Highly efficient, large area, roll coated flexible and rigid factors up to 98.5% processed with commercially available

Energy and Environmental Science 9, 89-94 DOI: 10.1039/c5ee03315b

Citation Report

#	Article	IF	CITATIONS
2	Bulkâ€Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials, 2016, 28, 7821-7861.	11.1	404
3	Highly efficient, large area, roll coated flexible and rigid solar modules: Design rules and realization. , 2016, , .		4
4	Laser patterning of vacuum processed small molecular weight organic photovoltaics. Solar Energy Materials and Solar Cells, 2016, 154, 35-41.	3.0	8
5	Inkjet printing of semitransparent electrodes for photovoltaic applications. Proceedings of SPIE, 2016, , .	0.8	1
6	Comparison of inorganic electron transport layers in fully roll-to-roll coated/printed organic photovoltaics in normal geometry. Journal of Materials Chemistry A, 2016, 4, 15986-15996.	5.2	23
7	Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy and Environmental Science, 2016, 9, 2835-2846.	15.6	170
8	Increased thermal stabilization of polymer photovoltaic cells with oligomeric PCBM. Journal of Materials Chemistry C, 2016, 4, 8121-8129.	2.7	18
9	Efficient up-scaling of organic solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 960-965.	3.0	21
10	High performance all-small-molecule solar cells: engineering the nanomorphology via processing additives. Journal of Materials Chemistry A, 2016, 4, 14234-14240.	5.2	43
11	Achieving 6.7% Efficiency in P3HT/Indeneâ€C ₇₀ Bisadduct Solar Cells through the Control of Vertical Volume Fraction Distribution and Optimized Regioâ€Isomer Ratios. Advanced Electronic Materials, 2016, 2, 1600362.	2.6	7
12	Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 32282-32291.	4.0	22
13	Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nature Energy, 2016, 1, .	19.8	330
14	Organic and perovskite solar modules innovated by adhesive top electrode and depth-resolved laser patterning. Energy and Environmental Science, 2016, 9, 2302-2313.	15.6	64
15	Organic Solar Modules: Fully Doctor Bladed on Glass in Air. Energy Technology, 2017, 5, 1105-1111.	1.8	12
16	High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy and Environmental Science, 2017, 10, 885-892.	15.6	193
17	Flexible large-area organic tandem solar cells with high defect tolerance and device yield. Journal of Materials Chemistry A, 2017, 5, 3186-3192.	5.2	51
18	Suppression of Thermally Induced Fullerene Aggregation in Polyfullerene-Based Multiacceptor Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 10971-10982.	4.0	26
19	Flexible metal nanowire-parylene C transparent electrodes for next generation optoelectronic devices. Journal of Materials Chemistry C, 2017, 5, 2425-2431.	2.7	20

