA Production. International Journal of Molecular Sciences, 2022, 23, 5338.	1.8	11
1357	Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging. Nanomaterials, 2022, 12, 1528.	1.9	14
1358	Microwave-assisted synthesis and formation mechanism of fluorescent carbon dots from starch. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100218.	1.6	7
1359	Broadband Optical Amplification of Waveguide Cutâ€Off Mode in Polymer Waveguide Doped with Graphene Quantum Dots. Advanced Optical Materials, 2022, 10, .	3.6	4
1360	Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science, 2022, 2, .	5.8	117
1361	Dual-wavelength ratiometric immunosensor for Bacillus cereus: Oxidase-like MnO2-Au trigged "OFF-ON―detection strategy. Sensors and Actuators B: Chemical, 2022, 365, 131925.	4.0	11
1362	Polymer types regulation strategy toward the synthesis of carbonized polymer dots with excitation-wavelength dependent or independent fluorescence. Chinese Chemical Letters, 2023, 34, 107509.	4.8	6
1363	Nanocarrier from water extract solution of Auricularia auricula for zinc delivery. Food Hydrocolloids for Health, 2022, 2, 100070.	1.6	1
1364	Effect of Hydrogen Peroxide Concentration to Fluorescence Properties of Carbon Dot from HDPE. Key Engineering Materials, 0, 920, 106-113.	0.4	2
1365	Red carbon dot directed biocrystalline alignment for piezoelectric energy harvesting. Nanoscale, 2022, 14, 9031-9044.	2.8	5

	CITATION	Report	
#	Article	IF	CITATIONS
1366	Carbon dots with tunable emission based on pH values. Materials Express, 2022, 12, 271-277.	0.2	1
1367	High-quality full-color carbon quantum dots synthesized under an unprecedentedly mild condition. IScience, 2022, 25, 104421.	1.9	16
1368	Gradient heating-induced bi-phase synthesis of carbon quantum dots (CQDs) on graphene-coated carbon cloth for efficient photoelectrocatalysis. Carbon, 2022, 196, 649-662.	5.4	22
1369	Wet chemistry-based processing of tunable polychromatic carbon quantum dots for multicolor bioimaging and enhanced NIR-triggered photothermal bactericidal efficacy. Applied Surface Science, 2022, 597, 153630.	3.1	14
1370	Tunable fluorescence and magnetic properties of ceria- organic core- shell hollow structures. Applied Surface Science, 2022, 597, 153685.	3.1	1
1371	Selective detection of manganese(II) ions based on the fluorescence turn-on response via histidine functionalized carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121409.	2.0	8
1372	Surface Plasmon-Enhanced Electrochemiluminescence of P, N-Doped Carbon Dots for Ultrasensitive Detection of Braf Gene. SSRN Electronic Journal, 0, , .	0.4	0
1373	ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy <i>via</i> hierarchical size/charge dual-transform and transcytosis. Nanoscale, 2022, 14, 8510-8524.	2.8	6
1374	Carbon Nanodot-Based Humidity Sensor for Self-Powered Respiratory Monitoring. SSRN Electronic Journal, 0, , .	0.4	0
1375	碳ç,¹è§å‰ä¼æ"Ÿå™çš"æž"建åŠå¶åœ¨çŽ¯å¢ƒæ±¡æŸ"å^†æžä¸çš"应ç". Scientia Sinica Chimica, 2022,	,. 0.2	0
1376	Pyrolysis of single carbon sources in SBA-15: A recyclable solid phase synthesis to obtain uniform carbon dots with tunable luminescence. Chinese Chemical Letters, 2023, 34, 107560.	4.8	12
1377	Development of Highly Luminescent Water-Insoluble Carbon Dots by Using Calix[4]pyrrole as the Carbon Precursor and Their Potential Application in Organic Solar Cells. ACS Omega, 2022, 7, 18840-18851.	1.6	8
1378	Fluorine and nitrogen co-doped near-infrared carbon dots for fluorescence "on–off-on― determination of nitrite. Mikrochimica Acta, 2022, 189, .	2.5	6
1379	Pressure-Induced Bifurcation in the Photoluminescence of Red Carbon Quantum Dots: Coexistence of Emissions from Surface Groups and Nitrogen-Doped Cores. Journal of Physical Chemistry Letters, 2022, 13, 4768-4777.	2.1	7
1380	Unraveling the origin of photoluminescence in dual emissive biogenic carbon dot. Materials Today Communications, 2022, 31, 103777.	0.9	4
1381	Toward Strong Nearâ€Infrared Absorption/Emission from Carbon Dots in Aqueous Media through Solvothermal Fusion of Large Conjugated Perylene Derivatives with Postâ€Surface Engineering. Advanced Science, 2022, 9, .	5.6	48
1382	Green synthesis of biomass-derived carbon dots as an efficient corrosion inhibitor. Journal of Molecular Liquids, 2022, 360, 119522.	2.3	25
1383	One-pot green preparation of deep-ultraviolet and dual-emission carbon nanodots for dual-channel ratiometric determination of polyphenol in tea sample. Mikrochimica Acta, 2022, 189, .	2.5	11

