Smart micro/nanoparticles in stimulus-responsive drug

Chemical Society Reviews 45, 1457-1501 DOI: 10.1039/c5cs00798d

Citation Report

#	Article	IF	CITATIONS
2	Present Strategies for Critical Bone Defects Regeneration. Oral Health Case Reports, 2016, 02, .	0.0	8
3	Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells. Bioengineering, 2016, 3, 35.	1.6	43
4	Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules, 2016, 21, 1715.	1.7	110
5	Hybrid Nanoparticles as Drug Carriers for Controlled Chemotherapy of Cancer. Chemical Record, 2016, 16, 1833-1851.	2.9	19
6	Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption. Chemical Engineering Journal, 2016, 304, 784-792.	6.6	50
7	Rapid fluorescence detection of hypoxic microenvironments by nitro-benzyl conjugated chitosan nanoparticles encapsulating hydrophobic fluorophores. Journal of Materials Chemistry B, 2016, 4, 4832-4838.	2.9	4
8	How can nanomedicines overcome cellular-based anticancer drug resistance?. Journal of Materials Chemistry B, 2016, 4, 5078-5100.	2.9	32
9	Ultrasensitive GSH-Responsive Ditelluride-Containing Poly(ether-urethane) Nanoparticles for Controlled Drug Release. ACS Applied Materials & Interfaces, 2016, 8, 35106-35113.	4.0	48
10	Polycations and their biomedical applications. Progress in Polymer Science, 2016, 60, 18-50.	11.8	88
11	Polymeric prodrugs conjugated with reduction-sensitive dextran–camptothecin and pH-responsive dextran–doxorubicin: an effective combinatorial drug delivery platform for cancer therapy. Polymer Chemistry, 2016, 7, 4198-4212.	1.9	53
12	Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 2016, 13, 1609-1623.	2.4	271
13	Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Applied Clay Science, 2016, 126, 306-312.	2.6	134
14	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
15	NIR-laser-triggered smart full-polymer nanogels for synergic photothermal-/chemo-therapy of tumors. RSC Advances, 2016, 6, 90111-90119.	1.7	11
16	Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. International Journal of Pharmaceutics, 2016, 515, 30-36.	2.6	45
17	Biodegradable pH-sensitive polyurethane micelles with different polyethylene glycol (PEG) locations for anti-cancer drug carrier applications. RSC Advances, 2016, 6, 97684-97693.	1.7	31
18	Measuring Protein Binding to Individual Hydrogel Nanoparticles with Single-Nanoparticle Surface Plasmon Resonance Imaging Microscopy. Journal of Physical Chemistry C, 2016, 120, 16843-16849.	1.5	25
19	Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small, 2016, 12, 4782-4806.	5.2	226

ATION RED

#	Article	IF	CITATIONS
20	Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy. Nano Letters, 2016, 16, 5401-5408.	4.5	346
21	Protease-Responsive Prodrug with Aggregation-Induced Emission Probe for Controlled Drug Delivery and Drug Release Tracking in Living Cells. Analytical Chemistry, 2016, 88, 8913-8919.	3.2	84
22	Fe ₃ O ₄ @mSiO ₂ -FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells. Dalton Transactions, 2016, 45, 13456-13465.	1.6	49
23	On–off switch-controlled doxorubicin release from thermo- and pH-responsive coated bimagnetic nanocarriers. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	9
24	Dual pH-Mediated Mechanized Hollow Zirconia Nanospheres. ACS Applied Materials & Interfaces, 2016, 8, 23289-23301.	4.0	26
25	Facile construction of near-monodisperse and dual responsive polycarbonate mixed micelles with the ability of pH-induced charge reversal for intracellular delivery of antitumor drugs. Journal of Materials Chemistry B, 2016, 4, 6081-6093.	2.9	17
26	Facile synthesis and self-assembly behaviour of pH-responsive degradable polyacetal dendrimers. Polymer Chemistry, 2016, 7, 6154-6158.	1.9	34
27	Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Advances, 2016, 6, 87935-87944.	1.7	53
28	Benzoicâ€lmineâ€Based Physiologicalâ€pHâ€Responsive Materials for Biomedical Applications. Chemistry - an Asian Journal, 2016, 11, 2633-2641.	1.7	59
29	Transient aggregation of chitosan-modified poly(d,l-lactic-co-glycolic) acid nanoparticles in the blood stream and improved lung targeting efficiency. Journal of Colloid and Interface Science, 2016, 480, 102-108.	5.0	19
30	Self-assembled peptide microspheres for sustainable release of sulfamethoxazole. RSC Advances, 2016, 6, 39172-39179.	1.7	2
31	MoS ₂ -based dual-responsive flexible anisotropic actuators. Nanoscale, 2016, 8, 18800-18807.	2.8	48
32	A nano-sized container for specific encapsulation of isolated water molecules. Chemical Communications, 2016, 52, 14109-14112.	2.2	1
33	Construction of novel pH-sensitive hybrid micelles for enhanced extracellular stability and rapid intracellular drug release. RSC Advances, 2016, 6, 105957-105968.	1.7	5
34	Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials. Sensors and Actuators B: Chemical, 2016, 233, 667-673.	4.0	21
35	Microfluidic systems for stem cell-based neural tissue engineering. Lab on A Chip, 2016, 16, 2551-2571.	3.1	100
37	Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Applied Materials & amp; Interfaces, 2016, 8, 21107-21133.	4.0	305
38	A star-shaped amphiphilic block copolymer with dual responses: synthesis, crystallization, self-assembly, redox and LCST–UCST thermoresponsive transition. Polymer Chemistry, 2016, 7, 4901-4911.	1.9	18

#	Article	IF	CITATIONS
39	Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity. ACS Applied Materials & Interfaces, 2017, 9, 3376-3387.	4.0	35
40	Redoxâ€Responsive and Drugâ€Embedded Silica Nanoparticles with Unique Selfâ€Destruction Features for Efficient Gene/Drug Codelivery. Advanced Functional Materials, 2017, 27, 1606229.	7.8	128
41	Polymers, Blends and Nanocomposites for Implants, Scaffolds and Controlled Drug Release Applications. Advanced Structured Materials, 2017, , 1-44.	0.3	11
42	Folate-Engineered Microvesicles for Enhanced Target and Synergistic Therapy toward Breast Cancer. ACS Applied Materials & Interfaces, 2017, 9, 5100-5108.	4.0	48
43	Redoxâ€Activatable ATPâ€Depleting Micelles with Dual Modulation Characteristics for Multidrugâ€Resistant Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601293.	3.9	43
44	Dual-pH-sensitivity and tumour targeting core–shell particles for intracellular drug delivery. RSC Advances, 2017, 7, 851-860.	1.7	17
45	Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery. ACS Applied Materials & amp; Interfaces, 2017, 9, 4425-4432.	4.0	41
46	Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems. Scientific Reports, 2017, 7, 40011.	1.6	40
47	A novel starch-based stimuli-responsive nanosystem for theranostic applications. International Journal of Biological Macromolecules, 2017, 97, 654-661.	3.6	48
48	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	5.7	221
49	Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy. Biomaterials Science, 2017, 5, 730-740.	2.6	22
50	Electroporation for nanomedicine: a review. Journal of Materials Chemistry B, 2017, 5, 2726-2738.	2.9	72
51	Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for "pH/redox-triggered―anticancer drug release. Polymer, 2017, 114, 161-172.	1.8	56
52	Shear-Assisted Fabrication of Block Copolymer Agglomerates with Various Morphologies in Viscous Medium. Langmuir, 2017, 33, 2829-2836.	1.6	6
53	Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. International Journal of Pharmaceutics, 2017, 520, 126-138.	2.6	59
54	Redox- and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy. Nanoscale, 2017, 9, 3304-3314.	2.8	44
55	Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery, 2017, 24, 539-557.	2.5	319
56	Recent Trends in Clinical Trials Related to Carrier-Based Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 2219-2226.	1.6	44

#	Article	IF	CITATIONS
57	Controlling the morphology of copolymeric vectors for next generation nanomedicine. Journal of Controlled Release, 2017, 259, 29-39.	4.8	39
58	Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles. Biomacromolecules, 2017, 18, 1218-1228.	2.6	25
59	Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. Journal of the American Chemical Society, 2017, 139, 4584-4610.	6.6	335
60	Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Letters, 2017, 17, 2871-2878.	4.5	111
61	Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. Journal of Materials Chemistry B, 2017, 5, 3771-3782.	2.9	32
62	<i>In vitro</i> evaluation of a novel pH sensitive drug delivery system based cockle shell-derived aragonite nanoparticles against osteosarcoma. Journal of Experimental Nanoscience, 2017, 12, 166-187.	1.3	24
63	Supramolecular β-Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection. ACS Nano, 2017, 11, 4528-4541.	7.3	52
64	Solid State NMR Characterization of Ibuprofen:Nicotinamide Cocrystals and New Idea for Controlling Release of Drugs Embedded into Mesoporous Silica Particles. Molecular Pharmaceutics, 2017, 14, 1800-1810.	2.3	35
65	Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system. Journal of Controlled Release, 2017, 256, 46-55.	4.8	28
66	Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. ACS Applied Materials & Interfaces, 2017, 9, 18619-18625.	4.0	84
67	A multifunctional silver nanocomposite for the apoptosis of cancer cells and intracellular imaging. Chemical Communications, 2017, 53, 5614-5617.	2.2	6
68	Bio-templated silica composites for next-generation biomedical applications. Advances in Colloid and Interface Science, 2017, 249, 272-289.	7.0	50
69	Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. Chemical Engineering Journal, 2017, 326, 839-848.	6.6	40
70	Shedding light on zwitterionic magnetic nanoparticles: limitations for in vivo applications. Nanoscale, 2017, 9, 8176-8184.	2.8	26
71	Development of arginine based nanocarriers for targeting and treatment of intracellular <i>Salmonella</i> . RSC Advances, 2017, 7, 7022-7032.	1.7	51
72	Multifunctional and Redox-Responsive Self-Assembled Magnetic Nanovectors for Protein Delivery and Dual-Modal Imaging. ACS Applied Materials & Interfaces, 2017, 9, 19184-19192.	4.0	49
73	Smart Microparticles with a pH-responsive Macropore for Targeted Oral Drug Delivery. Scientific Reports, 2017, 7, 3059.	1.6	29
74	Fabrication of egg shell-like nanovesicles from a thiocoumarin-based ε-amino ester: a potential carrier. Journal of Materials Chemistry B, 2017, 5, 5450-5457.	2.9	7

#	ARTICLE	IF	CITATIONS
75	Photothermal gold nanocages filled with temperature sensitive tetradecanol and encapsulated with glutathione responsive polycurcumin for controlled DOX delivery to maximize anti-MDR tumor effects. Journal of Materials Chemistry B, 2017, 5, 5464-5472.	2.9	25
76	Biocompatibility of filomicelles prepared from poly(ethylene glycol)-polylactide diblock copolymers as potential drug carrier. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1677-1694.	1.9	9
77	Effect of trastuzumab on the micellization properties, endocytic pathways and antitumor activities of polyurethane-based drug delivery system. Chinese Journal of Polymer Science (English Edition), 2017, 35, 909-923.	2.0	11
78	Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Progress in Polymer Science, 2017, 73, 1-31.	11.8	74
79	Core–shell structured nanospheres for photothermal ablation and pH-triggered drug delivery toward synergistic cancer therapy. RSC Advances, 2017, 7, 26640-26649.	1.7	8
80	Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes. Journal of Materials Chemistry A, 2017, 5, 16059-16104.	5.2	66
81	Electrostatic wrapping of doxorubicin with curdlan to construct an efficient pH-responsive drug delivery system. Nanotechnology, 2017, 28, 295601.	1.3	13
82	Multifunctional human serum albumin-therapeutic nucleotide conjugate with redox and pH-sensitive drug release mechanism for cancer theranostics. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3925-3930.	1.0	28
83	Silica-based multifunctional nanodelivery systems toward regenerative medicine. Materials Horizons, 2017, 4, 772-799.	6.4	66
84	Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. Journal of Colloid and Interface Science, 2017, 505, 476-488.	5.0	59
85	A cucurbit[7]uril-based supra-amphiphile: Photo-responsive self-assembly and application in controlled release. Tetrahedron Letters, 2017, 58, 1863-1867.	0.7	21
86	Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction. ACS Applied Materials & Interfaces, 2017, 9, 13939-13949.	4.0	46
87	TRAIL–NP hybrids for cancer therapy: a review. Nanoscale, 2017, 9, 5755-5768.	2.8	37
88	Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale, 2017, 9, 5935-5947.	2.8	63
89	In Situ Monitoring Intracellular Structural Change of Nanovehicles through Photoacoustic Signals Based on Phenylboronate-Linked RGD-Dextran/Purpurin 18 Conjugates. Biomacromolecules, 2017, 18, 1249-1258.	2.6	36
90	Cancer-Cell-Specific Mitochondria-Targeted Drug Delivery by Dual-Ligand-Functionalized Nanodiamonds Circumvent Drug Resistance. ACS Applied Materials & Interfaces, 2017, 9, 11780-11789. 	4.0	88
91	Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale, 2017, 9, 1356-1392.	2.8	122
92	Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdisks for Tumor Cell Eradication. Nucleic Acid Therapeutics, 2017, 27, 105-114.	2.0	17

#	Article	IF	CITATIONS
93	Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnology Reviews, 2017, 6, 301-329.	2.6	251
94	Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomaterialia, 2017, 49, 444-455.	4.1	42
95	Magnetic and Folate Functionalization Enables Rapid Isolation and Enhanced Tumor-Targeting of Cell-Derived Microvesicles. ACS Nano, 2017, 11, 277-290.	7.3	130
96	Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation. Angewandte Chemie - International Edition, 2017, 56, 1491-1494.	7.2	9
97	Topical and cutaneous delivery using nanosystems. Journal of Controlled Release, 2017, 247, 86-105.	4.8	199
98	Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation. Angewandte Chemie, 2017, 129, 1513-1516.	1.6	4
99	Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research, 2017, 57, 134-185.	7.3	454
100	Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B, 2017, 5, 1339-1352.	2.9	87
101	Construction of core–shell tecto dendrimers based on supramolecular host–guest assembly for enhanced gene delivery. Journal of Materials Chemistry B, 2017, 5, 8459-8466.	2.9	37
102	Sugar oated Nanobullet: Growth Inhibition of Cancer Cells Induced by Metformin‣oaded Glyconanoparticles. ChemMedChem, 2017, 12, 1823-1827.	1.6	14
103	Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(<i>N</i> -vinyl pyrrole) for Targeted Synergistic Chemo–Photothermal Cancer Treatment. Bioconjugate Chemistry, 2017, 28, 2815-2822.	1.8	49
104	Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomaterials Science, 2017, 5, 2369-2380.	2.6	80
105	Decoupled Thermo―and pHâ€Responsive Hydrogel Microspheres Crossâ€Linked by Rotaxane Networks. Angewandte Chemie - International Edition, 2017, 56, 15393-15396.	7.2	59
106	Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer. Biomacromolecules, 2017, 18, 3992-4001.	2.6	43
107	Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews, 2017, 117, 13566-13638.	23.0	1,392
108	Advancing porphyrin's biomedical utility via supramolecular chemistry. Chemical Society Reviews, 2017, 46, 6433-6469.	18.7	294
109	Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. Journal of Controlled Release, 2017, 264, 145-159.	4.8	118
110	Enzymatic PEG-Poly(amine- <i>co</i> -disulfide ester) Nanoparticles as pH- and Redox-Responsive Drug Nanocarriers for Efficient Antitumor Treatment. ACS Applied Materials & Interfaces, 2017, 9, 30519-30535.	4.0	41

#	Article	IF	CITATIONS
111	Regulated Drug Release Abilities of Calcium Carbonate–Gelatin Hybrid Nanocarriers Fabricated via a Selfâ€Organizational Process. ChemMedChem, 2017, 12, 1595-1599.	1.6	8
112	Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 2017, 46, 6024-6045.	18.7	386
113	Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polymer Chemistry, 2017, 8, 6150-6157.	1.9	96
114	Molecular engineering solutions for therapeutic peptide delivery. Chemical Society Reviews, 2017, 46, 6553-6569.	18.7	103
115	Advanced Biotechnologies Toward Engineering a Cell Home for Stem Cell Accommodation. Advanced Materials Technologies, 2017, 2, 1700022.	3.0	9
116	Structure–Property Correlations of Reactive Oxygen Species-Responsive and Hydrogen Peroxide-Eliminating Materials with Anti-Oxidant and Anti-Inflammatory Activities. Chemistry of Materials, 2017, 29, 8221-8238.	3.2	92
117	Principles of pharmacology in the eye. British Journal of Pharmacology, 2017, 174, 4205-4223.	2.7	137
118	Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials, 2017, 146, 40-48.	5.7	94
119	Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. Materials Science and Engineering C, 2017, 80, 688-697.	3.8	28
120	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
121	Engineering the Surface of Smart Nanocarriers Using a pHâ€∤Thermalâ€∤GSHâ€Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo. Advanced Materials, 2017, 29, 1702311.	11.1	102
122	Functional micelles formed from glucose-, thermo- and pH-triple responsive copolymers for controlled release. Polymer Chemistry, 2017, 8, 4869-4877.	1.9	15
123	Cyclometalated Iridium(III)-Complex-Based Micelles for Glutathione-Responsive Targeted Chemotherapy and Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2017, 9, 27553-27562.	4.0	93
124	Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today, 2017, 15, 56-90.	6.2	103
125	Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2802-2810.	1.1	38
126	NIR Light-, Temperature-, pH-, and Redox-Responsive Polymer-Modified Reduced Graphene Oxide/Mesoporous Silica Sandwich-Like Nanocomposites for Controlled Release. ACS Applied Materials & Interfaces, 2017, 9, 29055-29062.	4.0	54
127	Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials, 2017, 144, 30-41.	5.7	83
128	Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS ₂). RSC Advances, 2017, 7, 37873-37880.	1.7	76