#	Article	IF	CITATIONS
20	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. Journal of Materials Chemistry A, 2017, 5, 5351-5361.	5.2	26
21	All Polymer FETs Direct-Written on Flexible Substrates Achieving MHz Operation Regime. IEEE Transactions on Electron Devices, 2017, 64, 1960-1967.	1.6	6
22	IZO deposited by PLD on flexible substrate for organic heterostructures. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	11
23	A universal rollâ€ŧoâ€ŧoll slotâ€die coating approach towards highâ€efficiency organic photovoltaics. Progress in Photovoltaics: Research and Applications, 2017, 25, 928-935.	4.4	34
24	Self-Doped N-Type Water/Alcohol Soluble-Conjugated Polymers with Tailored Backbones and Polar Groups for Highly Efficient Polymer Solar Cells. Solar Rrl, 2017, 1, 1700055.	3.1	46
25	Photovoltaic Devices Based on Colloidal PbX Quantum Dots: Progress and Prospects. Solar Rrl, 2017, 1, 1600021.	3.1	39
26	Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Science China Chemistry, 2017, 60, 571-582.	4.2	109
27	Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5 %. Organic Electronics, 2017, 45, 209-214.	1.4	44
28	Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese Journal of Polymer Science (English Edition), 2017, 35, 261-268.	2.0	27
29	Fabrication of air-stable, large-area, PCDTBT:PC70BM polymer solar cell modules using a custom built slot-die coater. Solar Energy Materials and Solar Cells, 2017, 161, 388-396.	3.0	22
30	OLED Luminaires: Device Arrays with 99.6% Geometric Fill Factor Structured by Femtosecond Laser Ablation. ACS Applied Materials & amp; Interfaces, 2017, 9, 37898-37904.	4.0	5
31	Layerâ€byâ€Layer Assembly of Multilayer Thin Films for Organic Optoelectronic Devices. Small Methods, 2017, 1, 1700264.	4.6	39
32	Design of charge transporting grids for efficient ITO-free flexible up-scaled organic photovoltaics. Materials Chemistry Frontiers, 2017, 1, 304-309.	3.2	18
33	Decal Electronics: Printable Packaged with 3D Printing Highâ€Performance Flexible CMOS Electronic Systems. Advanced Materials Technologies, 2017, 2, 1600175.	3.0	8
34	Charge transport and its characterization using photo-CELIV in bulk heterojunction solar cells. Polymer International, 2017, 66, 13-25.	1.6	61
35	Improvement of the Properties of CZTS Thin Films Prepared by Spray Pyrolysis Using DMSO in Acetone as Solvent. , 2017, , .		0
36	Carrier Charge Polarity in Mixed-Stack Charge-Transfer Crystals Containing Dithienobenzodithiophene. ACS Applied Materials & Interfaces, 2018, 10, 10262-10269.	4.0	35
37	Engineering high-performance and air-stable PBTZT-stat-BDTT-8:PC ₆₁ BM/PC ₇₁ BM organic solar cells. Journal of Materials Chemistry A, 2018, 6, 5746-5751.	5.2	22

#	Article	IF	CITATIONS
38	Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano Energy, 2018, 46, 81-90.	8.2	129
39	Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4589-4594.	3.3	106
40	Shy Organic Photovoltaics: Digitally Printed Organic Solar Modules With Hidden Interconnects. Solar Rrl, 2018, 2, 1800005.	3.1	16
41	Efficient Approach for Improving the Performance of Nonhalogenated Green Solvent-Processed Polymer Solar Cells via Ternary-Blend Strategy. ACS Applied Materials & Interfaces, 2018, 10, 13748-13756.	4.0	23
42	Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Research, 2018, 11, 1895-1904.	5.8	16
43	Polymer Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 45-108.	0.4	1
44	Writable and patternable organic solar cells and modules inspired by an old Chinese calligraphy tradition. Materials Horizons, 2018, 5, 123-130.	6.4	39
45	Efficient Large Area Organic Solar Cells Processed by Blade oating With Singleâ€Component Green Solvent. Solar Rrl, 2018, 2, 1700169.	3.1	79
46	Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon, 2018, 129, 878-883.	5.4	41
47	Effect of Spraying Parameters on the Morphology of Spray-Coated Active Layers for Organic Solar Cells. International Journal of Engineering and Technology(UAE), 2018, 7, 75.	0.2	0
49	Study of barrier height inhomogeneity at zinc oxide/polymer:fullerene interface in polymer solar cells. Polymers for Advanced Technologies, 2018, 29, 2230-2236.	1.6	1
50	Efficient Nonâ€Fullerene Organic Photovoltaic Modules Incorporating Asâ€Cast and Thicknessâ€Insensitive Photoactive Layers. Advanced Energy Materials, 2018, 8, 1801387.	10.2	44
51	Suppressing the Surface Recombination and Tuning the Open-Circuit Voltage of Polymer/Fullerene Solar Cells by Implementing an Aggregative Ternary Compound. ACS Applied Materials & Interfaces, 2018, 10, 28803-28811.	4.0	15
52	Correlating the effective work function at buried organic/metal interfaces with organic solar cell characteristics. Journal of Materials Chemistry C, 2018, 6, 8060-8068.	2.7	10
53	P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy and Environmental Science, 2018, 11, 2225-2234.	15.6	157
54	Visible and Nearâ€Infrared Imaging with Nonfullereneâ€Based Photodetectors. Advanced Materials Technologies, 2018, 3, 1800104.	3.0	90
55	Roll-to-Roll Slot-Die-Printed Polymer Solar Cells by Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 22485-22494.	4.0	27
56	Mechanical and Electrical Failure of Silver Nanowire Electrodes: A Scale Bridging In Situ Electron Microscopy Study. Microscopy and Microanalysis, 2019, 25, 2038-2039.	0.2	1

