PolySTAT-modified chitosan gauzes for improved hemo

Acta Biomaterialia 31, 178-185 DOI: 10.1016/j.actbio.2015.11.017

Citation Report

#	Article	IF	CITATIONS
1	Combination of gelatin and tranexamic acid offers improved haemostasis and safe use on internal hemorrhage control. RSC Advances, 2016, 6, 95189-95198.	1.7	15
2	Biomimetic thermoplastic polyurethane porous membrane with hierarchical structure accelerates wound healing by enhancing granulation tissue formation and angiogenesis. RSC Advances, 2016, 6, 99595-99603.	1.7	12
3	An investigation of chitosan and its derivatives on red blood cell agglutination. RSC Advances, 2017, 7, 12247-12254.	1.7	37
4	Hemostasis mechanism and applications of N-alkylated chitosan sponge. Polymers for Advanced Technologies, 2017, 28, 1107-1114.	1.6	41
5	Chitosan–PVA monodisperse millimeter-sized spheres prepared by electrospraying reduce the thromboembolic risk in hemorrhage control. Journal of Materials Chemistry B, 2017, 5, 3686-3696.	2.9	27
6	A novel kind of polysulfone material with excellent biocompatibility modified by the sulfonated hydroxypropyl chitosan. Materials Science and Engineering C, 2017, 79, 570-580.	3.8	34
7	Blood coagulation evaluation of N -alkylated chitosan. Carbohydrate Polymers, 2017, 173, 259-268.	5.1	54
8	Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. Materials Science and Engineering C, 2017, 77, 411-419.	3.8	74
9	Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomaterials Science, 2017, 5, 2357-2368.	2.6	172
10	Potency and Cytotoxicity of a Novel Gallium-Containing Mesoporous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents. ACS Applied Materials & Interfaces, 2017, 9, 31381-31392.	4.0	95
11	Invention Is not an Option. Technology and Innovation, 2017, 18, 267-274.	0.2	0
12	Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 165, 199-206.	2.5	34
13	Modulation of osteogenic and haemostatic activities by tuning cationicity of genipin-crosslinked chitosan hydrogels. Colloids and Surfaces B: Biointerfaces, 2018, 166, 29-36.	2.5	19
14	Recombinant batroxobin-coated nonwoven chitosan as hemostatic dressing for initial hemorrhage control. International Journal of Biological Macromolecules, 2018, 113, 757-763.	3.6	17
15	Preparation of a balsa-lysozyme eco-friendly dressing and its effect on wound healing. RSC Advances, 2018, 8, 13493-13502.	1.7	4
16	Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydrate Polymers, 2018, 184, 154-163.	5.1	159
17	Preparation and characterization of calcium carboxymethyl cellulose/chitosan blend nonwovens for hemostatic agents. Textile Reseach Journal, 2018, 88, 1902-1911.	1.1	14
18	Synergy in thrombin-graphene sponge for improved hemostatic efficacy and facile utilization. Colloids and Surfaces B: Biointerfaces, 2018, 161, 27-34.	2.5	40

#	Article	IF	Citations
19	Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International Journal of Biological Macromolecules, 2018, 107, 463-469.	3.6	34
20	Zeoliteâ€loaded alginateâ€chitosan hydrogel beads as a topical hemostat. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1662-1671.	1.6	50
21	Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Advanced Materials, 2018, 30, 1700859.	11.1	326
22	Chitosan-Based Dressing Materials for Problematic Wound Management. Advances in Experimental Medicine and Biology, 2018, 1077, 527-537.	0.8	18
23	Development of Chitosan Hemostatic Sponges with Different Solvents and Tranexamic Acid. , 2018, , .		0
24	Preparation of chitin-amphipathic anion/quaternary ammonium salt ecofriendly dressing and its effect on wound healing in mice. International Journal of Nanomedicine, 2018, Volume 13, 4157-4169.	3.3	11
25	Genipin crosslinked microspheres as an effective hemostatic agent. Polymers for Advanced Technologies, 2018, 29, 2632-2642.	1.6	20
26	Hemostatic properties of in situ gels composed of hydrophobically modified biopolymers. Journal of Biomaterials Applications, 2018, 33, 315-323.	1.2	12
27	Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. Journal of Materials Chemistry B, 2018, 6, 6133-6141.	2.9	49
28	Study of the mechanism of environmentally friendly translucent balsa-modified lysozyme dressing for facilitating wound healing. International Journal of Nanomedicine, 2018, Volume 13, 4171-4187.	3.3	10
29	Mechanics for the Adhesion and Aggregation of Red Blood Cells on Chitosan. Journal of Mechanics, 2018, 34, 725-732.	0.7	13
30	Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Marine Drugs, 2018, 16, 273.	2.2	181
31	Novel ZnO/N-halamine-Mediated Multifunctional Dressings as Quick Antibacterial Agent for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 31411-31420.	4.0	47
32	Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. International Journal of Biological Macromolecules, 2019, 138, 321-333.	3.6	60
33	Evaluation of the biomedical properties of a Ca+-conjugated silk fibroin porous material. Materials Science and Engineering C, 2019, 104, 110003.	3.8	17
34	Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomaterialia, 2019, 99, 220-235.	4.1	64
35	Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing. Materials Science and Engineering C, 2019, 105, 110083.	3.8	93
36	Degradable and Bioadhesive Alginate-Based Composites: An Effective Hemostatic Agent. ACS Biomaterials Science and Engineering, 2019, 5, 5498-5505.	2.6	45

