Ageing phenomena in high-voltage aqueous supercapad analysis

Energy and Environmental Science 9, 623-633 DOI: 10.1039/c5ee02875b

Citation Report

#	Article	IF	CITATIONS
2	Current-induced strength degradation of activated carbon spheres in carbon supercapacitors. Materials Research Express, 2016, 3, 055602.	0.8	2
3	Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon, 2016, 105, 628-637.	5.4	84
4	Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 16588-16596.	5.2	34
5	"Brick-and-mortar―sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V sâ^'1 for supercapacitors. Nano Energy, 2016, 30, 84-92.	8.2	84
6	Carbon-based electrochemical capacitors with acetate aqueous electrolytes. Electrochimica Acta, 2016, 215, 179-186.	2.6	57
7	High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide. Journal of Power Sources, 2016, 331, 277-284.	4.0	58
8	The Origins of Low Efficiency in Electrochemical De-Ionization Systems. Journal of the Electrochemical Society, 2016, 163, E363-E371.	1.3	22
9	Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11388-11396.	5.2	151
10	Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K 4 Fe(CN) 6 for enhanced performance of active carbon-based capacitors. Journal of Power Sources, 2016, 324, 334-341.	4.0	17
11	Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature Chemistry, 2017, 9, 457-465.	6.6	1,409
12	Nextâ€Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Advanced Functional Materials, 2017, 27, 1605745.	7.8	220
13	Redox enhanced energy storage in an aqueous high-voltage electrochemical capacitor with a potassium bromide electrolyte. Journal of Power Sources, 2017, 348, 219-228.	4.0	43
14	One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14619-14629.	5.2	58
15	Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes. Carbon, 2017, 120, 281-293.	5.4	46
16	Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Advances, 2017, 7, 18926-18936.	1.7	29
17	Electrolytes for electrochemical energy storage. Materials Chemistry Frontiers, 2017, 1, 584-618.	3.2	203
18	The influence of current collector corrosion on the performance of electrochemical capacitors. Journal of Power Sources, 2017, 368, 18-29.	4.0	52
19	Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors. ACS Applied Materials & amp; Interfaces 2017 9 41224-41232	4.0	23

#	Article	IF	CITATIONS
20	Confinement of iodides in carbon porosity to prevent from positive electrode oxidation in high voltage aqueous hybrid electrochemical capacitors. Carbon, 2017, 125, 391-400.	5.4	30
21	Effect of the Electrolyte Alkaline Ions on the Electrochemical Performance of αâ€Ni(OH) ₂ /Activated Carbon Composites in the Hybrid Supercapacitor Cell. ChemistrySelect, 2017, 2, 6693-6698.	0.7	7
22	Cost-Effective Asymmetric Supercapacitors Based on Nickel Cobalt Oxide Nanoarrays and Biowaste-Derived Porous Carbon Electrodes. ACS Sustainable Chemistry and Engineering, 2017, 5, 9903-9913.	3.2	31
23	Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. Journal of Power Sources, 2017, 365, 362-371.	4.0	28
24	High-voltage aqueous supercapacitors based on NaTFSI. Sustainable Energy and Fuels, 2017, 1, 2155-2161.	2.5	76
25	Integrated Cu ₃ N porous nanowire array electrode for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18972-18976.	5.2	40
26	Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadiumâ€Pentoxideâ€Decorated Multiwalled Carbon Nanotubes. ChemSusChem, 2017, 10, 3611-3623.	3.6	89
27	Gas Evolution in Activatedâ€Carbonâ€Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte. ChemPhysChem, 2017, 18, 2364-2373.	1.0	27