#	Article	IF	CITATIONS
130	Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. Journal of Materials Chemistry B, 2017, 5, 9507-9513.	2.9	75
131	Light-Responsive Nanoparticles for Highly Efficient Cytoplasmic Delivery of Anticancer Agents. ACS Nano, 2017, 11, 12134-12144.	7.3	175
132	Decoupled Thermo―and pHâ€Responsive Hydrogel Microspheres Crossâ€Linked by Rotaxane Networks. Angewandte Chemie, 2017, 129, 15595-15598.	1.6	6
133	Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2334-2341.	1.1	77
134	Cyclodextrin-based biological stimuli-responsive carriers for smart and precision medicine. Biomaterials Science, 2017, 5, 1736-1745.	2.6	50
135	A Simple Add-and-Display Method for Immobilisation of Cancer Drug on His-tagged Virus-like Nanoparticles for Controlled Drug Delivery. Scientific Reports, 2017, 7, 5303.	1.6	21
136	MemHsp70 Receptor-mediated Multifunctional Ordered Mesoporous Carbon Nanospheres for Photoacoustic Imaging-Guided Synergistic Targeting Trimodal Therapy. ACS Biomaterials Science and Engineering, 2017, 3, 1702-1709.	2.6	17
137	Characterization of polymeric nanoparticles for intravenous delivery: Focus on stability. Colloids and Surfaces B: Biointerfaces, 2017, 150, 326-333.	2.5	20
138	Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Materials Science and Engineering C, 2017, 71, 1267-1280.	3.8	161
139	Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications. Radiochimica Acta, 2017, 105, 161-170.	0.5	15
140	Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Materials Science and Engineering C, 2017, 71, 641-652.	3.8	108
141	Inorganic/Organic Multilayer Capsule Composition for Improved Functionality and External Triggering. Advanced Materials Interfaces, 2017, 4, 1600338.	1.9	53
142	Light-induced decarboxylation in a photo-responsive iron-containing complex based on polyoxometalate and oxalato ligands. Chemical Science, 2017, 8, 305-315.	3.7	29
143	SiRNA Crosslinked Nanoparticles for the Treatment of Inflammationâ€induced Liver Injury. Advanced Science, 2017, 4, 1600228.	5.6	23
144	Stimuli-responsive chitosan-based nanocarriers for cancer therapy. BioImpacts, 2017, 7, 269-277.	0.7	55
145	Stimuli-Responsive Systems with Diverse Drug Delivery and Biomedical Applications: Recent Updates and Mechanistic Pathways. Critical Reviews in Therapeutic Drug Carrier Systems, 2017, 34, 209-255.	1.2	21
146	In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery. International Journal of Molecular Sciences, 2017, 18, 32.	1.8	27
147	MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 6871-6882.	3.3	12

		CITATION R	EPORT	
#	Article		IF	CITATIONS
148	Gd-Doped Superparamagnetic Magnetite Nanoparticles for Potential Cancer Theranos	tics. , 0, , .		6
149	pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Material Selection and Applications. Polymers, 2017, 9, 137.	e Mechanism,	2.0	415
150	Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Ce Journal of Molecular Sciences, 2017, 18, 939.	lls. International	1.8	17
151	Photo-responsive hollow silica nanoparticles for light triggered gene and photodynami therapy. , 2017, , .	c synergistic		0
152	Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-pene peptide-modified liposomal system. International Journal of Nanomedicine, 2017, Volu	etrating me 12, 2385-2405.	3.3	56
153	Aggregation Control by Multi-stimuli-Responsive Poly(N-vinylamide) Derivatives in Aqu Nanoscale Research Letters, 2017, 12, 461.	eous System.	3.1	6
154	Biopolymers for gene delivery applications. , 2017, , 289-323.			1
155	Supramolecular Polymers in Nanomedicine. , 2017, , 227-254.			3
156	Smart Release Nano-formulation of Cytochrome C and Hyaluronic Acid Induces Apopto Cells. Journal of Nanomedicine & Nanotechnology, 2017, 08, .	osis in Cancer	1.1	8
157	Responsive triggering systems for delivery in chronic wound healing. Advanced Drug D Reviews, 2018, 129, 169-193.	elivery	6.6	51
158	Polydopamine-assisted versatile modification of a nucleic acid probe for intracellular m imaging and enhanced photothermal therapy. RSC Advances, 2018, 8, 6781-6788.	icroRNA	1.7	7
159	Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Grap Inhibiting Cancer Cells. ACS Omega, 2018, 3, 2396-2405.	nene Oxide for	1.6	18
160	Bacterial components as naturally inspired nano-carriers for drug/gene delivery and important set the bugs to work?. Biotechnology Advances, 2018, 36, 968-985.	nunization:	6.0	95
161	Direct determination of forces between charged nanogels through coarse-grained simi Physical Review E, 2018, 97, 042608.	ulations.	0.8	14
162	Co-transfection of star-shaped PDMAEMAs enhance transfection efficiency of protamin complexes in the presence of serum. European Polymer Journal, 2018, 103, 362-369.	וe/pDNA	2.6	8
163	Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnology, 2018, 36, 882-897.	n	4.9	298
164	In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and Nanotoxicology, 2018, , .		0.1	1
165	Multi-layered tumor-targeting photothermal-doxorubicin releasing nanotubes eradicate vivo/i> with negligible systemic toxicity. Nanoscale, 2018, 10, 8536-8546.	e tumors <i>in</i>	2.8	26

#	Article	IF	CITATIONS
166	Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomaterialia, 2018, 72, 16-34.	4.1	119
167	Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discovery Today, 2018, 23, 992-1006.	3.2	66
168	Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials, 2018, 171, 72-82.	5.7	77
169	Photo/pH-controlled host–guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the "compound vesicles―for controlled drug delivery. Materials Science and Engineering C, 2018, 89, 237-244.	3.8	33
170	Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 15-25.	2.7	17
171	Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discovery Today, 2018, 23, 900-911.	3.2	87
172	Cellular internalization of polycation-coated microparticles and its dependence on their zeta potential. Japanese Journal of Applied Physics, 2018, 57, 03EK03.	0.8	1
173	Fabrication of dual stimuli-responsive multicompartmental drug carriers for tumor-selective drug release. Lab on A Chip, 2018, 18, 754-764.	3.1	19
174	Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4910-4920.	4.0	104
176	Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Scientific Reports, 2018, 8, 895.	1.6	56
177	Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules, 2018, 51, 1189-1197.	2.2	37
178	A theranostic nanocomposite system based on radial mesoporous silica hybridized with Fe ₃ O ₄ nanoparticles for targeted magnetic field responsive chemotherapy of breast cancer. RSC Advances, 2018, 8, 4321-4328.	1.7	30
179	Advances in Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700845.	3.9	453
180	Biotin-decorated anti-cancer nucleotide theranostic conjugate of human serum albumin: Where the seed meets the soil?. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 260-264.	1.0	17
181	Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM–camptothecin conjugate. Drug Delivery, 2018, 25, 153-165.	2.5	27
182	Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release, 2018, 272, 114-144.	4.8	59
183	Entry of nanoparticles into cells: the importance of nanoparticle properties. Polymer Chemistry, 2018, 9, 259-272.	1.9	294
184	Light-sensitive dextran-covered PNBA nanoparticles as triggered drug delivery systems: Formulation, characteristics and cytotoxicity. Journal of Colloid and Interface Science, 2018, 514, 289-298.	5.0	33

#	Article	IF	CITATIONS
185	Validation of Smart Nanoparticles as Controlled Drug Delivery Systems: Loading and pH-Dependent Release of Pilocarpine. ACS Omega, 2018, 3, 375-382.	1.6	13
186	Reconfigurable Swarms of Ferromagnetic Colloids forÂEnhanced Local Hyperthermia. Advanced Functional Materials, 2018, 28, 1705701.	7.8	112
187	Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Materials Science and Engineering C, 2018, 92, 1041-1060.	3.8	264
188	Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection. Analytical Chemistry, 2018, 90, 1976-1982.	3.2	79
189	Recent Advances in Wearable Transdermal Delivery Systems. Advanced Materials, 2018, 30, 1704530.	11.1	151
190	Single-Step Binary Electrostatic Directed Assembly of Active Nanogels for Smart Concentration-Dependent Encryption. Langmuir, 2018, 34, 1557-1563.	1.6	13
191	Chemotherapeutic Drug Based Metal–Organic Particles for Microvesicleâ€Mediated Deep Penetration and Programmable pH/NIR/Hypoxia Activated Cancer Photochemotherapy. Advanced Science, 2018, 5, 1700648.	5.6	60
192	A review on cationic lipids with different linkers for gene delivery. Advances in Colloid and Interface Science, 2018, 253, 117-140.	7.0	107
193	Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydrate Polymers, 2018, 184, 82-93.	5.1	61
194	Polycarbonate-based core-crosslinked redox-responsive nanoparticles for targeted delivery of anticancer drug. Journal of Materials Chemistry B, 2018, 6, 3348-3357.	2.9	20
195	Enzyme-Instructed Self-assembly of Small Peptides In Vivo for Biomedical Application. Nanomedicine and Nanotoxicology, 2018, , 89-114.	0.1	1
196	The renaissance of nitric oxide: from improvement of stability to enhancement of endocytosis. Materials Chemistry Frontiers, 2018, 2, 830-834.	3.2	11
197	Thiol-stabilized atomically precise, superatomic silver nanoparticles for catalysing cycloisomerization of alkynyl amines. National Science Review, 2018, 5, 694-702.	4.6	63
198	Double-Sensitive Drug Release System Based on MnO ₂ Assembled Upconversion Nanoconstruct for Double-Model Guided Chemotherapy. ACS Applied Nano Materials, 2018, 1, 1648-1656.	2.4	23
199	Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Critical Reviews in Biotechnology, 2018, 38, 47-67.	5.1	81
200	Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opinion on Drug Delivery, 2018, 15, 137-152.	2.4	16
201	Dual-stimuli responsive nanoparticles (UCNP-CD@APP) assembled by host-guest interaction for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 446-451.	2.3	21
202	Understanding the Colloidal Stability of Nanoparticle–Ligand Complexes: Design, Synthesis, and Structure–Function Relationship Studies of Amphiphilic Smallâ€Molecule Ligands. Chemistry - A European Journal, 2018, 24, 1853-1858.	1.7	15

#	Article	IF	CITATIONS
203	Process optimization and in vivo performance of docetaxel loaded PHBV-TPGS therapeutic vesicles: A synergistic approach. International Journal of Biological Macromolecules, 2018, 108, 729-743.	3.6	18
204	DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids and Surfaces B: Biointerfaces, 2018, 161, 279-287.	2.5	10
205	Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnology Reviews, 2018, 7, 95-122.	2.6	105
206	Naturally modified nonionic alginate functionalized upconversion nanoparticles for the highly efficient targeted pH-responsive drug delivery and enhancement of NIR-imaging. Journal of Industrial and Engineering Chemistry, 2018, 57, 424-435.	2.9	39
207	Carborane and cyanine conjugated galactose targeted amphiphilic copolymers for potential near infrared imaging-guided boron neutron capture therapy (BNCT). International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 720-726.	1.8	9
208	Advances in Stimulusâ€Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Advanced Healthcare Materials, 2018, 7, 1701070.	3.9	33
209	Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Archives of Pharmacal Research, 2018, 41, 111-129.	2.7	46
210	Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia, 2018, 65, 393-404.	4.1	161
211	Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloids and Surfaces B: Biointerfaces, 2018, 161, 488-496.	2.5	51
212	Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. Biomacromolecules, 2018, 19, 132-140.	2.6	8
213	Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Selfâ€Assembly at the Nanoscale. Advanced Materials, 2018, 30, 1702226.	11.1	91
214	Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomaterialia, 2018, 66, 310-324.	4.1	159
215	Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. International Journal of Biological Macromolecules, 2018, 106, 266-276.	3.6	61
216	Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced Drug Delivery Reviews, 2018, 123, 33-64.	6.6	339
217	Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
219	A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Communications Biology, 2018, 1, 202.	2.0	81
220	Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS Applied Nano Materials, 2018, 1, 6525-6541.	2.4	60
221	Biofunctionalized MnFe ₂ O ₄ @Au core–shell nanoparticles for pH-responsive drug delivery and hyperthermal agent for cancer therapy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 993-1003.	1.9	16

#	Article	IF	CITATIONS
222	Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus. Biomedical Microdevices, 2018, 20, 103.	1.4	31
224	Doxorubicinâ€loaded dualâ€functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in�vitro and in�vivo. Molecular Medicine Reports, 2018, 19, 133-142.	1.1	18
225	Active control of properties of concrete: a (p)review. Materials and Structures/Materiaux Et Constructions, 2018, 51, 123.	1.3	49
226	Chemoresponsive smart mesoporous silica systems – An emerging paradigm for cancer therapy. International Journal of Pharmaceutics, 2018, 553, 310-326.	2.6	14
227	pH-responsive Micelles from a Blend of PEG-b-PLA and PLA-b-PDPA Block Copolymers: Core Protection Against Enzymatic Degradation. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1262-1268.	2.0	4
228	Fluorinated Acid‣abile Branched Hydroxylâ€Rich Nanosystems for Flexible and Robust Delivery of Plasmids. Small, 2018, 14, e1803061.	5.2	61
229	Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA) nanohydrogel. International Journal of Pharmaceutics, 2018, 552, 301-311.	2.6	71
230	Synthetic Glycopolypeptide Micelle for Targeted Drug Delivery to Hepatic Carcinoma. Polymers, 2018, 10, 611.	2.0	11
231	Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide. Journal of Biomaterials Applications, 2018, 33, 392-401.	1.2	70
232	<i>In Situ</i> SiRNA Assembly in Living Cells for Gene Therapy with MicroRNA Triggered Cascade Reactions Templated by Nucleic Acids. ACS Nano, 2018, 12, 10797-10806.	7.3	61
233	Fabrication of Photothermo-Responsive Drug-Loaded Nanogel for Synergetic Cancer Therapy. Polymers, 2018, 10, 1098.	2.0	21
234	Largeâ€Pore Mesoporousâ€Silicaâ€Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. Advanced Materials, 2018, 30, e1802479.	11.1	251
235	POxylated Dendrimerâ€Based Nanoâ€inâ€Micro Dry Powder Formulations for Inhalation Chemotherapy. ChemistryOpen, 2018, 7, 772-779.	0.9	14
236	Biodegradable Gene Carriers Containing Rigid Aromatic Linkage with Enhanced DNA Binding and Cell Uptake. Polymers, 2018, 10, 1080.	2.0	7
237	Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Research, 2018, 6, 31.	5.4	206
238	Photocleavable Supramolecular Polysaccharide Nanoparticles for Targeted Drug Release in Cancer Cells. Asian Journal of Organic Chemistry, 2018, 7, 2444-2447.	1.3	13
239	pH-Responsive Charge-Conversional Poly(ethylene imine)–Poly(l-lysine)–Poly(l-glutamic acid) with Self-Assembly and Endosome Buffering Ability for Gene Delivery Systems. ACS Applied Bio Materials, 2018, 1, 1496-1504.	2.3	17
240	A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. DARU, Journal of Pharmaceutical Sciences, 2018, 26, 229-239.	0.9	44

#	Article	IF	CITATIONS
241	Independent of EPR Effect: A Smart Delivery Nanosystem for Tracking and Treatment of Nonvascularized Intraâ€Abdominal Metastases. Advanced Functional Materials, 2018, 28, 1806162.	7.8	32
242	Modular DNA strand-displacement controllers for directing material expansion. Nature Communications, 2018, 9, 3766.	5.8	82
243	Implantable Photothermal Agents based on Gold Nanorods-Encapsulated Microcube. Scientific Reports, 2018, 8, 13683.	1.6	17
244	Loading studies of the anticancer drug camptothecin into dual stimuli-sensitive nanoparticles. Stability scrutiny. International Journal of Pharmaceutics, 2018, 550, 429-438.	2.6	8
245	Novel oligopeptide nanoprobe for targeted cancer cell imaging. RSC Advances, 2018, 8, 30887-30893.	1.7	10
246	Thermosensitive liposomes for triggered release of cytotoxic proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 211-221.	2.0	37
247	Magnetism and photo dual-controlled supramolecular assembly for suppression of tumor invasion and metastasis. Science Advances, 2018, 4, eaat2297.	4.7	76
248	Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 2018, 118, 10294-10348.	23.0	136
249	Preparation and Characterization of pH Sensitive Drug Liposomes. , 2018, , 1-24.		1
250	Intracellular DNA Cargo Release from a Gold Nanoparticle Modulated by the Nature of the Surface Coupling Functionality. Bioconjugate Chemistry, 2018, 29, 3429-3440.	1.8	7
251	Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines. Small, 2018, 14, e1802417.	5.2	98
252	Hierarchical Tumor Microenvironmentâ€Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics. Advanced Materials, 2018, 30, e1803926.	11.1	119
253	Encapsulation of Thermo-responsive Gel in pH-sensitive Polymersomes as Dual-Responsive Smart carriers for Controlled Release of Doxorubicin. Journal of Controlled Release, 2018, 288, 45-61.	4.8	89
254	Enzyme/pH-sensitive dendritic polymer-DOX conjugate for cancer treatment. Science China Materials, 2018, 61, 1462-1474.	3.5	28
255	Multifunctional and Stimuliâ€Responsive Magnetic Nanoparticleâ€Based Delivery Systems for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800011.	1.6	71
256	Synthesis of lipid–black phosphorus quantum dot bilayer vesicles for near-infrared-controlled drug release. Chemical Communications, 2018, 54, 6060-6063.	2.2	53
257	Biological Stimulusâ€Driven Assembly/Disassembly of Functional Nanoparticles for Targeted Delivery, Controlled Activation, and Bioelimination. Advanced Healthcare Materials, 2018, 7, e1800359.	3.9	44
258	pH and reduction-activated polymeric prodrug nanoparticles based on a 6-thioguanine-dialdehyde sodium alginate conjugate for enhanced intracellular drug release in leukemia. Polymer Chemistry, 2018, 9, 3415-3424.	1.9	20

