Structure and function of ER membrane contact sites w

Nature Reviews Molecular Cell Biology 17, 69-82 DOI: 10.1038/nrm.2015.8

Citation Report

#	Article	IF	CITATIONS
1	Is Spontaneous Translocation of Polar Lipids between Cellular Organelles Negligible?. Lipid Insights, 2015, 8s1, LPI.S31616.	1.0	12
2	Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases. Mediators of Inflammation, 2016, 2016, 1-18.	1.4	61
3	Using Optical Tweezers to Characterize Physical Tethers at Membrane Contact Sites: Grab It, Pull It, Set It Free?. Frontiers in Cell and Developmental Biology, 2016, 4, 22.	1.8	6
4	Membrane Tethering Complexes in the Endosomal System. Frontiers in Cell and Developmental Biology, 2016, 4, 35.	1.8	103
5	MxA Is a Novel Regulator of Endosome-Associated Transcriptional Signaling by Bone Morphogenetic Proteins 4 and 9 (BMP4 and BMP9). PLoS ONE, 2016, 11, e0166382.	1.1	12
6	EhNPC1 and EhNPC2 Proteins Participate in Trafficking of Exogenous Cholesterol in Entamoeba histolytica Trophozoites: Relevance for Phagocytosis. PLoS Pathogens, 2016, 12, e1006089.	2.1	24
7	Origin of the Autophagosomal Membrane in Plants. Frontiers in Plant Science, 2016, 7, 1655.	1.7	17
8	LDL–cholesterol transport to the endoplasmic reticulum. Current Opinion in Lipidology, 2016, 27, 282-287.	1.2	61
9	Mitochondria just wanna have <scp>FUN</scp> (<scp>DC</scp> 1). EMBO Journal, 2016, 35, 1365-1367.	3.5	9
10	Ischemia/Reperfusion. , 2016, 7, 113-170.		537
10	Ischemia/Reperfusion. , 2016, 7, 113-170. Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043.	2.0	537 91
	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports,	2.0 3.5	
11	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System.		91
11 12	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends in Microbiology, 2016, 24, 525-534. Closing the gap: The approach of optical and computational microscopy to uncover biomembrane	3.5	91 133
11 12 13	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends in Microbiology, 2016, 24, 525-534. Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2558-2568.	3.5 1.4	91 133 11
11 12 13 14	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends in Microbiology, 2016, 24, 525-534. Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2558-2568. Directing lipid transport at membrane contact sites. Nature Cell Biology, 2016, 18, 461-463.	3.5 1.4 4.6	91 133 11 5
11 12 13 14 15	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends in Microbiology, 2016, 24, 525-534. Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2558-2568. Directing lipid transport at membrane contact sites. Nature Cell Biology, 2016, 18, 461-463. Orchestrating Wnt signalling for metabolic liver zonation. Nature Cell Biology, 2016, 18, 463-465. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum	3.5 1.4 4.6 4.6	 91 133 11 5 42

#	Article	IF	CITATIONS
19	ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival. Nature Communications, 2016, 7, 12702.	5.8	64
20	The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane. Molecular Biology of the Cell, 2016, 27, 2946-2964.	0.9	19
21	Ca2+ dialogue between acidic vesicles and ER. Biochemical Society Transactions, 2016, 44, 546-553.	1.6	29
22	Lipids and Their Trafficking: An Integral Part of Cellular Organization. Developmental Cell, 2016, 39, 139-153.	3.1	125
23	Study of Endoplasmic Reticulum and Mitochondria Interactions by In Situ Proximity Ligation Assay in Fixed Cells. Journal of Visualized Experiments, 2016, , .	0.2	39
24	Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants. Trends in Cell Biology, 2016, 26, 705-717.	3.6	122
25	Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution. Communicative and Integrative Biology, 2016, 9, e1156278.	0.6	28
26	Specialization of biosynthetic membrane trafficking for neuronal form and function. Current Opinion in Neurobiology, 2016, 39, 8-16.	2.0	57
27	Selective Exo-Enzymatic Labeling Detects Increased Cell Surface Sialoglycoprotein Expression upon Megakaryocytic Differentiation. Journal of Biological Chemistry, 2016, 291, 3982-3989.	1.6	45
28	Lipid transfer and metabolism across the endolysosomal–mitochondrial boundary. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 880-894.	1.2	12
29	The formation and function of ER-endosome membrane contact sites. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 874-879.	1.2	86
30	The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy. Current Biology, 2017, 27, 371-385.	1.8	287
31	Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER. Journal of Lipid Research, 2017, 58, 553-562.	2.0	57
32	Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis. Frontiers in Biology, 2017, 12, 7-18.	0.7	6
33	Regulation of Calcium Fluxes by GPX8, a Type-II Transmembrane Peroxidase Enriched at the Mitochondria-Associated Endoplasmic Reticulum Membrane. Antioxidants and Redox Signaling, 2017, 27, 583-595.	2.5	63
34	An Endosomal NAADP-Sensitive Two-Pore Ca 2+ Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling. Cell Reports, 2017, 18, 1636-1645.	2.9	105
35	Endoplasmic Reticulum–Plasma Membrane Contact Sites. Annual Review of Biochemistry, 2017, 86, 659-684.	5.0	257
36	Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth. Scientific Reports, 2017, 7, 43490.	1.6	24

#	Article	IF	CITATIONS
37	α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nature Medicine, 2017, 23, 1-13.	15.2	688
38	Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health. Redox Biology, 2017, 12, 246-263.	3.9	78
39	Ca2+ influx at the ER/PM junctions. Cell Calcium, 2017, 63, 29-32.	1.1	30
40	Comparative Characterization of Phosphatidic Acid Sensors and Their Localization during Frustrated Phagocytosis. Journal of Biological Chemistry, 2017, 292, 4266-4279.	1.6	78
41	Routes and mechanisms of postâ€endosomal cholesterol trafficking: A story that never ends. Traffic, 2017, 18, 209-217.	1.3	91
42	The mitochondria–endoplasmic reticulum contact sites: a signalling platform for cell death. Current Opinion in Cell Biology, 2017, 47, 52-63.	2.6	86
43	Crosstalk between the Secretory and Autophagy Pathways Regulates Autophagosome Formation. Developmental Cell, 2017, 41, 23-32.	3.1	61
44	Targeting the unfolded protein response in cancer. Pharmacological Research, 2017, 120, 258-266.	3.1	93
45	Reticulon 3–dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science, 2017, 356, 617-624.	6.0	118
46	Keeping in touch with the ER network. Science, 2017, 356, 584-585.	6.0	2
47	Autophagosome formation is initiated at phosphatidylinositol synthaseâ€enriched <scp>ER</scp> subdomains. EMBO Journal, 2017, 36, 1719-1735.	3.5	158
48	Super-resolution optical microscopy for studying membrane structure and dynamics. Journal of Physics Condensed Matter, 2017, 29, 273001.	0.7	75
49	Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1481-1489.	1.9	80
50	The role of Ca2+ signaling in Parkinson's disease. DMM Disease Models and Mechanisms, 2017, 10, 519-535.	1.2	132
51	Ca2+ signaling machinery is present at intercellular junctions and structures associated with junction turnover in rat Sertoli cellsâ€. Biology of Reproduction, 2017, 96, 1288-1302.	1.2	26
52	A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores. Journal of Cell Biology, 2017, 216, 1715-1730.	2.3	69
53	BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death and Differentiation, 2017, 24, 1478-1487.	5.0	184
54	SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress and Chaperones, 2017, 22, 853-866.	1.2	15

#	Article	IF	CITATIONS
55	Connection of Protein Transport and Organelle Contact Sites in Mitochondria. Journal of Molecular Biology, 2017, 429, 2148-2160.	2.0	29
56	Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 2017, 546, 162-167.	13.7	828
57	Mechanistic insight into the nucleus–vacuole junction based on the Vac8p–Nvj1p crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4539-E4548.	3.3	33
58	Contacts between the endoplasmic reticulum and other membranes in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4859-E4867.	3.3	378
59	The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radical Biology and Medicine, 2017, 108, 383-393.	1.3	46
60	MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content. Redox Biology, 2017, 12, 274-284.	3.9	56
61	Cellular cholesterol homeostasis and Alzheimer's disease. Journal of Lipid Research, 2017, 58, 2239-2254.	2.0	106
62	Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction. Structure, 2017, 25, 617-629.e3.	1.6	47
63	Mitochondrial networking in diabetic left ventricle cardiomyocytes. Mitochondrion, 2017, 34, 24-31.	1.6	7
64	Plant Endoplasmic Reticulum–Plasma Membrane Contact Sites. Trends in Plant Science, 2017, 22, 289-297.	4.3	122
65	Patterns of organelle ontogeny through a cell cycle revealed by whole cell reconstructions using 3D electron microscopy. Journal of Cell Science, 2017, 130, 637-647.	1.2	38
66	Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9502-E9511.	3.3	88
67	Perspective on architecture and assembly of membrane contact sites. Biology of the Cell, 2017, 109, 400-408.	0.7	7
68	TrkA Bumps into Its Future Self. Developmental Cell, 2017, 42, 557-558.	3.1	1
69	Lipids at membrane contact sites: cell signaling and ion transport. EMBO Reports, 2017, 18, 1893-1904.	2.0	71
70	The constriction and scission machineries involved in mitochondrial fission. Journal of Cell Science, 2017, 130, 2953-2960.	1.2	187
71	Organelle Communication at Membrane Contact Sites (MCS): From Curiosity to Center Stage in Cell Biology and Biomedical Research. Advances in Experimental Medicine and Biology, 2017, 997, 1-12.	0.8	34
72	Discovery and Roles of ER-Endolysosomal Contact Sites in Disease. Advances in Experimental Medicine and Biology, 2017, 997, 135-147.	0.8	25