28	A Combined Modeling and Experimental Study Assessing the Impact of Fluid Pulsation on Charge and Energy Efficiency in Capacitive Deionization. Journal of the Electrochemical Society, 2017, 164, E536-E547.	1.3	31
29	Capacitance enhancement of hybrid electrochemical capacitor with asymmetric carbon electrodes configuration in neutral aqueous electrolyte. Electrochimica Acta, 2018, 269, 640-648.	2.6	32
30	Mesoporous tubular graphene electrode for high performance supercapacitor. Chinese Chemical Letters, 2018, 29, 599-602.	4.8	21
31	Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor. Advanced Energy Materials, 2018, 8, 1702630.	10.2	201
32	High performance, environmentally benign and integratable Zn//MnO ₂ microbatteries. Journal of Materials Chemistry A, 2018, 6, 3933-3940.	5.2	53
33	Rational Construction of Hollow Coreâ€Branch CoSe ₂ Nanoarrays for Highâ€Performance Asymmetric Supercapacitor and Efficient Oxygen Evolution. Small, 2018, 14, 1700979.	5.2	172
34	Charge and Potential Balancing for Optimized Capacitive Deionization Using Ligninâ€Derived, Lowâ€Cost Activated Carbon Electrodes. ChemSusChem, 2018, 11, 2101-2113.	3.6	68
35	Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co ₃ N. Sustainable Energy and Fuels, 2018, 2, 1178-1188.	2.5	22
36	New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, 3639-3649.	1.7	211
37	Tailored metallacarboranes as mediators for boosting the stability of carbon-based aqueous supercapacitors. Sustainable Energy and Fuels, 2018, 2, 345-352.	2.5	13

#	Article	IF	CITATIONS
38	Sustainable Carbon/Carbon Supercapacitors Operating Down to â^'40 °C in Aqueous Electrolyte Made with Cholinium Salt. ChemSusChem, 2018, 11, 975-984.	3.6	45
39	Metal sputtered graphene based hybrid films comprising tin oxide/reduced graphene oxide/Ni as electrodes for high-voltage electrochemical capacitors. Carbon, 2018, 129, 1-7.	5.4	7
40	Model of noise sources in supercapacitors. Journal of Physics: Conference Series, 2018, 1065, 102004.	0.3	0
41	Benign Solvation Effect on Electrochemical Intercalation of Triethylmethyl Ammonium into Graphite from Propylene Carbonate. Journal of the Electrochemical Society, 2018, 165, A4012-A4017.	1.3	6
42	Electrochemical supercapacitor with thiourea-based aqueous electrolyte. Electrochemistry Communications, 2018, 97, 32-36.	2.3	12
43	Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives. Nanotechnology, 2018, 29, 502001.	1.3	46
44	Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures. ChemElectroChem, 2019, 6, 566-573.	1.7	21
45	Toward high-performance Li(Ni _x Co _y Mn _z)O ₂ cathodes: facile fabrication of an artificial polymeric interphase using functional polyacrylates. Journal of Materials Chemistry A, 2018, 6, 17778-17786.	5.2	13
46	Fluorine and oxygen co-doped porous carbons derived from third-class red dates for high-performance symmetrical supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 18674-18683.	1.1	15
47	Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19653-19663.	5.2	120
48	Sustainable Utilization of Biomass Refinery Wastes for Accessing Activated Carbons and Supercapacitor Electrode Materials. ChemSusChem, 2018, 11, 3599-3608.	3.6	70
49	Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor. Electrochimica Acta, 2018, 282, 116-127.	2.6	79
50	Effect of benzoquinone additives on the performance of symmetric carbon/carbon capacitors – electrochemical impedance study. Journal of Energy Storage, 2018, 18, 340-348.	3.9	6
51	Flexible asymmetric supercapacitors made of 3D porous hierarchical CuCo2O4@CQDs and Fe2O3@CQDs with enhanced performance. Electrochimica Acta, 2018, 283, 248-259.	2.6	47