#	Article	IF	CITATIONS
1384	Preparation and luminescent modulation of yellow carbon dots for electroluminescent device. Journal of Luminescence, 2022, 249, 119036.	1.5	5
1385	Response surface methodology optimization for the synthesis of N, S-codoped carbon dots and its application for tetracyclines detection. Chemosphere, 2022, 303, 135145.	4.2	10
1386	Make waste profitable: repurposing SAPO-34 coke from the methanol-to-olefin reaction for luminescent CDs@zeolite composites. Inorganic Chemistry Frontiers, 2022, 9, 3737-3746.	3.0	3
1387	Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid–urea carbon dots. Nanoscale, 2022, 14, 9516-9525.	2.8	12
1388	Controllable fabrication of carbon dots based corrosion inhibitors with fluorescence properties. , 2022, , 505-526.		1
1389	Construction of Carbon Dots with Color-Tunable Electrochemiluminescence and Enhanced Efficiency Enabled by Shadow Trapping States and Intramolecular Charge Transfer. SSRN Electronic Journal, 0, , .	0.4	0
1390	Surface Functional Groups Effect on the Absorption Spectrum of Carbon Dots: Initial TD-DFT Study. Journal of Physics: Conference Series, 2022, 2243, 012043.	0.3	0
1391	Preparation of Fluorescent Carbon Dots from Chinese Herbal Medicine Alisma and Its Potential Applications in Photocatalytic Degradation of Malachite Green and Cell Imaging. Chemical Research in Chinese Universities, 2023, 39, 234-239.	1.3	1
1392	Recent progress on performances and mechanisms of carbon dots for gas sensing. Luminescence, 2023, 38, 896-908.	1.5	3
1393	Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Science Bulletin, 2022, 67, 1450-1457.	4.3	90
1394	Controllable Synthesis of Carbon Dots@CaCO ₃ Composites: Tunable Morphology, UV Absorption Properties, and Application as an Ultraviolet Absorber. Crystal Growth and Design, 2022, 22, 4357-4365.	1.4	8
1395	Porphyrin/carbon nanodot supramolecular complexes and their optical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129436.	2.3	2
1396	Surface amino group modulation of carbon dots with blue, green and red emission as Cu2+ ion reversible detector. Applied Surface Science, 2022, 598, 153892.	3.1	12
1397	Highly efficient red-emitting carbon dots as a "turn-on―temperature probe in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121538.	2.0	8
1398	Green synthesis of carbon dots using expired agar for a label-free fluorescence signal-amplified detection of ferric ion utilizing oxalate functionalization. Materials Advances, 2022, 3, 6307-6315.	2.6	2
1399	Physical and chemical properties of carbon dots. , 2022, , 117-133.		2
1400	Optical properties of carbon dots and their applications. , 2022, , 135-153.		2
1401	Preparation of solvent-free starch-based carbon dots for the selective detection of Ru ³⁺ ions. RSC Advances, 2022, 12, 18779-18783.	1.7	5

#	Article	IF	CITATIONS
1402	N-DOPED RED EMISSION CARBON DOTS AND DETECTION OF Fe3+. Journal of Structural Chemistry, 2022, 63, 460-469.	0.3	2
1403	Carbon Dot Films with Efficient Interdot Förster Resonance Energy Transfer for Optical Coding by Ultraviolet Photooxidation. Journal of Physical Chemistry C, 2022, 126, 10441-10448.	1.5	1
1404	Fluorescent Carbon Quantum Dots Functionalized by Poly L-Lysine: Efficient Material for Antibacterial, Bioimaging and Antiangiogenesis Applications. Journal of Fluorescence, 2022, 32, 1789-1800.	1.3	13
1405	Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect, 2022, 7, .	0.7	5
1406	Origin of carbon dot fluorescence in organosilica films explored experimentally by surface functionalization. Journal of Sol-Gel Science and Technology, 2022, 104, 702-710.	1.1	3
1407	Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chemistry - A European Journal, 2022, 28, .	1.7	21
1408	One-pot hydrothermal green synthesis of Polygala tenuifolia mediated graphene quantum dots for acetylcholine esterase inhibitory activity. Journal of Drug Delivery Science and Technology, 2022, 73, 103486.	1.4	5
1409	Green-emission nitrogen-doped carbon quantum dots from alkaline N-methyl-2-pyrrolidinone for determination of β-galactosidase and its inhibitors. Mikrochimica Acta, 2022, 189, .	2.5	0
1410	Photostable carbon dots with intense green emission in an open reactor synthesis. Carbon, 2022, 198, 230-243.	5.4	10
1411	Carbon dots from eco-friendly precursors for optical sensing application: an up-to-date review. Chemical Papers, 2022, 76, 6097-6127.	1.0	19
1412	Guar gum-sodium alginate nanocomposite film as a smart fluorescence-based humidity sensor: A smart packaging material. International Journal of Biological Macromolecules, 2022, 216, 571-582.	3.6	21
1413	Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy, 2022, 101, 107549.	8.2	44
1414	Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots. Microchemical Journal, 2022, 181, 107742.	2.3	7
1415	Progress on carbon dots and hydroxyapatite based biocompatible luminescent nanomaterials for cancer theranostics. Translational Oncology, 2022, 24, 101482.	1.7	8
1416	Surface plasmon-enhanced electrochemiluminescence of P, N-doped carbon dots for ultrasensitive detection of BRAF gene. Sensors and Actuators B: Chemical, 2022, 369, 132288.	4.0	8
1417	Peroxyoxalate/carbon dots chemiluminescent reaction for fluorescent and visual determination of Fe3+. Microchemical Journal, 2022, 181, 107782.	2.3	8
1418	Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence. Nano Research, 2022, 15, 9454-9460.	5.8	14
1419	Solvent-Free Pyrolysis Strategy for the Preparation of Biomass Carbon Dots for the Selective Detection of Fe3+ Ions. Frontiers in Chemistry, 0, 10, .	1.8	4