#	Article	IF	CITATIONS
73	Ceramide Transport from the Endoplasmic Reticulum to the Trans Golgi Region at Organelle Membrane Contact Sites. Advances in Experimental Medicine and Biology, 2017, 997, 69-81.	0.8	17
74	Endoplasmic Reticulum – Plasma Membrane Crosstalk Mediated by the Extended Synaptotagmins. Advances in Experimental Medicine and Biology, 2017, 997, 83-93.	0.8	12
75	Emerging Roles for the Lysosome in Lipid Metabolism. Trends in Cell Biology, 2017, 27, 833-850.	3.6	181
76	From shaping organelles to signalling platforms: the emerging functions of plant ER–PM contact sites. Current Opinion in Plant Biology, 2017, 40, 89-96.	3.5	55
77	Molecular mechanisms of atlastin-mediated ER membrane fusion revealed by a FRET-based single-vesicle fusion assay. Scientific Reports, 2017, 7, 8700.	1.6	9
78	Mitochondrial Nanotunnels. Trends in Cell Biology, 2017, 27, 787-799.	3.6	95
79	Identification of the N-terminal transmembrane domain of StarD7 and its importance for mitochondrial outer membrane localization and phosphatidylcholine transfer. Scientific Reports, 2017, 7, 8793.	1.6	19
80	Vps13-Mcp1 interact at vacuole–mitochondria interfaces and bypass ER–mitochondria contact sites. Journal of Cell Biology, 2017, 216, 3219-3229.	2.3	132
81	The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation. Molecular Cell, 2017, 67, 974-989.e6.	4.5	158
82	The Lipid Droplet and the Endoplasmic Reticulum. Advances in Experimental Medicine and Biology, 2017, 997, 111-120.	0.8	17
83	Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum–mitochondrial contacts. Journal of Biological Chemistry, 2017, 292, 16382-16392.	1.6	70
84	ORP-Mediated ER Contact with Endocytic Sites Facilitates Actin Polymerization. Developmental Cell, 2017, 43, 588-602.e6.	3.1	41
85	Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions. Nature Communications, 2017, 8, 1505.	5.8	123
86	A novel fluorescent reporter detects plastic remodeling of mitochondria-ER contact sites. Journal of Cell Science, 2018, 131, .	1.2	66
87	Natural history of Helicobacter pylori VacA toxin in human gastric epithelium in vivo: vacuoles and beyond. Scientific Reports, 2017, 7, 14526.	1.6	13
88	Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discovery, 2017, 3, 17076.	2.0	100
89	Endocytosis: Remote Control from Deep Inside. Current Biology, 2017, 27, R663-R666.	1.8	1
90	Intracellular APOL1 Risk Variants Cause Cytotoxicity Accompanied by Energy Depletion. Journal of the American Society of Nephrology: JASN, 2017, 28, 3227-3238.	3.0	77

#	Article	IF	CITATIONS
91	Multiscale Structural Analysis of Plant ER–PM Contact Sites. Plant and Cell Physiology, 2017, 58, pcw224.	1.5	50
92	Proteostasis in cardiac health and disease. Nature Reviews Cardiology, 2017, 14, 637-653.	6.1	133
93	Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell and Tissue Research, 2017, 367, 141-154.	1.5	20
94	Piecing Together the Patchwork of Contact Sites. Trends in Cell Biology, 2017, 27, 214-229.	3.6	140
95	Interactions between the <i>Coxiella burnetii</i> parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cellular Microbiology, 2017, 19, e12637.	1.1	38
96	PDMP, a ceramide analogue, acts as an inhibitor of mTORC1 by inducing its translocation from lysosome to endoplasmic reticulum. Experimental Cell Research, 2017, 350, 103-114.	1.2	14
97	SnapShot: Functions of Endoplasmic Reticulum Membrane Contact Sites. Cell, 2017, 171, 1224-1224.e1.	13.5	33
98	The Endoplasmic Reticulum and the Cellular Reticular Network. Advances in Experimental Medicine and Biology, 2017, 981, 61-76.	0.8	13
99	Endoplasmic Reticulum. , 2017, , 331-350.		0
100	Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. Frontiers in Plant Science, 2017, 8, 894.	1.7	78
101	What the SIF Is Happening—The Role of Intracellular Salmonella-Induced Filaments. Frontiers in Cellular and Infection Microbiology, 2017, 7, 335.	1.8	59
102	The Unfolded Protein Response: At the Intersection between Endoplasmic Reticulum Function and Mitochondrial Bioenergetics. Frontiers in Oncology, 2017, 7, 55.	1.3	35
103	Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate. Frontiers in Oncology, 2017, 7, 174.	1.3	73
104	Defective STIM-mediated store operated Ca2+ entry in hepatocytes leads to metabolic dysfunction in obesity. ELife, 2017, 6, .	2.8	46
105	Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. Journal of Biomedical Science, 2017, 24, 70.	2.6	82
106	ER Stress and Autophagy in Obesity and Nonalcoholic Fatty Liver Disease. Current Pathobiology Reports, 2017, 5, 289-299.	1.6	0
107	Palmitate induces myocardial lipotoxic injury via the endoplasmic reticulum stress-mediated apoptosis pathway. Molecular Medicine Reports, 2017, 16, 6934-6939.	1.1	21
108	A negative feedback regulation of MTORC1 activity by the lysosomal Ca ²⁺ channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy, 2018, 14, 38-52.	4.3	58

CITATION REPORT ARTICLE IF CITATIONS The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the 109 2.7 58 immune responses. Cell Death and Disease, 2018, 9, 336. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. Journal of Lipid Research, 2018, 59, 923-944. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance. Biochimica Et 1.8 12 Biophysica Ácta - Molecular Basis of Disease, 2018, 1864, 2169-2182. The role of lipids in host–pathogen interactions. IUBMB Life, 2018, 70, 384-392. Arf1 regulates the <scp>ER</scp>–mitochondria encounter structure (<scp>ERMES</scp>) in a 2.2 18 reactive oxygen speciesâ€dependent manner. FEBS Journal, 2018, 285, 2004-2018. The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate 1.8 129 Autophagosome Biogenesis. Current Biology, 2018, 28, 1234-1245.e4. Single organelle dynamics linked to 3D structure by correlative liveâ€cell imaging and 3D electron 1.3 72 microscopy. Traffic, 2018, 19, 354-369. Mind the Organelle Gap – Peroxisome Contact Sites in Disease. Trends in Biochemical Sciences, 2018, 3.7 36 43, 199-210 Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following 1.1 16 Peripheral Nerve Injury. Neuroscience, 2018, 375, 34-48. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. 6.0 Science, 2018, 359, 798-801. Purification of Highly Active Alphavirus Replication Complexes Demonstrates Altered Fractionation 1.5 21 of Multiple Cellular Membrane's. Journal of Virology, 2018, 92, . Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proceedings of the National Academy of Sciences of the United 120 3.3 States of America, 2018, 115, E856-E865. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic, 2018, 19, 1.3 54 301-318. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 5.0 4,036 2018. Cell Death and Differentiation, 2018, 25, 486-541. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature, 13.7 564 2018, 554, 382-386. Phosphoinositide conversion in endocytosis and the endolysosomal system. Journal of Biological Chemistry, 2018, 293, 1526-1535. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell 3.149 Discovery, 2018, 4, 2.

126	Formation and maturation of autophagosomes in higher eukaryotes: a social network. Current Opinion in Cell Biology, 2018, 53, 29-36.	2.6	51
-----	---	-----	----

#

111

113

115

117

118

119

121

123

124

		CITATION REI	PORT	
#	Article		IF	CITATIONS
127	Monitoring voltage fluctuations of intracellular membranes. Scientific Reports, 2018, 8, 691	11.	1.6	45
128	Retromer associates with the cytoplasmic amino-terminus of polycystin-2. Journal of Cell Sc 2018, 131, .	ience,	1.2	8
129	Non-vesicular lipid trafficking at the endoplasmic reticulum–mitochondria interface. Bioch Society Transactions, 2018, 46, 437-452.	nemical	1.6	13
130	Endoplasmic Reticulum–Mitochondrial Contactology: Structure and Signaling Functions. Cell Biology, 2018, 28, 523-540.	Trends in	3.6	381
131	CCAAT/enhancer binding protein homologous protein knockdown alleviates hypoxia-induce myocardial injury in rat cardiomyocytes exposed to high glucose. Experimental and Therape Medicine, 2018, 15, 4213-4222.	d utic	0.8	5
132	Mitochondrial fragmentation affects neither the sensitivity to TNFα-induced apoptosis of Brucella-infected cells nor the intracellular replication of the bacteria. Scientific Reports, 2015173.	18, 8,	1.6	17
133	Cyclometalated iridium(III) complexes for life science. Coordination Chemistry Reviews, 201	8, 363, 71-91.	9.5	181
134	Label-free and live cell imaging by interferometric scattering microscopy. Chemical Science, 2690-2697.	2018, 9,	3.7	45
135	Mitochondrial adventures at the organelle society. Biochemical and Biophysical Research Communications, 2018, 500, 87-93.		1.0	45
136	The endoplasmic reticulum, calcium signaling and junction turnover in Sertoli cells. Reprodu 2018, 155, R93-R104.	iction,	1.1	12
137	Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell and Developmental Biology, 2018, 76, 191-200.	nars in	2.3	45
138	Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Biology, 2018, 19, 31-44.	Cell	16.1	486
139	Ion channels in the regulation of autophagy. Autophagy, 2018, 14, 3-21.		4.3	77
140	<i>RETREG1</i> (<i>FAM134B</i>): A new player in human diseases: 15 years after the disc Journal of Cellular Physiology, 2018, 233, 4479-4489.	overy in cancer.	2.0	50
141	Lipid droplet biogenesis is spatially coordinated at <scp>ER</scp> –vacuole contacts und nutritional stress. EMBO Reports, 2018, 19, 57-72.	er	2.0	151
142	Emerging functions of the <scp>EGFR</scp> in cancer. Molecular Oncology, 2018, 12, 3-20).	2.1	927
143	The axonal endoplasmic reticulum: One organelle—many functions in development, maint plasticity. Developmental Neurobiology, 2018, 78, 181-208.	enance, and	1.5	44
144	INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inne constriction, and division. Journal of Cell Biology, 2018, 217, 251-268.	er membrane	2.3	246