#	Article	IF	CITATIONS
37	Preparation of balsa-Nanosilver anti-infective eco-friendly dressing and its effect on wound healing. AIP Conference Proceedings, 2019, , .	0.3	0
38	N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations. Carbohydrate Polymers, 2019, 219, 405-413.	5.1	83
39	Balsa-Cinnamic acid modified lysozyme dressing. AIP Conference Proceedings, 2019, , .	0.3	1
40	A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis. Biomaterials, 2019, 205, 23-37.	5.7	160
41	Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. International Journal of Biological Macromolecules, 2019, 129, 936-943.	3.6	73
42	Preparation of chitin-lysozyme anti-infective eco-friendly dressing and its effect on wound healing. AIP Conference Proceedings, 2019, , .	0.3	2
44	Biological Effects of Chitosan-Based Dressing on Hemostasis Mechanism. Polymers, 2019, 11, 1906.	2.0	39
46	Injectable Nano Whitlockite Incorporated Chitosan Hydrogel for Effective Hemostasis. ACS Applied Bio Materials, 2019, 2, 865-873.	2.3	53
47	Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. International Journal of Biological Macromolecules, 2019, 123, 1320-1330.	3.6	87
48	Fabrication of Hydroxypropyl Chitosan/Soy Protein Isolate Hydrogel for Effective Hemorrhage Control. Tissue Engineering - Part A, 2021, 27, 788-795.	1.6	16
49	A glimpse on the function of chitosan as a dental hemostatic agent. Japanese Dental Science Review, 2020, 56, 147-154.	2.0	28
50	Chitosan-Based Thermo-Sensitive Hydrogel Loading Oyster Peptides for Hemostasis Application. Materials, 2020, 13, 5038.	1.3	30
51	Iodine Impregnated Poly(N-Vinylpyrrolidone) Grafted Antibacterial Cotton Gauze for Wound Dressing Applications. Fibers and Polymers, 2020, 21, 1411-1421.	1.1	8
52	The adhesion of clots in wounds contributes to hemostasis and can be enhanced by coagulation factor XIII. Scientific Reports, 2020, 10, 20116.	1.6	10
53	Hemostatic Enhancement via Chitosan Is Independent of Classical Clotting Pathways—A Quantitative Study. Polymers, 2020, 12, 2391.	2.0	8
54	Research status and development potential of composite hemostatic materials. Journal of Materials Chemistry B, 2020, 8, 5395-5410.	2.9	61
55	Fabrication of chitosan@calcium alginate microspheres with porous core and compact shell, and application as a quick traumatic hemostat. Carbohydrate Polymers, 2020, 247, 116669.	5.1	34
56	Hemostatic agents for prehospital hemorrhage control: a narrative review. Military Medical Research, 2020, 7, 13.	1.9	59