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
1420	Methylene Blue/Carbon Dots Composite with Photothermal and Photodynamic Properties: Synthesis, Characterization, and Antibacterial Application. Photochemistry and Photobiology, 2023, 99, 92-100.	1.3	5
1421	The "ON-OFFâ€Âmicrowave reaction time technique: A novel strategy to impact the fluorescence of multi-color emissive carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129735.	2.3	4
1422	Polymer-Induced Emission-Active Fluorine-Embedded Carbon Dots for the Preparation of Warm WLEDs with a High Color Rendering Index. Langmuir, 2022, 38, 9389-9399.	1.6	14
1423	Highly efficient heterostructures of C3N4 and o-GQDs with enrichment of specific oxygen-containing groups for photocatalytic applications. Journal of Alloys and Compounds, 2022, 923, 166327.	2.8	12
1424	In-situ encapsulation of oil soluble carbon nanoclusters in ZIF-8 and applied as bifunctional recyclable stable sensing material of nitrofurazone and lysine and fluorescent ink. Journal of Molecular Structure, 2022, 1269, 133766.	1.8	1
1425	One-Pot Synthesis of Multicolor Carbon Quantum Dots: One as Ph Sensor, One as Sequential Dual-Target Sensor with Ultra-Narrow Emission. SSRN Electronic Journal, 0, , .	0.4	0
1426	Acid-regulated boron–nitrogen codoped multicolor carbonized polymer dots and applications for pH sensing and trace water detection. Nanoscale, 2022, 14, 12762-12772.	2.8	9
1427	Synthesis of Carbon Quantum Dots by Gas-liquid Plasma Using Ethanol as Precursor. , 2022, , .		0
1428	Halogen-Doped Carbon Dots: Synthesis, Application, and Prospects. Molecules, 2022, 27, 4620.	1.7	20
1429	Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega, 2022, 7, 29967-29983.	1.6	17
1430	Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS Nano, 2022, 16, 11545-11576.	7.3	18
1431	Carbon nanodots: recent advances in synthesis and applications. Carbon Letters, 2022, 32, 1603-1629.	3.3	12
1432	Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons. Advanced Science, 2022, 9, .	5.6	27
1433	Color Conversion Light-Emitting Diodes Based on Carbon Dots: A Review. Materials, 2022, 15, 5450.	1.3	9
1434	Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Scientific Reports, 2022, 12, .	1.6	30
1435	Spectrally tunable humic acid–based carbon dots: a simple platform for metronidazole and ornidazole sensing in multiple real samples. Analytical and Bioanalytical Chemistry, 2023, 415, 4221-4232.	1.9	4
1436	Carbon Nanodots from an In Silico Perspective. Chemical Reviews, 2022, 122, 13709-13799.	23.0	45
1437	A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications. Luminescence, 2022, 37, 1612-1638.	1.5	22

#	Article	IF	CITATIONS
1438	Recent advances of eco-friendly quantum dots light-emitting diodes for display. Progress in Quantum Electronics, 2022, 86, 100415.	3.5	8
1439	Multicolor Nitrogen-Doped Carbon Quantum Dots for Environment-Dependent Emission Tuning. ACS Omega, 2022, 7, 27742-27754.	1.6	12
1440	Carbon dots for real-time colorimetric/fluorescent dual-mode sensing ClOâ^'/GSH. Dyes and Pigments, 2022, 206, 110614.	2.0	2
1441	Co-assembled hybrid of carbon nanodots and molecular fluorophores for efficient solar-driven water evaporation. Carbon, 2022, 199, 462-468.	5.4	11
1442	High-energy short-wave blue light conversion films via carbon quantum dots for preventing retinal photochemical damage. Carbon, 2022, 199, 431-438.	5.4	44
1443	Microwave irradiation and color converting film application of carbon dots originated from wasted toner powder. Materials Research Bulletin, 2022, 156, 111999.	2.7	2
1444	Comparative study on corrosion inhibition of N doped and N,S codoped carbon dots for carbon steel in strong acidic solution. Journal of Colloid and Interface Science, 2022, 628, 384-397.	5.0	42
1445	Bridging environmental and biological monitoring: Constructing platform for hexavalent chromium detection and cancer-cells screening based on red fluorescent carbonized polymer dots. Chemical Engineering Journal, 2023, 451, 138524.	6.6	4
1446	Approach of nitrogen doping on the carbon dots derived from poly(ethylene glycol) and the fluorophore identification. Applied Surface Science, 2022, 606, 154939.	3.1	3
1447	Acid treatment to tune the optical properties of carbon quantum dots. Applied Surface Science, 2022, 605, 154690.	3.1	11
1448	Near-infrared I/II emission and absorption carbon dots via constructing localized excited/charge transfer state for multiphoton imaging and photothermal therapy. Chemical Engineering Journal, 2023, 452, 139231.	6.6	23
1449	A self-assembly hydrophobic oCDs/Ag nanoparticles SERS sensor for ultrasensitive melamine detection in milk. Food Chemistry, 2023, 402, 134241.	4.2	13
1450	An intelligent cooling material modified with carbon dots for evaporative cooling and UV absorption. Nanoscale Advances, 2022, 4, 4169-4174.	2.2	4
1451	The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives. Nanoscale, 2022, 14, 14368-14384.	2.8	17
1452	Carbon dots and miniaturizing fabrication of portable carbon dot-based devices for bioimaging, biosensing, heavy metal detection and drug delivery applications. Journal of Materials Chemistry C, 2022, 10, 15277-15300.	2.7	3
1453	High Fluorescent N-Doped Carbon Dots Derived from Sanghuangporus Lonicericola for Detecting Tetracyclines in Aquaculture Water and Rat Serum Samples. SSRN Electronic Journal, 0, , .	0.4	0
1454	Ultrasensitive and selective fluorescence recognition of selenite by <i>o</i> -phenylenediamine functionalized carbon quantum dots. New Journal of Chemistry, 2022, 46, 19712-19721.	1.4	2
1455	Regulation of multi-color fluorescence of carbonized polymer dots by multiple contributions of effective conjugate size, surface state, and molecular fluorescence. Journal of Materials Chemistry B, 2022, 10, 6991-7002.	2.9	9