#	Article	IF	CITATIONS
145	The ever-growing complexity of the mitochondrial fission machinery. Cellular and Molecular Life Sciences, 2018, 75, 355-374.	2.4	157
146	A Third Musketeer on the ER: MOSPD2 is a Novel VAP-related Receptor for FFAT Motifs. Contact (Thousand Oaks (Ventura County, Calif)), 2018, 1, 251525641880973.	0.4	0
147	Dynamic metabolic solutions to the sessile life style of plants. Natural Product Reports, 2018, 35, 1140-1155.	5.2	57
148	The large GTPase Mx1 binds Kif5B for cargo transport along microtubules. Traffic, 2018, 19, 947-964.	1.3	5
149	Subcellular localisation of an endoplasmic reticulum-plasma membrane tethering factor, SYNAPTOTAGMIN 1, is affected by fluorescent protein fusion. Plant Signaling and Behavior, 2018, 13, e1547577.	1.2	1
150	Endoplasmic reticulum calcium dictates the distribution of intracellular unesterified cholesterol. Cell Calcium, 2018, 76, 116-121.	1.1	3
151	Pleomorphic linkers as ubiquitous structural organizers of vesicles in axons. PLoS ONE, 2018, 13, e0197886.	1.1	34
152	Endoplasmic Reticulum Stress Markers and Their Possible Implications in Leprosy's Pathogenesis. Disease Markers, 2018, 2018, 1-10.	0.6	12
153	IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Reports, 2018, 25, 3180-3193.e7.	2.9	124
154	Stress Coping Strategies in the Heart: An Integrated View. Frontiers in Cardiovascular Medicine, 2018, 5, 168.	1.1	17
155	Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell, 2018, 175, 1430-1442.e17.	13.5	427
156	Internalization of Intact Intercellular Junctions in the Testis by Clathrin/Actinâ€Mediated Endocytic Structures: Tubulobulbar Complexes. Anatomical Record, 2018, 301, 2080-2085.	0.8	11
157	A Novel Class of ER Membrane Proteins Regulates ER-Associated Endosome Fission. Cell, 2018, 175, 254-265.e14.	13.5	137
158	CRAC channel-based optogenetics. Cell Calcium, 2018, 75, 79-88.	1.1	25
159	ER-phagy at a glance. Journal of Cell Science, 2018, 131, .	1.2	154
160	Systematic Inâ€Depth Proteomic Analysis of Mitochondriaâ€Associated Endoplasmic Reticulum Membranes in Mouse and Human Testes. Proteomics, 2018, 18, e1700478.	1.3	39
161	Antigen presentation unfolded: identifying convergence points between the UPR and antigen presentation pathways. Current Opinion in Immunology, 2018, 52, 100-107.	2.4	31
162	Converging cellular themes for the hereditary spastic paraplegias. Current Opinion in Neurobiology, 2018, 51, 139-146.	2.0	100

#	Article	IF	CITATIONS
163	Ionic stress induces fusion of mitochondria to 3-D networks: An electron tomography study. Journal of Structural Biology, 2018, 204, 52-63.	1.3	14
164	SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. ELife, 2018, 7, .	2.8	116
165	Lipid transport required to make lipids of photosynthetic membranes. Photosynthesis Research, 2018, 138, 345-360.	1.6	40
166	Interacting organelles. Current Opinion in Cell Biology, 2018, 53, 84-91.	2.6	201
167	Cellular Organization of the Gastrointestinal Tract. , 2018, , 107-199.		0
168	Mechanisms of Lipid Sorting in the Endosomal Pathway. Advances in Biomembranes and Lipid Self-Assembly, 2018, 28, 1-39.	0.3	0
169	Mitochondrial signalling, physiology and pathophysiology. Pflugers Archiv European Journal of Physiology, 2018, 470, 1139-1140.	1.3	0
170	Here, there, and everywhere: The importance of ER membrane contact sites. Science, 2018, 361, .	6.0	471
171	Membrane Proteins in Trypanosomatids Involved in Ca2+ Homeostasis and Signaling. Genes, 2018, 9, 304.	1.0	27
172	Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes. Human Molecular Genetics, 2018, 27, 3710-3719.	1.4	34
173	Mitochondria–cytosol–nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	1.1	53
174	Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean. Proteomes, 2018, 6, 13.	1.7	11
175	Unfolding the Endoplasmic Reticulum of a Social Amoeba: Dictyostelium discoideum as a New Model for the Study of Endoplasmic Reticulum Stress. Cells, 2018, 7, 56.	1.8	13
176	Annexins—Coordinators of Cholesterol Homeostasis in Endocytic Pathways. International Journal of Molecular Sciences, 2018, 19, 1444.	1.8	48
177	Acidocalcisome-Mitochondrion Membrane Contact Sites in Trypanosoma brucei. Pathogens, 2018, 7, 33.	1.2	25
178	Mitochondrial junctions with cellular organelles: Ca2+ signalling perspective. Pflugers Archiv European Journal of Physiology, 2018, 470, 1181-1192.	1.3	16
179	VAMP-associated protein-A and oxysterol-binding protein–related protein 3 promote the entry of late endosomes into the nucleoplasmic reticulum. Journal of Biological Chemistry, 2018, 293, 13834-13848.	1.6	55
180	Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites. Journal of Cell Biology, 2018, 217, 3593-3607.	2.3	122

#	Article	IF	Citations
181	Vacuole membrane protein 1 marks endoplasmic reticulum subdomains enriched in phospholipid synthesizing enzymes and is required for phosphoinositide distribution. Traffic, 2018, 19, 624-638.	1.3	18
182	DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Research, 2018, 28, 833-854.	5.7	90
183	The large GTPase atlastin controls ER remodeling around a pathogen vacuole. Communicative and Integrative Biology, 2018, 11, 1-5.	0.6	6
184	Intracellular Calcium Mobilization Is Required for Sonic Hedgehog Signaling. Developmental Cell, 2018, 45, 512-525.e5.	3.1	24
185	The Unfolded Protein Response and Membrane Contact Sites: Tethering as a Matter of Life and Death?. Contact (Thousand Oaks (Ventura County, Calif)), 2018, 1, 251525641877051.	0.4	6
186	Endocytosis and Signaling. Progress in Molecular and Subcellular Biology, 2018, , .	0.9	2
187	EGFR Trafficking in Physiology and Cancer. Progress in Molecular and Subcellular Biology, 2018, 57, 235-272.	0.9	58
188	ER: the Silk Road of interorganellar communication. Current Opinion in Plant Biology, 2018, 45, 171-177.	3.5	23
189	Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. Journal of Molecular Biology, 2018, 430, 3922-3941.	2.0	143
190	Reovirus ÏfNS and μNS Proteins Remodel the Endoplasmic Reticulum to Build Replication Neo-Organelles. MBio, 2018, 9, .	1.8	51
191	Extended-resolution imaging of the interaction of lipid droplets and mitochondria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1285-1296.	1.2	17
192	Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Reports, 2018, 19, .	2.0	85
193	Mechanisms of lysosomal positioning and movement. Traffic, 2018, 19, 761-769.	1.3	177
194	Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. Journal of Lipid Research, 2018, 59, 1341-1366.	2.0	58
195	Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective. Trends in Plant Science, 2018, 23, 677-692.	4.3	74
196	The various shades of ERâ€phagy. FEBS Journal, 2019, 286, 4642-4649.	2.2	24
197	Roles of protrudin at interorganelle membrane contact sites. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 312-320.	1.6	6
198	Postovulatory ageing modifies sperm-induced Ca2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Scientific Reports, 2019, 9, 11859.	1.6	15

#	Article	IF	CITATIONS
199	Lipid Nanoparticle-Mediated Induction of Endoplasmic Reticulum Stress in Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3992-4001.	2.3	27
200	Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harbor Perspectives in Biology, 2019, 11, a038265.	2.3	24
201	ER stress response mediates diabetic microvascular complications. Drug Discovery Today, 2019, 24, 2247-2257.	3.2	34
202	Multiple C2 domains and transmembrane region proteins (<scp>MCTP</scp> s) tether membranes at plasmodesmata. EMBO Reports, 2019, 20, e47182.	2.0	92
203	Lipid transfer machinery is present at membrane contact sites associated with the internalization of junctions in Sertoli cellsâ€. Biology of Reproduction, 2019, 101, 662-663.	1.2	4
204	Scanning Probe-Directed Assembly and Rapid Chemical Writing Using Nanoscopic Flow of Phospholipids. ACS Applied Materials & Interfaces, 2019, 11, 28449-28460.	4.0	11
205	Reconstitution reveals how myosin-VI self-organises to generate a dynamic mechanism of membrane sculpting. Nature Communications, 2019, 10, 3305.	5.8	8
206	The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathogens, 2019, 15, e1007982.	2.1	36
207	Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2. Developmental Cell, 2019, 50, 339-354.e4.	3.1	59
208	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657.	15.6	129
208 209		15.6 4.5	129 136
	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes.		
209	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14. One or Two Ca2+ Stores in the Neuronal Endoplasmic Reticulum?. Trends in Neurosciences, 2019, 42,	4.5	136
209 210	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14. One or Two Ca2+ Stores in the Neuronal Endoplasmic Reticulum?. Trends in Neurosciences, 2019, 42, 755-757. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active	4.5 4.2	136 2
209 210 211	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14. One or Two Ca2+ Stores in the Neuronal Endoplasmic Reticulum?. Trends in Neurosciences, 2019, 42, 755-757. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Molecular Cell, 2019, 76, 295-305.	4.5 4.2 4.5	136 2 223
209 210 211 212	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14. One or Two Ca2+ Stores in the Neuronal Endoplasmic Reticulum?. Trends in Neurosciences, 2019, 42, 755-757. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Molecular Cell, 2019, 76, 295-305. The Complexity of Making Ubiquinone. Trends in Endocrinology and Metabolism, 2019, 30, 929-943.	4.5 4.2 4.5 3.1	136 2 223 46
209 210 211 212 213	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14. One or Two Ca2+ Stores in the Neuronal Endoplasmic Reticulum?. Trends in Neurosciences, 2019, 42, 755-757. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Molecular Cell, 2019, 76, 295-305. The Complexity of Making Ubiquinone. Trends in Endocrinology and Metabolism, 2019, 30, 929-943. ELMâ€"the eukaryotic linear motif resource in 2020. Nucleic Acids Research, 2020, 48, D296-D306. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. Journal of Biological	4.5 4.2 4.5 3.1 6.5	136 2 223 46 195