52	Facile synthesis of microporous carbons with three-dimensional honeycomb-like porous structure for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2018, 823, 54-60.	1.9	20
53	Confined Redox Reactions of lodide in Carbon Nanopores for Fast and Energyâ€Efficient Desalination of Brackish Water and Seawater. ChemSusChem, 2018, 11, 3460-3472.	3.6	46
54	Sandwich-like NiO/rGO nanoarchitectures for 4â€V solid-state asymmetric-supercapacitors with high energy density. Electrochimica Acta, 2018, 283, 1401-1410.	2.6	28
55	A collaborative diagnosis on mesocarbon microbeads electrodes in dual-carbon cells with non-metal electrolytes. Electrochimica Acta, 2018, 283, 1712-1718.	2.6	8

		CITATION REPORT		
#	Article		IF	CITATIONS
56	New Trends in Electrochemical Capacitors. Advances in Inorganic Chemistry, 2018, 72,	247-286.	0.4	9
57	Revisited insights into charge storage mechanisms in electrochemical capacitors with L electrolyte. Energy Storage Materials, 2019, 22, 1-14.	i2SO4-based	9.5	43
58	Green and sustainable zero-waste conversion of water hyacinth (<i>Eichhornia crassipe superior magnetic carbon composite adsorbents and supercapacitor electrodes. RSC A 24248-24258.</i>	rs<∕i>) into dvances, 2019, 9,	1.7	42
59	Wide potential and high energy density for an asymmetric aqueous supercapacitor. Jou Materials Chemistry A, 2019, 7, 19017-19025.	rnal of	5.2	79
60	Hierarchical Nanosheets/Walls Structured Carbonâ€Coated Porous Vanadium Nitride A Wideâ€Voltageâ€Window Aqueous Asymmetric Supercapacitors with High Energy Der Science, 2019, 6, 1900550.	nodes Enable nsity. Advanced	5.6	61
61	On the cycling stability of biomass-derived carbons as electrodes in supercapacitors. Jo Alloys and Compounds, 2019, 803, 882-890.	urnal of	2.8	25
62	Hierarchical "tube-on-fiber―carbon/mixed-metal selenide nanostructures for high-j hybrid supercapacitors. Nanoscale, 2019, 11, 13996-14009.	performance	2.8	57
63	Hierarchical Storage Behavior of Tetrafluoroborate Anion in Graphite Electrodes. Journa Electrochemical Society, 2019, 166, A2349-A2356.	l of the	1.3	12
64	High-rate aqueous/ionic liquid dual electrolyte supercapacitor using 3D graphene spon ultrahigh pore volume. Electrochimica Acta, 2019, 327, 135014.	ge with an	2.6	14
65	Carbon nanofibers as thick electrodes for aqueous supercapacitors. Journal of Energy S 26, 100981.	torage, 2019,	3.9	16
66	Solution blown polymer/biowaste derived carbon particles nanofibers: An optimization energy storage applications. Journal of Energy Storage, 2019, 26, 100962.	study and	3.9	7
67	Quantification of the Charge Consuming Phenomena under Highâ€Voltage Hold of Car Supercapacitors by Coupling Operando and Postâ€Mortem Analyses. Angewandte Che 18137-18145.	bon/Carbon mie, 2019, 131,	1.6	1
68	Quantification of the Charge Consuming Phenomena under Highâ€Voltage Hold of Ca Supercapacitors by Coupling Operando and Postâ€Mortem Analyses. Angewandte Che Edition, 2019, 58, 17969-17977.	[.] bon/Carbon mie - International	7.2	18
69	Highâ€Performance and Ultraâ€Stable Aqueous Supercapacitors Based on a Green and Waterâ€Inâ€Salt Electrolyte. ChemElectroChem, 2019, 6, 5433-5438.	Low ost	1.7	60
70	Effect of radiation on the performance of activated carbon base supercapacitor: Part II. electron irradiation exposure on full cell. Energy Procedia, 2019, 158, 4560-4565.	Influence of	1.8	0
71	In situ mass change and gas analysis of 3D manganese oxide/graphene aerogel for sup Advances, 2019, 9, 28569-28575.	ercapacitors. RSC	1.7	18