\sim	 	D	PORT
		REL	דעהנ
		NLF	

#	Article	IF	CITATIONS
1456	Green-light-emitting carbon dots <i>via</i> eco-friendly route and their potential in ferric-ion detection and WLEDs. Materials Advances, 2022, 3, 7339-7347.	2.6	3
1457	Antibacterial activities of carbon quantum dots derived from lemon juice. AIP Conference Proceedings, 2022, , .	0.3	2
1458	One-pot hydrothermal synthesis of high quantum yield orange-emitting carbon quantum dots for sensitive detection of perfluorinated compounds. New Journal of Chemistry, 2022, 46, 19658-19666.	1.4	4
1459	Polarity-dependent emission from hydroxyl-free carbon nanodots. Nanoscale, 2022, 14, 13059-13065.	2.8	3
1460	Plate-like CDots/EuBDC nanocomposite for ratiometric luminescence thermometry. Journal of Materials Chemistry C, 2022, 10, 11614-11624.	2.7	3
1461	D0 carbon nanoparticles: Carbon nanodots and graphene oxide quantum dots. , 2022, , 505-527.		0
1462	Surface state modulation of blue-emitting carbon dots with high quantum yield and high product yield. RSC Advances, 2022, 12, 27431-27441.	1.7	8
1463	Monitoring the pH Value of an Aqueous Micellar Solution in Real-Time Using a Fiber Optofluidic Laser. Journal of Lightwave Technology, 2023, 41, 362-366.	2.7	3
1464	Ultrafast insights into full-colour light-emitting C-Dots. Nanoscale, 2022, 14, 15812-15820.	2.8	5
1465	Carbon-polymer dot-based UV absorption and fluorescence performances for heavy metal ion detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121913.	2.0	14
1466	Carbon dots as adsorbents for removal of toxic chemicals. , 2023, , 161-180.		0
1467	One-Step Hydrothermal Synthesis of Nitrogen-Doped Carbonized Polymer Dots with Full-Band Absorption for Skin Protection. ACS Sustainable Chemistry and Engineering, 2022, 10, 11958-11968.	3.2	10
1468	Control of Electron Pathway in in-situ Synthesized Carbon Dot@Cellulose Nanofiber with Stable Solid-state Emission. Fibers and Polymers, 2022, 23, 2132-2138.	1.1	0
1469	Dye Plants Derived Carbon Dots for Flexible Secure Printing. Nanomaterials, 2022, 12, 3168.	1.9	3
1470	Carbon nanodots derived from biomass and their spectral-matching sensing of chromium (VI). Journal of the Iranian Chemical Society, 0, , .	1.2	0
1471	Doped Carbon Quantum Dots/PVA Nanocomposite as a Platform to Sense Nitrite Ions in Meat. ACS Applied Materials & Interfaces, 2022, 14, 43597-43611.	4.0	8
1472	Polarity, intramolecular charge transfer, and hydrogen bond co-mediated solvent effects on the optical properties of graphene quantum dots. Nano Research, 2023, 16, 45-52.	5.8	16
1473	From Small Molecules to Zero-Dimensional Carbon Nanodots: Chasing the Stepwise Transformations During Carbonization. Journal of Physical Chemistry C, 2022, 126, 16377-16386.	1.5	9

#	Article	IF	CITATIONS
1474	Blue, green and yellow carbon dots derived from pyrogenic carbon: Structure and fluorescence behaviour. Carbon, 2023, 201, 900-909.	5.4	14
1475	Use of Deep Ultraviolet Emissive Carbon Dots as a Novel Optical Sensor for the Detection of Tetracyclines in Milk. IEEE Sensors Journal, 2022, 22, 17777-17783.	2.4	0
1476	Multicolor Luminescent Carbon Dots: Tunable Photoluminescence, Excellent Stability, and Their Application in Light-Emitting Diodes. Nanomaterials, 2022, 12, 3132.	1.9	5
1477	Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing. Analytical Chemistry, 2022, 94, 14308-14316.	3.2	31
1478	Roles of Impurity and Sample Heterogeneity in Intriguing Photoluminescence Properties of Zero-Dimensional (0D) Carbonaceous Materials. Journal of Physical Chemistry C, 2022, 126, 16905-16918.	1.5	5
1479	One-pot Solvothermal Synthesis of Full-color Carbon Quantum Dots for Application in Light Emitting Diodes. Nano Structures Nano Objects, 2022, 32, 100917.	1.9	9
1480	Rice Husk-Derived Carbon Quantum Dots-Based Dual-Mode Nanoprobe for Selective and Sensitive Detection of Fe ³⁺ and Fluoroquinolones. ACS Biomaterials Science and Engineering, 2022, 8, 4764-4776.	2.6	25
1481	Dual-emission fluorescence detection of histidine using carbon dots and calcein/Ni2+ complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 121951.	2.0	2
1482	Facile and scalable preparation of carbon dots with Schiff base structures toward an efficient corrosion inhibitor. Diamond and Related Materials, 2022, 130, 109401.	1.8	6
1483	Dual emissive water-based flexo ink from tapioca-derived carbon dots for anti-counterfeiting applications. Progress in Organic Coatings, 2022, 173, 107233.	1.9	6
1484	Smartphone-based label-free ratiometric fluorescence detection of sertraline and glutathione based on the use of orange-emission carbon dots. Materials Today Chemistry, 2022, 26, 101170.	1.7	2
1485	A comprehensive review on multi-colored emissive carbon dots as fluorescent probes for the detection of pharmaceutical drugs in water. Analytical Methods, 2022, 14, 4263-4291.	1.3	10
1486	Revealing the synergetic interaction between amino and carbonyl functional groups and their effect on the electronic and optical properties of carbon dots. Physical Chemistry Chemical Physics, 2022, 24, 27163-27172.	1.3	5
1487	Understanding the intrinsic synergistic mechanism between Pt-O-Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Science China Chemistry, 2022, 65, 2596-2603.	4.2	6
1488	Ultraâ€Broadband Photoluminescent Carbon Dots Synthesized by Laserâ€Induced Thermal Shock. Laser and Photonics Reviews, 0, , 2200295.	4.4	1
1489	A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International, 2022, 48, 35986-35999.	2.3	20
1490	Assignment of Core and Surface States in Multicolorâ€Emissive Carbon Dots. Small, 2023, 19, .	5.2	28
1491	Recent Progress of Carbon Dots for Air Pollutants Detection and Photocatalytic Removal: Synthesis, Modifications, and Applications. Small, 2022, 18, .	5.2	8