#	Article	IF	CITATIONS
217	ER-Mitochondria Communication in Cells of the Innate Immune System. Cells, 2019, 8, 1088.	1.8	38
218	Induced cardiac pacemaker cells survive metabolic stress owing to their low metabolic demand. Experimental and Molecular Medicine, 2019, 51, 1-12.	3.2	9
219	Organelle Inheritance Control of Mitotic Entry and Progression: Implications for Tissue Homeostasis and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 133.	1.8	14
220	Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules, 2019, 9, 513.	1.8	37
221	ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nature Cell Biology, 2019, 21, 1206-1218.	4.6	193
222	Supramolecular self-assembly of triazine-based small molecules: targeting the endoplasmic reticulum in cancer cells. Nanoscale, 2019, 11, 3326-3335.	2.8	32
223	Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease, 2019, 127, 1-12.	2.1	13
224	Molecular determinants of ER–Golgi contacts identified through a new FRET–FLIM system. Journal of Cell Biology, 2019, 218, 1055-1065.	2.3	94
225	The activity of Sac1 across ER–TGN contact sites requires the four-phosphate-adaptor-protein-1. Journal of Cell Biology, 2019, 218, 783-797.	2.3	75
226	lron-Sequestering Nanocompartments as Multiplexed Electron Microscopy Gene Reporters. ACS Nano, 2019, 13, 8114-8123.	7.3	33
227	Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Applied Materials & Interfaces, 2019, 11, 26529-26558.	4.0	159
228	Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Science China Life Sciences, 2019, 62, 1117-1135.	2.3	64
229	Mitochondrial Entry of Cytotoxic Proteases: A New Insight into the Granzyme B Cell Death Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	23
230	ERâ€phagy: shaping up and destressing the endoplasmic reticulum. FEBS Journal, 2019, 286, 2645-2663.	2.2	116
231	Endoplasmic reticulum and the microRNA environment in the cardiovascular system. Canadian Journal of Physiology and Pharmacology, 2019, 97, 515-527.	0.7	3
232	Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nature Cell Biology, 2019, 21, 755-767.	4.6	168
233	Multiple downy mildew effectors target the stressâ€related <scp>NAC</scp> transcription factor Ls <scp>NAC</scp> 069 in lettuce. Plant Journal, 2019, 99, 1098-1115.	2.8	27
234	Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Molecular Cell, 2019, 74, 909-921.e6.	4.5	231

#	Article	IF	CITATIONS
235	Nexilin Is a New Component of Junctional Membrane Complexes Required for Cardiac T-Tubule Formation. Circulation, 2019, 140, 55-66.	1.6	41
236	Regulation and Function of Mitochondria–Lysosome Membrane Contact Sites in Cellular Homeostasis. Trends in Cell Biology, 2019, 29, 500-513.	3.6	203
237	Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287.	5.8	435
238	The Expanding and Unexpected Functions of Mitochondria Contact Sites. Trends in Cell Biology, 2019, 29, 580-590.	3.6	75
239	Make It a Sweet Home: Responses of Chlamydia trachomatis to the Challenges of an Intravacuolar Lifestyle. Microbiology Spectrum, 2019, 7, .	1.2	9
240	Endoplasmic Reticulum–Mitochondria Contacts Are Required for Pexophagy in <i>Saccharomyces cerevisiae</i> . Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641882158.	0.4	12
241	Neuronal Apolipoprotein E4 Expression Results in Proteome-Wide Alterations and Compromises Bioenergetic Capacity by Disrupting Mitochondrial Function. Journal of Alzheimer's Disease, 2019, 68, 991-1011.	1.2	57
242	The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation. Cell Reports, 2019, 27, 343-358.e5.	2.9	74
243	Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochemical Journal, 2019, 476, 1267-1284.	1.7	13
244	Reâ€evaluation of physical interaction between plant peroxisomes and other organelles using live ell imaging techniques. Journal of Integrative Plant Biology, 2019, 61, 836-852.	4.1	30
245	Lightâ€Induced ROS Generation and 2â€DGâ€Activated Endoplasmic Reticulum Stress by Antitumor Nanosystems: An Effective Combination Therapy by Regulating the Tumor Microenvironment. Small, 2019, 15, e1900212.	5.2	32
246	Determining the Lipid-Binding Specificity of SMP Domains: An ERMES Subunit as a Case Study. Methods in Molecular Biology, 2019, 1949, 213-235.	0.4	6
247	Mechanical insights into the regulation of programmed cell death by p53 via mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 839-848.	1.9	42
248	Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. Journal of Biochemistry, 2019, 165, 391-400.	0.9	32
249	VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked ALS. Journal of Cell Science, 2019, 132, .	1.2	9
250	Fundc1 is necessary for proper body axis formation during embryogenesis in zebrafish. Scientific Reports, 2019, 9, 18910.	1.6	14
251	Systematic Prediction of FFAT Motifs Across Eukaryote Proteomes Identifies Nucleolar and Eisosome Proteins With the Predicted Capacity to Form Bridges to the Endoplasmic Reticulum. Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641988313.	0.4	35
253	Actin-dependent endosomal receptor recycling. Current Opinion in Cell Biology, 2019, 56, 22-33.	2.6	78

ARTICLE IF CITATIONS # ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol. 254 1.3 34 Biochimie, 2019, 158, 90-101. Autophagosome maturation: An epic journey from the ER to lysosomes. Journal of Cell Biology, 2019, 2.3 218, 757-770. Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae. Biochimica Et 256 1.2 26 Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 290-303. Feedback regulation of insulin secretion by extended synaptotagminâ€1. FASEB Journal, 2019, 33, 4716-4728. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends in 258 3.7 109 Biochemical Sciences, 2019, 44, 273-292. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends in Biochemical Sciences, 2019, 44, 3.7 110-124. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. Journal of Cell Biology, 2019, 260 2.3 112 218,83-96. Ergosterol interacts with Sey1p to promote atlastinâ€mediated endoplasmic reticulum membrane fusion 261 0.2 in <i>> Saccharomyces cerevisiae </i>. FASEB Journal, 2019, 33, 3590-3600. Lipid Trafficking at Membrane Contact Sites During Plant Development and Stress Response. Frontiers 262 1.7 64 in Plant Science, 2019, 10, 2. Advances in understanding of the oxysterol-binding protein homologous in yeast and filamentous 1.1 fungi. International Microbiology, 2019, 22, 169-179 Polyploidy, the Nucleotype, and Novelty: The Impact of Genome Doubling on the Biology of the Cell. 264 222 0.6 International Journal of Plant Sciences, 2019, 180, 1-52. Sensory neuropathy-causing mutations in ATL3 affect ER–mitochondria contact sites and impair 1.4 axonal mitochondrial distribution. Human Molecular Genetics, 2019, 28, 615-627. Ixazomib promotes CHOP-dependent DR5 induction and apoptosis in colorectal cancer cells. Cancer 266 1.5 13 Biology and Therapy, 2019, 20, 284-294. Lipid exchange and signaling at ER–Golgi contact sites. Current Opinion in Cell Biology, 2019, 57, 8-15. 2.6 268 Release and uptake mechanisms of vesicular Ca2+ stores. Protein and Cell, 2019, 10, 8-19. 4.8 76 A molecular toolbox for interrogation of membrane contact sites. Journal of Physiology, 2020, 598, 29 1725-1739. The role of ceramide in regulating endoplasmic reticulum function. Biochimica Et Biophysica Acta -270 1.2 29 Molecular and Cell Biology of Lipids, 2020, 1865, 158489. Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars 271 2.3 in Cell and Developmental Biology, 2020, 98, 167-180.

	CITA	ATION REPORT	
#	Article	IF	Citations
272	Emerging Principles of Selective ER Autophagy. Journal of Molecular Biology, 2020, 432, 185-205.	2.0	86
273	Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158453.	1.2	26
274	SMP domain proteins in membrane lipid dynamics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158447.	1.2	17
275	Cell organelles and yeast longevity: an intertwined regulation. Current Genetics, 2020, 66, 15-41.	0.8	10
276	Penehyclidine Hydrochloride Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Ameliorating Apoptosis and Endoplasmic Reticulum Stress. Journal of Surgical Research, 2020, 245, 344-353.	0.8	11
277	Unfolded protein responseâ€mediated modulation of mesenchymal stem cells. IUBMB Life, 2020, 72, 187-197.	1.5	9
278	ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158544.	1.2	21
279	Visualizing Mitochondrial Form and Function within the Cell. Trends in Molecular Medicine, 2020, 26, 58-70.	3.5	55
280	Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cellular and Molecular Life Sciences, 2020, 77, 2839-2857.	2.4	54
281	Store-Operated Calcium Channels: From Function to Structure and Back Again. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035055.	2.3	82
282	Life in the lumen: The multivesicular endosome. Traffic, 2020, 21, 76-93.	1.3	132
283	Role of c-Jun N-Terminal Kinases (JNKs) in Epilepsy and Metabolic Cognitive Impairment. International Journal of Molecular Sciences, 2020, 21, 255.	1.8	18
284	Principles and Applications of Biological Membrane Organization. Annual Review of Biophysics, 2020, 49, 19-39.	4.5	24
285	Staying in Healthy Contact: How Peroxisomes Interact with Other Cell Organelles. Trends in Molecular Medicine, 2020, 26, 201-214.	3.5	28
286	Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. Aging Cell, 2020, 19, e13090.	3.0	16
287	Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiology of Disease, 2020, 146, 105142.	2.1	6
288	lrisin attenuates myocardial ischemia/reperfusionâ€induced cardiac dysfunction by regulating ERâ€mitochondria interaction through a mitochondrial ubiquitin ligaseâ€dependent mechanism. Clinica and Translational Medicine, 2020, 10, e166.	al 1.7	40
289	Cell–cell interfaces as specialized compartments directing cell function. Nature Reviews Molecular Cell Biology, 2020, 21, 750-764.	16.1	60

#	Article	IF	CITATIONS
290	Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Frontiers in Physiology, 2020, 11, 1054.	1.3	5
291	TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 2020, 10, 11244-11263.	4.6	55
292	AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomedicine and Pharmacotherapy, 2020, 131, 110655.	2.5	38
293	PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nature Communications, 2020, 11, 3645.	5.8	64
294	Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning. Frontiers in Neuroscience, 2020, 14, 599.	1.4	35
295	TPC1 deficiency or blockade augments systemic anaphylaxis and mast cell activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18068-18078.	3.3	21
296	The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Frontiers in Cell and Developmental Biology, 2020, 8, 518.	1.8	9
297	Membrane Heterogeneity Beyond the Plasma Membrane. Frontiers in Cell and Developmental Biology, 2020, 8, 580814.	1.8	34
298	An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nature Communications, 2020, 11, 6069.	5.8	43
299	Environmental and Nutritional "Stressors―and Oligodendrocyte Dysfunction: Role of Mitochondrial and Endoplasmatic Reticulum Impairment. Biomedicines, 2020, 8, 553.	1.4	10
300	Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chemical Biology, 2020, 1, 42-55.	2.0	12
301	Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Developmental Cell, 2020, 55, 30-44.	3.1	176
302	OSBPL2 Is Required for the Binding of COPB1 to ATGL and the Regulation of Lipid Droplet Lipolysis. IScience, 2020, 23, 101252.	1.9	19
303	Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines, 2020, 8, 262.	1.4	57
304	Rational design and implementation of a chemically inducible heterotrimerization system. Nature Methods, 2020, 17, 928-936.	9.0	30
305	Aster Proteins Regulate the Accessible Cholesterol Pool in the Plasma Membrane. Molecular and Cellular Biology, 2020, 40, .	1.1	39
306	Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21288-21298.	3.3	40
307	Modulators of calcium signalling at fertilization. Open Biology, 2020, 10, 200118.	1.5	30