72	Effect of Structural Orientation on the Performance of Supercapacitor Electrodes from Coal-Derived Carbon Nanofibers (CCNFs). Journal of the Electrochemical Society, 2019 A3294-A3304.	Electrospun , 166,	1.3	24
73	Enhanced oxygen evolution performance of spinel Fe0.1Ni0.9Co2O4/Activated carbon Electrochimica Acta, 2019, 326, 134986.	composites.	2.6	14

#	Article	IF	CITATIONS
74	High cell-potential and high-rate neutral aqueous supercapacitors using activated biocarbon: In situ electrochemical gas chromatography. Electrochimica Acta, 2019, 313, 31-40.	2.6	9
75	Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Energy Technology, 2019, 7, 1900430.	1.8	20
76	Redox activity of selenocyanate anion in electrochemical capacitor application. Synthetic Metals, 2019, 253, 62-72.	2.1	22
77	MnO2 nanosheet-coated Co3O4 complex for 1.4â€V extra-high voltage supercapacitors electrode material. Journal of Power Sources, 2019, 431, 48-54.	4.0	56
78	High-energy hybrid electrochemical capacitor operating down to â^'40â€ [−] °C with aqueous redox electrolyte based on choline salts. Journal of Power Sources, 2019, 427, 283-292.	4.0	24
79	Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 8620-8632.	5.2	129
80	Supercapacitors (electrochemical capacitors). , 2019, , 383-427.		6
81	Optimizing carbon/carbon supercapacitors in aqueous alkali sulfates electrolytes. Journal of Energy Chemistry, 2019, 38, 219-224.	7.1	34
82	Reclaimed Carbon Fiber-Based 2.4 V Aqueous Symmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 5095-5102.	3.2	35
83	Oxygen-vacancy Bi ₂ O ₃ nanosheet arrays with excellent rate capability and CoNi ₂ S ₄ nanoparticles immobilized on N-doped graphene nanotubes as robust electrode materials for high-energy asymmetric supercapacitors. Journal of Materials Chemistry A, 2019. 7, 7918-7931.	5.2	92
84	Anionic P-substitution toward ternary Ni–S–P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 24374-24388.	5.2	77
85	2.5 V salt-in-water supercapacitors based on alkali type double salt/carbon composite anode. Journal of Materials Chemistry A, 2019, 7, 26011-26019.	5.2	16
86	Methods of trend removal in electrochemical noise data – Overview. Measurement: Journal of the International Measurement Confederation, 2019, 131, 569-581.	2.5	60
87	Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline–Acidic Electrolyte. Advanced Science, 2019, 6, 1801665.	5.6	124
88	N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors. Microporous and Mesoporous Materials, 2019, 279, 323-333.	2.2	50
89	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	16.0	111
90	Membrane-free electrochemical deoxygenation of aqueous solutions using symmetric activated carbon electrodes in flow-through cells. Electrochimica Acta, 2019, 297, 163-172.	2.6	8
91	2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt― gel electrolyte and N-Doped graphene fiber. Energy Storage Materials, 2020, 24, 495-503.	9.5	71

ARTICLE IF CITATIONS Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance 92 3.3 40 symmetric/asymmetric supercapacitor. Carbon Letters, 2020, 30, 389-397. Investigating the effects of activating agent morphology on the porosity and related capacitance of nanoporous carbons. CrystEngComm, 2020, 22, 1560-1567. 1.3 9 Interfacial aspects induced by saturated aqueous electrolytes in electrochemical capacitor 94 2.6 23 applications. Electrochimica Acta, 2020, 334, 135572. 2.6 V aqueous symmetric supercapacitors based on phosphorus-doped TiO₂ nanotube arrays. Dalton Transactions, 2020, 49, 1785-1793. Evaluation of the operating potential window of electrochemical capacitors. Electrochimica Acta, 96 2.6 26 2020, 332, 135503. Heavy Water Enables High-Voltage Aqueous Electrochemistry via the Deuterium Isotope Effect. Journal of Physical Chemistry Letters, 2020, 11, 303-310. 