\sim		<u>_</u>	
		Repo	DT
\sim	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
1492	Multicolour carbon dots with excitation-independent emission by microwave solvothermal reaction. Carbon Letters, 0, , .	3.3	4
1493	Reduced Graphene Oxide Quantum Dot Light Emitting Diodes Fabricated Using an Ultraviolet Light Emitting Diode Photolithography Technique. ACS Applied Materials & Interfaces, 2022, 14, 48976-48985.	4.0	6
1494	A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures. Small, 0, , 2203940.	5.2	3
1495	Controlled Synthesis of Multicolor Carbon Dots Assisted by Machine Learning. Advanced Functional Materials, 2023, 33, .	7.8	16
1496	Phase Behavior and Aggregate Transition Based on Co-assembly of Negatively Charged Carbon Dots and a pH-Responsive Tertiary Amine Cationic Surfactant. Langmuir, 2022, 38, 13771-13781.	1.6	3
1497	Emerging metal doped carbon dots for promising theranostic applications. Biomedical Materials (Bristol), 2023, 18, 012001.	1.7	7
1498	The Emerging Development of Multicolor Carbon Dots. Small, 2022, 18, .	5.2	82
1499	Thermal control of oxygen-induced emission states in carbon dots for indoor lighting applications. Dyes and Pigments, 2023, 208, 110895.	2.0	3
1500	Handheld detection strategy: Real-time on-site assay of Mn(VII) and GSH integrating ratiometric fluorescent carbon dots paper strip, smartphone, and 3D-printed accessory. Sensors and Actuators B: Chemical, 2023, 375, 132871.	4.0	6
1501	Hydrothermal vs microwave nanoarchitechtonics of carbon dots significantly affects the structure, physicochemical properties, and anti-cancer activity against a specific neuroblastoma cell line. Journal of Colloid and Interface Science, 2023, 630, 306-321.	5.0	11
1502	Novel highly selective fluorescence sensing strategy for Mercury(â¡) in water based on nitrogen-doped carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 122010.	2.0	11
1503	Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114386.	2.0	15
1504	Supra-(carbon dots) with versatile morphologies and promising optical properties. Chemical Engineering Journal, 2023, 454, 140069.	6.6	16
1505	Carbon Dot@MXene Nanozymes with Triple Enzymeâ€Mimic Activities for Mild NIRâ€I Photothermalâ€Amplified Nanocatalytic Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	18
1506	Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. Materials, 2022, 15, 7888.	1.3	9
1507	Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries. Journal of Electronic Materials, 2023, 52, 41-49.	1.0	1
1508	Construction of Carbon Dots with Wavelength-Tunable Electrochemiluminescence and Enhanced Efficiency. Analytical Chemistry, 2022, 94, 16510-16518.	3.2	10
1509	Application of carbon-based quantum dots in photodynamic therapy. Carbon, 2023, 203, 273-310.	5.4	29

#	Article	IF	CITATIONS
1510	Synthesis and surface characterization of a chemically modified carbon paste electrode and its application in determination of Hg(II) ion in water, food and dental amalgam samples. Microchemical Journal, 2023, 184, 108178.	2.3	7
1511	Doped Carbon Dots as Promising Fluorescent Nanosensors: Synthesis, Characterization, and Recent Applications. Current Pharmaceutical Design, 2023, 29, 415-444.	0.9	19
1512	A sequential dual-lock strategy for generation of room-temperature phosphorescence of boron doped carbon dots for dynamic anti-counterfeiting. Journal of Colloid and Interface Science, 2023, 632, 129-139.	5.0	17
1513	Regulating photochemical properties of carbon dots for theranostic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	10
1515	Recent advances in the graphene quantum dot-based biological and environmental sensors. Sensors and Actuators Reports, 2022, 4, 100130.	2.3	3
1516	Structure–Property–Activity Relationships in Carbon Dots. Journal of Physical Chemistry B, 2022, 126, 10777-10796.	1.2	8
1517	One-step large-scale fabricating aggregation-induced emission carbon dots with strong solid-state fluorescence emission. Materials Today Chemistry, 2022, 26, 101255.	1.7	8
1518	Tunable emissive carbon polymer dots with solvatochromic behavior for trace water detection and cell imaging. New Journal of Chemistry, 0, , .	1.4	1
1519	The preparation of an FITC-carbon dot nanocomposite and using a C-18 reverse phase column to improve the Hg ²⁺ ion sensitivity of the FITC-carbon dot ratiometric fluorescent sensor. New Journal of Chemistry, 0, , .	1.4	0
1520	Carbon dots with hydrogen bond-controlled aggregation behavior. Analyst, The, 2023, 148, 507-511.	1.7	2
1521	Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy. Biomaterials, 2023, 293, 121953.	5.7	30
1522	The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchemical Journal, 2023, 185, 108299.	2.3	9
1523	Synthesis of luminescent chitosan-based carbon dots for Candida albicans bioimaging. International Journal of Biological Macromolecules, 2023, 227, 805-814.	3.6	9
1524	Strategy to synthesize long-wavelength emission carbon dots and their multifunctional application for pH variation and arginine sensing and bioimaging. Talanta, 2023, 254, 124180.	2.9	5
1525	Understanding the aggregation of excitation wavelength independent emission of amphiphilic carbon dots for bioimaging and organic acid sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122257.	2.0	6
1526	Deconvolution of photoluminescence spectra and electronic transition in carbon dots nanoparticles from microcrystalline cellulose. Journal of Luminescence, 2023, 255, 119607.	1.5	2
1527	Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. Journal of Colloid and Interface Science, 2023, 634, 221-230.	5.0	6
1528	A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 2023, 35, e00529.	1.7	3