#	Article	IF	CITATIONS
308	Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Progress in Lipid Research, 2020, 80, 101069.	5.3	32
309	Granulocyte-colony stimulating factor gene therapy as a novel therapeutics for stroke in a mouse model. Journal of Biomedical Science, 2020, 27, 99.	2.6	13
310	<i>NPC1</i> silent variant induces skipping of exon 11 (p.V562V) and unfolded protein response was found in a specific Niemannâ€Pick type C patient. Molecular Genetics & Genomic Medicine, 2020, 8, e1451.	0.6	10
311	Linking Genes to Shape in Plants Using Morphometrics. Annual Review of Genetics, 2020, 54, 417-437.	3.2	8
312	Two-color nanoscopy of organelles for extended times with HIDE probes. Nature Communications, 2020, 11, 4271.	5.8	26
313	Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nature Communications, 2020, 11, 4576.	5.8	52
314	ORP9 knockdown delays the maturation of junction-related endocytic structures in the testis and leads to impaired sperm releaseâ€. Biology of Reproduction, 2020, 103, 1314-1323.	1.2	1
315	A Combinatorial Reporter Set to Visualize the Membrane Contact Sites Between Endoplasmic Reticulum and Other Organelles in Plant Cell. Frontiers in Plant Science, 2020, 11, 1280.	1.7	16
316	Uptake and Fate of Extracellular Membrane Vesicles: Nucleoplasmic Reticulum-Associated Late Endosomes as a New Gate to Intercellular Communication. Cells, 2020, 9, 1931.	1.8	38
317	The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Science Advances, 2020, 6, .	4.7	58
318	Lipid Transfer–Dependent Endosome Maturation Mediated by Protrudin and PDZD8 in Neurons. Frontiers in Cell and Developmental Biology, 2020, 8, 615600.	1.8	10
319	Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Frontiers in Cell and Developmental Biology, 2020, 8, 618733.	1.8	32
320	Lipid Metabolism at Membrane Contacts: Dynamics and Functions Beyond Lipid Homeostasis. Frontiers in Cell and Developmental Biology, 2020, 8, 615856.	1.8	21
321	Human VAPome Analysis Reveals MOSPD1 and MOSPD3 as Membrane Contact Site Proteins Interacting with FFAT-Related FFNT Motifs. Cell Reports, 2020, 33, 108475.	2.9	48
322	TRPV4 integrates matrix mechanosensing with Ca ²⁺ signaling to regulate extracellular matrix remodeling. FEBS Journal, 2021, 288, 5867-5887.	2.2	26
323	Infection of Mammals and Mosquitoes by Alphaviruses: Involvement of Cell Death. Cells, 2020, 9, 2612.	1.8	4
324	The ER-mitochondria tether at the hub of Ca2+ signaling. Current Opinion in Physiology, 2020, 17, 261-268.	0.9	21
325	Make It a Sweet Home. , 2020, , 155-165.		Ο

#	Article	IF	CITATIONS
326	Adaptive changes induced by noble-metal nanostructures <i>in vitro</i> and <i>in vivo</i> . Theranostics, 2020, 10, 5649-5670.	4.6	20
327	Mitochondrial Quality Control Governed by Ubiquitin. Frontiers in Cell and Developmental Biology, 2020, 8, 270.	1.8	41
328	2-Hydroxypropyl-gamma-cyclodextrin overcomes NPC1 deficiency by enhancing lysosome-ER association and autophagy. Scientific Reports, 2020, 10, 8663.	1.6	18
329	Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy. Cells, 2020, 9, 1184.	1.8	26
330	Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12109-12120.	3.3	117
331	Knockdown of IP3R1 disrupts tubulobulbar complex-ectoplasmic reticulum contact sites and the morphology of apical processes encapsulating late spermatidsâ€. Biology of Reproduction, 2020, 103, 669-680.	1.2	4
332	Mechanisms, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology, 2020, 21, 421-438.	16.1	1,129
333	Endoplasmic Reticulum–Mitochondria Contact Sites and Neurodegeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 428.	1.8	43
334	ER membranes exhibit phase behavior at sites of organelle contact. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7225-7235.	3.3	117
335	Impact of global structure on diffusive exploration of organelle networks. Scientific Reports, 2020, 10, 4984.	1.6	9
336	Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Frontiers in Endocrinology, 2020, 11, 58.	1.5	45
337	Staying in touch with the endocytic network: The importance of contacts for cholesterol transport. Traffic, 2020, 21, 354-363.	1.3	22
338	Autophagy in cancer: Recent advances and future directions. Seminars in Cancer Biology, 2020, 66, 171-181.	4.3	33
339	IP3 receptors and their intimate liaisons. Current Opinion in Physiology, 2020, 17, 9-16.	0.9	3
340	Ubiquitylation of the ER-Shaping Protein Lunapark via the CRL3KLHL12 Ubiquitin Ligase Complex. Cell Reports, 2020, 31, 107664.	2.9	12
341	Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. International Review of Cell and Molecular Biology, 2020, 350, 197-264.	1.6	28
342	ER-Phagy: Quality Control and Turnover of Endoplasmic Reticulum. Trends in Cell Biology, 2020, 30, 384-398.	3.6	167
343	Lipid Transfer Proteins and Membrane Contact Sites in Human Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 371.	1.8	33

#	Article	IF	CITATIONS
344	Selective Autophagy of the Protein Homeostasis Machinery: Ribophagy, Proteaphagy and ER-Phagy. Frontiers in Cell and Developmental Biology, 2019, 7, 373.	1.8	51
345	Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Frontiers in Neuroscience, 2020, 14, 48.	1.4	79
346	Retrograde signaling mediates an adaptive survival response to endoplasmic reticulum stress. Journal of Cell Science, 2020, 133, .	1.2	13
347	Role of the ERO1-PDI interaction in oxidative protein folding and disease. , 2020, 210, 107525.		77
348	Different gene expression profiles in iPSC-derived motor neurons from ALS8 patients with variable clinical courses suggest mitigating pathways for neurodegeneration. Human Molecular Genetics, 2020, 29, 1465-1475.	1.4	10
349	STAT3 Localizes in Mitochondria-Associated ER Membranes Instead of in Mitochondria. Frontiers in Cell and Developmental Biology, 2020, 8, 274.	1.8	25
350	A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cellular and Molecular Life Sciences, 2020, 77, 4729-4745.	2.4	16
351	It Started With a Kiss: Monitoring Organelle Interactions and Identifying Membrane Contact Site Components in Plants. Frontiers in Plant Science, 2020, 11, 517.	1.7	20
352	Dynamic organization of intracellular organelle networks. WIREs Mechanisms of Disease, 2021, 13, e1505.	1.5	3
353	Metabolons and bio-condensates: The essence of plant plasticity and the key elements in development of green production systems. Advances in Botanical Research, 2021, , 185-223.	0.5	3
354	Importance of lipids for upper motor neuron health and disease. Seminars in Cell and Developmental Biology, 2021, 112, 92-104.	2.3	3
355	Mitochondrial dynamics and bioenergetics regulated by netrinâ€1 in oligodendrocytes. Glia, 2021, 69, 392-412.	2.5	12
356	Mutant VAPB: Culprit or Innocent Bystander of Amyotrophic Lateral Sclerosis?. Contact (Thousand) Tj ETQq0 0 0	rgBT /Ove 0.4	erlock 10 Tf 5
357	Split Green Fluorescent Protein–Based Contact Site Sensor (SPLICS) for Heterotypic Organelle Juxtaposition as Applied to ER–Mitochondria Proximities. Methods in Molecular Biology, 2021, 2275, 363-378.	0.4	2
358	Impact of Calreticulin and Its Mutants on EndoplasmicÂReticulum Function in Health and Disease. Progress in Molecular and Subcellular Biology, 2021, 59, 163-180.	0.9	2
359	Reticulon-3 Promotes Endosome Maturation at ER Membrane Contact Sites. Developmental Cell, 2021, 56, 52-66.e7.	3.1	44
360	ER-PM Contact Sites – SNARING Actors in Emerging Functions. Frontiers in Cell and Developmental Biology, 2021, 9, 635518.	1.8	7
362	Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO Journal, 2021, 40, e106524.	3.5	80

ARTICLE IF CITATIONS Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic 363 7 1.1 processes and expansion of the Legionella â€containing vacuole. Cellular Microbiology, 2021, 23, e13318. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D 364 5.8 subcellular imaging. Nature Communications, 2021, 12, 1049. Onsite age discrimination of an endangered medicinal and aromatic plant species <i>Valeriana jatamansi</i> using field hyperspectral remote sensing and machine learning techniques. International 365 1.3 8 Journal of Remote Sensing, 2021, 42, 3777-3796. Actin and an unconventional myosin motor, TgMyoF, control the organization and dynamics of the endomembrane network in Toxoplasma gondii. PLoS Pathogens, 2021, 17, e1008787. 366 Function and regulation of the divisome for mitochondrial fission. Nature, 2021, 590, 57-66. 367 13.7 179 A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in 2.2 Vitiligo Pathogenesis. Frontiers in Immunology, 2020, 11, 624566. Lysosomes and Cancer Progression: A Malignant Liaison. Frontiers in Cell and Developmental Biology, 369 1.8 38 2021, 9, 642494. Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sciences, 2021, 11, 403. 1.1 Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and 371 59 1.5 Disease. Frontiers in Endocrinology, 2021, 12, 660095. Lysosomal Calcium Channels in Autophagy and Cancer. Cancers, 2021, 13, 1299. 1.7 24 Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at 373 7 1.3 Organelle Contact Sites. Current Protocols, 2021, 1, e71. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria–ER Contacts: A Cancer Perspective. Frontiers in 1.8 Cell and Developmental Biology, 2021, 9, 641194. PDZD8-mediated lipid transfer at contacts between the ER and late endosomes/lysosomes is required 377 1.2 26 for neurite outgrowth. Journal of Cell Science, 2022, 135, . <i>Caenorhabditis elegans</i> junctophilin has tissue-specific functions and regulates 378 1.2 neurotransmission with extended-synaptotagmin. Genetics, 2021, 218, . Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces 379 cerévisiae cells during dehydration and subsequent rehydration. Antonie Van Leeuwenhoek, 2021, 114, 2 0.7 1069-1077. Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells, 2021, 10, 970. 380 1.8 Membrane-Interacting Antifungal Peptides. Frontiers in Cell and Developmental Biology, 2021, 9, 381 1.8 50 649875. Non-alcoholic fatty liver disease in mice with hepatocyte-specific deletion of mitochondrial fission factor. Diabetologia, 2021, 64, 2092-2107.