#	Article	IF	CITATIONS
259	Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Advanced Drug Delivery Reviews, 2018, 132, 16-32.	6.6	92
260	PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today, 2018, 12, 177-190.	2.3	299
261	DOX/ICG Coencapsulated Liposome-Coated Thermosensitive Nanogels for NIR-Triggered Simultaneous Drug Release and Photothermal Effect. ACS Biomaterials Science and Engineering, 2018, 4, 2424-2434.	2.6	83
262	Nanogel-Incorporated Injectable Hydrogel for Synergistic Therapy Based on Sequential Local Delivery of Combretastatin-A4 Phosphate (CA4P) and Doxorubicin (DOX). ACS Applied Materials & Interfaces, 2018, 10, 18560-18573.	4.0	82
263	Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Archives of Pharmacal Research, 2018, 41, 594-616.	2.7	20
264	Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy. Acta Biomaterialia, 2018, 76, 178-192.	4.1	30
265	Silica nanoparticles embedded with water insoluble phthalocyanines for the photoinactivation of microorganisms. Photodiagnosis and Photodynamic Therapy, 2018, 23, 261-269.	1.3	13
266	A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy. Chemical Science, 2018, 9, 6749-6757.	3.7	62
267	Bioinspired polymeric carriers for drug delivery applications. , 2018, , 377-404.		11
268	Introduction: Smart Materials in Biomedicine. , 2018, , 1-13.		1
269	Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Scientific Reports, 2018, 8, 9893.	1.6	36
270	Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Advanced Healthcare Materials, 2018, 7, e1800347.	3.9	180
271	Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	33
272	Drug delivery for cardiac regeneration. , 2018, , 283-321.		2
273	Tumor-adapting and tumor-remodeling AuNR@dendrimer-assembly nanohybrids overcome impermeable multidrug-resistant cancer. Materials Horizons, 2018, 5, 1047-1057.	6.4	33
274	Molecular Dynamics Simulations to Study Drug Delivery Systems. , 0, , .		10
275	Design of Multifunctional Nanogels with Intelligent Behavior. Gels Horizons: From Science To Smart Materials, 2018, , 279-307.	0.3	1
276	A supramolecular hybrid material constructed from pillar[6]arene-based host–guest complexation and ZIF-8 for targeted drug delivery. Chemical Communications, 2018, 54, 9817-9820.	2.2	52

#	Article	IF	Citations
277	Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science, 2018, 87, 107-164.	11.8	177
278	Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance. Theranostics, 2018, 8, 1059-1074.	4.6	183
279	Clinical applications of nanostructured drug delivery systems. , 2018, , 43-116.		6
280	Tumor microenvironment-labile polymer–doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomaterialia, 2018, 77, 63-73.	4.1	68
281	Carbohydrate-Based Nanofibers: Applications and Potentials. , 2018, , 1-23.		0
282	Keratin-Templated Synthesis of Metallic Oxide Nanoparticles as MRI Contrast Agents and Drug Carriers. ACS Applied Materials & Interfaces, 2018, 10, 26039-26045.	4.0	36
283	A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. Journal of Materials Chemistry B, 2018, 6, 7263-7273.	2.9	24
284	Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Frontiers in Chemistry, 2018, 6, 127.	1.8	25
285	Hybrid Polyester Self-Immolative Polymer Nanoparticles for Controlled Drug Release. ACS Omega, 2018, 3, 5002-5011.	1.6	21
286	Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates. Chemical Communications, 2018, 54, 6875-6878.	2.2	20
287	Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles. Scientific Reports, 2018, 8, 7472.	1.6	20
288	Sonochemical fabrication of reduction-responsive magnetic starch-based microcapsules. Ultrasonics Sonochemistry, 2018, 49, 169-174.	3.8	13
289	Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 29260-29272.	4.0	70
290	Graphene Quantum Dots Based Systems As HIV Inhibitors. Bioconjugate Chemistry, 2018, 29, 3084-3093.	1.8	111
291	Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure–Property Relationships and Applications. Chemical Reviews, 2018, 118, 8474-8597.	23.0	138
292	Seeing, Targeting and Delivering with Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 10923-10931.	6.6	110
293	Dual-responsive BN-embedded phenacenes featuring mechanochromic luminescence and ratiometric sensing of fluoride ions. Journal of Materials Chemistry C, 2018, 6, 10456-10463.	2.7	29
294	Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics, 2018, 8, 3038-3058.	4.6	159

#	Article	IF	CITATIONS
295	Amphiphilic Carbazoleâ€Containing Compounds with Lower Critical Solution Temperature Behavior for Supramolecular Selfâ€Assembly and Solutionâ€Processable Resistive Memories. Chemistry - an Asian Journal, 2018, 13, 2626-2631.	1.7	4
296	Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(phenyl isocyanide) Arms and Their Applications in Drug Delivery. ACS Macro Letters, 2018, 7, 1073-1079.	2.3	39
297	Design of binary polymer brushes with tuneable functionality. Soft Matter, 2018, 14, 7237-7245.	1.2	13
298	A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH. ACS Nano, 2018, 12, 5956-5968.	7.3	21
299	Curcumin polymer coated, self-fluorescent and stimuli-responsive multifunctional mesoporous silica nanoparticles for drug delivery. Microporous and Mesoporous Materials, 2018, 271, 234-242.	2.2	28
300	pHâ€Responsive Nanoparticles for Controllable Curcumin Delivery: The Design of Polycation Core with Different Structures. Macromolecular Chemistry and Physics, 2018, 219, 1800062.	1.1	2
301	Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells. Chemical Science, 2018, 9, 5816-5821.	3.7	49
302	Optical assays based on colloidal inorganic nanoparticles. Analyst, The, 2018, 143, 3249-3283.	1.7	58
303	Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 21198-21205.	4.0	37
304	Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale, 2018, 10, 12595-12604.	2.8	41
305	One-pot one-step synthesis of a photo-cleavable cross-linker via Passerini reaction for fabrication of responsive polymeric particles. Polymer Bulletin, 2019, 76, 1471-1487.	1.7	6
306	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	11.1	233
307	Oxaliplatin–Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics, 2019, 11, 395.	2.0	28
308	Tissue-Specific Delivery of Oligonucleotides. Methods in Molecular Biology, 2019, 2036, 17-50.	0.4	6
309	A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials, 2019, 221, 119412.	5.7	53
310	Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110393.	2.5	21
311	A Comprehensive Outlook of Synthetic Strategies and Applications of Redoxâ€Responsive Nanogels in Drug Delivery. Macromolecular Bioscience, 2019, 19, e1900071.	2.1	42
312	In vivo ultrasound-activated delivery of recombinant tissue plasminogen activator from the cavity of sub-micrometric capsules. Journal of Controlled Release, 2019, 308, 162-171.	4.8	21

# 313	ARTICLE PBPK modeling-based optimization of site-specific chemo-photodynamic therapy with far-red light-activatable paclitaxel prodrug. Journal of Controlled Release, 2019, 308, 86-97.	IF 4.8	CITATIONS
314	Nitrophenyl-engaged photocleavage of an amphiphilic copolymer for spatiotemporally controlled drug release. Journal of Materials Science, 2019, 54, 13298-13313.	1.7	2
315	Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nature Communications, 2019, 10, 3211.	5.8	210
316	Spatiotemporal Control Release of pH-Responsive Polymeric Micelles via Photochemically Induced Proton Generation. ACS Applied Bio Materials, 2019, 2, 3659-3667.	2.3	5
317	In Vitro and In Vivo Approach of Hydrogen-Sulfide-Responsive Drug Release Driven by Azide-Functionalized Mesoporous Silica Nanoparticles. ACS Applied Bio Materials, 2019, 2, 3886-3896.	2.3	22
318	Synthesis, Characterization, and Evaluation of Disulfide-Containing Polyethylenimine Derivative Functionalized Magnetic Carbon Nanotubes as an Efficient Gene Vector. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	2
319	Carbohydrate-Based Nanofibers: Applications and Potentials. , 2019, , 263-285.		2
320	Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO ₂ nanosheets. Drug Delivery, 2019, 26, 661-672.	2.5	44
321	Chemical insights into bioinks for 3D printing. Chemical Society Reviews, 2019, 48, 4049-4086.	18.7	145
322	Light-activated drug release from a hyaluronic acid targeted nanoconjugate for cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4843-4853.	2.9	26
323	Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. Nano Letters, 2019, 19, 8318-8332.	4.5	142
324	Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells. Scientific Reports, 2019, 9, 14899.	1.6	27
325	A DNA–Azobenzene Nanopump Fueled by Upconversion Luminescence for Controllable Intracellular Drug Release. Angewandte Chemie, 2019, 131, 18375-18379.	1.6	15
326	A DNA–Azobenzene Nanopump Fueled by Upconversion Luminescence for Controllable Intracellular Drug Release. Angewandte Chemie - International Edition, 2019, 58, 18207-18211.	7.2	86
327	Bottom-up synthesis of nitrogen and oxygen co-decorated carbon quantum dots with enhanced DNA plasmid expression. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110543.	2.5	25
328	pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Molecular Pharmaceutics, 2019, 16, 4594-4609.	2.3	52
329	Novel Oxygen-Deficient Zirconia (ZrO _{2–<i>x</i>}) for Fluorescence/Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy for Cancer. ACS Applied Materials & Interfaces, 2019, 11, 41127-41139.	4.0	35
330	Lightâ€Responsive Serinolâ€Based Polyurethane Nanocarrier for Controlled Drug Release. Macromolecular Rapid Communications, 2019, 40, e1900348.	2.0	16

#	Article	IF	CITATIONS
331	Remote Lightâ€Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small, 2019, 15, e1903060.	5.2	183
332	Nanoscaled Materials for Drug Delivery into Cells/Stem Cells. Methods in Molecular Biology, 2019, 2125, 181-192.	0.4	0
333	Probing of local polarity in poly(methyl methacrylate) with the charge transfer transition in Nile red. Beilstein Journal of Organic Chemistry, 2019, 15, 2552-2562.	1.3	11
334	Smart polymer catalysts and their applications. , 2019, , 77-94.		3
335	Autonomous Shrinking/Swelling Phenomenon Driven By Macromolecular Interchain Cross-Linking via β-Cyclodextrin–Triazole Complexation. Macromolecules, 2019, 52, 8551-8562.	2.2	4
336	Theranostic nanocarriers combining high drug loading and magnetic particle imaging. International Journal of Pharmaceutics, 2019, 572, 118796.	2.6	18
337	Nanoengineering Materials for Biomedical Uses. , 2019, , .		2
338	Graphene-based drug delivery systems. , 2019, , 149-168.		10
339	Polyionic Complexed Antibacterial Heparin–Chitosan Particles for Antibiotic Delivery. ACS Applied Bio Materials, 2019, 2, 5848-5858.	2.3	16
340	Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Applied Polymer Materials, 2019, 1, 211-220.	2.0	47
341	Photoresponsive Delivery Microcarriers for Tissue Defects Repair. Advanced Science, 2019, 6, 1901280.	5.6	50
342	Reversibly Photoswitchable Dual-Color Fluorescence and Controlled Release Properties of Polymeric Nanoparticles. Macromolecules, 2019, 52, 7130-7136.	2.2	33
343	Biocompatibility and paclitaxel/cisplatin dual-loading of nanotubes prepared from poly(ethylene) Tj ETQq0 0 0 rgB Pharmaceutical Journal, 2019, 27, 1025-1035.	T /Overloc 1.2	k 10 Tf 50 2 8
344	Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. International Journal of Molecular Sciences, 2019, 20, 4706.	1.8	63
345	Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nature Communications, 2019, 10, 4464.	5.8	108
346	Poly (2-hydroxypropylene imines) functionalized magnetic polydopamine nanoparticles for high-efficiency DNA isolation. Applied Surface Science, 2019, 498, 143888.	3.1	33
347	Responsive polymers as smart carriers inÂtunable catalytic processes. , 2019, , 115-147.		1
348	Fluorescent Labeling Method Re-Evaluates the Intriguing Thermoresponsive Behavior of Poly(acrylamide- <i>co</i> -acrylonitrile)s with Upper Critical Solution Temperatures. Macromolecules, 2019, 52, 7646-7660.	2.2	25

# 349	ARTICLE Multistage rocket: integrational design of a prodrug-based siRNA delivery system with sequential release for enhanced antitumor efficacy. Nanoscale Advances, 2019, 1, 498-507.	IF 2.2	Citations
350	Nanoparticle-based drug delivery <i>via</i> RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale, 2019, 11, 1636-1646.	2.8	126
351	Multipronged design of theranostic nanovehicles with endogenous and exogenous stimuli-responsiveness for precise cancer therapy. Journal of Materials Chemistry B, 2019, 7, 1160-1166.	2.9	4
352	Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. Journal of Materials Chemistry B, 2019, 7, 1209-1225.	2.9	70
353	Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer–aggregate equilibrium. Chemical Science, 2019, 10, 3018-3024.	3.7	18
354	Drug Delivery Applications of Starch Biopolymer Derivatives. , 2019, , .		2
355	Micelle-Mediated Chemiluminescence as an Indicator for Micellar Transitions. Analytical Chemistry, 2019, 91, 2652-2658.	3.2	13
356	Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano, 2019, 13, 954-977.	7.3	156
357	Constructing efficient polycationic gene carriers through regulating the physicochemical properties. Materials Today Chemistry, 2019, 11, 269-282.	1.7	14
358	Responsive Polymeric Nanotherapeutics. , 2019, , 67-121.		3
359	Minimalist Design of a Stimuli-Responsive Spherical Nucleic Acid for Conditional Delivery of Oligonucleotide Therapeutics. ACS Applied Materials & Interfaces, 2019, 11, 13912-13920.	4.0	27
360	Pharmaceutical and Biomedical Applications of Polymers. , 2019, , 203-267.		25
361	Nano-Carriers Based on pH-Sensitive Star-Shaped Copolymers for Drug-Controlled Release. Materials, 2019, 12, 1610.	1.3	10
362	Hydration and Dehydration Kinetics: Comparison between Poly(<i>N</i> -isopropyl methacrylamide) and Poly(methoxy diethylene glycol acrylate) Films. Langmuir, 2019, 35, 7691-7702.	1.6	21
363	pHâ€Triggered Conformational Change of Antpâ€Based Drug Delivery Platform for Tumor Treatment with Combined Photothermal Therapy and Chemotherapy. Advanced Healthcare Materials, 2019, 8, e1900306.	3.9	11
364	Light-Responsive Serinol-Based Polycarbonate and Polyester as Degradable Scaffolds. ACS Applied Bio Materials, 2019, 2, 3038-3051.	2.3	23
365	Single-Chromophore-Based Therapeutic Agent Enables Green-Light-Triggered Chemotherapy and Simultaneous Photodynamic Therapy to Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3068-3076.	2.3	19
366	Poly(<i>N</i> -isopropylacrylamide) derived nanogels demonstrated thermosensitive self-assembly and GSH-triggered drug release for efficient tumor Therapy. Polymer Chemistry, 2019, 10, 4031-4041.	1.9	20

#	Article	IF	Citations
367	Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly. Chinese Journal of Polymer Science (English Edition), 2019, 37, 744-759.	2.0	31
368	A Photocleavable Amphiphilic Prodrug Self-Assembled Nanoparticles with Effective Anticancer Activity In Vitro. Nanomaterials, 2019, 9, 860.	1.9	11
369	Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. , 2019, , 89-152.		6
370	Lightâ€Induced Redoxâ€Responsive Smart Drug Delivery System by Using Seleniumâ€Containing Polymer@MOF Shell/Core Nanocomposite. Advanced Healthcare Materials, 2019, 8, e1900406.	3.9	90
371	Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. Materials Science and Engineering C, 2019, 104, 109871.	3.8	15
372	InSe Nanosheets for Efficient NIR-II-Responsive Drug Release. ACS Applied Materials & Interfaces, 2019, 11, 27521-27528.	4.0	30
373	Corneal Repair and Regeneration: Current Concepts and Future Directions. Frontiers in Bioengineering and Biotechnology, 2019, 7, 135.	2.0	105
374	Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics, 2019, 9, 3308-3340.	4.6	34
375	The Application of Nucleic Acid Amplification Strategies in Theranostics. , 2019, , 289-305.		0
376	pH and thermo dual-responsive starch-g-P(DEAEMA-co-PEGMA): Synthesis via SET-LRP, self-assembly and drug release behaviors. Reactive and Functional Polymers, 2019, 141, 165-171.	2.0	20
377	Reduced graphene oxide/polymethyl methacrylate (rGO/PMMA) nanocomposite for real time gamma radiation detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940, 72-77.	0.7	22
378	Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chemical Society Reviews, 2019, 48, 3771-3810.	18.7	292
379	Cyclic Hydrazideâ€Functionalized Poly(ethylene oxide) Frameworks for the Synthesis of pHâ€Cleavable Drug arriers and Their Applications for the Stabilization of Gold Nanoparticles. Macromolecular Chemistry and Physics, 2019, 220, 1900075.	1.1	0
380	Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics, 2019, 11, 234.	2.0	34
381	Interaction of ultrasound with microporous polyethylene scaffolds. Applied Acoustics, 2019, 153, 102-109.	1.7	6
382	The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coordination Chemistry Reviews, 2019, 392, 237-254.	9.5	46
383	Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery. Molecules, 2019, 24, 1873.	1.7	15
384	Bioinspired Smart Nanosystems in Advanced Therapeutic Applications. Pharmaceutical Nanotechnology, 2019, 7, 246-256.	0.6	6