#	Article	IF	CITATIONS
1529	Facile preparation of mesoporous silica coated nitrogen doped carbon dots for sensitive detection of picric acid. RSC Advances, 2022, 12, 33696-33705.	1.7	3
1530	Nitrogen-doped cyan-emissive carbon quantum dots for fluorescence tetracycline detection and lysosome imaging. RSC Advances, 2022, 12, 33761-33771.	1.7	1
1531	Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. Bulletin of the Chemical Society of Japan, 2022, 95, 1638-1679.	2.0	16
1532	Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods. Nanomaterials, 2022, 12, 4166.	1.9	8
1534	N-Dopant Site Formulation for White-Light-Emitting Carbon Dots with Tunable Chromaticity. ACS Sustainable Chemistry and Engineering, 2022, 10, 16136-16149.	3.2	2
1535	Carbon quantum dots with pH-responsive orange-/red-light emission for fluorescence imaging of intracellular pH. Mikrochimica Acta, 2023, 190, .	2.5	7
1536	A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency above 50%. Advanced Materials, 2023, 35, .	11.1	54
1537	Highly selective and sensitive determination of ceftriaxone sodium using nitrogen-rich carbon dots based on ratiometric fluorescence. Talanta, 2023, 255, 124205.	2.9	6
1538	Boosting the kinetics with graphene quantum dots (GQDs)-decorated NiCo2O4 nanosheets towards high-performance Li-O2 batteries. Electrochimica Acta, 2023, 441, 141752.	2.6	2
1539	In Vivo and In Vitro Biodistribution of Inulin-Tethered Boron-Doped Amine-Functionalized Carbon Dots. ACS Biomaterials Science and Engineering, 2023, 9, 1002-1010.	2.6	2
1540	Regulation Mechanisms of Nitrogen-Doped Carbon Dots in Enhanced Maize Photosynthesis under Drought Stress. ACS Agricultural Science and Technology, 2023, 3, 181-189.	1.0	7
1541	One-Pot Synthesis of Dual Color-Emitting CDs: Numerical and Experimental Optimization towards White LEDs. Nanomaterials, 2023, 13, 374.	1.9	3
1542	Deep-blue thermally activated delayed fluorescence carbon dots with ultralong lifetime. Nanoscale, 2023, 15, 3337-3344.	2.8	13
1543	Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers, 2023, 15, 405.	2.0	5
1544	Multicolor-Emissive Carbon Dots for White-Light-Emitting Diodes and Room-Temperature Phosphorescence. ACS Applied Nano Materials, 2023, 6, 918-929.	2.4	15
1545	Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nature Communications, 2023, 14, .	5.8	116
1546	Fluorescent Carbon Dots for Super-Resolution Microscopy. Materials, 2023, 16, 890.	1.3	4
1547	The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small, 2023, 19, .	5.2	27

#	Article	IF	CITATIONS
1548	Duplex-immunoassay of ovarian cancer biomarker CA125 and HE4 based carbon dot decorated dendritic mesoporous silica nanoparticles. Analyst, The, 0, , .	1.7	2
1549	Synthesis of broad-spectrum tunable photoluminescent organosilicon nanodots from lac dye for cell imaging. Dyes and Pigments, 2023, , 111090.	2.0	0
1550	See the Unseen: Redâ€Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small, 2023, 19, .	5.2	13
1551	Tuning functionalized hexagonal boron nitride quantum dots for full visible-light fluorescence emission. Physical Chemistry Chemical Physics, 2023, 25, 3912-3919.	1.3	2
1552	Multiple Stimuliâ€Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. Small, 2023, 19, .	5.2	22
1553	Fluorescence turn-off sensing strategy based on Al-based MOF for selective detection of tricresyl phosphate. Analytica Chimica Acta, 2023, 1243, 340809.	2.6	7
1554	Tuning magnetic and luminescent properties of iron oxide@C nanoparticles from hydrothermal synthesis: Influence of precursor reagents. Surfaces and Interfaces, 2023, 36, 102624.	1.5	1
1555	Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. Journal of Drug Delivery Science and Technology, 2023, 80, 104156.	1.4	39
1556	Design and preparation of a near-infrared-emissive nanosensor for the quantification and imaging of alpha-fetoprotein in vitro and in vivo. Sensors and Actuators B: Chemical, 2023, 379, 133256.	4.0	2
1557	Aggregation-induced emission solid-state multicolor fluorescent carbon dots for LEDs and fingerprints applications. Journal of Luminescence, 2023, 256, 119625.	1.5	8
1558	Ion-induced enhanced fluorescence colorimetric hydrogel sensor for visual quantization of doxycycline. Sensors and Actuators B: Chemical, 2023, 380, 133359.	4.0	8
1559	A Robust Switchable Oilâ€Inâ€Water Emulsion Stabilized by Electrostatic Repulsions between Surfactant and Similarly Charged Carbon Dots. Small, 2023, 19, .	5.2	4
1560	Characterization and physical properties of carbon quantum dots. , 2023, , 55-90.		0
1561	Photophysical properties of carbon quantum dots. , 2023, , 1-28.		1
1562	Portable Smartphone Platform Based on Aggregation-Induced Enhanced Emission Carbon Dots for Ratiometric Quantitative Sensing of Fluoride Ions. ACS Sensors, 2023, 8, 884-892.	4.0	21
1563	Light-emitting diode application of carbon quantum dots. , 2023, , 159-181.		Ο
1564	Sustainable applications of carbon dots-based composites as photocatalyst for environmental pollutants remediation. , 2023, , 555-577.		0
1565	Preparation of panchromatic carbon dots by drug function preservation strategy and its intracellular application for cancer diagnosis and therapeutics. Applied Surface Science, 2023, 618, 156564.	3.1	5