# 57	ARTICLE Slotâ€Die and Rollâ€toâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency. Advanced Energy Materials, 2019, 9, 1901805.	lF 10.2	CITATIONS
58	Slot-die processing and encapsulation of non-fullerene based ITO-free organic solar cells and modules. Flexible and Printed Electronics, 2019, 4, 045004.	1.5	33
59	Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Advances, 2019, 9, .	0.6	73
60	Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. Journal of Materials Chemistry C, 2019, 7, 3206-3211.	2.7	27
61	New Directions for Organic Thin-Film Solar Cells: Stability and Performance. , 2019, , 195-244.		3
62	A generic surfactant-free approach to overcome wetting limitations and its application to improve inkjet-printed P3HT:non-fullerene acceptor PV. Journal of Materials Chemistry A, 2019, 7, 13215-13224.	5.2	22
63	Comprehensive Investigation and Analysis of Bulk-Heterojunction Microstructure of High-Performance PCE11:PCBM Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18555-18563.	4.0	30
64	Nonfullerene Polymer Solar Cell with Large Active Area of 216 cm ² and High Power Conversion Efficiency of 7.7%. Solar Rrl, 2019, 3, 1900071.	3.1	25
65	The role of the third component in ternary organic solar cells. Nature Reviews Materials, 2019, 4, 229-242.	23.3	370
66	A ring fused N-annulated PDI non-fullerene acceptor for high open circuit voltage solar cells processed from non-halogenated solvents. Synthetic Metals, 2019, 250, 55-62.	2.1	23
67	Ultrafast nonlinear transparency driven at a telecom wavelength in an organic semiconductor system. AIP Advances, 2019, 9, .	0.6	7
68	All subâ€nanosecond laser monolithic interconnection of OPV modules. Progress in Photovoltaics: Research and Applications, 2019, 27, 479-490.	4.4	14
69	A Sequential Slotâ€Die Coated Ternary System Enables Efficient Flexible Organic Solar Cells. Solar Rrl, 2019, 3, 1800333.	3.1	37
70	Highly Efficient Benzo-Furan-Based Electron Acceptor Derived from One-Pot Synthesis for High-Performance Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2019, 2, 1019-1025.	2.5	3
71	Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216Acm ² . Progress in Photovoltaics: Research and Applications, 2019, 27, 264-274.	4.4	34
72	Largeâ€Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Advanced Materials, 2019, 31, e1805089.	11.1	246
73	High Performance Rollâ€ŧoâ€Roll Produced Fullereneâ€Free Organic Photovoltaic Devices via Temperatureâ€Controlled Slot Die Coating. Advanced Functional Materials, 2019, 29, 1805825.	7.8	64
74	Enhanced photostability in polymer solar cells achieved with modified electron transport layer. Thin Solid Films, 2019, 669, 42-48.	0.8	14