#	Article	IF	CITATIONS
383	Phospholipid transfer function of PTPIP51 at mitochondriaâ€associated ER membranes. EMBO Reports, 2021, 22, e51323.	2.0	54
384	A guide to understanding endoplasmic reticulum stress in metabolic disorders. Molecular Metabolism, 2021, 47, 101169.	3.0	134
385	Three-dimensional ATUM-SEM reconstruction and analysis of hepatic endoplasmic reticulum‒organelle interactions. Journal of Molecular Cell Biology, 2021, 13, 636-645.	1.5	2
386	Hereditary Spastic Paraplegia and Future Therapeutic Directions: Beneficial Effects of Small Compounds Acting on Cellular Stress. Frontiers in Neuroscience, 2021, 15, 660714.	1.4	13
387	The neuronal ceroid lipofuscinosisâ€related protein CLN8 regulates endoâ€lysosomal dynamics and dendritic morphology. Biology of the Cell, 2021, 113, 419-437.	0.7	11
388	Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Molecular Medicine, 2021, 13, e13074.	3.3	34
389	Alternative glycosylation controls endoplasmic reticulum dynamics and tubular extension in mammalian cells. Science Advances, 2021, 7, .	4.7	8
391	Atlastin 2/3 regulate ER targeting of the ULK1 complex to initiate autophagy. Journal of Cell Biology, 2021, 220, .	2.3	26
393	Conventional Molecular and Novel Structural Mechanistic Insights into Orderly Organelle Interactions. Chemical Research in Chinese Universities, 2021, 37, 829-839.	1.3	3
395	Membrane contact site-dependent cholesterol transport regulates Na+/K+-ATPase polarization and spermiogenesis in Caenorhabditis elegans. Developmental Cell, 2021, 56, 1631-1645.e7.	3.1	10
396	Choreographing endo-lysosomal Ca2+ throughout the life of a phagosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119040.	1.9	10
397	The PKD-Dependent Biogenesis of TGN-to-Plasma Membrane Transport Carriers. Cells, 2021, 10, 1618.	1.8	8
398	A Golgi-derived vesicle potentiates PtdIns4P to PtdIns3P conversion for endosome fission. Nature Cell Biology, 2021, 23, 782-795.	4.6	13
399	Functions of Oxysterol-Binding Proteins at Membrane Contact Sites and Their Control by Phosphoinositide Metabolism. Frontiers in Cell and Developmental Biology, 2021, 9, 664788.	1.8	35
400	The Interactome of the VAP Family of Proteins: An Overview. Cells, 2021, 10, 1780.	1.8	25
401	Anexinas: implicación en la homeostasis del colesterol, la respuesta inflamatoria y la aterosclerosis. ClÃnica E Investigación En Arteriosclerosis, 2021, 33, 206-216.	0.4	5
402	Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 1371-1381.	0.9	8
403	Annexins: Involvement in cholesterol homeostasis, inflammatory response and atherosclerosis. ClÃnica E InvestigaciÃ ³ n En Arteriosclerosis (English Edition), 2021, 33, 206-216.	0.1	3

#	Article	IF	CITATIONS
404	A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets, 2021, 13, 51-65.	0.9	5
405	The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells, 2021, 10, 1865.	1.8	19
406	The Mitochondrial PHB Complex Determines Lipid Composition and Interacts With the Endoplasmic Reticulum to Regulate Ageing. Frontiers in Physiology, 2021, 12, 696275.	1.3	5
407	Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines, 2021, 9, 1077.	1.4	11
408	Understanding the interactions between inorganic-based nanomaterials and biological membranes. Advanced Drug Delivery Reviews, 2021, 175, 113820.	6.6	23
409	Selective Advantages of Synapses in Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 726563.	1.8	15
410	Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren's syndrome. Autoimmunity Reviews, 2021, 20, 102867.	2.5	73
411	Organelle distribution in neurons: Logistics behind polarized transport. Current Opinion in Cell Biology, 2021, 71, 46-54.	2.6	22
412	Structural and molecular bases to IRE1 activity modulation. Biochemical Journal, 2021, 478, 2953-2975.	1.7	7
413	The CACNA1A Mutant Disrupts Lysosome Calcium Homeostasis in Cerebellar Neurons and the Resulting Endo-Lysosomal Fusion Defect Can be Improved by Calcium Modulation. Neurochemical Research, 2021, , 1.	1.6	5
414	NbSOBIR1 Partitions Into Plasma Membrane Microdomains and Binds ER-Localized NbRLP1. Frontiers in Plant Science, 2021, 12, 721548.	1.7	1
415	Mitochondrial Regulation of Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 745279.	1.2	15
416	A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Developmental Cell, 2021, 56, 2592-2606.e7.	3.1	18
417	Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2021, 15, 685201.	1.8	16
418	Construction of single fluorescent probes for separately visualizing duple organelles in different emission colors. Sensors and Actuators B: Chemical, 2021, 343, 130168.	4.0	16
419	INPP5K and Atlastin-1 maintain the nonuniform distribution of ER–plasma membrane contacts in neurons. Life Science Alliance, 2021, 4, e202101092.	1.3	4
420	Energy metabolism design of the striated muscle cell. Physiological Reviews, 2021, 101, 1561-1607.	13.1	38
421	The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science, 2021, 374, 52-57.	6.0	24

ARTICLE IF CITATIONS # The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the 423 2.9 22 endolysosomal pathway. Cell Reports, 2021, 34, 108659. Mitochondrial dysfunction in kidney diseases., 2021, , 119-154. 424 Isolation of Mitochondria-Associated ER Membranes (MAMs), Synaptic MAMs, and Glycosphingolipid 425 Enriched Microdomains (GEMs) from Brain Tissues and Neuronal Cells. Methods in Molecular 0.4 4 Biology, 2021, 2277, 357-370. Sigma 1 Receptor, Cholesterol and Endoplasmic Reticulum Contact Sites. Contact (Thousand Oaks) Tj ETQq1 1 0.784314 rgBT /Overl Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. Journal of 427 1.6 14 Biological Chemistry, 2021, 296, 100421. Mitochondria Dynamics: Definition, Players and Associated Disorders., 2021, , 119-142. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. IScience, 2021, 24, 429 1.9 15 101972. Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium 430 0.8 Content. Advances in Experimental Medicine and Biology, 2020, 1131, 337-370. ER-Mitochondria Calcium Transfer, Organelle Contacts and Neurodegenerative Diseases. Advances in 431 0.8 29 Experimental Medicine and Biology, 2020, 1131, 719-746. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Sub-Cellular Biochemistry, 1.0 2019, 93, 83-141. Preface: Endoplasmic reticulum in health and disease. International Review of Cell and Molecular 433 1.6 5 Biology, 2020, 350, xiii-xvii. Getting around the cell: physical transport in the intracellular world. Physical Biology, 2020, 17, 434 0.8 061003. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. 435 2.4 20 Journal of Experimental Botany, 2021, 72, 4102-4118. Geometry and cellular function of organelle membrane interfaces. Plant Physiology, 2021, 185, 650-662. 2.3 Phosphatidylserine biosynthesis pathways in lipid homeostasis: Toward resolution of the pending 437 0.2 17 central issue for decades. FASEB Journal, 2021, 35, e21177. Foot-and-mouth disease virus replicates independently of phosphatidylinositol 4-phosphate and type III phosphatidylinositol 4-kinases. Journal of General Virology, 2016, 97, 1841-1852. The endoplasmic reticulum protein SEC22B interacts with NBEAL2 and is required for megakaryocyte 446 0.6 16 α-granule biogenesis. Blood, 2020, 136, 715-725. The journey of Ca2+ through the cell $\hat{a} \in \mathcal{C}$ pulsing through the network of ER membrane contact sites. 447 1.2 Journal of Cell Science, 2020, 133, .

#	Article	IF	Citations
448	FIB/SEM-based analysis of <i>Borrelia</i> intracellular processing by human macrophages. Journal of Cell Science, 2021, 134, .	1.2	8
449	VMP1 Establishes ER-Microdomains that Regulate Membrane Contact Sites and Autophagy. PLoS ONE, 2016, 11, e0166499.	1.1	69
450	PINK1 and Parkin: team players in stress-induced mitophagy. Biological Chemistry, 2020, 401, 891-899.	1.2	31
451	The Mitochondrial Lon Protease: Novel Functions off the Beaten Track?. Biomolecules, 2020, 10, 253.	1.8	28
452	Mitochondrial Membranes Restitution Proceeds via Vesicular Import from ER and Cytosol. Counterparts' Resemblances and Variances in Mitochondria and Golgi Pathways. Advances in Biological Chemistry, 2017, 07, 1-26.	0.2	3
453	The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. ELife, 2016, 5, .	2.8	160
454	Keeping in shape. ELife, 2016, 5, .	2.8	7
455	Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. ELife, 2017, 6, .	2.8	71
456	Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration. ELife, 2018, 7, .	2.8	34
457	Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. ELife, 2019, 8, .	2.8	107
458	Miga-mediated endoplasmic reticulum–mitochondria contact sites regulate neuronal homeostasis. ELife, 2020, 9, .	2.8	31
459	Molecular and cellular mechanisms of spastin inÂneural development and disease (Review). International Journal of Molecular Medicine, 2021, 48, .	1.8	13
460	Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life, 2021, 11, 1126.	1.1	4
461	PDZD-8 and TEX-2 regulate endosomal PI(4,5)P2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nature Communications, 2021, 12, 6065.	5.8	13
462	Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Advances in Biological Regulation, 2021, 82, 100832.	1.4	24
463	The new fate of internalized membrane receptors: Internalized activation. , 2022, 233, 108018.		8
464	Dictyostelium Dynamin Superfamily GTPases Implicated in Vesicle Trafficking and Host-Pathogen Interactions. Frontiers in Cell and Developmental Biology, 2021, 9, 731964.	1.8	0
465	An anaplerotic approach to correct the mitochondrial dysfunction in ataxia-telangiectasia (A-T). Molecular Metabolism, 2021, 54, 101354.	3.0	5