#	Article	IF	CITATIONS
385	Polynorepinephrine Nanoparticles: A Novel Photothermal Nanoagent for Chemo-Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 19763-19773.	4.0	36
386	Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. Journal of Materials Chemistry B, 2019, 7, 3480-3496.	2.9	115
387	Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. Journal of Rare Earths, 2019, 37, 903-915.	2.5	44
388	Photothermal Spongy Film for Enhanced Surface-Mediated Transfection to Primary Cells. ACS Applied Bio Materials, 2019, 2, 2676-2684.	2.3	15
389	Dual and multistimuli-responsive block copolymers for drug delivery applications. , 2019, , 249-267.		3
390	Stimuli-responsive polymer-modified liposomes and their application to DDS. , 2019, , 305-319.		4
391	Reduction responsive liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for intracellular delivery. International Journal of Pharmaceutics, 2019, 564, 244-255.	2.6	31
392	Fabrication and excellent electroresponsive properties of ideal PMMA@BaTiO3 composite particles. RSC Advances, 2019, 9, 12404-12414.	1.7	14
393	Cascadeâ€amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1555.	3.3	4
395	Simple and facile preparation of lignosulfonate-based composite nanoparticles with tunable morphologies: From sphere to vesicle. Industrial Crops and Products, 2019, 135, 64-71.	2.5	19
396	Development of thermo/pH-responsive chitosan coated pectin-graft-poly(N,N-diethyl acrylamide) microcarriers. Carbohydrate Polymers, 2019, 218, 112-125.	5.1	35
397	Magnetic mesoporous silica nanoparticles functionalized by pH-sensitive caps for DOX release. Journal of the Iranian Chemical Society, 2019, 16, 1801-1808.	1.2	0
398	Biomedical applications of magnetite nanoparticles. , 2019, , 397-434.		9
399	Virusâ€inspired and mimetic designs in nonâ€viral gene delivery. Journal of Gene Medicine, 2019, 21, e3090.	1.4	14
400	Controlled Release of Therapeutic Agents with Near-Infrared Laser for Synergistic Photochemotherapy toward Cervical Cancer. Analytical Chemistry, 2019, 91, 6555-6560.	3.2	15
401	A Kinetic Model of Oligonucleotide–Brush Interactions for the Rational Design of Gene Delivery Vectors. Biomacromolecules, 2019, 20, 2218-2229.	2.6	16
402	NIR-Activated Polymeric Nanoplatform with Upper Critical Solution Temperature for Image-Guided Synergistic Photothermal Therapy and Chemotherapy. Biomacromolecules, 2019, 20, 2338-2349.	2.6	42
403	The impact of combination of pulsed electric field and ultrasound treatment on air drying kinetics and quality of carrot tissue. LWT - Food Science and Technology, 2019, 110, 71-79.	2.5	45

ARTICLE IF CITATIONS Recent advances in the development of polyethylenimine-based gene vectors for safe and efficient gene 404 2.4 43 delivery. Expert Opinion on Drug Delivery, 2019, 16, 363-376. Fabrication of glucose-responsive and biodegradable copolymer membrane for controlled release of insulin at physiological pH. New Journal of Chemistry, 2019, 43, 7822-7830. 1.4 An artificially engineered "tumor bio-magnet―for collecting blood-circulating nanoparticles and 406 2.6 10 magnetic hyperthermia. Biomaterials Science, 2019, 7, 1815-1824. Cell membrane-covered nanoparticles as biomaterials. National Science Review, 2019, 6, 551-561. <scp>A l</scp>-glutamate-responsive delivery system based on enzyme-controlled self-immolative 408 2.3 6 arylboronate-gated nanoparticles. Organic Chemistry Frontiers, 2019, 6, 1058-1063. Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie - International Edition, 2019, 58, 7078-7082. 409 410 Nanostructured organic-organic bio-hybrid delivery systems., 2019,, 341-374. 5 Characterizing the Incorporation of DNA into Single NIPAm Hydrogel Nanoparticles with Surface 411 1.5 Plasmon Resonance Imaging Measurements. Journal of Physical Chemistry C, 2019, 123, 6090-6096. Propranololâ€Loaded Mesoporous Silica Nanoparticles for Treatment of Infantile Hemangiomas. 412 3.9 17 Advanced Healthcare Materials, 2019, 8, e1801261. pHâ€Responsive Polymer Nanoparticles for Drug Delivery. Macromolecular Rapid Communications, 2019, 318 40, e1800917. A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand 414 21 4.6 Chemotherapy. Theranostics, 2019, 9, 1358-1368. Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug 5.3 release properties. Biosensors and Bioelectronics, 2019, 131, 185-192. Physiological and Pathological Bases for Designing High Performance Drug Delivery Carriers., 2019, 416 1 1-17. Material Nature and Physicochemical Properties for High Performance of Carriers., 2019, 19-27. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart 418 2.9 29 cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2588-2607. A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly. Colloids and Surfaces B: Biointerfaces, 2019, 179, 352-362. Facile synthesis of organosilica-capped mesoporous silica nanocarriers with selective 420 redox-triggered drug release properties for safe tumor chemotherapy. Biomaterials Science, 2019, 7, 2.6 28 1825-1832. Stimulus-responsive electrochemiluminescence from self-assembled block copolymer and nonpolar 421 5.4

CITATION REPORT

carbon quantum dot composite nanospheres. Carbon, 2019, 147, 532-539.

#	Article	IF	CITATIONS
422	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie, 2019, 131, 7152-7156.	1.6	15
423	On-demand drug release from tailored blended electrospun nanofibers. Journal of Drug Delivery Science and Technology, 2019, 52, 8-14.	1.4	28
424	Combating Multidrug Resistance through an NIR-Triggered Cyanine-Containing Amphiphilic Block Copolymer. ACS Applied Bio Materials, 2019, 2, 1862-1874.	2.3	6
425	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
426	Covalently Crosslinked Nanogels: An NMR Study of the Effect of Monomer Reactivity on Composition and Structure. Polymers, 2019, 11, 353.	2.0	16
427	Atherosclerosis Treatment with Stimuliâ€Responsive Nanoagents: Recent Advances and Future Perspectives. Advanced Healthcare Materials, 2019, 8, e1900036.	3.9	55
428	Switchable length nanotubes from a self-assembling pH and thermosensitive linear l,d-peptide-polymer conjugate. Journal of Colloid and Interface Science, 2019, 547, 256-266.	5.0	8
429	Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. Journal of Drug Delivery Science and Technology, 2019, 51, 485-492.	1.4	18
430	Sequential catalytic nanomedicine augments synergistic chemodrug and chemodynamic cancer therapy. Nanoscale Horizons, 2019, 4, 890-901.	4.1	42
431	Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics, 2019, 11, 71.	2.0	36
432	pH-Responsive Polymers: Properties, Synthesis, and Applications. , 2019, , 45-86.		4
433	Light-triggered release of photocaged therapeutics - Where are we now?. Journal of Controlled Release, 2019, 298, 154-176.	4.8	105
434	Ultrathin two-dimensional nanosheets meet upconverting nanoparticles: <i>in situ</i> near-infrared triggered molecular switching. Journal of Materials Chemistry C, 2019, 7, 3965-3972.	2.7	16
435	Dual targeted and pH-responsive gold nanorods with improved chemotherapy and photothermal ablation for synergistic cancer treatment. RSC Advances, 2019, 9, 5270-5281.	1.7	12
436	Poly(Ferulic Acid) with an Anticancer Effect as a Drug Nanocarrier for Enhanced Colon Cancer Therapy. Advanced Functional Materials, 2019, 29, 1808646.	7.8	93
437	Nanotechnology in the diagnosis and treatment of lung cancer. , 2019, 198, 189-205.		106
438	Chitosan nanopolymers: An overview of drug delivery against cancer. International Journal of Biological Macromolecules, 2019, 130, 727-736.	3.6	179
439	Magnetic/pH dualâ€responsive nanocomposites loading doxorubicin hydrochloride for cancer therapy. Micro and Nano Letters, 2019, 14, 520-525.	0.6	4

#	Article	IF	CITATIONS
440	Novel Drug Delivery Technologies. , 2019, , .		6
441	Redox/pH dual stimuliâ€responsive ZnO QDsâ€gated mesoporous silica nanoparticles as carriers in cancer therapy. IET Nanobiotechnology, 2019, 13, 640-649.	1.9	13
442	Nanotechnology for Agriculture. , 2019, , .		12
443	H ₂ O ₂ -activated oxidative stress amplifier capable of CSH scavenging for enhancing tumor photodynamic therapy. Biomaterials Science, 2019, 7, 5359-5368.	2.6	33
444	Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale, 2019, 11, 18854-18865.	2.8	24
445	Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. Journal of the American Chemical Society, 2019, 141, 20354-20364.	6.6	68
446	Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels. , 2019, , .		2
447	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chemical Reviews, 2019, 119, 12208-12278.	23.0	289
448	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 320.	2.0	44
449	Experimental model design: exploration and optimization of customized polymerization conditions for the preparation of targeted smart materials by the Diels Alder click reaction. Polymer Chemistry, 2019, 10, 5473-5486.	1.9	5
450	A novel drug–drug nanohybrid for the self-delivery of porphyrin and <i>cis</i> -platinum. RSC Advances, 2019, 9, 37003-37008.	1.7	3
451	Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Research, 2019, 12, 41-48.	5.8	32
452	Stimuli-responsive nanoscale drug delivery systems for cancer therapy. Journal of Drug Targeting, 2019, 27, 423-433.	2.1	93
453	Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Advanced Drug Delivery Reviews, 2019, 138, 211-232.	6.6	56
454	The effect of low- and high-penetration light on localized cancer therapy. Advanced Drug Delivery Reviews, 2019, 138, 105-116.	6.6	44
455	Advances in Receptorâ€Mediated, Tumorâ€Targeted Drug Delivery. Advanced Therapeutics, 2019, 2, 1800091.	1.6	113
456	Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomaterialia, 2019, 85, 172-179.	4.1	44
457	Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B: Condensed Matter, 2019, 554, 21-30.	1.3	54

#	Article	IF	CITATIONS
458	pH/NIR-responsive semiconducting polymer nanoparticles for highly effective photoacoustic image guided chemo-photothermal synergistic therapy. Journal of Controlled Release, 2019, 293, 94-103.	4.8	36
459	Nanotheranostics for Cancer Applications. Bioanalysis, 2019, , .	0.1	3
460	Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 2019, 14, 93-126.	1.7	376
461	Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimization and cellular investigation. Nanotechnology, 2019, 30, 135101.	1.3	38
462	Tumorâ€Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Advanced Science, 2019, 6, 1801986.	5.6	221
463	A new immunoassay of hybrid nanomater conjugated to aptamers for the detection of dengue virus. Talanta, 2019, 197, 482-490.	2.9	29
464	Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. Journal of Colloid and Interface Science, 2019, 540, 66-77.	5.0	29
465	Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomaterials Science and Engineering, 2019, 5, 759-767.	2.6	33
466	Stimuli-Responsive Nanotheranostics for Real-Time Monitoring Drug Release by Photoacoustic Imaging. Theranostics, 2019, 9, 526-536.	4.6	98
467	pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. Journal of Colloid and Interface Science, 2019, 536, 224-234.	5.0	334
468	Engineering Precision Medicine. Advanced Science, 2019, 6, 1801039.	5.6	55
469	Preparation, microstructure and function of liposome with light responsive switch. Colloids and Surfaces B: Biointerfaces, 2019, 178, 238-244.	2.5	22
470	Synthesis and selfâ€assembly of multipleâ€responsive magnetic nanogels. Polymers for Advanced Technologies, 2019, 30, 312-319.	1.6	7
471	Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Molecular Therapy - Methods and Clinical Development, 2019, 12, 1-18.	1.8	100
472	Stimuli-responsive polymer wormlike micelles. Progress in Polymer Science, 2019, 89, 108-132.	11.8	62
473	Engineering Nanomaterials for Smart Drug Release. , 2019, , 411-449.		25
474	A versatile strategy to create an active tumor-targeted chemo-photothermal therapy nanoplatform: A case of an IR-780 derivative co-assembled with camptothecin prodrug. Acta Biomaterialia, 2019, 84, 356-366.	4.1	30
475	Self-Assembled Gold Nanoparticle–Lipid Nanocomposites for On-Demand Delivery, Tumor Accumulation, and Combined Photothermal–Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 349-361.	2.3	28

CITATION REPORT ARTICLE IF CITATIONS Fabrication of step-by-step drug release system both sensitive to magnetic field and temperature based 1.3 9 on layered double hydroxides and PNIPAM. Nanotechnology, 2019, 30, 055103. Stimuli-Responsive Therapeutic Metallodrugs. Chemical Reviews, 2019, 119, 1138-1192. 23.0 ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered 5.7 148 locoregional chemotherapy. Biomaterials, 2019, 188, 74-82. Dual and multiple stimuli-responsive platonic micelles bearing disaccharides. Journal of Colloid and 5.0 Interface Science, 2019, 535, 8-15. Smart pH-responsive nanoparticles in a model tumor microenvironment for enhanced cellular uptake. 1.7 14 Journal of Materials Science, 2019, 54, 1692-1702. Cyclodextrinâ€Based Multistimuliâ€Responsive Supramolecular Assemblies and Their Biological Functions. Advanced Materials, 2020, 32, e1806158. 11.1 Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water 6.5 65 separation and pollutants removal. Journal of Hazardous Materials, 2020, 383, 121123. The mediating role of organizational complexity between enterprise resource planning and business 3.7 model innovation. Industrial Marketing Managément, 2020, 84, 328-341. Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy. Journal of Colloid and Interface Science, 2020, 559, 5.0 52 51-64. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical 3.8 applications. Ultrasonics Sonochemistry, 2020, 64, 104783. Physicalâ€, chemicalâ€, and biologicalâ€responsive nanomedicine for cancer therapy. Wiley Interdisciplinary 3.3 44 Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1581. Stimuliâ€Responsive Hybridized Nanostructures. Advanced Functional Materials, 2020, 30, 1903439. Microfluidic assembly of mono-dispersed liposome and its surface modification for enhancing the colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 2.325 124202. Theoretical study of encapsulation of Floxuridine anticancer drug into BN (9,9-7) nanotube for 0.8 medical application. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 293-306. . .

490	Temperature/pH dual sensitive Hericium erinaceus	residue carboxymethyl chitin/p	poly (N-isopropyl) Tj ETQq0 0	0 rgBT /Overlock 10 Tf 50
-----	--	--------------------------------	-------------------------------	---------------------------

491	Photoactive Nanocarriers for Controlled Delivery. Advanced Functional Materials, 2020, 30, 1903896.	7.8	38
492	Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1093-1107.	2.9	79
493	Coordinating bioorthogonal reactions with two tumor-microenvironment-responsive nanovehicles for spatiotemporally controlled prodrug activation. Chemical Science, 2020, 11, 2155-2160.	3.7	22

476

478

479

480

482

484

486

488

ARTICLE IF CITATIONS # Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect 494 1.2 8 of excluded volume interactions. Journal of Chemical Physics, 2020, 152, 024107. Doxorubicin Encapsulated in TPGSâ€Modified 2Dâ€Nanodisks Overcomes Multidrug Resistance. Chemistry -1.7 23 A European Journal, 2020, 26, 2470-2477. Synthesis of double-responsive magnetic latex particles <i>via</i> seeded emulsion polymerization 496 1.9 11 using macroRAFT block copolymers as stabilizers. Polymer Chemistry, 2020, 11, 648-652. Noncovalent and Dynamic Covalent Chemistry Strategies for Driving Thermoresponsive Phase Transition with Multistimuli and Controlled Encapsulation/Release. ACS Applied Materials & amp; 4.0 Interfaces, 2020, 12, 2962-2973. Insulin Delivery from Glucoseâ€Responsive, Selfâ€Assembled, Polyamine Nanoparticles: Smart 498 1.7 18 "Senseâ€andâ€Treat†Nanocarriers Made Easy. Chemistry - Á European Journal, 2020, 26, 2456-2463. Current status of ATRP-based materials for gene therapy. Reactive and Functional Polymers, 2020, 147, 499 104453. Real time monitoring of peptide delivery<i>in vitro</i>using high payload pH responsive nanogels. 500 1.9 16 Polymer Chemistry, 2020, 11, 425-432. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. Molecular Therapy - Nucleic 2.3 74 Acids, 2020, 19, 581-601. Bacteria-propelled microrockets to promote the tumor accumulation and intracellular drug uptake. 502 23 6.6 Chemical Engineering Journal, 2020, 392, 123786. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. Journal of Controlled 4.8 Release, 2020, 317, 195-215. Polymeric Nanoparticles., 2020, , 303-324. 504 23 Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. Reactive and Functional Polymers, 2020, 147, 104463. Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid 506 2.0 15 assistance upon near-infrared irradiation. Advanced Powder Technology, 2020, 31, 3860-3866. Development of amphiphilic metal-binding short peptides that change the dispersibility of paclitaxel upon complexation with intermediate metal(II) ions. Journal of Drug Delivery Science and Technology, 1.4 2020, 59, 101882. Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy. 508 2.0 13 Pharmaceutics, 2020, 12, 912. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. 509 83 Advances in Colloid and Interface Science, 2020, 284, 102261. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for 510 4.8 22 promoted tumor gene therapy. Chinese Chemical Letters, 2020, 31, 3143-3148. Multivalent nanomedicines to treat COVID-19: A slow train coming. Nano Today, 2020, 35, 100962. 6.2 34