2.1 A rational experimental approach to identify correctly the working voltage window of aqueous-based 98 1.6 35 supercapacitors. Scientific Reports, 2020, 10, 19195. Promising Co/NC nanocomposite electrode material derived from zeolitic imidazolate framework for high performance and durable aqueous symmetric supercapacitor. Journal of Energy Storage, 2020, 32, 90 3.9 101969. Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon 100 20 1.7 nanotubes for enhanced energy storage. Journal of Materials Science, 2020, 55, 10121-10141. Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive. Journal of Power Sources, 2020, 453, 227897. Highly Sensitive Operando Pressure Measurements of Li-ion Battery Materials with a Simply Modified 102 3 1.3 Swagelok Cell. Journal of the Electrochemical Society, 2020, 167, 110511. Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6ÅV high-performance aqueous asymmetric supercapacitor. Journal of Power Sources, 2020, 469, 228425. 50 Fabrication of NiHPO3·H2O nanorods as cathode material for aqueous asymmetric supercapacitor. 104 2.8 7 Journal of Alloys and Compounds, 2020, 843, 155921. Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry. Journal of Energy Storage, 2020, 29, 101379. Tracking ion intercalation into layered Ti₃C₂ MXene films across length 106 15.6 100 scales. Energy and Environmental Science, 2020, 13, 2549-2558. Pseudocapacitive quantum dots confined in sacrificial g-C3N4 derived carbon nanosheets for high performance ionic liquid-based supercapacitors. Materials Letters, 2020, 266, 127498. Activated Carbon by One-Step Calcination of Deoxygenated Agar for High Voltage Lithium Ion 108 3.231 Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3637-3643. Explanation of anomalous rate capability enhancement by manganese oxide incorporation in carbon nanoï-ber electrodes for electrochemical capacitors. Electrochimica Acta, 2020, 340, 135921.

CITATION REPORT

#	Article	IF	CITATIONS
110	Insight into the role of interfacial reconstruction of manganese oxides toward enhanced electrochemical capacitors. Chemical Engineering Journal, 2020, 388, 124293.	6.6	6
111	Towards an optimized hybrid electrochemical capacitor in iodide based aqueous redox-electrolyte: Shift of equilibrium potential by electrodes mass-balancing. Electrochimica Acta, 2020, 337, 135785.	2.6	17
112	Amorphous nickel sulfide nanoparticles anchored on N-doped graphene nanotubes with superior properties for high-performance supercapacitors and efficient oxygen evolution reaction. Nanoscale, 2020, 12, 4655-4666.	2.8	29
113	Achieving a 2.7 V aqueous hybrid supercapacitor by the pH-regulation of electrolyte. Journal of Materials Chemistry A, 2020, 8, 8648-8660.	5.2	29
114	Bio-inspired Mn3O4@N, P-doped carbon cathode for 2.6â€V flexible aqueous asymmetric supercapacitors. Chemical Engineering Journal, 2021, 407, 126874.	6.6	24
115	Combined DFT and experiment: Stabilizing the electrochemical interfaces via boron Lewis acids. Journal of Energy Chemistry, 2021, 59, 100-107.	7.1	12
116	Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56, 173-200.	1.7	474
117	A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost "water-in-salt―hydrogel electrolyte. Nanoscale, 2021, 13, 3010-3018.	2.8	65
118	Peculiar role of the electrolyte viscosity in the electrochemical capacitor performance. Journal of Materials Chemistry A, 2021, 9, 8644-8654.	5.2	18
