Secondary neurotransmitter deficiencies in epilepsy carchannelopathies: A potential treatment target?

Molecular Genetics and Metabolism 117, 42-48

DOI: 10.1016/j.ymgme.2015.11.008

Citation Report

#	Article	IF	CITATIONS
1	Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Frontiers in Neuroscience, 2016, 10, 492.	1.4	62
2	Exome Sequencing and the Management of Neurometabolic Disorders. New England Journal of Medicine, 2016, 374, 2246-2255.	13.9	254
3	Current and Emerging Therapies of Severe Epileptic Encephalopathies. Seminars in Pediatric Neurology, 2016, 23, 180-186.	1.0	11
4	<scp>GLUT</scp> 1 deficiency: progress in unraveling its genetic basis. Developmental Medicine and Child Neurology, 2016, 58, 1210-1211.	1.1	O
5	Biochemical Analyses of Cerebrospinal Fluid for the Diagnosis of Neurometabolic Conditions. What Can We Expect?. Seminars in Pediatric Neurology, 2016, 23, 273-284.	1.0	10
6	Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain, 2017, 140, 1316-1336.	3.7	426
7	Prophylactic anticonvulsants in patients with primary glioblastoma. Journal of Neuro-Oncology, 2017, 135, 229-235.	1.4	11
8	Precision medicine in genetic epilepsies: break of dawn?. Expert Review of Neurotherapeutics, 2017, 17, 381-392.	1.4	57
9	Secondary Abnormal CSF Neurotransmitter Metabolite Profiles in a Pediatric Tertiary Care Centre. Canadian Journal of Neurological Sciences, 2018, 45, 206-213.	0.3	5
10	Gammaâ€aminobutyric acid levels in cerebrospinal fluid in neuropaediatric disorders. Developmental Medicine and Child Neurology, 2018, 60, 780-792.	1.1	8
11	The role of the clinician in the multiâ€omics era: are you ready?. Journal of Inherited Metabolic Disease, 2018, 41, 571-582.	1.7	55
12	Integration of genomics and metabolomics for prioritization of rare disease variants: a 2018 literature review. Journal of Inherited Metabolic Disease, 2018, 41, 435-445.	1.7	35
13	Pharmacogenomics in epilepsy. Neuroscience Letters, 2018, 667, 27-39.	1.0	109
14	Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles. Journal of Inherited Metabolic Disease, 2018, 41, 129-139.	1.7	12
15	Introductory Chapter: Ion Channels. , 2018, , .		2
16	Immunotherapy by targeting of VGKC complex for seizure control and prevention of cognitive impairment in a mouse model of epilepsy. Molecular Medicine Reports, 2018, 18, 169-178.	1.1	3
17	SCN8A p.Arg1872Gln mutation in early infantile epileptic encephalopathy type 13: Review and case report. Biotechnology and Biotechnological Equipment, 2018, 32, 1345-1351.	0.5	3
18	Monoamine neurotransmitters and movement disorders in children and adults. Revue Neurologique, 2018, 174, 581-588.	0.6	12

#	Article	IF	CITATIONS
19	Cerebrospinal fluid monoamines, pterins, and folate in patients with mitochondrial diseases: systematic review and hospital experience. Journal of Inherited Metabolic Disease, 2018, 41, 1147-1158.	1.7	12
20	Synaptic metabolism: a new approach to inborn errors of neurotransmission. Journal of Inherited Metabolic Disease, 2018, 41, 1065-1075.	1.7	11
21	Biallelic SCN2A Gene Mutation Causing Early Infantile Epileptic Encephalopathy: Case Report and Review. Journal of Central Nervous System Disease, 2019, 11, 117957351984993.	0.7	10
22	Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Molecular Medicine, 2019, 25, 6.	1.9	42
23	Novel SCN2A mutation in a family associated with juvenile-onset myoclonus. Medicine (United States), 2019, 98, e14698.	0.4	3
24	Phenotypic spectrum and genetics of <i><scp>SCN</scp>2A</i> à€related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia, 2019, 60, S59-S67.	2.6	49
25	metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes. Npj Genomic Medicine, 2020, 5, 25.	1.7	13
26	Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Frontiers in Pharmacology, 2020, 11, 1276.	1.6	76
27	Physical exercise and 5-hydroxytryptophan, a precursor for serotonin synthesis, reduce penicillin-induced epileptiform activity. Epilepsy and Behavior, 2020, 112, 107403.	0.9	6
28	Muscle and brain sodium channelopathies: genetic causes, clinical phenotypes, and management approaches. The Lancet Child and Adolescent Health, 2020, 4, 536-547.	2.7	13
29	Secondary biogenic amine deficiencies: genetic etiology, therapeutic interventions, and clinical effects. Neurogenetics, 2021, 22, 251-262.	0.7	1
30	A systematic review of brain MRI findings in monogenic disorders strongly associated with autism spectrum disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1339-1352.	3.1	6
31	Neurotransmitters and Sodium Channelopathies; Possible Link?. Pediatric Neurology Briefs, 2017, 31, 7.	0.2	0
32	<i>SCN8A</i> Mutation in Infantile Epileptic Encephalopathy: Report of Two Cases. Journal of Epilepsy Research, 2019, 9, 147-151.	0.1	1
34	Monoamine neurotransmitters in early epileptic encephalopathies: New insights into pathophysiology and therapy. Developmental Medicine and Child Neurology, 0, , .	1,1	3
35	Serotonin receptors in epilepsy: Novel treatment targets?. Epilepsia Open, 2022, 7, 231-246.	1.3	19
36	SYNGAP1 and Methylenetetrahydrofolate in Cerebrospinal Fluid: Cognitive Development after Oral Folate (5-Methyltetrahydrofolate) Supplementation in a 5-Year-Old Girl. Journal of Pediatric Neurology, 0, , .	0.0	0
38	Cerebrospinal Fluid Concentrations of Neurotransmitters in a Greek Pediatric Reference Population. Neuropediatrics, 0, , .	0.3	0

3

#	ARTICLE	IF	CITATIONS
39	Inhibitory effect of atomoxetine on Nav1.2 voltage-gated sodium channel currents. Pharmacological Reports, 0, , .	1.5	0
40	Pathogenic <i>SCN2A</i> variants cause early-stage dysfunction in patient-derived neurons. Human Molecular Genetics, 2023, 32, 2192-2204.	1.4	4