#	Article	IF	CITATIONS
512	Adsorption properties study of boron nitride fullerene for the application as smart drug delivery agent of anti-cancer drug hydroxyurea by density functional theory. Journal of Molecular Liquids, 2020, 318, 114315.	2.3	53
513	Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine, 2020, 56, 102821.	2.7	103
514	Light-Triggered Polymeric Nanobombs for Targeted Cell Death. ACS Applied Nano Materials, 2020, 3, 1950-1960.	2.4	8
515	Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: Effect of PEG length on antitumor efficacy. Journal of Controlled Release, 2020, 326, 265-275.	4.8	41
516	>Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. International Journal of Nanomedicine, 2020, Volume 15, 4899-4918.	3.3	13
517	Design of Protein Logic Gate System Operating on Lipid Membranes. ACS Synthetic Biology, 2020, 9, 316-328.	1.9	10
518	Nanobioconjugates: Weapons against Antibacterial Resistance. ACS Applied Bio Materials, 2020, 3, 8271-8285.	2.3	14
519	Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics, 2020, 12, 1109.	2.0	10
520	Self-assembly pattern directed sustained release from porous microspheres of discotic tripeptides. Materials Advances, 2020, 1, 3565-3571.	2.6	1
521	Engineered Hybrid Materials with Smart Surfaces for Effective Mitigation of Petroleum-Originated Pollutants. Engineering, 2021, 7, 1492-1503.	3.2	14
522	Activation and Assembly of Plasmonic-Magnetic Nanosurfactants for Encapsulation and Triggered Release. Nano Letters, 2020, 20, 8773-8780.	4.5	18
523	Synthesis and Characterization of Dual-function H2O2-Responsive Nanoparticles for Drug Delivery to Treat Atherosclerosis. Chinese Journal of Analytical Chemistry, 2020, 48, e20149-e20157.	0.9	2
524	Mesoporous silica nanoparticles for cancer theranostic applications. , 2020, , 577-604.		1
525	Keratin-dopamine conjugate nanoparticles as pH/GSH dual responsive drug carriers. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 2318-2330.	1.9	8
526	Use of Ferritin Capped Mesoporous Silica Nanoparticles for Redox and pH Triggered Drug Release In Vitro and In Vivo. Advanced Functional Materials, 2020, 30, 2002043.	7.8	29
527	Micro/nanoparticles fabricated with triblock PLLA-based copolymers containing PEG-like subunit for controlled drug release: Effect of chemical structure and molecular architecture on drug release profile. Polymer Degradation and Stability, 2020, 180, 109306.	2.7	4
528	Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. Journal of Oncology, 2020, 1-16.	0.6	135
529	Materdicine: Interdiscipline of materials and medicine. View, 2020, 1, 20200016.	2.7	22

#	Article	IF	CITATIONS
530	Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS Applied Bio Materials, 2020, 3, 5529-5551.	2.3	21
531	Role of gold nanoparticles in advanced biomedical applications. Nanoscale Advances, 2020, 2, 3764-3787.	2.2	172
532	Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Frontiers in Chemistry, 2020, 8, 647.	1.8	67
533	Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale, 2020, 12, 17931-17946.	2.8	20
534	Biodegradable pH-responsive micelles loaded with 8-hydroxyquinoline glycoconjugates for Warburg effect based tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 317-329.	2.0	22
535	Dimeric prodrug-based nanomedicines for cancer therapy. Journal of Controlled Release, 2020, 326, 510-522.	4.8	73
536	Antibacterial Activity of Manganese Dioxide Nanosheets by ROS-Mediated Pathways and Destroying Membrane Integrity. Nanomaterials, 2020, 10, 1545.	1.9	51
537	Biocompatible smart cellulose nanofibres for sustained drug release via pH and temperature dual-responsive mechanism. Carbohydrate Polymers, 2020, 249, 116876.	5.1	48
538	Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 2020, 327, 316-349.	4.8	236
539	A fluorous biphase drug delivery system triggered by low frequency ultrasound: controlled release from perfluorous discoidal porous silicon particles. Nanoscale Advances, 2020, 2, 3561-3569.	2.2	6
540	Toward Drug Release Using Polymer Mechanochemical Disulfide Scission. Journal of the American Chemical Society, 2020, 142, 14725-14732.	6.6	72
541	Near-Infrared-Controlled Nanoplatform Exploiting Photothermal Promotion of Peroxidase-like and OXD-like Activities for Potent Antibacterial and Anti-biofilm Therapies. ACS Applied Materials & Interfaces, 2020, 12, 50260-50274.	4.0	92
542	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	18.7	109
543	Preparation of Titanium Oxide-Based Nanoparticles Modified with D-(+)-Mannose and Investigation of their Properties As A Potential Drug Carrier. Journal of Cluster Science, 2020, 32, 1241.	1.7	0
544	Ultrasound-Mediated Drug Delivery in Cancer Therapy: A Review. Journal of Nanoscience and Nanotechnology, 2020, 20, 7211-7230.	0.9	22
545	Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics, 2020, 12, 837.	2.0	99
546	Mitochondria-Inspired Nanoparticles with Microenvironment-Adapting Capacities for On-Demand Drug Delivery after Ischemic Injury. ACS Nano, 2020, 14, 11846-11859.	7.3	37
547	Nanocarriers for effective nutraceutical delivery to the brain. Neurochemistry International, 2020, 140, 104851.	1.9	15

#	Article	IF	CITATIONS
548	Inkjet Printing of Synthesized Melanin Nanoparticles as a Biocompatible Matrix for Pharmacologic Agents. Nanomaterials, 2020, 10, 1840.	1.9	5
549	Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles. Biomacromolecules, 2020, 21, 4076-4086.	2.6	8
550	A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. Nanoscale, 2020, 12, 21571-21582.	2.8	8
551	Light: A Magical Tool for Controlled Drug Delivery. Advanced Functional Materials, 2020, 30, 2005029.	7.8	134
552	Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Science China Materials, 2020, 63, 2397-2428.	3.5	56
553	The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 947.	2.0	30
554	Mathematical Model for Estimating Parameters of Swelling Drug Delivery Devices in a Two-Phase Release. Polymers, 2020, 12, 2921.	2.0	14
555	The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors, 2020, 20, 6905.	2.1	23
556	An Intelligent Biomimetic Nanoplatform for Holistic Treatment of Metastatic Triple-Negative Breast Cancer <i>via</i> Photothermal Ablation and Immune Remodeling. ACS Nano, 2020, 14, 15161-15181.	7.3	102
557	Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics, 2020, 12, 1028.	2.0	6
559	Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today, 2020, 21, 100864.	2.3	71
560	Self-Distinguishing and Stimulus-Responsive Carrier-Free Theranostic Nanoagents for Imaging-Guided Chemo-Photothermal Therapy in Small-Cell Lung Cancer. ACS Applied Materials & Interfaces, 2020, 12, 51314-51328.	4.0	22
561	Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. International Journal of Biological Macromolecules, 2020, 158, 994-1006.	3.6	13
562	Redox-Responsive Coordination Polymers of Dopamine-Modified Hyaluronic Acid with Copper and 6-Mercaptopurine for Targeted Drug Delivery and Improvement of Anticancer Activity against Cancer Cells. Polymers, 2020, 12, 1132.	2.0	17
563	Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics, 2020, 5, .	9.9	234
564	Sustained Drug-Releasing Systems Using Temperature-Responsive Injectable Polymers Containing Liposomes. ACS Symposium Series, 2020, , 35-45.	0.5	3
565	The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Advanced Healthcare Materials, 2020, 9, e2000248.	3.9	99
566	Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Applied Nanoscience (Switzerland), 2020, 10, 4951-4964.	1.6	6

#	Article	IF	CITATIONS
567	Enzymatic multifunctional biodegradable polymers for pH- and ROS-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111067.	2.5	20
568	Nanoparticle–hydrogel superstructures for biomedical applications. Journal of Controlled Release, 2020, 324, 505-521.	4.8	117
569	Nanoparticle Arrays Having Directed Hybrid Topology via Covalent Self-Assembly of Iron Oxide and Silica Nanoparticles. ACS Applied Nano Materials, 2020, 3, 5936-5943.	2.4	3
570	Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances, 2020, 10, 19089-19105.	1.7	34
571	Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie, 2020, 132, 17066-17073.	1.6	14
572	Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano, 2020, 14, 7760-7782.	7.3	289
573	Rational Construction of a Mitochondrial Targeting, Fluorescent Self-Reporting Drug-Delivery Platform for Combined Enhancement of Endogenous ROS Responsiveness. ACS Applied Materials & Interfaces, 2020, 12, 32432-32445.	4.0	15
574	Physical triggering strategies for drug delivery. Advanced Drug Delivery Reviews, 2020, 158, 36-62.	6.6	55
575	Dual MicroRNA-Triggered Drug Release System for Combined Chemotherapy and Gene Therapy with Logic Operation. ACS Applied Materials & amp; Interfaces, 2020, 12, 32493-32502.	4.0	35
576	Theranostic applications of smart nanomedicines for tumor-targeted chemotherapy: a review. Environmental Chemistry Letters, 2020, 18, 1509-1527.	8.3	14
577	Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 16918-16925.	7.2	74
578	Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Advances, 2020, 10, 8497-8517.	1.7	18
579	From single to a dual-gene delivery nanosystem: coordinated expression matters for boosting the neovascularization <i>in vivo</i> . Biomaterials Science, 2020, 8, 2318-2328.	2.6	16
580	Stimuli-responsive nanocarriers for drug delivery. , 2020, , 99-121.		4
581	Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers, 2020, 12, 580.	2.0	207
582	Fabrication of Glycoâ€Metalâ€Organic Frameworks for Targeted Interventional Photodynamic/Chemotherapy for Hepatocellular Carcinoma through Percutaneous Transperitoneal Puncture. Advanced Functional Materials, 2020, 30, 1910084.	7.8	52
583	Build 3D Nanoparticles by Using Ultrathin 2D MOF Nanosheets for NIR Light-Triggered Molecular Switching. ACS Applied Materials & Interfaces, 2020, 12, 15573-15578.	4.0	16
584	Progress and perspectives on nanoplatforms for drug delivery to the brain. Journal of Drug Delivery Science and Technology, 2020, 57, 101636.	1.4	13

#	Article	IF	CITATIONS
585	Reduction/Oxidation-Responsive Hierarchical Nanoparticles with Self-Driven Degradability for Enhanced Tumor Penetration and Precise Chemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 18273-18291.	4.0	37
586	Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tipâ€Enhanced Raman Spectroscopy and Force–Distance Curve Based Atomic Force Microscopy. Small, 2020, 16, 1907418.	5.2	9
587	Spherical shape poly(Mâ€POSS) micro/nano hybrid latex particles: Oneâ€step synthesis and characterization. Journal of Applied Polymer Science, 2020, 137, 49241.	1.3	6
588	Bismuthâ€Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Advanced Healthcare Materials, 2020, 9, e1901695.	3.9	39
589	Stem Cell Nanotechnology. Methods in Molecular Biology, 2020, , .	0.4	1
590	Electromagnetic radiation driving of volume changes in nanocomposites made of a thermosensitive hydrogel polymerized around conducting polymer nanoparticles. RSC Advances, 2020, 10, 9155-9164.	1.7	11
591	Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 7149-7159.	2.9	26
592	Self-degrading graphene sheets for tumor therapy. Nanoscale, 2020, 12, 14222-14229.	2.8	17
593	Disulfide based prodrugs for cancer therapy. RSC Advances, 2020, 10, 24397-24409.	1.7	43
594	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	6.2	125
595	Carbosilane dendrimers: Drug and gene delivery applications. Journal of Drug Delivery Science and Technology, 2020, 59, 101879.	1.4	52
596	Multifunctional Ag/polymer composite nanospheres for drug delivery and cell imaging. Journal of Materials Science, 2020, 55, 13995-14007.	1.7	9
597	Simultaneous Delivery of antimiR-21 and Doxorubicin by Graphene Oxide for Reducing Toxicity in Cancer Therapy. ACS Omega, 2020, 5, 14437-14443.	1.6	24
598	Smart Polymeric Systems: A Biomedical Viewpoint. Advances in Experimental Medicine and Biology, 2020, 1298, 133-148.	0.8	3
599	Stimuli-sensitive drug delivery systems. , 2020, , 37-59.		7
600	<p>Development of Drug Dual-Carriers Delivery System with Mitochondria-Targeted and pH/Heat Responsive Capacity for Synergistic Photothermal-Chemotherapy of Ovarian Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 301-313.	3.3	13
601	Autonomous Drug Release Systems with Disease Symptomâ€Associated Triggers. Advanced Intelligent Systems, 2020, 2, 1900124.	3.3	14
602	Photosensitive Hypervalent Fluorinated Sulfur Containing Polymers for Light Sensitive Applications. Journal of Polymer Science, 2020, 58, 787-791.	2.0	0

#	Article	IF	Citations
603	Targeting Superâ€Enhancers via Nanoparticleâ€Facilitated BRD4 and CDK7 Inhibitors Synergistically Suppresses Pancreatic Ductal Adenocarcinoma. Advanced Science, 2020, 7, 1902926.	5.6	35
604	Tuning the PS-b-PAA aggregate morphologies by amines and dyes via liquid/liquid interfacial mass transfer-assisted self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124566.	2.3	1
605	Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. Advanced Materials, 2020, 32, e1903759.	11.1	39
606	Intelligent Cellulose Nanofibers with Excellent Biocompatibility Enable Sustained Antibacterial and Drug Release via a pH-Responsive Mechanism. Journal of Agricultural and Food Chemistry, 2020, 68, 3518-3527.	2.4	40
607	Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer, 2020, 193, 122340.	1.8	18
608	Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chemical Society Reviews, 2020, 49, 1545-1568.	18.7	44
609	Reversible Covalent Assembly of Nanoparticles through On-Surface Diels–Alder Reaction. Langmuir, 2020, 36, 1552-1558.	1.6	7
610	Smart nanogels in cancer therapy. , 2020, , 179-193.		4
611	Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Research Letters, 2020, 15, 13.	3.1	30
612	Differential effects of Nâ€īiO ₂ nanoparticle and its photoâ€activated form on autophagy and necroptosis in human melanoma A375 cells. Journal of Cellular Physiology, 2020, 235, 8246-8259.	2.0	42
613	Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy. Chemical Engineering Journal, 2020, 388, 124253.	6.6	37
614	Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules, 2020, 25, 516.	1.7	64
615	Development of rGO encapsulated polymeric beads as drug delivery system for improved loading and controlled release of doxycycline drug. Drug Development and Industrial Pharmacy, 2020, 46, 462-470.	0.9	9
616	Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Advanced Drug Delivery Reviews, 2020, 163-164, 40-64.	6.6	78
617	Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. Advanced Therapeutics, 2020, 3, 1900136.	1.6	23
618	Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Research, 2020, 13, 511-526.	5.8	45
619	Poly(ionic liquid)-Gated CuCo ₂ S ₄ for pH-/Thermo-Triggered Drug Release and Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2020, 12, 9000-9007.	4.0	23
620	Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. Iranian Polymer Journal (English Edition), 2020, 29, 197-207.	1.3	25

#	Article	IF	CITATIONS
621	Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5267-5279.	2.9	35
622	Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release, 2020, 322, 566-592.	4.8	107
623	Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. Journal of Controlled Release, 2020, 323, 333-349.	4.8	49
624	A Bioresponsive System Based on Mesoporous Organosilica Nanoparticles for Smart Delivery of Fungicide in Response to Pathogen Presence. ACS Sustainable Chemistry and Engineering, 2020, 8, 5716-5723.	3.2	86
625	Strategy to design a smart photocleavable and pH sensitive chitosan based hydrogel through a novel crosslinker: a potential vehicle for controlled drug delivery. RSC Advances, 2020, 10, 14694-14704.	1.7	41
626	Polymersome formation induced by encapsulation of water-insoluble molecules within ABC triblock terpolymers. Polymer Chemistry, 2020, 11, 3446-3452.	1.9	4
627	Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry, 2021, 60, 941-955.	1.2	96
628	Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation. ACS Sensors, 2021, 6, 340-347.	4.0	17
629	Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opinion on Drug Delivery, 2021, 18, 119-138.	2.4	15
630	Nanotechnology-based antiviral therapeutics. Drug Delivery and Translational Research, 2021, 11, 748-787.	3.0	168
631	Magnetic nanoparticle decorated anodic alumina nanotubes for fluorescent detection of cathepsin B. Journal of Colloid and Interface Science, 2021, 584, 236-245.	5.0	14
632	Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomaterials Science, 2021, 9, 38-50.	2.6	52
633	Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. Materials Science and Engineering C, 2021, 118, 111357.	3.8	30
634	Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Progress in Materials Science, 2021, 116, 100742.	16.0	51
635	Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 635-656.	1.9	16
636	Yolk-shell structured Au nanorods@mesoporous silica for gas bubble driven drug release upon near-infrared light irradiation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102326.	1.7	5
637	Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Advanced Functional Materials, 2021, 31, 2008123.	7.8	105
638	Mitochondria‣pecific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Advanced Healthcare Materials, 2021, 10, e2001240.	3.9	42