#	Article	IF	CITATIONS
75	Recent Progress in Organic Phototransistors: Semiconductor Materials, Device Structures and Optoelectronic Applications. ChemPhotoChem, 2020, 4, 9-38.	1.5	53
76	Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices. Nanotechnology, 2020, 31, 092002.	1.3	22
77	10 cm ² nonfullerene solar cells with efficiency over 10% using H _x MoO ₃ -assisted growth of silver electrodes with a low threshold thickness of 4 nm. Journal of Materials Chemistry A, 2020, 8, 69-76.	5.2	14
78	Interlayer Engineering of Flexible and Large-Area Red Organic-Light-Emitting Diodes Based on an N-Annulated Perylene Diimide Dimer. ACS Applied Electronic Materials, 2020, 2, 48-55.	2.0	19
79	Sputter-Deposited Titanium Oxide Layers as Efficient Electron Selective Contacts in Organic Photovoltaic Devices. ACS Applied Energy Materials, 2020, 3, 253-259.	2.5	12
80	Processing Strategies for an Organic Photovoltaic Module with over 10% Efficiency. Joule, 2020, 4, 189-206.	11.7	154
81	Progress in Materials, Solution Processes, and Longâ€Term Stability for Largeâ€Area Organic Photovoltaics. Advanced Materials, 2020, 32, e2002217.	11.1	124
82	Material Strategies to Accelerate OPV Technology Toward a GW Technology. Advanced Energy Materials, 2020, 10, 2001864.	10.2	93
83	Large area organic photovoltaic modules fabricated on a 30Âcm by 20Âcm substrate with a power conversion efficiency of 9.5%. Solar Energy Materials and Solar Cells, 2020, 218, 110762.	3.0	12
84	Improving the all-polymer solar cell performance by adding a narrow bandgap polymer as the second donor. RSC Advances, 2020, 10, 38344-38350.	1.7	7
85	Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor. Nano Energy, 2020, 77, 105147.	8.2	22
86	In-Situ Energy Dispersive X-ray Reflectivity Applied to Polyoxometalate Films: An Approach to Morphology and Interface Stability Issues in Organic Photovoltaics. Symmetry, 2020, 12, 1240.	1.1	2
87	Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4â€ethylenedioxythiophene), and Applications in Solutionâ€Processed Photovoltaics. Advanced Functional Materials, 2020, 30, 2006213.	7.8	90
88	Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling. ACS Applied Materials & Interfaces, 2020, 12, 43684-43693.	4.0	25
90	Towards photovoltaic windows: scalable fabrication of semitransparent modules based on non-fullerene acceptors <i>via</i> laser-patterning. Journal of Materials Chemistry A, 2020, 8, 9882-9895.	5.2	25
91	Commercialization of Organic Photovoltaics and Its Product Integration: A Perspective Focusing on Durability. Energy Technology, 2020, 8, 2000234.	1.8	12
92	Energy Level Alignment in Ternary Organic Solar Cells. Advanced Electronic Materials, 2020, 6, 2000213.	2.6	18
93	Printable Organic Semiconductors for Radiation Detection: From Fundamentals to Fabrication and Functionality. Frontiers in Physics, 2020, 8, .	1.0	28

#	Article	IF	CITATIONS
94	Late-Stage Customization in Volume Production of Organic Photovoltaics. ACS Applied Electronic Materials, 2020, 2, 756-762.	2.0	6
95	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
96	Thickness Uniformity Dependence on Polymer Viscosity in Silver-Nanowire-Embedded Flexible and Transparent Electrodes. Applied Sciences (Switzerland), 2020, 10, 2202.	1.3	1
97	Encapsulation improvement and stability of ambient roll-to-roll slot-die-coated organic photovoltaic modules. Solar Energy, 2021, 213, 136-144.	2.9	10
98	Organic photovoltaic modules with new world record efficiencies. Progress in Photovoltaics: Research and Applications, 2021, 29, 24-31.	4.4	75
99	All Slotâ€Die Coated Nonâ€Fullerene Organic Solar Cells with PCE 11%. Advanced Functional Materials, 2021, 31, 2009996.	7.8	52
100	Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14093-14114.	2.7	33
101	Sequentially Solution-Deposited Active Layer: Ideal Organic Photovoltaic Device Architecture for Boron Subphthalocyanine as a Nonfullerene Acceptor. ACS Applied Energy Materials, 2021, 4, 1237-1249.	2.5	10
102	Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin-Film Solar Cells via a Heterogeneous-Formation-Induced Benign p–n Junction Interface. ACS Applied Materials & Interfaces, 2021, 13, 13289-13300.	4.0	12
103	Deciphering Electron Interplay at the Fullerene/Sputtered TiO _{<i>x</i>} Interface: A Barrier-Free Electron Extraction for Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 19460-19466.	4.0	10
104	Progress in Upscaling Organic Photovoltaic Devices. Advanced Energy Materials, 2021, 11, 2100342.	10.2	63
105	Over 1 cm ² flexible organic solar cells. Journal of Semiconductors, 2021, 42, 050301.	2.0	22
106	Comparison of highly conductive natural and synthetic graphites for electrodes in perovskite solar cells. Carbon, 2021, 178, 10-18.	5.4	33
107	Stability, encapsulation and large-area fabrication of organic photovoltaics. Science China Chemistry, 2021, 64, 1441-1459.	4.2	11
108	Review: materials and modelling for organic photovoltaic devices. Polymer International, 0, , .	1.6	6
109	Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule, 2021, 5, 2261-2272.	11.7	44
110	Vacuum-Free Fabrication of Transparent Electrodes for Soft Electronics. , 0, , .		0
111	Improving the fill factor of N2200-based all polymer solar cells by introducing EPPDI as a solid additive. Organic Electronics, 2021, 99, 106319.	1.4	6