#	Article	IF	CITATIONS
57	Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 10156-10169.	4.0	84
58	Researches on the Internal Molecular Weight Uniformity of Chitosan Biomaterials. Journal of Ocean University of China, 2020, 19, 459-465.	0.6	0
59	Antibacterial and Hemostatic Thiol-Modified Chitosan-Immobilized AgNPs Composite Sponges. ACS Applied Materials & Interfaces, 2020, 12, 20307-20320.	4.0	159
60	Chitosan/mesoporous silica hybrid aerogel with bactericidal properties as hemostatic material. European Polymer Journal, 2021, 142, 110132.	2.6	21
61	Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111398.	2.5	18
62	Design and synthesis of a new topical agent for halting blood loss rapidly: A multimodal chitosan-gelatin xerogel composite loaded with silica nanoparticles and calcium. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111454.	2.5	18
63	Nanocomposite adhesive hydrogels: from design to application. Journal of Materials Chemistry B, 2021, 9, 585-593.	2.9	51
64	Different Forms of Chitosan and Its Derivatives as Hemostatic Agent and Tissue Sealants. Advances in Polymer Science, 2021, , 1-28.	0.4	4
65	Incorporation of Bioglass Improved the Mechanical Stability and Bioactivity of Alginate/Carboxymethyl Chitosan Hydrogel Wound Dressing. ACS Applied Bio Materials, 2021, 4, 1677-1692.	2.3	34
66	Delivery of Biomolecules Using Chitosan Wound Dressings. Advances in Polymer Science, 2021, , 447-467.	0.4	2
68	Nanomedicines for hemorrhage control. Journal of Thrombosis and Haemostasis, 2021, 19, 887-891.	1.9	4
69	Pharmacological comparison of four biopolymeric natural gums as hemostatic agents for management of bleeding wounds: preliminary in vitro and in vivo results. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	5
70	Preparation and Characterization of Chitosan from Perna viridis (Linnaeus, 1758) shell waste as raw material. Research Journal of Pharmacy and Technology, 2021, , 2757-2762.	0.2	2
71	Electrospun Nanofibrous Architectures of Thrombin-Loaded Poly(ethylene oxide) for Faster <i>in Vivo</i> Wound Clotting. ACS Applied Bio Materials, 2021, 4, 5240-5250.	2.3	10
72	Ultrafast Selfâ€Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Advanced Functional Materials, 2021, 31, 2102583.	7.8	146
73	Graphene-based hemostatic sponge. Chinese Chemical Letters, 2022, 33, 703-713.	4.8	12
74	Tunable and high tissue adhesive properties of injectable chitosan based hydrogels through polymer architecture modulation. Carbohydrate Polymers, 2021, 261, 117810.	5.1	33
75	Graphene oxide-gelatin aerogels as wound dressings with improved hemostatic properties. Materials Today Chemistry, 2021, 20, 100418.	1.7	14

#	Article	IF	CITATIONS
76	Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges. International Journal of Molecular Sciences, 2021, 22, 6916.	1.8	12
77	Cellulose fibers-reinforced self-expanding porous composite with multiple hemostatic efficacy and shape adaptability for uncontrollable massive hemorrhage treatment. Bioactive Materials, 2021, 6, 2089-2104.	8.6	49
78	Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. Nano, 2021, 16, 2130007.	0.5	19
79	Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation. Bioactive Materials, 2021, 6, 2105-2119.	8.6	34
80	Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose, 2021, 28, 8899-8937.	2.4	14
81	Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nature Communications, 2021, 12, 4733.	5.8	159
82	Advances in Hemostatic Wound Dressings: Clinical Implications and Insight. Advances in Skin and Wound Care, 2022, 35, 113-121.	0.5	8
83	Epinephrine-entrapped chitosan nanoparticles covered by gelatin nanofibers: A bi-layer nano-biomaterial for rapid hemostasis. International Journal of Pharmaceutics, 2021, 608, 121074.	2.6	13
84	Efficient antibacterial dextran-montmorillonite composite sponge for rapid hemostasis with wound healing. International Journal of Biological Macromolecules, 2020, 160, 1130-1143.	3.6	40
85	Local hemostatic agents and ways of their improvement. I P Pavlov Russian Medical Biological Herald, 2019, 27, 274-285.	0.2	7
86	Bioplatform Fabrication Approaches Affecting Chitosan-Based Interpolymer Complex Properties and Performance as Wound Dressings. Molecules, 2020, 25, 222.	1.7	19
87	Investigation Of Efficacy Of The Plant Based Algan Hemostatıc Agent, In Hepatectomy Bleedıng Model In Rats Eurasian Journal of Medical Investigation, 2018, , .	0.1	4
88	Enhanced hydrophilicity and anticoagulation of polysulfone materials modified via dihydroxypropyl, sulfonic groups and chitosan. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112243.	2.5	14
89	Poly(<i>N</i> -vinyl imidazole) Cross-Linked β-Cyclodextrin Hydrogel for Rapid Hemostasis in Severe Renal Arterial Hemorrhagic Model. Biomacromolecules, 2021, 22, 5256-5269.	2.6	17
90	Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics. International Journal of Molecular Sciences, 2021, 22, 12537.	1.8	6
91	Rapid hemostasis and excellent antibacterial cerium-containing mesoporous bioactive glass/chitosan composite sponge for hemostatic material. Materials Today Chemistry, 2022, 23, 100735.	1.7	17
92	Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application. ACS Applied Materials & Interfaces, 2022, 14, 3792-3808.	4.0	36
93	Flexible biomimetic hollow Al2O3 fibers for safe and effective hemostasis. Materials and Design, 2022, 213, 110365.	3.3	4