#	Article	IF	CITATIONS
466	Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics, 2021, 18, 2269-2285.	2.1	25
467	Spindle Dynamics during Meiotic Development of the Fungus Podospora anserina Requires the Endoplasmic Reticulum-Shaping Protein RTN1. MBio, 2021, 12, e0161521.	1.8	3
468	A three-organelle complex made by wrappER contacts with peroxisomes and mitochondria responds to liver lipid flux changes. Journal of Cell Science, 2022, 135, .	1.2	20
476	Interactions Between the Plant Endomembranes and the Cytoskeleton. Plant Cell Monographs, 2019, , 125-153.	0.4	2
480	A novel protoapigenone analog RY10-4 induces apoptosis of breast cancer cells by exacerbating mitochondrial Ca2+ influx through mitochondrial calcium uniporter. Toxicology and Applied Pharmacology, 2021, 433, 115776.	1.3	7
481	Single fluorescent probes enabling simultaneous visualization of duple organelles: Design principles, mechanisms, and applications. Coordination Chemistry Reviews, 2022, 451, 214266.	9.5	43
484	New focuses on roles of communications between endoplasmic reticulum and mitochondria in identification of biomarkers and targets. Clinical and Translational Medicine, 2021, 11, e626.	1.7	12
488	Post-transcriptional control of mitochondrial protein composition in changing environmental conditions. Biochemical Society Transactions, 2020, 48, 2565-2578.	1.6	8
491	Inner mitochondrial membrane protein MPV17 mutant mice display increased myocardial injury after ischemia/reperfusion. American Journal of Translational Research (discontinued), 2020, 12, 3412-3428.	0.0	3
492	Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Progress in Lipid Research, 2022, 85, 101141.	5.3	24
493	Insight of the role of mitochondrial calcium homeostasis in hepatic insulin resistance. Mitochondrion, 2022, 62, 128-138.	1.6	1
494	Modeling hereditary spastic paraplegias using induced pluripotent stem cells. , 2022, , 185-215.		0
495	PDI family thioredoxin from disk abalone (Haliotis discus discus): Responses to stimulants (PAMPs,) Tj ETQq0 0 C) rgBT /Ove 1.6	erlgck 10 Tf 5
496	Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Frontiers in Cell and Developmental Biology, 2021, 9, 784367.	1.8	17
497	Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nature Immunology, 2021, 22, 1551-1562.	7.0	47
499	Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Frontiers in Immunology, 2021, 12, 782074.	2.2	22
500	PI4P/PS countertransport by ORP10 at ER–endosome membrane contact sites regulates endosome fission. Journal of Cell Biology, 2022, 221, .	2.3	33
501	Identification of endoplasmic reticulum formation mechanism by multi-parametric, quantitative super-resolution imaging. Optics Letters, 2022, 47, 357.	1.7	4

ARTICLE

IF CITATIONS

The PTPIP51 TPR-Domain: A Novel Lipid Transfer Domain?. Contact (Thousand Oaks (Ventura County,) Tj ETQq0 0 OrgBT /Overlock 10 T

503	ER exit pathways and the control of proteostasis: Crucial role of the UPR, COPII, and ER-phagy in the secretory pathway. Biocell, 2022, 46, 1131-1137.	0.4	0
504	Inositol Requiring Enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Animal Cells and Systems, 2021, 25, 347-357.	0.8	8
505	Phosphoinositide transport and metabolism at membrane contact sites. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159107.	1.2	3
506	Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Frontiers in Immunology, 2021, 12, 794580.	2.2	19
507	Regulation of ERâ€derived membrane dynamics by the DedA domainâ€containing proteins VMP1 and TMEM41B. EMBO Reports, 2022, 23, e53894.	2.0	18
508	Dysfunctional Endoplasmic Reticulum-Mitochondrion Coupling Is Associated with Endoplasmic Reticulum Stress-Induced Apoptosis and Neurological Deficits in a Rodent Model of Severe Head Injury. Journal of Neurotrauma, 2022, 39, 560-576.	1.7	12
509	Cytoskeletal Protein Variants Driving Atrial Fibrillation: Potential Mechanisms of Action. Cells, 2022, 11, 416.	1.8	7
510	Revealing the Phase Separation in ER Membranes of Living Cells and Tissues by <i>In Situ</i> NIR Ratiometric Imaging. Analytical Chemistry, 2022, 94, 2844-2854.	3.2	4
511	Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Progress in Lipid Research, 2022, 86, 101146.	5.3	24
512	Harnessing aggregation-induced emission property of indolizine derivative as a fluorogenic bioprobe for endoplasmic reticulum. Dyes and Pigments, 2022, 200, 110118.	2.0	5
513	Soft X-ray tomography to map and quantify organelle interactions at the mesoscale. Structure, 2022, 30, 510-521.e3.	1.6	22
514	ER proteins decipher the tubulin code to regulate organelle distribution. Nature, 2022, 601, 132-138.	13.7	75
515	The relevance of organelle interactions in cellular senescence. Theranostics, 2022, 12, 2445-2464.	4.6	15
516	The Role of Lipids in CRAC Channel Function. Biomolecules, 2022, 12, 352.	1.8	3
517	Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. ELife, 2022, 11, .	2.8	21
518	Molecular machinery regulating organelle dynamics during axon growth and guidance. Seminars in Cell and Developmental Biology, 2022, , .	2.3	0
519	Kinin B1R Activation Induces Endoplasmic Reticulum Stress in Primary Hypothalamic Neurons. Frontiers in Pharmacology, 2022, 13, 841068.	1.6	2

ARTICLE IF CITATIONS # Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic 520 2.4 3 paraplegia. Acta Neuropathologica Communications, 2022, 10, 40. Isotropic super-resolution light-sheet microscopy of dynamic intracellular structures at subsecond timescales. Nature Methods, 2022, 19, 359-369. 521 Recovery Mechanism of Endoplasmic Reticulum Revealed by Fluorescence Lifetime Imaging in Live Cells. 523 3.2 7 Analytical Chemistry, 2022, 94, 5173-5180. In Vivo Pravastatin Treatment Reverses Hypercholesterolemia Induced Mitochondria-Associated Membranes Contact Sites, Foam Cell Formation, and Phagocytosis in Macrophages. Frontiers in Molecular Biosciences, 2022, 9, 839428. 524 CCPG1 involved in corneal Aspergillus fumigatus infection. International Journal of Ophthalmology, 525 0.5 2 2022, 15, 541-546. GOLGI: Cancer cell fate control. International Journal of Biochemistry and Cell Biology, 2022, 145, 1.2 106174. Role and regulation of autophagy in cancer. Biochimica Et Biophysica Acta - Molecular Basis of 527 1.8 52 Disease, 2022, 1868, 166400. Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical 529 1.2 death in pancreatic cancer cells. Oncology Reports, 2021, 47, . 530 All-Atom Modeling of Complex Cellular Membranes. Langmuir, 2022, 38, 3-17. 1.6 6 TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia. Brain, 2022, 145, 3095-3107. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers, 532 1.7 5 2022, 14, 1618. Correlative Organelle Microscopy: Fluorescence Guided Volume Electron Microscopy of 1.8 Intracellular Processes. Frontiers in Cell and Developmental Biology, 2022, 10, 829545. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER 534 3.1 49 membrane contact sites. Developmental Cell, 2022, 57, 974-994.e8. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opinion on 1.5 Therapeutic Targets, 2022, 26, 303-317. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson's Disease. Frontiers in 537 7 1.8 Cellular Neuroscience, 2022, 16, 867385. Editorial: Lipids and Membrane Contacts in Yeastâ€"Structure, Functional Aspects and Implications on Ageing, Cell Death and Autophagy. Frontiers in Cell and Developmental Biology, 2022, 10, 881666. 1.8 Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic Î²-Cell Dysfunction and Senescence in Type 542 1.8 22 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 4843. Stable Integration of Inducible SPLICS Reporters Enables Spatio-Temporal Analysis of Multiple 543 1.8 Organelle Contact Sites upon Modulation of Cholesterol Traffic. Cells, 2022, 11, 1643.

#	Article	IF	CITATIONS
544	Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. Journal of Molecular Biology, 2023, 435, 167629.	2.0	8
545	Shielding of actin by the endoplasmic reticulum impacts nuclear positioning. Nature Communications, 2022, 13, 2763.	5.8	8
548	Putative role of STING-mitochondria associated membrane crosstalk in immunity. Trends in Immunology, 2022, 43, 513-522.	2.9	11
549	The respiratory cytotoxicity of typical organophosphorus flame retardants on five different respiratory tract cells: Which are the most sensitive one?. Environmental Pollution, 2022, 307, 119564.	3.7	11
552	生长ç´ê⁻±å⁻¼çš"蛋白é™è§£æŠ€æœ⁻在线虫精ååʿ生ä¸çš"应ç"`. Scientia Sinica Vitae, 2022, , .	0.1	0
553	New phenotype of <scp><i>RTN2</i></scp> â€related spectrum: Complicated form of spastic paraplegiaâ€12. Annals of Clinical and Translational Neurology, 2022, 9, 1108-1115.	1.7	1
554	The mitochondrial associated endoplasmic reticulum membranes: A platform for the pathogenesis of inflammationâ€mediated metabolic diseases. Immunity, Inflammation and Disease, 2022, 10, .	1.3	20
555	Family with sequence similarity 134 member B-mediated reticulophagy ameliorates hepatocyte apoptosis induced by dithiothreitol. World Journal of Gastroenterology, 2022, 28, 2569-2581.	1.4	1
556	Mitofusin 2 positively regulates Ca ²⁺ signaling by tethering the sarcoplasmic reticulum and mitochondria in rat aortic smooth muscle cells. American Journal of Physiology - Cell Physiology, 2022, 323, C295-C305.	2.1	3
557	Multi-organelle-targeting pH-dependent NIR fluorescent probe for lysosomal viscosity. Chinese Chemical Letters, 2023, 34, 107626.	4.8	20
558	Single Fluorescent Probe for Zero-Crosstalk Discrimination of Lipid Droplets and the Endoplasmic Reticulum Based on Reversible Cyclization Reaction. Analytical Chemistry, 2022, 94, 9158-9165.	3.2	8
560	Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nature Communications, 2022, 13, .	5.8	20
561	Effects of Curcumin on Mitochondrial Function, Endoplasmic Reticulum Stress, and Mitochondria-Associated Endoplasmic Reticulum Membranes in the Jejunum of Oxidative Stress Piglets. Journal of Agricultural and Food Chemistry, 2022, 70, 8974-8985.	2.4	17
562	Molecular to Supramolecular Self-Assembled Luminogens for Tracking the Intracellular Organelle Dynamics. ACS Applied Bio Materials, 2022, 5, 3623-3648.	2.3	7
563	4-PBA rescues hyperoxaluria induced nephrolithiasis by modulating urinary glycoproteins: Cross talk between endoplasmic reticulum, calcium homeostasis and mitochondria. Life Sciences, 2022, 305, 120786.	2.0	2
564	An update on dual targeting strategy for cancer treatment. Journal of Controlled Release, 2022, 349, 67-96.	4.8	18
565	Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease. Neurobiology of Disease, 2022, 172, 105832.	2.1	8
566	Inhibition of Extracellular Signal-Regulated Kinase Downregulates Endoplasmic Reticulum Stress-Induced Apoptosis and Decreases Brain Injury in a Cardiac Arrest Rat Model. Physiological Research, 0, , 413-423.	0.4	1