119	Monitoring the active sites for the hydrogen evolution reaction at model carbon surfaces. Physical Chemistry Chemical Physics, 2021, 23, 10051-10058.	1.3	21
120	Investigation of Voltage Range and Selfâ€Discharge in Aqueous Zincâ€Ion Hybrid Supercapacitors. ChemSusChem, 2021, 14, 1700-1709.	3.6	51
121	A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage. Journal of Materials Science, 2021, 56, 11027-11043.	1.7	13
122	Anti–corrosive siloxane coatings for improved long–term performance of supercapacitors with an aqueous electrolyte. Electrochimica Acta, 2021, 372, 137840.	2.6	18
123	W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chemical Engineering Journal, 2021, 409, 128216.	6.6	72
124	Screening electrolytes designed for high voltage electrochemical capacitors. Electrochimica Acta, 2021, 374, 137898.	2.6	3
125	Highâ€Đensity Ligninâ€Đerived Carbon Nanofiber Supercapacitors with Enhanced Volumetric Energy Density. Advanced Science, 2021, 8, e2100016.	5.6	42
127	Water/acetonitrile hybrid electrolyte enables using smaller ions for achieving superior energy density in carbon-based supercapacitors. Journal of Power Sources, 2021, 498, 229905.	4.0	8
128	Aging processes in high voltage lithium-ion capacitors containing liquid and gel-polymer electrolytes. Journal of Power Sources, 2021, 496, 229797.	4.0	7

		CITATION REPORT		
#	Article		IF	CITATIONS
129	Strategy to assess the carbon electrode modifications associated with the high voltage ageing of electrochemical capacitors in organic electrolyte. Energy Storage Materials, 2021, 38, 17-29.	:	9.5	14
130	1.8 V Aqueous Symmetric Carbon-Based Supercapacitors with Agarose-Bound Activated Carbons Acidic Electrolyte. Nanomaterials, 2021, 11, 1731.	in an	1.9	18
131	Energy-Dense Aqueous Carbon/Carbon Supercapacitor with a Wide Voltage Window. Journal of t Electrochemical Society, 2021, 168, 070538.	he	1.3	9
132	Low-Crystalline Akhtenskite MnO ₂ -Based Aqueous Magnesium-Ion Hybrid Supercap with a Superior Energy Density Boosted by Redox Bromide-Ion Additive Electrolytes. ACS Sustain Chemistry and Engineering, 2021, 9, 9165-9176.	acitors able	3.2	21
133	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.		10.2	74
134	Thermodynamic and kinetic examination of the glassy carbon electrode in neutral aqueous electrolytes. Journal of Power Sources Advances, 2021, 10, 100062.		2.6	4
135	Probing the <i>In Situ</i> Pseudocapacitive Charge Storage in Ti ₃ C ₂ N Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces, 2021, 13, 43597-4360	1Xene 15.	4.0	8
136	Graphene Fiberâ€Based Wearable Supercapacitors: Recent Advances in Design, Construction, an Application. Small Methods, 2021, 5, e2100502.	d	4.6	33
137	Direct chemical synthesis of interlaced NiMn-LDH nanosheets on LSTN perovskite decorated Ni for for high-performance supercapacitors. Surface and Coatings Technology, 2021, 421, 127455.	bam	2.2	17
138	Agar-based porous electrode and electrolyte for flexible symmetric supercapacitors with ultrahig energy density. Journal of Power Sources, 2021, 507, 230252.	1	4.0	44
139	Enhancing capacitor lifetime by alternate constant polarization. Journal of Power Sources, 2021, 230131.	506,	4.0	7
140	Measurement of gas pressure in packaged electric double layer capacitors. Journal of Power Sour 2021, 509, 230366.	ces,	4.0	4
141	Hierarchical Zn–Co–S Nanowires as Advanced Electrodes for All Solid State Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1702014.		10.2	199
142	Redox Activity of Bromides in Carbonâ€Based Electrochemical Capacitors. Batteries and Superca 3, 1080-1090.	ps, 2020,	2.4	5