#	Article	IF	CITATIONS
1566	Photo-induced Ag modulating carbon dots: Greatly improved fluorescent properties and derived sensing application. Chinese Chemical Letters, 2024, 35, 108277.	4.8	1
1567	Carbon Quantum Dot Optical Properties for potential infiltration into Hollow Core Photonic Crystal Fibers. Particle and Particle Systems Characterization, 0, , 2200200.	1.2	1
1568	Elucidating the role of etchants induced photo- and electro-activity in holey graphene oxide and graphene quantum dots composites for textile electrode applications. Synthetic Metals, 2023, 295, 117340.	2.1	1
1569	Strategy to synthesize dual-emission carbon dots and their application for pH variation and hydrogen sulfide sensing and bioimaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 293, 122483.	2.0	4
1570	The cohesion of cascade enzyme reaction with metal-organic framework composite for the sensitive detection of malathion and in-situ imaging of vegetables. Sensors and Actuators B: Chemical, 2023, 383, 133591.	4.0	6
1571	High fluorescent nitrogenÂâ^'Âdoped carbon dots derived from Sanghuangporus lonicericola for detecting tetracyclines in aquaculture water and rat serum samples. Microchemical Journal, 2023, 189, 108517.	2.3	8
1572	Photobleach effect of multi-color emitting carbon dots for UV-light sensing. Chemical Engineering Journal, 2023, 464, 142643.	6.6	10
1573	A dual-mode fluorescent probe based on carbon dots for detecting solution polarity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122554.	2.0	1
1574	Ratiometric fluorescent nanoprobes based on coumarin dye-functionalized carbon dots for bisulfite detection in living cells and food samples. Microchemical Journal, 2023, 189, 108561.	2.3	0
1575	Separation and online optical characterization of fluorescent components of pyrogenic carbons for carbon dots identification. Carbon, 2023, 209, 118009.	5.4	4
1576	Fluorescent carbon quantum dots for effective tumor diagnosis: A comprehensive review. Biomedical Engineering Advances, 2023, 5, 100072.	2.2	10
1577	Construction of a solid-state fluorescent switching with carbon dots and diarylethene. Dyes and Pigments, 2023, 216, 111318.	2.0	2
1578	Boosting the electricity generation of nonclassical electroactive microorganisms enabled by carbon dots. Chemical Engineering Journal, 2023, 462, 142147.	6.6	6
1579	Engineering and surface modification of carbon quantum dots for cancer bioimaging. Inorganic Chemistry Communication, 2023, 149, 110433.	1.8	16
1580	Tunable single-atom nanozyme catalytic system for biological applications of therapy and diagnosis. Materials Today Advances, 2023, 17, 100342.	2.5	5
1581	Smart epoxy/polyurethane/carbon quantum dots hybrid coatings: Synthesis and study of UV-shielding, viscoelastic, and anti-corrosive properties. Polymer-Plastics Technology and Materials, 2023, 62, 403-418.	0.6	8
1582	Activating One/Twoâ€Photon Excited Red Fluorescence on Carbon Dots: Emerging n→ <i>Ï€</i> Photon Transition Induced by Amino Protonation. Advanced Science, 2023, 10, .	5.6	15
1583	Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance. ACS Biomaterials Science and Engineering, 2023, 9, 1307-1319.	2.6	9

#	Article	IF	CITATIONS
1584	Fluorescent Carbon Dots from Food Industry By-Products for Cell Imaging. Journal of Functional Biomaterials, 2023, 14, 90.	1.8	4
1585	Reaction Time-Controlled Synthesis of Multicolor Carbon Dots for White Light-Emitting Diodes. ACS Applied Nano Materials, 2023, 6, 2478-2490.	2.4	15
1586	Cellulose nanofiber-based multifunctional films integrated with carbon dots and anthocyanins from Brassica oleracea for active and intelligent food packaging applications. International Journal of Biological Macromolecules, 2023, 233, 123567.	3.6	22
1587	Carbon Quantum Dot/Chitosanâ€Derived Hydrogels with Photoâ€stressâ€pH Multiresponsiveness for Wearable Sensors. Macromolecular Rapid Communications, 2023, 44, .	2.0	6
1588	Preparation and performance study of dye-based carbon quantum dots. Inorganic Chemistry Communication, 2023, 150, 110541.	1.8	3
1589	Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sensors, 2023, 8, 1161-1172.	4.0	14
1590	Revelation of fluorophore impurities among biocompatible blue fluorescent carbon nanodots derived from Hemigraphis alternata plant and bioimaging. Carbon Letters, 2023, 33, 931-946.	3.3	2
1591	Modulating Photothermal Properties of Carbon Dots through Nitrogen Incorporation Enables Efficient Solar Water Evaporation. ACS Applied Nano Materials, 2023, 6, 2517-2526.	2.4	2
1592	Bandgap Engineering of Scandium Microspheres for Anti ounterfeiting and Multicolor Imaging. Advanced Optical Materials, 2023, 11, .	3.6	6
1593	Reservoir Adaptability Evaluation and Application Technology of Carbon Quantum Dot Fluorescent Tracer. Eng, 2023, 4, 703-718.	1.2	0
1594	Preparation of Ampicillin-derived CQDs and its Application in the Detection of Phenols in Medicinal Materials. Current Nanoscience, 2024, 20, 264-271.	0.7	0
1595	Ionic liquid-enhanced lemon biomass carbon dots with sustainable use in bionic antibody microspheres for urea capture and ethyl carbamate inhibition. Food Chemistry, 2023, 415, 135715.	4.2	4
1596	Solvent-induced switching between static and dynamic fluorescence quenching of N, S Co-doped carbon dots in sensing of Crotonaldehyde: A detailed systematic study. Optical Materials, 2023, 137, 113600.	1.7	7
1597	\hat{l}^2 -Cyclodextrin derived full-spectrum fluorescent carbon dots: The formation process investigation and biological applications. Chinese Chemical Letters, 2023, 34, 108239.	4.8	4
1598	Planetary cross-linked structure design of hybrid organosilica membrane by amine-driven polymerization for CO2 separation. Journal of Cleaner Production, 2023, 398, 136568.	4.6	3
1599	An insight into the role of carbon dots in the agriculture system: a review. Environmental Science: Nano, 2023, 10, 959-995.	2.2	5
1600	Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis. ACS Omega, 2023, 8, 9031-9039.	1.6	10
1601	Antibacterial mechanism analysis and structural design of amino acid-based carbon dots. Journal of Materials Science, 2023, 58, 4954-4969.	1.7	5

