Fetal liver hematopoietic stem cell niches associate with

Science

351, 176-180

DOI: 10.1126/science.aad0084

Citation Report

#	Article	IF	CITATIONS
1	Transplantation with autologous bone marrowâ€derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology, 2016, 64, 2185-2197.	3.6	213
2	The many faces of hematopoietic stem cell heterogeneity. Development (Cambridge), 2016, 143, 4571-4581.	1.2	72
3	Oxidative stress and hypoxia in normal and leukemic stem cells. Experimental Hematology, 2016, 44, 540-560.	0.2	89
4	Hematopoietic stem cell lineage specification. Current Opinion in Hematology, 2016, 23, 311-317.	1.2	21
5	How deep can you go into Tregs?. Blood, 2016, 128, 1158-1159.	0.6	0
6	Behaving better: stem cells singled out. Blood, 2016, 128, 1157-1158.	0.6	0
7	tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood, 2016, 128, 1336-1345.	0.6	53
8	Blood stem cells: from beginning to end. Development (Cambridge), 2016, 143, 3429-3433.	1.2	8
9	Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Seminars in Immunopathology, 2016, 38, 739-763.	2.8	41
10	Critical requirement of VEGF-C in transition to fetal erythropoiesis. Blood, 2016, 128, 710-720.	0.6	33
11	Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 2016, 1370, 82-96.	1.8	235
12	Genetic lineage tracing identifies endocardial origin of liver vasculature. Nature Genetics, 2016, 48, 537-543.	9.4	84
13	Potency finds its niches. Science, 2016, 351, 126-127.	6.0	4
14	Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature Cell Biology, 2017, 19, 214-223.	4. 6	332
15	How Plastic Are Pericytes?. Stem Cells and Development, 2017, 26, 1013-1019.	1.1	58
16	Steatosis caused by experimental periodontitis is reversible after removal of ligature in rats. Journal of Periodontal Research, 2017, 52, 883-892.	1.4	25
17	BLOS2 maintains hematopoietic stem cells in the fetal liver via repressing Notch signaling. Experimental Hematology, 2017, 51, 1-6.e2.	0.2	2
18	Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 2017, 427, 6-11.	0.9	114

#	Article	IF	CITATIONS
19	Pericytes, integral components of adult hematopoietic stem cell niches., 2017, 171, 104-113.		44
20	Ephrin ligands and Eph receptors contribution to hematopoiesis. Cellular and Molecular Life Sciences, 2017, 74, 3377-3394.	2.4	14
21	Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts. Cell Reports, 2017, 19, 1902-1916.	2.9	187
22	Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e279.	5.9	14
23	Adult haematopoietic stem cell niches. Nature Reviews Immunology, 2017, 17, 573-590.	10.6	528
24	Runx Family Genes in Tissue Stem Cell Dynamics. Advances in Experimental Medicine and Biology, 2017, 962, 117-138.	0.8	6
25	Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. Journal of Experimental Medicine, 2017, 214, 165-181.	4.2	41
26	Endothelial Cells as Precursors for Osteoblasts in the Metastatic Prostate Cancer Bone. Neoplasia, 2017, 19, 928-931.	2.3	28
27	LepR+ cells dispute hegemony with Gli1+ cells in bone marrow fibrosis. Cell Cycle, 2017, 16, 2018-2022.	1.3	29
28	KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nature Medicine, 2017, 23, 1176-1190.	15.2	162
29	Endothelial cells maintain neural stem cells quiescent in their niche. Neuroscience, 2017, 363, 62-65.	1.1	31
30	The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b. Developmental Cell, 2017, 42, 349-362.e4.	3.1	50
31	Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biology, 2017, 7, 170108.	1.5	25
33	Developmental HSC Microenvironments: Lessons from Zebrafish. Advances in Experimental Medicine and Biology, 2017, 1041, 33-53.	0.8	11
34	Identity of Gli1+ cells in the bone marrow. Experimental Hematology, 2017, 54, 12-16.	0.2	30
35	Lung as a Niche for Hematopoietic Progenitors. Stem Cell Reviews and Reports, 2017, 13, 567-574.	5.6	58
36	Decrease of Pericytes is Associated With Liver Disease Caused by Ligature-Induced Periodontitis in Rats. Journal of Periodontology, 2017, 88, e49-e57.	1.7	36
37	Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Translational Medicine, 2017, 6, 482-489.	1.6	23