#	Article	IF	CITATIONS
567	Integrating Transcriptomics and Free Fatty Acid Profiling Analysis Reveal Cu Induces Shortened Lifespan and Increased Fat Accumulation and Oxidative Damage in C. elegans. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-27.	1.9	0
568	DeepContact: High-throughput quantification of membrane contact sites based on electron microscopy imaging. Journal of Cell Biology, 2022, 221, .	2.3	9
569	Metabolic adaption of cancer cells toward autophagy: Is there a role for ER-phagy?. Frontiers in Molecular Biosciences, 0, 9, .	1.6	3
570	Endolysosomal cholesterol export: More than just NPC1. BioEssays, 2022, 44, .	1.2	10
571	<scp>UBXD8</scp> mediates mitochondriaâ€associated degradation to restrain apoptosis and mitophagy. EMBO Reports, 2022, 23, .	2.0	18
572	Impact of Calcium Influx on Endoplasmic Reticulum in Excitotoxic Neurons: Role of Chemical Chaperone 4-PBA. Cellular and Molecular Neurobiology, 2023, 43, 1619-1635.	1.7	4
573	Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041261.	2.3	9
574	Palmitate and thapsigargin have contrasting effects on ER membrane lipid composition and ER proteostasis in neuronal cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159219.	1.2	1
575	ER Membrane Contact Sites: Key Platforms for Biogenesis of RNA-Containing Extracellular Vesicles. Contact (Thousand Oaks (Ventura County, Calif)), 2022, 5, 251525642211214.	0.4	0
576	Proteomic mapping and optogenetic manipulation of membrane contact sites. Biochemical Journal, 2022, 479, 1857-1875.	1.7	0
577	Niemann-Pick Type C Proteins Are Required for Sterol Transport and Appressorium-Mediated Plant Penetration of <i>Colletotrichum orbiculare</i> . MBio, 2022, 13, .	1.8	2
578	ER membrane contact sites support endosomal small GTPase conversion for exosome secretion. Journal of Cell Biology, 2022, 221, .	2.3	21
579	De novo sphingolipid biosynthesis necessitates detoxification in cancer cells. Cell Reports, 2022, 40, 111415.	2.9	5
580	Structural Diversity within the Endoplasmic Reticulum—From the Microscale to the Nanoscale. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041259.	2.3	16
581	An Endoplasmic Reticulum Targeting Type I Photosensitizer for Effective Photodynamic Therapy against Hypoxic Tumor Cells. Chemistry - A European Journal, 2022, 28, .	1.7	7
583	UPRmt and coordinated UPRER in type 2 diabetes. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
584	Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
585	Rational Design of Novel Lipophilic Aggregation-Induced Emission Probes for Revealing the Dynamics of Lipid Droplets during Lipophagy and Ferroptosis. Analytical Chemistry, 2022, 94, 13432-13439.	3.2	21

#	Article	IF	CITATIONS
586	Mitochondrial-Endoplasmic Reticulum Communication-Mediated Oxidative Stress and Autophagy. BioMed Research International, 2022, 2022, 1-12.	0.9	18
587	Three-dimensional remodelling of the cellular energy distribution system during postnatal heart development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	3
588	Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nature Biotechnology, 2023, 41, 367-377.	9.4	57
589	A dual-targeting fluorescent probe for simultaneous and discriminative visualization of lipid droplets and endoplasmic reticulum. Journal of Materials Chemistry B, 2022, 10, 8875-8882.	2.9	9
590	A snapshot of protein trafficking in SARSâ \in CoVâ \in 2 infection. Biology of the Cell, 2023, 115, .	0.7	8
591	ER-mitochondrial contact protein Miga regulates autophagy through Atg14 and Uvrag. Cell Reports, 2022, 41, 111583.	2.9	9
593	Xanthene-based polarity-sensitive fluorescent probe with large Stokes shifts for simultaneous two-color visualizing of lipid droplets and lysosomes. Dyes and Pigments, 2023, 208, 110874.	2.0	4
594	Interactions and interplay of MLOs with classical membrane-bound organelles. , 2023, , 375-395.		1
595	The regulatory role of endoplasmic reticulum chaperone proteins in neurodevelopment. Frontiers in Neuroscience, 0, 16, .	1.4	1
596	Hydroxylation site–specific and production-dependent effects of endogenous oxysterols on cholesterol homeostasis: Implications for SREBP-2 and LXR. Journal of Biological Chemistry, 2023, 299, 102733.	1.6	8
597	An ER-targeted "reserve-release―fluorogen for topological quantification of reticulophagy. Biomaterials, 2023, 292, 121929.	5.7	9
598	Get Closer to the World of Contact Sites: A Beginner's Guide to Proximity-Driven Fluorescent Probes. Contact (Thousand Oaks (Ventura County, Calif)), 2022, 5, 251525642211357.	0.4	1
599	In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. Advanced Materials, 2023, 35, .	11.1	21
600	Membrane Contact Sites in Autophagy. Cells, 2022, 11, 3813.	1.8	3
601	Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells, 2022, 11, 3773.	1.8	2
602	Construction of a TICT-AIE-Integrated Unimolecular Platform for Imaging Lipid Droplet–Mitochondrion Interactions in Live Cells and <i>In Vivo</i> . ACS Sensors, 2023, 8, 40-50.	4.0	11
604	New Frontiers on ER Stress Modulation: Are TRP Channels the Leading Actors?. International Journal of Molecular Sciences, 2023, 24, 185.	1.8	5
605	Molecular insights into endolysosomal microcompartment formation and maintenance. Biological Chemistry, 2023, 404, 441-454.	1.2	6

		CITATION REPORT		
#	Article		IF	CITATIONS
606	FK506-Binding Protein 2 Participates in Proinsulin Folding. Biomolecules, 2023, 13, 15	2.	1.8	1
607	Mitofusin 1 and 2 differentially regulate mitochondrial function underlying Ca2+ signal proliferation in rat aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 2023, 645, 137-146.	ing and	1.0	1
608	Liquid-liquid Phase Separation in Viral Function. Journal of Molecular Biology, 2023, 43	5, 167955.	2.0	7
609	Harnessing Cellular Organelles to Bring New Functionalities into Yeast. Biotechnology Bioprocess Engineering, 2023, 28, 936-948.	and	1.4	0
610	Arabidopsis Sec14 proteins (SFH5 and SFH7) mediate interorganelle transport of phos regulate chloroplast development. Proceedings of the National Academy of Sciences o States of America, 2023, 120, .	phatidic acid and the United	3.3	3
611	Rab3 mediates a pathway for endocytic sorting and plasma membrane recycling of ord microdomains. Proceedings of the National Academy of Sciences of the United States 120, .	ered of America, 2023,	3.3	6
612	Super-Resolution Structured Illumination Microscopy for the Visualization of Interactio Mitochondria and Lipid Droplets. Photonics, 2023, 10, 313.	ns between	0.9	1
613	The key role of proteostasis at mitochondria-associated endoplasmic reticulum membr vanadium-induced nephrotoxicity using a proteomic strategy. Science of the Total Envi 869, 161741.		3.9	25
614	Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Advanced Drug Delivery Reviews, 2023, 196, 114773.		6.6	26
615	Control of mitochondria-associated endoplasmic reticulum membranes by protein S-pa Novel therapeutic targets for neurodegenerative diseases. Ageing Research Reviews, 2	lmitoylation: 023, 87, 101920.	5.0	6
616	Apolipoprotein E4 targets mitochondria and the mitochondria-associated membrane c neuropathology, including Alzheimer's disease. Current Opinion in Neurobiology, 2023	omplex in , 79, 102684.	2.0	8
617	Phase Separation in Biology and Disease; Current Perspectives and Open Questions. Jo Molecular Biology, 2023, 435, 167971.	urnal of	2.0	13
618	A novel fluorescent endoplasmic reticulum marker for superâ€resolution imaging in live Letters, 2023, 597, 693-701.	e cells. FEBS	1.3	2
619	LRRK1 functions as a scaffold for PTP1B-mediated EGFR sorting into ILVs at the ER–e site. Journal of Cell Science, 2023, 136, .	ndosome contact	1.2	2
620	Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipic composition. Journal of Cell Biology, 2023, 222, .	1	2.3	5
621	Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fis AKAP1-Drp1 pathway in podocytes under high glucose conditions. Experimental Cell Ro 424, 113512.		1.2	5
623	Recent Development of Advanced Fluorescent Molecular Probes for Organelle-Targeted Biosensors, 2023, 13, 360.	d Cell Imaging.	2.3	5
624	Mammary lipid secretion: a reassessment. Journal of Dairy Research, 2023, 90, 28-37.		0.7	2

#	Article	IF	CITATIONS
625	Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity. Journal of Clinical Investigation, 2023, 133, .	3.9	6
626	Glycosphingolipids within membrane contact sites influence their function as signaling hubs in neurodegenerative diseases. FEBS Open Bio, 2023, 13, 1587-1600.	1.0	3
627	Pathogen vacuole membrane contact sites $\hat{a} \in \hat{~}$ close encounters of the fifth kind. MicroLife, 2023, 4, .	1.0	5
628	Multiple tethers of organelle contact sites are involved in α-synuclein toxicity in yeast. Molecular Biology of the Cell, 0, , .	0.9	0
629	The UbiB family member Cqd1 forms a novel membrane contact site in mitochondria. Journal of Cell Science, 0, , .	1.2	1
638	Mitochondria as central hubs in synaptic modulation. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	5
646	An activatable endoplasmic reticulum-targeted probe for NIR imaging-guided photothermal therapy. Organic and Biomolecular Chemistry, 2023, 21, 5919-5923.	1.5	2
658	The expanding organelle lipidomes: current knowledge and challenges. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	2
683	Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Experimental and Molecular Medicine, 2024, 56, 40-50.	3.2	1
690	Calcium and Phosphate Ion Uptake, Distribution, and Homeostasis in Cells of Vertebrate Mineralized Tissues. , 2023, , 181-235.		0
691	Calcium and Phosphate Ion Efflux from Cells: The Roles of Matrix Vesicles, Extracellular Vesicles, and Other Membrane-invested Transporters in Vertebrate Hard Tissue Mineralization. , 2023, , 237-294.		0