#	Article	IF	CITATIONS
94	Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair. Composites Part B: Engineering, 2022, 234, 109746.	5.9	60
95	Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics, 2021, 13, 2127.	2.0	29
96	Silk fibroin/gelatin/calcium alginate composite materials: Preparation, pore characteristics, comprehensive hemostasis in vitro. Materials and Design, 2022, 216, 110577.	3.3	15
97	Catechol modification of non-woven chitosan gauze for enhanced hemostatic efficacy. Carbohydrate Polymers, 2022, 286, 119319.	5.1	18
98	Effects and treatment applications of polymeric nanoparticles on improving platelets' storage time: a review of the literature from 2010 to 2020. Blood Research, 2021, 56, 215-228.	0.5	6
99	Synthesis of quaternized chitosan and its application in cotton as wound-dressing material. Surface Innovations, 2023, 11, 213-222.	1.4	3
100	Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydrate Polymers, 2022, 291, 119574.	5.1	29
101	Injectable shape memory hydroxyethyl cellulose/soy protein isolate based composite sponge with antibacterial property for rapid noncompressible hemorrhage and prevention of wound infection. International Journal of Biological Macromolecules, 2022, 217, 367-380.	3.6	3
102	Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydrate Polymers, 2022, 294, 119824.	5.1	56
103	Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Marine Drugs, 2022, 20, 536.	2.2	42
105	An antibacterial non-woven fabric: preparation, antibacterial and mechanical properties. Ferroelectrics, 2022, 595, 35-46.	0.3	0
106	Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomaterialia, 2022, 154, 49-62.	4.1	23
107	Injectable thermogelling bioadhesive chitosan-based hydrogels for efficient hemostasis. International Journal of Biological Macromolecules, 2023, 224, 1091-1100.	3.6	18
108	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	31
109	Sprayable surface-adaptive biocompatible membranes for efficient hemostasis via assembly of chitosan and polyphosphate. Carbohydrate Polymers, 2023, 302, 120360.	5.1	9
110	Preparation and application of chitosan-based medical electrospun nanofibers. International Journal of Biological Macromolecules, 2023, 226, 410-422.	3.6	20
111	Intravenous Hemostats: Foundation, Targeting, and Controlled-Release. Bioconjugate Chemistry, 2022, 33, 2269-2289.	1.8	0
112	Therapy of Organophosphate Poisoning via Intranasal Administration of 2-PAM-Loaded Chitosomes. Pharmaceutics, 2022, 14, 2846.	2.0	8

#	Article	IF	CITATIONS
113	Advances in the development and optimization strategies of the hemostatic biomaterials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
114	Bioabsorbable Fibrillar Gauze Dressing Based on <i>N</i> -Carboxyethyl Chitosan Gelling Fibers for Fatal Hemorrhage Control. ACS Applied Bio Materials, 2023, 6, 899-907.	2.3	3
115	Multilayered nanofibrous scaffold of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with hemostatic/antibacterial agents for rapid acute hemostatic wound healing. International Journal of Pharmaceutics, 2023, 638, 122918.	2.6	15
116	Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioactive Materials, 2023, 27, 231-256.	8.6	12
117	Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. International Journal of Biological Macromolecules, 2023, 233, 123532.	3.6	14
118	Physicochemical properties and Structural Characterization of Chitosan Synthesized from Rare Spined Murex, Murex trapa (Roding, 1798) Shell Waste. Research Journal of Pharmacy and Technology, 2022, , 5729-5735.	0.2	0
119	Fast Expandable Chitosanâ€Fibers Cryogel from Ambient Drying for Noncompressible Bleeding Control and In Situ Tissue Regeneration. Advanced Functional Materials, 2023, 33, .	7.8	17
120	Chitosan-Based Nanocomposites as Efficient Wound Dressing Materials. Biological and Medical Physics Series, 2023, , 181-199.	0.3	1