#	ARTICLE	IF	Citations
38	Use of Imaging Techniques to Illuminate Dynamics of Hematopoietic Stem Cells and Their Niches. Frontiers in Cell and Developmental Biology, 2017, 5, 62.	1.8	8
39	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, $1,1\text{-}16.$	0.1	2
40	Macrophageâ€derived <scp>GPNMB</scp> accelerates skin healing. Experimental Dermatology, 2018, 27, 630-635.	1.4	26
41	Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments. Stem Cells Translational Medicine, 2018, 7, 271-282.	1.6	6
42	Glioblastomaâ€activated pericytes support tumor growth via immunosuppression. Cancer Medicine, 2018, 7, 1232-1239.	1.3	59
43	Endocardial Cell Plasticity in Cardiac Development, Diseases and Regeneration. Circulation Research, 2018, 122, 774-789.	2.0	88
44	Niches for Hematopoietic Stem Cells and Their Progeny. Immunity, 2018, 48, 632-648.	6.6	290
45	Perivascular cell $\hat{l}\pm\nu$ integrins as a target to treat skeletal muscle fibrosis. International Journal of Biochemistry and Cell Biology, 2018, 99, 109-113.	1.2	23
46	Pericytes constrict blood vessels after myocardial ischemia. Journal of Molecular and Cellular Cardiology, 2018, 116, 1-4.	0.9	43
47	Bone Marrow Microâ€Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies. BioEssays, 2018, 40, 1700190.	1.2	17
48	The hematopoietic stem cell niche: from embryo to adult. Development (Cambridge), 2018, 145, .	1.2	155
49	Fetal monocytes and the origins of tissue-resident macrophages. Cellular Immunology, 2018, 330, 5-15.	1.4	268
50	Development of the liver: Insights into organ and tissue morphogenesis. Journal of Hepatology, 2018, 68, 1049-1062.	1.8	160
51	Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 436-446.	2.3	19
52	Hematopoietic development: a gap in our understanding of inherited bone marrow failure. Experimental Hematology, 2018, 59, 1-8.	0.2	7
53	Cell-extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells. Blood, 2018, 131, 2223-2234.	0.6	17
54	Neurogenesis in the postnatal cerebellum after injury. International Journal of Developmental Neuroscience, 2018, 67, 33-36.	0.7	32
55	Expression of nestin in embryonic tissues and its effects on clinicopathological characteristics of patients with placenta previa. Journal of Cellular Biochemistry, 2018, 119, 2061-2072.	1.2	2

#	Article	IF	Citations
56	Pericytes Make Spinal Cord Breathless after Injury. Neuroscientist, 2018, 24, 440-447.	2.6	42
57	Macrophages Generate Pericytes in the Developing Brain. Cellular and Molecular Neurobiology, 2018, 38, 777-782.	1.7	34
58	Adipocytes role in the bone marrow niche. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 167-171.	1.1	29
59	Pericytes modulate myelination in the central nervous system. Journal of Cellular Physiology, 2018, 233, 5523-5529.	2.0	33
60	Formation and Regulation of the Hematopoietic Bone Marrow Niche., 2018,, 211-211.		0
61	Pericyte Biology: Development, Homeostasis, and Disease. Advances in Experimental Medicine and Biology, 2018, 1109, 1-3.	0.8	37
62	Zebrafish, Medaka, and Other Small Fishes. , 2018, , .		4
63	Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer and Metastasis Reviews, 2018, 37, 779-790.	2.7	20
64	Oncostatin M and Kit-Ligand Control Hematopoietic Stem Cell Fate during Zebrafish Embryogenesis. Stem Cell Reports, 2018, 10, 1920-1934.	2.3	26
65	Pericytes in the Premetastatic Niche. Cancer Research, 2018, 78, 2779-2786.	0.4	66
66	Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis, 2018, 21, 667-675.	3.7	45
67	Fetal liver: an ideal niche for hematopoietic stem cell expansion. Science China Life Sciences, 2018, 61, 885-892.	2.3	20
68	Promyelocytic leukemia protein in mesenchymal stem cells is essential for leukemia progression. Annals of Hematology, 2018, 97, 1749-1755.	0.8	17
69	Luteinizing hormone signaling restricts hematopoietic stem cell expansion during puberty. EMBO Journal, 2018, 37, .	3.5	16
70	Tissue Specific Origin, Development, and Pathological Perspectives of Pericytes. Frontiers in Cardiovascular Medicine, 2018, 5, 78.	1.1	122
71	Energy Producing Metabolic Pathways in Functional Regulation of the Hematopoietic Stem Cells. IUBMB Life, 2018, 70, 612-624.	1.5	16
72	The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cellular and Molecular Life Sciences, 2018, 75, 3507-3520.	2.4	35
73	Role of Schwann cells in cutaneous wound healing. Wound Repair and Regeneration, 2018, 26, 392-397.	1.5	29