#	Article	IF	CITATIONS
639	Improved photothermal therapy of brain cancer cells and photogeneration of reactive oxygen species by biotin conjugated gold photoactive nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2021, 215, 112102.	1.7	7
640	Drug‧ponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angewandte Chemie, 2021, 133, 6647-6654.	1.6	2
641	Drug‣ponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2021, 60, 6573-6580.	7.2	11
642	In vivo nano-biosensing element of red blood cell-mediated delivery. Biosensors and Bioelectronics, 2021, 175, 112845.	5.3	20
643	Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046.	6.2	66
644	The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Delivery, 2021, 28, 37-53.	2.5	24
645	Synthesis and evaluation of Poly(N-isopropylacrylamide)-based stimuli-responsive biodegradable carrier with enhanced loading capacity and controlled release properties. Tetrahedron, 2021, 80, 131887.	1.0	2
646	Cryptobiosis-inspired assembly of "AND―logic gate platform for potential tumor-specific drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 534-543.	5.7	8
647	Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano, 2021, 15, 1627-1639.	7.3	62
648	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042.	2.7	99
648 649	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190.	2.7 3.9	99 32
648 649 650	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190. Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111.	2.7 3.9 5.0	99 32 3
648 649 650 651	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190. Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102317.	2.7 3.9 5.0 1.7	99 32 3 16
 648 649 650 651 652 	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190. Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102317. Exploring the effect of silicene monolayer on the structure and function of villin headpiece and amyloid fibrils by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2021, 89, 107-115.	2.7 3.9 5.0 1.7 1.5	99 32 3 16 2
 648 649 650 651 652 653 	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190. Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102317. Exploring the effect of silicene monolayer on the structure and function of villin headpiece and amyloid fibrils by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2021, 89, 107-115. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. Journal of Drug Targeting, 2021, 29, 235-248.	 2.7 3.9 5.0 1.7 1.5 2.1 	 99 32 3 16 2 8
 648 649 650 651 652 653 654 	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190. Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102317. Exploring the effect of silicene monolayer on the structure and function of villin headpiece and amyloid fibrils by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2021, 89, 107-115. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. Journal of Drug Targeting, 2021, 29, 235-248. DNA-Assisted Smart Nanocarriers: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 1942-1951.	2.7 3.9 5.0 1.7 1.5 2.1 7.3	 99 32 3 16 2 8 34
 648 649 650 651 652 653 654 655 	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioengineering and Translational Medicine, 2021, 6, e10190. Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102317. Exploring the effect of silicene monolayer on the structure and function of villin headpiece and amyloid fibrils by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2021, 89, 107-115. Therapeutic advances in cardiac targeted drug delivery: from theory to practice. Journal of Drug Targeting, 2021, 29, 235-248. DNA-Assisted Smart Nanocarriers: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 1942-1951. External stimuli-responsive drug delivery systems. , 2021, , 267-288.	 2.7 3.9 5.0 1.7 1.5 2.1 7.3 	 99 32 3 16 2 8 34 3

#	Article	IF	CITATIONS
657	Preparation and Characterization of pH Sensitive Drug Liposomes. Biomaterial Engineering, 2021, , 385-408.	0.1	0
658	A simple preparation process for an efficient nano-formulation: small molecule self-assembly based on spinosad and sulfamic acid. Green Chemistry, 2021, 23, 4882-4891.	4.6	10
659	Nano-pharmacokinetics: biodistribution and toxicology. , 2021, , 117-152.		0
660	Autonomous <i>In Vivo</i> Computation in Internet of Nano Bio Things. IEEE Internet of Things Journal, 2022, 9, 6134-6147.	5.5	5
661	Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. Drug Design, Development and Therapy, 2021, Volume 15, 9-20.	2.0	31
662	Challenge of diabetes mellitus and researchers' contributions to its control. Open Chemistry, 2021, 19, 614-634.	1.0	Ο
663	Current Advances in Black Phosphorusâ€Based Drug Delivery Systems for Cancer Therapy. Advanced Science, 2021, 8, 2003033.	5.6	70
664	Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules, 2021, 22, 1197-1210.	2.6	21
665	A carrier-free nanoparticle with dual NIR/acid responsiveness by co-assembly of enediyne and IR820 for combined PTT/chemotherapy. Journal of Materials Chemistry B, 2021, 9, 4056-4064.	2.9	8
666	Black phosphorus assisted polyionic micelles with efficient PTX loading for remotely controlled release and synergistic treatment of drug-resistant tumors. Biomaterials Science, 2021, 9, 6108-6115.	2.6	6
667	Photoreversible Loading and Unloading of Q–Silsesquioxane Dynamic Network Sponges. Advanced Functional Materials, 2021, 31, 2010114.	7.8	4
668	Regulation of oligonucleotide adsorption by a thermo and pH dual-responsive copolymer layer. Physical Chemistry Chemical Physics, 2021, 23, 14296-14307.	1.3	3
669	Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. International Journal of Nanomedicine, 2021, Volume 16, 539-560.	3.3	62
670	Mechanochemical bond scission for the activation of drugs. Nature Chemistry, 2021, 13, 131-139.	6.6	152
671	pH, thermo- and stimuli-responsive nanotherapy for tuberculosis. , 2021, , 119-148.		0
672	Biocompatible AlEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics, 2021, 11, 3710-3724.	4.6	26
673	Backbone <i>vs.</i> side-chain: two light-degradable polyurethanes based on 6-nitropiperonal. Polymer Chemistry, 2021, 12, 4565-4575.	1.9	3
674	Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe ₃ O ₄ nanoparticles for controlled drug release and synergistic thermochemotherapy. Polymer Chemistry, 2021, 12, 2132-2140.	1.9	11

ARTICLE IF CITATIONS Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. Matter, 2021, 4, 26-53. 675 5.0 38 MIP as Drug Delivery Systems for Special Application., 2021, , 179-200. 676 Doxorubicin Intracellular Release <i>Via</i> External UV Irradiation of 677 Dextran-<i>g</i>-poly(<i>o</i>-nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS Applied Bio 2.3 9 Materials, 2021, 4, 2742-2751. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular 186 delivery. Science Advances, 2021, 7, . Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano 679 6.2 58 Today, 2021, 36, 101057. Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. Journal of Pharmaceutical Investigation, 2021, 51, 245-280. 680 2.7 Stimulus-responsive nanomaterials containing logic gates for biomedical applications. Cell Reports 681 2.8 19 Physical Science, 2021, 2, 100350. Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. 5.6 96 Advanced Science, 2021, 8, 2004025. PEGylated Active Carbon Nanoparticles with Improved Dispersivity in Water and Potential Application 683 0.8 1 in Lýmphatic Targeted Therapy of Colorectal Cancer. Journal of Náno Research, 0, 66, 85-102. Cargoâ€Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. Advanced 684 1.7 NanoBiomed Research, 2021, 1, 2000078. Nanomedicines accessible in the market for clinical interventions. Journal of Controlled Release, 685 111 4.8 2021, 330, 372-397. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. International 3.3 686 Journal of Nanomedicine, 2021, Volume 16, 1525-1551 Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Frontiers 687 1.3 38 in Oncology, 2021, 11, 623760. Stimuliâ€Responsive Multifunctional Phenylboronic Acid Polymers Via Multicomponent Reactions: From Synthesis to Application. Macromolecular Rapid Communications, 2021, 42, e2100022. 14 Ultrasound-responsive polymer-based drug delivery systems. Drug Delivery and Translational 689 3.0 73 Research, 2021, 11, 1323-1339. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine, 2021, 168 Volume 16, 1681-1706. Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical 691 1.8 27 Implications in Cancer Progression. International Journal of Molecular Sciences, 2021, 22, 3571. Dual pH- and Glutathione-Responsive CO₂-Generating Nanodrug Delivery System for Contrast-Enhanced Ultrasonography and Therapy of Prostate Cancer. ACS Applied Materials & amp; Interfaces, 2021, 13, 12899-12911.

#	Article	IF	CITATIONS
693	Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomaterialia, 2021, 123, 93-109.	4.1	31
694	The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Frontiers in Nanotechnology, 2021, 3, .	2.4	20
695	Ultrasound-triggered herceptin liposomes for breast cancer therapy. Scientific Reports, 2021, 11, 7545.	1.6	49
696	Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Research, 2021, 14, 4417-4441.	5.8	39
697	Photodynamicâ€Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. Advanced Science, 2021, 8, 2002927.	5.6	57
698	Materials for Improving Immune Cell Transfection. Advanced Materials, 2021, 33, e2007421.	11.1	36
699	The embodiment of the strategy of "using active chemicals as excipients―in compound preparation. Journal of Pharmaceutical Investigation, 0, , 1.	2.7	2
700	Red light triggered photodynamic-chemo combination therapy using a prodrug caged by photosensitizer. European Journal of Medicinal Chemistry, 2021, 215, 113251.	2.6	5
701	Adsorption mechanism of Palbociclib anticancer drug on two different functionalized nanotubes as a drug delivery vehicle: A first principle's study. Applied Surface Science, 2021, 546, 149129.	3.1	17
703	Reduction-Responsive Anticancer Nanodrug Using a Full Poly(ethylene glycol) Carrier. ACS Applied Materials & Interfaces, 2021, 13, 19387-19397.	4.0	10
704	Free Radical Polymerization of Gold Nanoclusters and Hydrogels for Cell Capture and Light-Controlled Release. ACS Applied Materials & Interfaces, 2021, 13, 19360-19368.	4.0	29
705	Recent Advances in Stimulusâ€Responsive Nanocarriers for Gene Therapy. Advanced Science, 2021, 8, 2100540.	5.6	60
706	Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials, 2021, 319, 110967.	2.2	23
707	Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics, 2021, 13, 725.	2.0	19
708	Antibacterial composite coatings of MgB2 powders embedded in PVP matrix. Scientific Reports, 2021, 11, 9591.	1.6	11
709	Marriage of Virusâ€Mimic Surface Topology and Microbubbleâ€Assisted Ultrasound for Enhanced Intratumor Accumulation and Improved Cancer Theranostics. Advanced Science, 2021, 8, 2004670.	5.6	13
710	Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers, 2021, 13, 1717.	2.0	74
711	Stimuli-responsive nanoparticles based on poly acrylic derivatives for tumor therapy. International Journal of Pharmaceutics, 2021, 601, 120506.	2.6	14

#	Article	IF	CITATIONS
712	Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer. Acta Biomaterialia, 2021, 126, 421-432.	4.1	14
713	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
714	Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release, 2021, 333, 188-245.	4.8	31
715	Recent progress on biomedical applications of functionalized hollow hydroxyapatite microspheres. Ceramics International, 2021, 47, 13552-13571.	2.3	14
716	Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacology and Translational Science, 2021, 4, 1028-1049.	2.5	39
717	Smart Stimuli-Responsive and Mitochondria Targeting Delivery in Cancer Therapy. International Journal of Nanomedicine, 2021, Volume 16, 4117-4146.	3.3	14
718	Stimuliâ€Responsive AlEgens. Advanced Materials, 2021, 33, e2008071.	11.1	178
719	Stimuli-responsive size-changeable strategy for cancer theranostics. Nano Today, 2021, 38, 101208.	6.2	27
720	Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. Nanomaterials, 2021, 11, 1656.	1.9	27
721	Self-assembly of the Thermosensitive and pH-Sensitive Pentablock Copolymer PNIPAM <i>_x</i> - <i>b</i> -P(<i>t</i> BA- <i>co</i> -AA) ₉₀ - <i>b</i> -PPO ₃₆ -< Dilute Aqueous Solutions. Macromolecules, 2021, 54, 6489-6501.	i> b. 2/i>-P(<iɒt< i="">BA</iɒt<>
722	Nanoscale pathogens treated with nanomaterial-like peptides: aÂplatform technology appropriate for future pandemics. Nanomedicine, 2021, 16, 1237-1254.	1.7	10
723	Maize tissue culture, transformation, and genome editing. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 653.	0.9	8
724	Intellective and stimuli-responsive drug delivery systems in eyes. International Journal of Pharmaceutics, 2021, 602, 120591.	2.6	28
725	Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707319.	2.0	53
726	Photoactive Lanthanideâ€Based Upconverting Nanoclusters for Antimicrobial Applications. Advanced Functional Materials, 2021, 31, 2104480.	7.8	31
727	The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Delivery and Translational Research, 2022, 12, 1306-1325.	3.0	21
728	Activating caspase-8/Bid/ROS signaling to promote apoptosis of breast cancer cells by folate-modified albumin baicalin-loaded nanoparticles. Nanotechnology, 2022, 33, 435101.	1.3	6
720	Reduction and temperature dually-triggered size-shrinkage and drug release of micelles for	2.6	7

#	Article	IF	Citations
730	Encapsulation and pH-responsive release of bortezomib by dopamine grafted hyaluronate nanogels. International Journal of Biological Macromolecules, 2021, 183, 369-378.	3.6	11
731	DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers, 2021, 13, 3396.	1.7	46
732	Insight into chitosan derived nanotherapeutics for anticancer drug delivery and imaging. European Polymer Journal, 2021, 154, 110540.	2.6	13
733	Obstacles impeding the development of nanocarriers for anticancer drugs. Nanomedicine, 2021, 16, 1447-1450.	1.7	0
734	Backbone-Degradable (Co-)Polymers for Light-Triggered Drug Delivery. ACS Applied Polymer Materials, 2021, 3, 3831-3842.	2.0	9
735	The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sciences, 2021, 277, 119400.	2.0	7
736	Stimuli-responsive PEGylated nanoparticulate systems for the treatment of cervical cancer. Materials Technology, 0, , 1-9.	1.5	0
737	Hollow structures as drug carriers: Recognition, response, and release. Nano Research, 2022, 15, 739-757.	5.8	28
738	Neutrophil Delivered Hollow Titania Covered Persistent Luminescent Nanosensitizer for Ultrosound Augmented Chemo/Immuno Glioblastoma Therapy. Advanced Science, 2021, 8, e2004381.	5.6	41
739	Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Advanced Drug Delivery Reviews, 2021, 178, 113907.	6.6	46
740	Smart Drug-Delivery Systems in the Treatment of Rheumatoid Arthritis: Current, Future Perspectives. , 0, , .		0
741	Magnetic microspheres based on pectin coated by chitosan towards smart drug release. Carbohydrate Polymers, 2021, 265, 118013.	5.1	41
742	Black phosphorus nanosheet-based new drug delivery system for the anticancer agents: A review. GSC Biological and Pharmaceutical Sciences, 2021, 16, 014-027.	0.1	2
743	Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. International Journal of Molecular Sciences, 2021, 22, 8537.	1.8	29
744	pH-tunable nanoparticles composed of copolymers of lactide and allyl-glycidyl ether with various functionalities for the efficient delivery of anti-cancer drugs. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111801.	2.5	7
745	Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. Journal of Controlled Release, 2021, 336, 354-374.	4.8	30
746	Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1221-1239.	1.8	3
747	Applications of nanomaterials in COVID-19 pandemic. Rare Metals, 2022, 41, 1-13.	3.6	13

#	Article	IF	CITATIONS
748	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657
749	Thermoresponsive chimeric nanocarriers as drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112141.	2.5	5
750	Fabrication of Mesoporous SiO2@CaSiO3 Hollow Spheres as Carriers for pH-sensitive Drug Delivery. Chemical Research in Chinese Universities, 2022, 38, 999-1004.	1.3	8
751	Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Research, 2022, 15, 2157-2176.	5.8	7
752	Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. Journal of Nanostructure in Chemistry, 2022, 12, 919-932.	5.3	18
753	Nanocarrier-Mediated Delivery of miRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions. ACS Agricultural Science and Technology, 2021, 1, 417-435.	1.0	37
754	Recent progress and strategies for precise framework structure-enabled drug delivery systems. Materials Today Sustainability, 2021, 13, 100065.	1.9	5
755	Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Frontiers in Bioengineering and Biotechnology, 2021, 9, 694635.	2.0	14
756	Metabolizable pH/H2O2 dual-responsive conductive polymer nanoparticles for safe and precise chemo-photothermal therapy. Biomaterials, 2021, 277, 121115.	5.7	15
757	Preparation and evaluation of folate-modified albumin baicalin-loaded nanoparticles for the targeted treatment of breast cancer. Journal of Drug Delivery Science and Technology, 2021, 65, 102603.	1.4	12
758	Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT - Food Science and Technology, 2021, 150, 112008.	2.5	21
759	Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosensors and Bioelectronics, 2021, 189, 113384.	5.3	9
760	Biocompatible Eu doped mesoporous calcium silicate nanospheres for pH-responsive drug release. Inorganic Chemistry Communication, 2021, 133, 108872.	1.8	3
761	Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. Journal of Drug Delivery Science and Technology, 2021, 66, 102790.	1.4	18
762	An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy. Journal of Colloid and Interface Science, 2021, 603, 783-798.	5.0	10
763	A feasible strategy of fabricating hybrid drugs co-loaded polymer-lipid nanoparticles for the treatment of nasopharyngeal cancer therapy. Process Biochemistry, 2021, 111, 78-86.	1.8	1
764	Multifunctional photo-responsive liposomes for tumor imaging and phototherapy to enhance the antitumor efficacy and reduce the hepatotoxicity of methotrexate. Dyes and Pigments, 2021, 196, 109790.	2.0	3
765	Hybrid thermoresponsive nanoparticles containing drug nanocrystals for NIR-triggered remote release. Journal of Colloid and Interface Science, 2022, 607, 1466-1477.	5.0	3