#	Article	IF	CITATIONS
112	An efficiency of 14.29% and 13.08% for 1 cm ² and 4 cm ² flexible organic solar cells enabled by sol–gel ZnO and ZnO nanoparticle bilayer electron transporting layers. Journal of Materials Chemistry A, 2021, 9, 16889-16897.	5.2	26
113	Photoactive Material for Highly Efficient and All Solutionâ€Processed Organic Photovoltaic Modules: Study on the Efficiency, Stability, and Synthetic Complexity. Solar Rrl, 2021, 5, 2000749.	3.1	29
114	Printing fabrication of large-area non-fullerene organic solar cells. Materials Horizons, 2022, 9, 194-219.	6.4	65
115	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
116	Ionically Gated Small-Molecule OPV: Interfacial Doping of Charge Collector and Transport Layer. ACS Applied Materials & Interfaces, 2021, 13, 8606-8619.	4.0	3
117	Efficiencyâ€Enhanced Scalable Organic Photovoltaics Using Rollâ€ŧoâ€Roll Nanoimprint Lithography. ChemSusChem, 2022, 15, .	3.6	2
118	Large-area flexible organic solar cells. Npj Flexible Electronics, 2021, 5, .	5.1	69
119	Highly Reflective and Low Resistive Top Electrode for Organic Solar Cells and Modules by Low Temperature Silver Nanoparticle Ink. Solar Rrl, 2022, 6, 2100887.	3.1	12
120	Spray deposited gallium doped zinc oxide (GZO) thin film as the electron transport layer in inverted organic solar cells. Solar Energy, 2022, 231, 458-463.	2.9	17
121	New generation flexible printed photovoltaic. , 2022, , 463-503.		1
122	Temperature-Controlled Slot-Die Coating for Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
124	Scalable eDIPS-based single-walled carbon nanotube films for conductive transparent electrodes in organic solar cells. Applied Physics Express, 2022, 15, 046505.	1.1	2
125	Temperature-controlled slot-die coating for efficient and stable perovskite solar cells. Journal of Power Sources, 2022, 539, 231621.	4.0	9
126	Research progress of large-area organic solar cells. Scientia Sinica Chimica, 2022, 52, 2001-2026.	0.2	1
127	Understanding the blade coated to roll-to-roll coated performance gap in organic photovoltaics. Solar Energy Materials and Solar Cells, 2022, 245, 111852.	3.0	6
128	Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule, 2022, 6, 1581-1589.	11.7	8
129	Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
130	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	23.0	323

#	Article	IF	CITATIONS
131	Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1522-1566.	2.0	27
132	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
133	High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nature Energy, 2022, 7, 1087-1099.	19.8	64
134	Scalable Non-Halogenated Co-solvent System for Large-Area, Four-Layer Slot-Die-Coated Organic Photovoltaics. ACS Applied Materials & Interfaces, 2022, 14, 57055-57063.	4.0	6
135	Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nature Reviews Materials, 2023, 8, 186-201.	23.3	56
136	CO2 Snow Jet Cleaning as a Roll-to-Roll Compatible Method for Deburring IMI Substrates After Laser Patterning. Flexible and Printed Electronics, 0, , .	1.5	0