#	Article	IF	CITATIONS
74	Neuropilin-1 and platelet-derived growth factor receptors cooperatively regulate intermediate filaments and mesenchymal cell migration during alveolar septation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L102-L115.	1.3	9
75	How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 2019, 7, 34.	1.8	26
76	A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials, 2019, 219, 119363.	5.7	28
77	Nestin+NG2+ Cells Form a Reserve Stem Cell Population in the Mouse Prostate. Stem Cell Reports, 2019, 12, 1201-1211.	2.3	7
78	<i>Staphylococcus epidermidis</i> role in the skin microenvironment. Journal of Cellular and Molecular Medicine, 2019, 23, 5949-5955.	1.6	29
79	Response-Related Factors of Bone Marrow-Derived Mesenchymal Stem Cells Transplantation in Patients with Alcoholic Cirrhosis. Journal of Clinical Medicine, 2019, 8, 862.	1.0	1
80	The liver as a nursery for leukocytes. Journal of Leukocyte Biology, 2019, 106, 687-693.	1.5	5
81	Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. Biochemistry (Moscow), 2019, 84, 190-204.	0.7	11
82	Pericytes Act as Key Players in Spinal Cord Injury. American Journal of Pathology, 2019, 189, 1327-1337.	1.9	24
83	A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. Cell Reports, 2019, 27, 1567-1578.e5.	2.9	45
84	Liver Sinusoidal Endothelial Cells Promote the Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2019, 20, 1985.	1.8	7
85	Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochemical Society Transactions, 2019, 47, 591-601.	1.6	62
86	Hepatic progenitors of the fetal liver: Interactions with hematopoietic stem cells. Differentiation, 2019, 106, 9-14.	1.0	13
87	Multidimensional Single-Cell Analyses in Organ Development and Maintenance. Trends in Cell Biology, 2019, 29, 477-486.	3.6	10
88	Development of the hematopoietic system: Role of inflammatory factors. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e341.	5.9	11
89	Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nature Cell Biology, 2019, 21, 560-567.	4.6	74
90	Hematopoietic stem cell metabolism and stemness. Blood Science, 2019, 1, 12-18.	0.4	5
91	Neural stem cell niche heterogeneity. Seminars in Cell and Developmental Biology, 2019, 95, 42-53.	2.3	75

#	Article	IF	Citations
92	Pericyte Plasticity in the Brain. Neuroscience Bulletin, 2019, 35, 551-560.	1.5	31
93	Bone marrow and the hematopoietic stem cell niche. , 2020, , 73-87.		2
94	Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Annals of the New York Academy of Sciences, 2020, 1466, 59-72.	1.8	9
95	Glioma Pericytes Promote Angiogenesis by Producing Periostin. Cellular and Molecular Neurobiology, 2020, , 1.	1.7	9
96	Hematopoietic Stem Cell Metabolism during Development and Aging. Developmental Cell, 2020, 54, 239-255.	3.1	124
97	The Periostin/Integrin-αv Axis Regulates the Size of Hematopoietic Stem Cell Pool in the Fetal Liver. Stem Cell Reports, 2020, 15, 340-357.	2.3	17
98	EphA7+ perivascular cells as myogenic and angiogenic precursors improving skeletal muscle regeneration in a muscular dystrophic mouse model. Stem Cell Research, 2020, 47, 101914.	0.3	9
99	The mesenchymal context in inflammation, immunity and cancer. Nature Immunology, 2020, 21, 974-982.	7.0	168
100	Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. Journal of NeuroImmune Pharmacology, 2020, 15, 838-851.	2.1	6
101	Towards Mimicking the Fetal Liver Niche: The Influence of Elasticity and Oxygen Tension on Hematopoietic Stem/Progenitor Cells Cultured in 3D Fibrin Hydrogels. International Journal of Molecular Sciences, 2020, 21, 6367.	1.8	10
102	Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Frontiers in Cell and Developmental Biology, 2020, 8, 602617.	1.8	10
103	MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood, 2020, 136, 553-571.	0.6	13
104	Determinants of Resident Tissue Macrophage Identity and Function. Immunity, 2020, 52, 957-970.	6.6	280
105	Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Frontiers in Cell and Developmental Biology, 2020, 8, 612.	1.8	23
106	Ex Vivo Modeling of Hematopoietic Stem Cell Homing to the Fetal Liver. Methods in Molecular Biology, 2020, 2346, 35-50.	0.4	4
107	Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs. Immunity, 2020, 52, 275-294.e9.	6.6	50
108	Sensory nerves in the spotlight of the stem cell niche. Stem Cells Translational Medicine, 2021, 10, 346-356.	1.6	12
109	Targeting Nestin+ hepatic stellate cells ameliorates liver fibrosis by facilitating \hat{T}^2R I degradation. Journal of Hepatology, 2021, 74, 1176-1187.	1.8	42