#	Article	IF	CITATIONS
766	Brain-targeted gene delivery of ZnO quantum dots nanoplatform for the treatment of Parkinson disease. Chemical Engineering Journal, 2022, 429, 132210.	6.6	15
767	Vesicle Delivery Systems of Biologically Active Compounds: From Liposomes to Cerasomes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2021, 15, 21-35.	0.3	0
768	Smart drug delivery systems of natural products for inflammation: From fundamentals to the clinic. , 2021, , 261-282.		0
769	When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. Journal of Materials Chemistry B, 2021, 9, 3967-3982.	2.9	22
770	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
771	Surface-Modified Noble Metal Nanoparticles as Antimicrobial Agents: Biochemical, Molecular and Therapeutic Perspectives. Environmental and Microbial Biotechnology, 2021, , 165-205.	0.4	4
772	Metal-phenolic networks for cancer theranostics. Biomaterials Science, 2021, 9, 2825-2849.	2.6	45
773	Tumor Microenvironment and Intracellular Signal-Activated Nanocomposites for Anticancer Drug Delivery. Materials Horizons, 2021, , 167-200.	0.3	1
774	Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Therapeutic Delivery, 2021, 12, 21-36.	1.2	35
775	Nanotechnology as an Emerging Field in the Arena of Medicine. Advances in Chemical and Materials Engineering Book Series, 2021, , 106-115.	0.2	0
776	Stimuli-responsive biopolymeric systems for drug delivery to cancer cells. , 2021, , 663-704.		0
778	Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Delivery, 2021, 28, 272-284.	2.5	36
779	Polymeric-Ceramic Nanocomposites Toxicity. , 2021, , 723-742.		0
780	A chemical circular communication network at the nanoscale. Chemical Science, 2021, 12, 1551-1559.	3.7	20
781	Conductive and Tough Smart Poly(<i>N</i> â€isopropylacrylamide) Hydrogels Hybridized by Green Deep Eutectic Solvent. Macromolecular Chemistry and Physics, 2021, 222, .	1.1	17
782	Remotely Triggered Nanotheranostics. Bioanalysis, 2019, , 429-460.	0.1	4
783	Nanoparticle-Mediated Plant Gene Transfer for Precision Farming and Sustainable Agriculture. , 2019, , 263-284.		2
784	Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomaterialia, 2019, 93, 222-238.	4.1	101

#	Article	IF	CITATIONS
785	Membrane-core nanoparticles for cancer nanomedicine. Advanced Drug Delivery Reviews, 2020, 156, 23-39.	6.6	53
786	ROS-responsive drug delivery systems for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2018, 13, 101-112.	4.3	153
787	Cationic, Anionic, and Amphoteric Dual pH/Temperature-Responsive Degradable Microgels via Self-Assembly of Functionalized Oligomeric Precursor Polymers. Macromolecules, 2021, 54, 351-363.	2.2	15
788	Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 2577-2587.	2.3	25
789	Triggered Small-Molecule Release from Dual-Stimuli Responsive Microgels. ACS Applied Polymer Materials, 2021, 3, 410-417.	2.0	9
790	Redox-responsive Drug Delivery Systems. Biomaterials Science Series, 2018, , 109-144.	0.1	1
791	Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B, 2020, 8, 2951-2973.	2.9	126
792	Facile synthesis of redox-responsive paclitaxel drug release platform using metal-organic frameworks (ZIF-8) for gastric cancer treatment. Materials Research Express, 2020, 7, 095402.	0.8	9
793	Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma. Medical Science Monitor, 2019, 25, 9737-9751.	0.5	22
794	Fast Dissolving Sublingual Strips: A Novel Approach for the Delivery of Isosorbide Dinitrate. Pharmaceutical Sciences, 2019, 25, 311-318.	0.1	4
795	Enzyme-Instructed Self-assembly in Biological Milieu for Theranostics Purpose. Current Medicinal Chemistry, 2019, 26, 1351-1365.	1.2	6
796	Stimuli-responsive Drug Delivery Nanocarriers in the Treatment of Breast Cancer. Current Medicinal Chemistry, 2020, 27, 2494-2513.	1.2	20
797	The Design and Application of Nanomaterials as Drug Carriers in Cancer Treatment. Current Medicinal Chemistry, 2020, 27, 6112-6135.	1.2	6
798	Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers. Current Cancer Therapy Reviews, 2020, 16, 306-319.	0.2	5
799	Protein Binding Effects of Dopamine Coated Titanium Dioxide Shell Nanoparticles. Precision Nanomedicine, 2019, 2, 393-438.	0.4	5
800	Smart Nanotheranostics Responsive to Pathological Stimuli. Frontiers in Bioengineering and Biotechnology, 2020, 8, 503.	2.0	22
801	Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers, 2021, 13, 26.	2.0	34
802	Nanomedicines: Recent Progress, Impact and Challenges in Applications. Asian Journal of Chemistry, 2021, 33, 2561-2578.	0.1	0

#	Article	IF	CITATIONS
803	Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Advanced Materials, 2022, 34, e2103790.	11.1	81
804	Achieving an electron transfer photochromic complex for switchable white-light emission. Chinese Chemical Letters, 2022, 33, 3203-3206.	4.8	6
805	Review on Microstructural and Ion onductivity Properties of Biodegradable Starchâ€Based Solid Polymer Electrolyte Membranes. Starch/Staerke, 2022, 74, .	1.1	4
806	Amphotericin-B-loaded polymer-functionalized reduced graphene oxides for Leishmania amazonensis chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112169.	2.5	6
807	Precise Subcellular Organelle Targeting for Boosting Endogenousâ€6timuliâ€Mediated Tumor Therapy. Advanced Materials, 2021, 33, e2101572.	11.1	47
808	Stimulus-Responsive Smart Nanoparticles-Based CRISPR-Cas Delivery for Therapeutic Genome Editing. International Journal of Molecular Sciences, 2021, 22, 11300.	1.8	13
809	Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science, 2021, 123, 101472.	11.8	77
810	Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano, 2021, 15, 17080-17123.	7.3	73
811	Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Advanced Drug Delivery Reviews, 2021, 179, 113997.	6.6	35
812	Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Advanced Drug Delivery Reviews, 2021, 179, 114006.	6.6	39
813	Bilayer degradation in reactive environments. AIMS Biophysics, 2016, 4, 33-42.	0.3	0
814	Nanogels for Biomedical Applications: Challenges and Prospects. RSC Smart Materials, 2017, , 290-300.	0.1	0
815	In vitro evaluation of photodynamic therapy using redox-responsive nanoparticles carrying PpIX. , 2018, , .		1
816	Parenteral Controlled and Prolonged Drug Delivery Systems: Therapeutic Needs and Formulation Strategies. , 2019, , 183-260.		1
817	Computational Methodologies for Exploring Nano-engineered Materials. , 2019, , 57-79.		0
818	Glutathione and pH serial responsive functional mesoporous silica nanoparticles for drug delivery. Micro and Nano Letters, 2020, 15, 291-295.	0.6	3
819	Microfluidicâ€Generated Biopolymer Microparticles as Cargo Delivery Systems. Advanced Materials Technologies, 2022, 7, 2100733.	3.0	3
820	Comparison of theoretical effects of encapsulation floxuridine anticancer drug with boron nitride nanotube and carbon nanotube with NBO and QTAIM studies. Medical Sciences Journal, 2020, 30, 363-375.	0.1	0

CITAT	1011	DEDODT
	10N	KFF()KI
011/11		

#	Article	IF	CITATIONS
821	Enhanced cancer treatment by an acid-sensitive cytotoxic peptide-doxorubicin conjugate. Journal of Drug Delivery Science and Technology, 2020, 60, 102048.	1.4	4
822	Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance. , 2020, 3, 302-333.		4
823	Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chemical Science, 2021, 13, 39-43.	3.7	22
824	Polymeric-Ceramic Nanocomposites Toxicity. , 2020, , 1-20.		0
825	Combining Nanoparticles with Colloidal Bubbles: A Short Review. Methods in Molecular Biology, 2020, 2118, 383-393.	0.4	1
826	Enzyme-responsive nanocontainer for small molecule delivery. , 2020, , 217-227.		0
827	Magnetic Resonance Imaging-Guided Multi-Stimulus-Responsive Drug Delivery Strategy for Personalized and Precise Cancer Treatment. ACS Applied Materials & Interfaces, 2021, 13, 50716-50732.	4.0	9
828	A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids, 2022, 348, 118008.	2.3	50
829	Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. ACS Applied Bio Materials, 2021, 4, 7979-7992.	2.3	14
830	Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Molecular Pharmaceutics, 2021, 18, 4531-4542.	2.3	2
831	Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Advanced Drug Delivery Reviews, 2022, 180, 114029.	6.6	9
832	Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.78	4 310 4 rgBT	- /Øverlock
833	Combined Approach of Ligand Targeted and Stimuli-triggered Nanocarriers: a State-of-the-art Strategy for Cancer Treatment. Iranian Journal of Pharmaceutical Research, 2017, 16, 411-412.	0.3	0
834	Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Organic and Biomolecular Chemistry, 2022, 20, 749-767.	1.5	9
835	Cutting-edge polymer/graphene nanocomposites for biomedical applications. , 2022, , 245-268.		0
836	Recent advances in biological applications of nanomaterials through defect engineering. Science of the Total Environment, 2022, 816, 151647.	3.9	4
837	pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology, 2022, 70, 102987.	1.4	23
838	Functional Nanomedicines for Targeted Therapy of Bladder Cancer. Frontiers in Pharmacology, 2021, 12, 778973.	1.6	17

# 839	ARTICLE Smart Nanotherapeutics and Lung Cancer. Pharmaceutics, 2021, 13, 1972.	IF 2.0	Citations 28
840	Biodegradable AuNP-Based Plasmonic Nanogels as Contrast Agents for Computed Tomography and Photoacoustics. Methods in Molecular Biology, 2022, 2393, 773-796.	0.4	1
841	Magnetically Directed Co-nanoinitiators for Cross-Linking Adhesives and Enhancing Mechanical Properties. ACS Applied Materials & Interfaces, 2021, 13, 57851-57863.	4.0	2
842	In Vitro Biosensing Using Micro-/Nanomachines. , 2022, , 243-268.		3
843	Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small, 2022, 18, e2104772.	5.2	3
844	Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics, 2021, 13, 2033.	2.0	11
845	Design of a Spiropyran-Based Smart Adsorbent with Dual Response: Focusing on Highly Efficient Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2021, 13, 55806-55814.	4.0	21
846	Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. Langmuir, 2022, 38, 5135-5148.	1.6	5
847	Smart biomaterial-based systems for intrinsic stimuli-responsive chronic wound management. Materials Today Chemistry, 2021, 22, 100623.	1.7	14
848	Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112257.	2.5	9
849	Stimuli-Responsive Polymers for Transdermal, Transmucosal and Ocular Drug Delivery. Pharmaceutics, 2021, 13, 2050.	2.0	16
851	Study on magnetic thermal seeds coated with thermal-responsive molecularly imprinted polymers. Nanocomposites, 2021, 7, 215-225.	2.2	1
852	Effect of the disulfide bond and polyethylene glycol on the degradation and biophysicochemical properties of polyurethane micelles. Biomaterials Science, 2022, 10, 794-807.	2.6	10
853	Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polymer Bulletin, 2022, 79, 10595-10613.	1.7	19
854	Effects of scattering on ultrasound wave transmission through bioinspired scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105065.	1.5	4
855	Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry, 2022, 23, 100746.	1.7	42
856	Upper critical solution temperature polymeric drug carriers. Chemical Engineering Journal, 2022, 432, 134354.	6.6	21
857	Bioresponsive nanogels for protein delivery. View, 2022, 3, .	2.7	26

#	Article	IF	CITATIONS
858	An overview of stimuli-responsive nanocarriers: State of the art. , 2022, , 1-27.		1
859	Environmental stimuli-sensitive chitosan nanocarriers in therapeutics. , 2022, , 189-209.		Ο
860	Vesicular nanocarrier based stimuli-responsive drug delivery systems. , 2022, , 61-86.		1
861	pH-redox responsive polymer-doxorubicin prodrug micelles studied by molecular dynamics, dissipative particle dynamics simulations and experiments. Journal of Drug Delivery Science and Technology, 2022, 69, 103136.	1.4	3
862	Near-Infrared Light-Triggered Generation of Reactive Oxygen Species and Induction of Local Hyperthermia from Indocyanine Green Encapsulated Mesoporous Silica-Coated Graphene Oxide for Colorectal Cancer Therapy. Antioxidants, 2022, 11, 174.	2.2	6
863	Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS Applied Bio Materials, 2022, 5, 413-437.	2.3	6
865	Injectable and pH-responsive self-assembled peptide hydrogel for promoted tumor cell uptake and enhanced cancer chemotherapy. Biomaterials Science, 2022, 10, 854-862.	2.6	31
866	Nanotechnology for cancer theranostics. , 2022, , 19-36.		0
867	Photoresponsive behaviour of zwitterionic polymer particles with photodimerizable groups on their surfaces. Journal of Materials Chemistry B, 2022, 10, 2637-2648.	2.9	11
868	Silica-Based Stimuli-Responsive Systems for Antitumor Drug Delivery and Controlled Release. Pharmaceutics, 2022, 14, 110.	2.0	18
869	Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview. Biological Trace Element Research, 2022, 200, 5307-5327.	1.9	22
870	Thermoactive Smart Electrospun Nanofibers. Macromolecular Rapid Communications, 2022, 43, e2100694.	2.0	14
871	Nano logic gates based on gold nanoparticles- carbon dots hybrid and its FLIM imaging. , 2022, , .		0
872	A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene Delivery with Reduced Off-Target Effects. Pharmaceutics, 2022, 14, 373.	2.0	8
873	Microgels as drug carriers for sonopharmacology. Journal of Polymer Science, 2022, 60, 1864-1870.	2.0	18
874	Efficient Luminogens with Aie Features for Simultaneous Dual Applications of "Light Up―Capturing and Killing Capability to Combat Drug-Resistant Bacteria. SSRN Electronic Journal, 0, , .	0.4	1
875	Hydrazon Modified Nanoscale Metal-Organic Frameworks as Ph Responsive Nanoparticles for Cancer Therapy. SSRN Electronic Journal, 0, , .	0.4	0
876	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	4.6	44

#	Article	IF	CITATIONS
877	Preparation of double-layered nanosheets containing pH-responsive polymer networks in the interlayers and their conversion into single-layered nanosheets through the cleavage of cross-linking points. Dalton Transactions, 2022, 51, 6264-6274.	1.6	1
878	Engineered titania nanomaterials in advanced clinical applications. Beilstein Journal of Nanotechnology, 2022, 13, 201-218.	1.5	8
879	Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics, 2022, 14, 421.	2.0	21
880	Anchoring Pd nanoparticles on hollow CuS nanoparticles for enhanced NIR induced photothermal effects for chemotherapeutic drug delivery and gastric cancer treatment. Ceramics International, 2022, 48, 16085-16090.	2.3	5
881	Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews, 2022, 9, .	5.5	50
882	Designable Microâ€∕Nanoâ€Structured Smart Polymeric Materials. Advanced Materials, 2022, 34, e2107877.	11.1	41
883	Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Materials Today Bio, 2022, 14, 100223.	2.6	99
884	Significance of Polymers with "Allyl―Functionality in Biomedicine: An Emerging Class of Functional Polymers. Pharmaceutics, 2022, 14, 798.	2.0	5
885	Stimuliâ€Responsive Pickering Emulsions Regulated via Polymerizationâ€Induced Selfâ€Assembly Nanoparticles. Macromolecular Rapid Communications, 2022, 43, e2200010.	2.0	13
	The study of Letrozole adsorption upon CCT nanotube: A DET/TD-DET and spectroscopic (excited states) Ti ETO01	1 0 7843	14 rgBT /Ov
886		0.4	C .
886 887	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957.	1.8	8
886 887 888	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029.	1.8 1.4	8
886 887 888 890	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029. Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo- dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373.	1.8 1.4 6.6	8 3 12
886 887 888 890 891	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029. Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo- dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373. Design of Smart Sizeâ€, Surfaceâ€, and Shapeâ€6witching Nanoparticles to Improve Therapeutic Efficacy. Small, 2022, 18, e2104632.	1.8 1.4 6.6 5.2	8 3 12 33
886 887 888 890 891 892	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029. Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo- dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373. Design of Smart Sizeâ€; Surfaceâ€; and Shapeâ€&witching Nanoparticles to Improve Therapeutic Efficacy. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Letters, 2022, 11, 15-19.	1.8 1.4 6.6 5.2 2.3	8 3 12 33 12
886 887 888 890 891 892 893	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029. Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo- dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373. Design of Smart Sizeâ&; Surfaceâ&; and Shapeâ&Ewitching Nanoparticles to Improve Therapeutic Efficacy. Small, 2022, 18, e2104632. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Letters, 2022, 11, 15-19. Near-infrared light-triggered nano-prodrug for cancer gas therapy. Journal of Nanobiotechnology, 2021, 19, 443.	1.8 1.4 6.6 5.2 2.3 4.2	8 3 12 33 12 31
886 887 888 890 891 891 892 893 893	Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. Journal of Chromatography A, 2022, 1670, 462957. Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029. Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo-dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373. Design of Smart Sizeâ&; Surfaceâ&; and Shapeâ&&witching Nanoparticles to Improve Therapeutic Efficacy. Small, 2022, 18, e2104632. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Letters, 2022, 11, 15-19. Near-infrared light-triggered nano-prodrug for cancer gas therapy. Journal of Nanobiotechnology, 2021, 19, 443. Investigations on the influence of the structural flexibility of nanoliposomes on their properties. Journal of Liposome Research, 2022, 32, 92-103.	 b.4.7013 1.8 1.4 6.6 5.2 2.3 4.2 1.5 	8 3 12 33 12 31 7