#	Article	IF	CITATIONS
1602	Photoluminescent Carbon Dots: A New Generation Nanocarbon Material. Materials Horizons, 2023, , 231-256.	0.3	0
1603	Flexible Quantum Dot Lightâ€Emitting Device for Emerging Multifunctional and Smart Applications. Advanced Materials, 2023, 35, .	11.1	13
1604	Tuning the photothermal properties of carbon dots in the deep-red to near-infrared wavelength regions for tumor therapy. Materials Chemistry Frontiers, 2023, 7, 2359-2372.	3.2	6
1605	Methods for Detecting Picric Acid—A Review of Recent Progress. Applied Sciences (Switzerland), 2023, 13, 3991.	1.3	6
1606	Waterâ€Soluble Graphiteâ€Phase Carbon Nitride Colloid and Its Multichannel Biological Imaging Effect. ChemistrySelect, 2023, 8, .	0.7	0
1607	Boron Dopants in Red-Emitting B and N Co-Doped Carbon Quantum Dots Enable Targeted Imaging of Lysosomes. ACS Applied Materials & Interfaces, 2023, 15, 17045-17053.	4.0	16
1608	Blue, Yellow, and Red Carbon Dots from Aromatic Precursors for Light-Emitting Diodes. Molecules, 2023, 28, 2957.	1.7	6
1609	Construction of carbon nitride-based heterojunction as photocatalyst for peroxymonosulfate activation: Important role of carbon dots in enhancing photocatalytic activity. Chemical Engineering Journal, 2023, 464, 142724.	6.6	8
1610	Role of functionalization in the fluorescence quantum yield of graphene quantum dots. Applied Physics Letters, 2023, 122, .	1.5	2
1611	Preparation of multicolor carbon dots with thermally turn-on fluorescence for multidimensional information encryption. Chinese Chemical Letters, 2024, 35, 108420.	4.8	8
1612	Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	1
1613	The Classification of Carbon Dots and the Relationship between Synthesis Methods and Properties. Chinese Journal of Chemistry, 2023, 41, 2206-2216.	2.6	2
1614	Solubility tuning of alkyl amine functionalized carbon quantum dots for selective detection of nitroexplosive. Carbon, 2023, 209, 117972.	5.4	10
1615	Facile synthesis of efficient red-emissive carbon quantum dots as a multifunctional platform for biosensing and bioimaging. Dyes and Pigments, 2023, 215, 111303.	2.0	5
1616	Highly stable N-doped carbon dots as the sensitive probe for the detection of Fe3+. Current Applied Physics, 2023, 50, 168-175.	1.1	3
1617	Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 2023, 465, 143010.	6.6	22
1618	Low Cu(II) Concentration Detection Based on Fluorescent Detector Made from Citric Acid and Urea. Journal of Fluorescence, 0, , .	1.3	0
1619	Formation and Band Gap Tuning Mechanism of Multicolor Emissive Carbon Dots from <i>m</i> â€Hydroxybenzaldehyde. Advanced Science, 2023, 10, .	5.6	12

# 1620	ARTICLE Portable smartphone platform based on tunable chiral fluorescent carbon dots for visual detection of L-Asp and L-Lys. Chemical Engineering Journal, 2023, 466, 143103.	IF 6.6	CITATIONS
1634	Safe Appraisal of Carbon Nanoparticles in Pollutant Sensing. Environmental Contamination Remediation and Management, 2023, , 229-261.	0.5	0
1637	White lasing $\hat{a} \in \hat{~}$ materials, design and applications. Journal of Materials Chemistry C, 0, , .	2.7	1
1650	Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions. Nanoscale, 2023, 15, 16241-16267.	2.8	17
1654	Carbon-Dots Based Sensors for Detection of Pollutants from Soil. ACS Symposium Series, 0, , 139-162.	0.5	0
1661	Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Advances, 2023, 13, 19173-19194.	1.7	2
1695	Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135.	2.9	3
1707	Advances in the ratiometric combination of quantum dots for their use in sensing applications. Materials Advances, 2023, 4, 4646-4664.	2.6	3
1711	Carbon Quantum Dots: Green Nano-biomaterials in the Future of Biosensing. , 2023, , 283-306.		0
1712	Red emissive carbon dots: a promising next-generation material with intracellular applicability. Journal of Materials Chemistry B, 2023, 11, 8848-8865.	2.9	5
1716	Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. Nanoscale Advances, 2023, 5, 5717-5765.	2.2	1
1763	A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. Natural Products and Bioprospecting, 2023, 13, .	2.0	3
1765	Introduction to Photoluminescent Carbon Dots. , 2023, , 1-26.		0
1787	Organelle imaging with fluorescent carbon dots: strategies, challenges, and perspectives. Inorganic Chemistry Frontiers, 0, , .	3.0	0
1791	Recent advances in red-emissive carbon dots and their biomedical applications. Materials Chemistry Frontiers, 2024, 8, 930-955.	3.2	0
1795	Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. , 2024, 2, 11-36.		1
1811	Applications of zero-dimensional carbon–based nanomaterials in bioimaging. , 2024, , 515-576.		0
1813	Graphene quantum dots and carbon nanodots: modeling of zero-dimensional carbon nanomaterials. , 2024, , 411-482.		1

#	Article	IF	Citations
1829	Redox properties of zero-dimensional carbon–based nanomaterials. , 2024, , 249-290.		0
1831	Carbon-based nanomaterials for photocatalytic application. , 2024, , 153-178.		Ο