#	Article	IF	Citations
110	EphA7+ Multipotent and Their Roles in Multicellular Organisms. Pancreatic Islet Biology, 2021, , 189-201.	0.1	0
111	Pericyte Ontogeny: The Use of Chimeras to Track a Cell Lineage of Diverse Germ Line Origins. Methods in Molecular Biology, 2021, 2235, 61-87.	0.4	2
112	Fetal liver hematopoiesis: from development to delivery. Stem Cell Research and Therapy, 2021, 12, 139.	2.4	36
113	mTOR Signaling as a Regulator of Hematopoietic Stem Cell Fate. Stem Cell Reviews and Reports, 2021, 17, 1312-1322.	1.7	19
114	Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids and Barriers of the CNS, 2021, 18, 14.	2.4	24
115	Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis, 2021, 24, 289-310.	3.7	48
116	A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
119	Circulating Nestin-GFP+ Cells Participate in the Pathogenesis of Paracoccidioides brasiliensis in the Lungs. Stem Cell Reviews and Reports, 2021, 17, 1874-1888.	1.7	9
120	C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochemistry and Cell Biology, 2021, 156, 165-182.	0.8	8
121	Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discovery, 2021, 7, 47.	3.1	31
122	WNT5A from the fetal liver vascular niche supports human fetal liver hematopoiesis. Stem Cell Research and Therapy, 2021, 12, 321.	2.4	2
123	Endothelial ontogeny and the establishment of vascular heterogeneity. BioEssays, 2021, 43, e2100036.	1.2	10
124	Hematopoietic stem cell stretches and moves in its bone marrow niche. Critical Reviews in Oncology/Hematology, 2021, 163, 103368.	2.0	7
125	Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Research, 2022, 32, 38-53.	5.7	48
126	Absence of CD11a Expression Identifies Embryonic Hematopoietic Stem Cell Precursors via Competitive Neonatal Transplantation Assay. Frontiers in Cell and Developmental Biology, 2021, 9, 734176.	1.8	0
127	The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Reviews and Reports, 2021, 17, 2059-2080.	1.7	4
128	Paul S. Frenette (1965–2021). FASEB BioAdvances, 2022, 4, 5-8.	1.3	0
129	Pericytes cross-talks within the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188608.	3.3	21