143	Turning carbon-ZnMn2O4 powder in primary battery waste to be an effective active material for cycling life supercapacitors: In situ gas analysis. Waste Management, 2020, 109, 202-211.	ong	3.7	22
144	Enhanced Pseudocapacitive Performance of Symmetric Polypyrrole-MnO2 Electrode and Polymer Electrolyte. Polymers, 2021, 13, 3577.	Gel	2.0	5
145	Supramolecular-induced 2.40ÂV 130°C working-temperature-range supercapacitor aqueous e of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. Journal of Colloid and Interface Science, 2022, 608, 1162-1172.	ectrolyte	5.0	12
146	Regulating high specific capacitance NCS/α-MnO2 cathode and a wide potential window α-Fe20 anode for the construction of 2.7ÂV for high performance aqueous asymmetric supercapacitors. Journal of Energy Storage, 2021, 44, 103343.)3/rGO	3.9	32

#	Article	IF	CITATIONS
147	Electrodes with Electrodeposited Water-excluding Polymer Coating Enable High-Voltage Aqueous Supercapacitors. Research, 2020, 2020, 4178179.	2.8	6
148	Construction of porous NiCo2S4 hierarchical nanoflakes based on zeolitic imidazolate frameworks as battery-type electrodes for high performance supercapacitors. Journal of Energy Storage, 2021, 47, 103583.	3.9	7
149	Density Effects of Vertical Graphene Nanowalls on Supercapacitor Performance. SSRN Electronic Journal, O, , .	0.4	0
150	Advanced characterization techniques for electrochemical capacitors. Advances in Inorganic Chemistry, 2022, , 151-207.	0.4	2
151	Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A, 2022, 10, 357-378.	5.2	34
152	Hydrogels with highly concentrated salt solution as electrolytes for solid-state supercapacitors with a suppressed self-discharge rate. Journal of Materials Chemistry A, 2022, 10, 2966-2972.	5.2	14
153	Direct observation of the CO2 formation and C–H consumption of carbon electrode in an aqueous neutral electrolyte supercapacitor by in-situ FTIR and Raman. Journal of Energy Chemistry, 2022, 71, 488-496.	7.1	10
154	Diagnosing Battery Degradation via Gas Analysis. Energy and Environmental Materials, 2022, 5, 688-692.	7.3	7
155	Hierarchical Carbon Composites for Highâ€Energy/Powerâ€Density and Highâ€Reliability Supercapacitors with Low Aging Rate. ChemSusChem, 2022, 15, .	3.6	2
156	Microwave one-step controllable synthesis of NiSb materials for high-performance energy storage. Journal of Alloys and Compounds, 2022, 909, 164770.	2.8	3
157	Reducing the Self-Discharge Rate of Supercapacitors by Suppressing Electron Transfer in the Electric Double Layer. Journal of the Electrochemical Society, 2021, 168, 120548.	1.3	10
158	Supramolecularâ€mediated ballâ€inâ€ball porous carbon nanospheres for ultrafast energy storage. InformaÄnÃ-Materiály, 2022, 4, .	8.5	16
159	How to Minimise Hydrogen Evolution on Carbon Based Materials?. Journal of the Electrochemical Society, 2022, 169, 054516.	1.3	6
160	MXene (Ti3C2Tx) supported CoS2/CuCo2S4 nanohybrid for highly stable asymmetric supercapacitor device. Journal of Energy Storage, 2022, 50, 104617.	3.9	20
161	Designing supercapacitor electrolyte <i>via</i> ion counting. Energy and Environmental Science, 2022, 15, 2948-2957.	15.6	17
162	High Al-ion storage of vine shoots-derived activated carbon: New concept for affordable and sustainable supercapacitors. Journal of Power Sources, 2022, 538, 231561.	4.0	9
163	Operando monitoring of activated carbon electrodes operating with aqueous electrolytes. Energy Storage Materials, 2022, 49, 518-528.	9.5	9
164	Density effects of vertical graphene nanowalls on supercapacitor performance. Materials Advances, 2022, 3, 5406-5417.	2.6	2