#	ARTICLE	IF	CITATIONS
130	Increased risk of leukaemia in children with Down syndrome: a somatic evolutionary view. Expert Reviews in Molecular Medicine, 2021, 23, e5.	1.6	3
131	Development of Hematopoietic Stem Cells in Zebrafish. , 2018, , 37-57.		2
132	Metabolic Regulations in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1143, 59-74.	0.8	5
133	Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver. Journal of Experimental Medicine, 2021, 218, .	4.2	26
134	Mesenchymal stromal cells lower platelet activation and assist in platelet formation in vitro. JCI Insight, 2019, 4, .	2.3	6
135	GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. Journal of Clinical Investigation, 2017, 127, 1099-1114.	3.9	102
136	The Adaptability of Somatic Stem Cells: A Review. Journal of Stem Cells and Regenerative Medicine, 2017, 13, 3-13.	2.2	18
138	Recipient bone marrow assimilates the myeloid/lymphoid reconstitution of distinct fetal hematopoietic stem cells. Oncotarget, 2017, 8, 108981-108988.	0.8	2
139	Molecular Signatures of Hematopoietic Stem Cell Niche During Development., 2020,, 21-25.		0
140	Infant leukaemia $\hat{a} \in \hat{b}$ faithful models, cell of origin and the niche. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	3
141	The Liver as a Lymphoid Organ. , 2020, , 17-33.		2
142	Sympathetic nerve-adipocyte interactions in response to acute stress. Journal of Molecular Medicine, 2021, 100, 151.	1.7	5
144	Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Frontiers in Immunology, 2021, 12, 790379.	2.2	11
145	Differentiation of fetal hematopoietic stem cells requires ARID4B to restrict autocrine KITLG/KIT-Src signaling. Cell Reports, 2021, 37, 110036.	2.9	4
146	Leveraging interacting signaling pathways to robustly improve the quality and yield of human pluripotent stem cell-derived hepatoblasts and hepatocytes. Stem Cell Reports, 2022, 17, 584-598.	2.3	13
147	Aging and Clonal Behavior of Hematopoietic Stem Cells. International Journal of Molecular Sciences, 2022, 23, 1948.	1.8	11
148	A specialized bone marrow microenvironment for fetal haematopoiesis. Nature Communications, 2022, 13, 1327.	5.8	18
150	Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell, 2022, 29, 593-609.e7.	5.2	32

#	Article	IF	CITATIONS
151	Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Current Topics in Developmental Biology, 2022, , 203-261.	1.0	3
152	Central Nervous System Pericytes Contribute to Health and Disease. Cells, 2022, 11, 1707.	1.8	9
154	Dynamic 3D genome reorganization during development and metabolic stress of the porcine liver. Cell Discovery, 2022, 8, .	3.1	6
155	Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports, 2022, 17, 1509-1535.	2.3	8
156	Synergistic prostaglandin E synthesis by myeloid and endothelial cells promotes fetal hematopoietic stem cell expansion in vertebrates. EMBO Journal, 2022, 41, .	3.5	5
157	Shining a light on hematopoietic stem cells. ELife, 0, 11, .	2.8	0
158	Bone marrow imaging reveals the migration dynamics of neonatal hematopoietic stem cells. Communications Biology, 2022, 5, .	2.0	3
159	Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nature Communications, 2022, 13, .	5.8	13
160	Downregulation of SOCS1 increases interferon-induced ISGylation during differentiation of induced-pluripotent stem cells to hepatocytes. JHEP Reports, 2022, 4, 100592.	2.6	0
161	Antipsychotic drugs induce vascular defects in hematopoietic organs. FASEB Journal, 2022, 36, .	0.2	1
162	Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature, 2022, 609, 779-784.	13.7	56
163	Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis, 0, , .	3.7	2
164	Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nature Cell Biology, 2022, 24, 1475-1486.	4.6	22
165	Immuno-localization of definitive hematopoietic stem cells in the vascular niche of mouse fetal liver. STAR Protocols, 2022, 3, 101580.	0.5	0
167	Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunological Reviews, 2023, 315, 197-215.	2.8	3
168	Whole bone subcutaneous transplantation as a strategy to study precisely the bone marrow niche. Stem Cell Reviews and Reports, 2023, 19, 906-927.	1.7	2
169	Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	0
170	Dynamic crosstalk between hematopoietic stem cells and their niche from emergence to aging. BioEssays, 2023, 45, .	1.2	0

#	Article	IF	CITATIONS
171	Alcam-a and Pdgfr- $\hat{l}\pm$ are essential for the development of sclerotome-derived stromal cells that support hematopoiesis. Nature Communications, 2023, 14, .	5.8	6
172	Assembling the layers of the hematopoietic system: A window of opportunity for thymopoiesis in the embryo. Immunological Reviews, 2023, 315, 54-70.	2.8	3
173	The sinusoidal hematopoietic niche is formed by Jam1a via Notch signaling in the zebrafish kidney. IScience, 2023, 26, 106508.	1.9	0
175	Fetal liver development and implications for liver disease pathogenesis. Nature Reviews Gastroenterology and Hepatology, 0, , .	8.2	5