#	Article	IF	CITATIONS
165	Electrodeposited poly(phenylene oxide) suppresses anodic parasitic processes in carbon-based supercapacitor electrodes operating in an aqueous electrolyte. Journal of Energy Storage, 2022, 52, 104927.	3.9	1
166	Insight into the Effects of Current Collectors and In Situ Ni Leaching in Highâ€Voltage Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	19
167	Three-dimensional lattice Boltzmann simulation of reactive transport and ion adsorption processes in battery electrodes of cation intercalation desalination cells. Separation and Purification Technology, 2022, 298, 121626.	3.9	6
168	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
169	Effect of partial oxidation and repolarization of TiC-derived nanoporous carbon electrodes on supercapacitor performance using a pH-neutral aqueous electrolyte. Journal of Solid State Electrochemistry, 2022, 26, 2365-2378.	1.2	4
170	Laser-assisted explosive synthesis and transfer of turbostratic graphene-related materials for energy conversion applications. Npj 2D Materials and Applications, 2022, 6, .	3.9	6
171	Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 37782-37792.	4.0	8
172	Insight into the self-discharge suppression of electrochemical capacitors: Progress and challenges. , 2023, 2, 100075.		18
173	In-Operando Gc-Ms: A New Tool for the Understanding of Degradation Processes Occurring in Electrochemical Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
174	Combining in Situ Electrochemistry, Operando Xrd & Raman and Density Functional Theory to Investigate the Fundamentals of Li2co3 Formation in Supercapacitor. SSRN Electronic Journal, O, , .	0.4	0
175	Development of an Adequate Formation Protocol for a Non-Aqueous Potassium-Ion Hybrid Supercapacitor (KIC) through the Study of the Cell Swelling Phenomenon. Batteries, 2022, 8, 135.	2.1	2
176	Ion Transport in an Electrochemical Cell: A Theoretical Framework to Couple Dynamics of Double Layers and Redox Reactions for Multicomponent Electrolyte Solutions. Journal of the Electrochemical Society, 2022, 169, 093506.	1.3	7
177	High-energy density aqueous supercapacitors: The role of electrolyte pH and KI redox additive. APL Materials, 2022, 10, .	2.2	8
178	Effect of Non-Specific Ion Adsorption and Parallel Faradaic Reactions on the Nucleation of H ₂ Nanobubbles. Journal of the Electrochemical Society, 2022, 169, 106515.	1.3	1
179	Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochimica Acta, 2022, 434, 141315.	2.6	7
180	3D hierarchical cobalt vanadate nanosheet arrays on Ni foam coupled with redox additive for enhanced supercapacitor performance. RSC Advances, 2022, 12, 29170-29176.	1.7	3
181	Chemically reduced graphene oxide/chitosan hybrid; a nanoscale "Fabric Starch― Applied Surface Science, 2023, 609, 155229.	3.1	2
182	A novel hierarchical porous activated carbon-organic composite cathode material for high performance aqueous zinc-ion hybrid supercapacitors. Journal of Power Sources, 2023, 557, 232551.	4.0	6

#	Article	IF	CITATIONS
183	Solid-liquid interfaces/interphases in electrochemical capacitors: theoretical considerations, practical relevance, and state-of-the-art in-situ/in-operando characterization tools. , 2024, , 428-443.		1
184	In-operando GC-MS: A new tool for the understanding of degradation processes occurring in electrochemical capacitors. Energy Storage Materials, 2023, 56, 192-204.	9.5	6
185	Highâ€Voltage Supercapacitive Swing Adsorption of Carbon Dioxide. Small, 2023, 19, .	5.2	6
186	Partial Oxidation to Extend the Lifetime of Nanoporous Carbon in an Ultracapacitor with Li2SO4 Electrolyte. Molecules, 2023, 28, 2944.	1.7	2