		CITATION REPORT		
#	Article		IF	CITATIONS
896	Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules,	2022, 27, 146.	1.7	58
897	Application of "smart―multifunctional nanoprobes in tumor diagnosis and treatm Materials Chemistry B, 2022, 10, 3601-3613.	ient. Journal of	2.9	4
898	Polymersomes Based Versatile Nanoplatforms for Controlled Drug Delivery and Imagin Pharmaceutical Bulletin, 2023, 13, 218-232.	g. Advanced	0.6	3
899	Dual Responsive poly(vinyl caprolactam)-Based Nanogels for Tunable Intracellular Doxo Delivery in Cancer Cells. Pharmaceutics, 2022, 14, 852.	prubicin	2.0	12
900	Recent Advancement of Polymersomes as Drug Delivery Carrier. Current Pharmaceutic 28, 1621-1631.	al Design, 2022,	0.9	1
901	pH/Redox/Lysozyme-Sensitive Hybrid Nanocarriers With Transformable Size for Multist Delivery. Frontiers in Bioengineering and Biotechnology, 2022, 10, 882308.	age Drug	2.0	2
902	Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transpo Nanomaterials, 2022, 12, 1376.	ortation.	1.9	9
903	Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Advanced D Reviews, 2022, 185, 114300.	Drug Delivery	6.6	19
904	Cell-Regulated Hollow Sulfur Nanospheres with Porous Shell: A Dual-Responsive Carrier Sustained Drug Release. ACS Sustainable Chemistry and Engineering, 2022, 10, 5138-	r for 5147.	3.2	2
905	Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach. Journal of Bi 2022, 350, 17-23.	iotechnology,	1.9	4
906	Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics ⁻ Bacterial Resistance. Biomacromolecules, 2022, 23, 1873-1891.	To Overcome	2.6	16
907	NIR-II-Responsive CeO _{2–<i>x</i>} @HA Nanotheranostics for Photoacou Sonodynamic-Enhanced Synergistic Phototherapy. Langmuir, 2022, 38, 5502-5514.	stic Imaging-Guided	1.6	13
908	Novel magnetic carboxymethylcellulose/chitosan bioâ€nanocomposites for smart coâ€ sunitinib malate anticancer compound and saffron extract. Polymer International, 202	edelivery of 2, 71, 1243-1251.	1.6	10
909	Polymer nanoparticles (nanomedicine) for therapeutic applications. , 2022, , 71-123.			0
910	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatmer Chemical Letters, 2023, 34, 107518.	nt. Chinese	4.8	124
911	Responsive Hydrogels Based on Triggered Click Reactions for Liver Cancer. Advanced N 34, e2201651.	Naterials, 2022,	11.1	28
912	Cancer cell uptake and distribution of oxanorbornane-based synthetic lipids and their p novel drug delivery systems. Journal of Drug Delivery Science and Technology, 2022, 7	prospects as 3, 103439.	1.4	1
913	Molecular Modeling of Nanoparticles. , 2022, , 681-703.			2

# 914	ARTICLE Nano-biosensors for Plant Biomass: Concept and Applications. , 2022, , 199-221.	IF	CITATIONS
915	Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics, 2022, 14, 1132.	2.0	15
916	Nanomedicines: A Focus on Nanomaterials as Drug Delivery System with Current Trends and Future Advancement. Drug Research, 2022, 72, 355-366.	0.7	2
917	Hydrogelated Virus Nanoparticles in Tissue Engineering. Current Nanoscience, 2022, 18, .	0.7	0
918	Application of vinyl polymerâ€based materials as nucleic acids carriers in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	3.3	0
919	Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chemical Society Reviews, 2022, 51, 5330-5350.	18.7	50
920	Design and Use of a Gold Nanoparticle–Carbon Dot Hybrid for a FLIM-Based IMPLICATION Nano Logic Gate. ACS Omega, 2022, 7, 22818-22824.	1.6	5
921	Photosensitive pro-drug nanoassemblies harboring a chemotherapeutic dormancy function potentiates cancer immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 879-896.	5.7	10
922	pH/Thermal-Sensitive Nanoplatform Capable of On-Demand Specific Release to Potentiate Drug Delivery and Combinational Hyperthermia/Chemo/Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 29668-29678.	4.0	19
923	Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science, 2022, 131, 101578.	11.8	12
924	Preparation and application of pH-responsive drug delivery systems. Journal of Controlled Release, 2022, 348, 206-238.	4.8	99
925	Dissociation of polymeric micelle under hemodynamic shearing. Nano Today, 2022, 45, 101517.	6.2	4
926	Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. National Science Review, 2022, 9, .	4.6	11
927	Nanotechnological strategies for prostate cancer imaging and diagnosis. Science China Chemistry, 2022, 65, 1498-1514.	4.2	8
928	A <scp>Pd₂L₄ Metallacage ored</scp> Supramolecular Amphiphile and Its Application in <scp>Dualâ€Responsive</scp> Controllable Release ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2421-2427.	2.6	1
929	Thermo- and Light-Responsive Polymer-Coated Magnetic Nanoparticles as Potential Drug Carriers. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
930	pHâ€Responsive Pt@mSiO ₂ @CaP Core–Shell Nanoplatforms for Synergistic Chemo―and Photothermal Therapy. Particle and Particle Systems Characterization, 0, , 2200097.	1.2	0
931	Nanoplatformâ€Based Reactive Oxygen Species Scavengers for Therapy of Ischemiaâ€Reperfusion Injury. Advanced Therapeutics, 2022, 5,	1.6	9

#	Article	IF	CITATIONS
932	Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. European Polymer Journal, 2022, 177, 111432.	2.6	15
933	In vivo computation with sensor fusion and search acceleration for smart tumor homing. Computers in Biology and Medicine, 2022, 148, 105887.	3.9	0
934	Carbon-based nanomaterials in gene therapy. OpenNano, 2022, 7, 100062.	1.8	17
935	Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels, 2022, 8, 454.	2.1	54
936	Nanoparticle-Based Therapeutics to Overcome Obstacles in the Tumor Microenvironment of Hepatocellular Carcinoma. Nanomaterials, 2022, 12, 2832.	1.9	2
937	Bone tissue growth in ultrasonically stimulated bioinspired scaffolds. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26, 1134-1139.	0.9	1
938	Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. Journal of Nanobiotechnology, 2022, 20, .	4.2	13
939	An overview of the intracellular localization of high-Z nanoradiosensitizers. Progress in Biophysics and Molecular Biology, 2022, 175, 14-30.	1.4	6
940	Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio, 2022, 16, 100407.	2.6	9
941	Drug release behaviors of flexible SiO ₂ â€polyvinyl pyrrolidone electrospun membranes responsive to multiple stimuli. Journal of Applied Polymer Science, 0, , .	1.3	1
942	Research progress of bone-targeted drug delivery system on metastatic bone tumors. Journal of Controlled Release, 2022, 350, 377-388.	4.8	10
943	Separation and recovery of Th(IV) from rare earth and other cation solutions using pH-responsive ionic liquids at high acidity condition of 1ÂM HNO3. Hydrometallurgy, 2022, 214, 105953.	1.8	10
944	pH-Sensitive nanocarrier assisted delivery of adenosine to treat osteoporotic bone loss. Biomaterials Science, 2022, 10, 5340-5355.	2.6	4
945	Self-assembly micelles with pH/ROS dual responsive and mitochondrial targeting for potential anti-tumor. New Journal of Chemistry, 0, , .	1.4	1
946	Application of Stimuli-Responsive Polymers in Cancer Therapy. , 2022, , 909-922.		0
947	Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. Nanoscale, 2022, 14, 12984-12998.	2.8	13
948	Targeted and Responsive Biomaterials for Osteoarthritis Therapy. SSRN Electronic Journal, 0, , .	0.4	0
949	Polymeric micelles for oral drug delivery. , 2022, , 89-113.		0

#	Article	IF	CITATIONS
950	Colon Targeted Delivery of Mesalamine and Bifidobacterium Bifidum Loaded Hydrogel Beads for the Management of Ulcerative Colitis. SSRN Electronic Journal, 0, , .	0.4	0
951	Current Advances in Nano-Based and Polymeric Stimuli-Responsive Drug Delivery Targeting the Ocular Microenvironment: A Review and Envisaged Future Perspectives. Polymers, 2022, 14, 3580.	2.0	5
952	Reconstitution of microtubule into GTP-responsive nanocapsules. Nature Communications, 2022, 13, .	5.8	8
953	Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of Hematology and Oncology, 2022, 15, .	6.9	93
954	Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. Journal of Nanobiotechnology, 2022, 20, .	4.2	19
956	Nanotechnology-based approaches in diagnosis and treatment of epilepsy. Journal of Nanoparticle Research, 2022, 24, .	0.8	1
957	Targeted Therapy of Ischemic Stroke via Crossing the Blood–Brain Barrier Using Edaravone-Loaded Multiresponsive Microgels. ACS Applied Bio Materials, 0, , .	2.3	1
959	Recent Progress of Smart Nano-Based Biosensors and their Applications in Biomedicine. Nano, 2022, 17,	0.5	2
960	Silicon nanostructures and nanocomposites for antibacterial and theranostic applications. Sensors and Actuators A: Physical, 2022, 347, 113912.	2.0	4
961	Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex <i>In Vitro</i> and <i>In Vivo</i> . Molecular Pharmaceutics, 2022, 19, 4179-4190.	2.3	6
962	Adsorption of Diethylstilbestrol Drug into BNNT: DFT/TD-DFT and Spectroscopic (Excited States, UV/Vis) Tj ETQq	0.0 rgBT	/Overlock 10
963	Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies. International Journal of Molecular Sciences, 2022, 23, 12563.	1.8	3
964	Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Frontiers in Pharmacology, 0, 13, .	1.6	3
965	Antioxidant, Enzyme, and H2O2-Triggered Melanoma Targeted Mesoporous Organo-Silica Nanocomposites for Synergistic Cancer Therapy. Antioxidants, 2022, 11, 2137.	2.2	1
966	Gold Nanoparticle-Incorporated Chitosan Nanogels as a Theranostic Nanoplatform for CT Imaging and Tumour Chemotherapy. International Journal of Nanomedicine, 0, Volume 17, 4757-4772.	3.3	4
967	Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. World Chinese Journal of Digestology, 2022, 30, 829-837.	0.0	0
968	Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opinion on Drug Delivery, 2022, 19, 1449-1470.	2.4	16
969	Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials, 2022, 12, 3567.	1.9	14

#	Article	IF	CITATIONS
970	Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics, 2022, 14, 2195.	2.0	32
971	Ultrasound Responsive Smart Implantable Hydrogels for Targeted Delivery of Drugs: Reviewing Current Practices. International Journal of Nanomedicine, 0, Volume 17, 5001-5026.	3.3	7
972	Therapeutic Effect of Polymeric Nanomicelles Formulation of LY2157299-Galunisertib on CCl4-Induced Liver Fibrosis in Rats. Journal of Personalized Medicine, 2022, 12, 1812.	1.1	1
973	Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomedicine and Pharmacotherapy, 2022, 156, 113932.	2.5	10
974	Smart Milli-capsules manipulated by nIR irradiation for controllable drug delivery in-vivo for renal cell carcinoma and neurodegenerative diseases. Materials and Design, 2022, 224, 111287.	3.3	2
975	Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomedicine and Pharmacotherapy, 2022, 156, 113841.	2.5	10
976	Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sciences, 2022, 310, 121133.	2.0	11
977	Nanotechnology for Personalized Medicine. Micro/Nano Technologies, 2022, , 1-48.	0.1	0
978	A Movable Drug Carrier with High Affinity to Bacteria for Precise Antibacterial Therapy. Advanced Materials Technologies, 0, , 2201195.	3.0	0
979	Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infectious Diseases, 2022, 22, .	1.3	6
980	Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine. International Journal of Bioprinting, 2022, 9, 638.	1.7	5
981	Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials, 2022, 291, 121906.	5.7	15
982	Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?. Nano Today, 2022, 47, 101665.	6.2	11
983	Thermoresponsive Block Copolymer Core–Shell Nanoparticles with Tunable Flow Behavior in Porous Media. ACS Applied Materials & Interfaces, 2022, 14, 54182-54193.	4.0	5
984	Smart drug delivery systems and their clinical potential. , 2023, , 401-436.		1
985	5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. European Journal of Medicinal Chemistry, 2023, 246, 114995.	2.6	32
986	Bio-based stimuli-responsive materials for biomedical applications. Materials Advances, 2023, 4, 458-475.	2.6	5
987	A self-crosslinking nanogel scaffold for enhanced catalytic efficiency and stability. Polymer Chemistry, 2023, 14, 284-294.	1.9	2

#	Article	IF	CITATIONS
988	A mini review of nanomaterials on photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 54, 100568.	5.6	2
989	Nanomedicines for Therapy of Bladder Cancer. The Korean Journal of Urological Oncology, 2022, 20, 235-247.	0.1	0
990	Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS Applied Bio Materials, 0, , .	2.3	2
991	Design of Stimuliâ€Responsive Peptides and Proteins. Advanced Functional Materials, 2023, 33, .	7.8	10
992	Deformable and Disintegrable Multifunctional Integrated Polyprodrug Amphiphiles for Synergistic Phototherapy and Chemotherapy. Biomacromolecules, 2023, 24, 400-412.	2.6	3
993	Acidity/carbon dioxide-sensitive triblock polymer-grafted photoactivated vesicles for programmed release of chemotherapeutic drugs against glioblastoma. Acta Biomaterialia, 2023, 157, 442-450.	4.1	5
994	Electricityâ€Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. Advanced NanoBiomed Research, 2023, 3, .	1.7	8
995	Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics. , 2023, , 201-228.		0
996	Smart Biomaterials for Articular Cartilage Repair and Regeneration. Advanced Functional Materials, 2023, 33, .	7.8	21
997	pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. Nano Research, 2023, 16, 5155-5168.	5.8	9
998	Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy. International Journal of Biological Sciences, 2023, 19, 789-810.	2.6	5
999	Engineering lactate-modulating nanomedicines for cancer therapy. Chemical Society Reviews, 2023, 52, 973-1000.	18.7	17
1000	A Threeâ€inâ€One Nanoscale Coordination Polymer for Potent Chemoâ€immunotherapy. Small Methods, 2023, 7, .	4.6	5
1001	Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Progress in Materials Science, 2023, 134, 101070.	16.0	31
1002	Agronanobiotechnology: Present and Prospect. , 2023, , 43-80.		0
1003	Nanotechnology for Personalized Medicine. Micro/Nano Technologies, 2023, , 555-603.	0.1	0
1004	Engineering magnetic nano-manipulators for boosting cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	9
1005	A drug delivery system constructed by a fusion peptide capturing exosomes targets to titanium implants accurately resulting the enhancement of osseointegration peri-implant. Biomaterials Research, 2022, 26, .	3.2	4

#	Article	IF	CITATIONS
1006	Responsive hydrogel microfibers for biomedical engineering. , 2022, 1, .		11
1007	Engineered nanostructures: an introduction. , 2023, , 1-43.		1
1008	Microbial biofilms: A persisting public health challenge. , 2023, , 291-314.		1
1009	Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. International Journal of Energy Production and Management, 2023, 10, .	1.9	12
1010	Targeted and responsive biomaterials in osteoarthritis. Theranostics, 2023, 13, 931-954.	4.6	21
1011	Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjugate Chemistry, 2023, 34, 248-256.	1.8	6
1012	Chains Stiffness Effect on the Vertical Segregation of Mixed Polymer Brushes in Selective Solvent. Polymers, 2023, 15, 644.	2.0	2
1013	Application of zinc oxide nano-tube as drug-delivery vehicles of anticancer drug. Journal of Molecular Modeling, 2023, 29, .	0.8	3
1014	Thermo-responsive functionalized polymeric nanocomposites. , 2023, , 219-240.		2
1015	Carbon nanotubes for anticancer therapy: new trends and innovations. , 2023, , 175-204.		0
1016	Silk Fibroin Microneedles for Transdermal Drug Delivery: Where Do We Stand and How Far Can We Proceed?. Pharmaceutics, 2023, 15, 355.	2.0	11
1017	Background of carbon nanotubes for drug delivery systems. , 2023, , 1-35.		0
1018	Nanogels for the solubility enhancement of water-insoluble drugs. , 2023, , 533-553.		1
1019	Stimuli-responsive structure–property switchable polymer materials. Molecular Systems Design and Engineering, 2023, 8, 1097-1129.	1.7	17
1020	Drug Delivery Options for Treatment of Ebola Infection. , 2023, , 161-191.		0
1021	Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. Journal of Translational Medicine, 2023, 21, .	1.8	13
1022	ROS/GSH dual-responsive selenium-containing mesoporous silica nanoparticles for drug delivery. Journal of Porous Materials, 0, , .	1.3	0
1023	pH-Sensitive Degradable Oxalic Acid Crosslinked Hyperbranched Polyglycerol Hydrogel for Controlled Drug Release. Polymers, 2023, 15, 1795.	2.0	1

#	Article	IF	CITATIONS
1024	Low-dose of zeolitic imidazolate framework-8 nanoparticle cause energy metabolism disorder through lysosome-mitochondria dysfunction. Toxicology, 2023, 489, 153473.	2.0	2
1025	Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Advanced Drug Delivery Reviews, 2023, 196, 114770.	6.6	37
1026	Emerging trends in drug-device combination for advanced disease diagnosis and therapy. Nano Today, 2023, 50, 101853.	6.2	1
1027	Microenvironment-responsive nanocarriers for targeted bone disease therapy. Nano Today, 2023, 50, 101838.	6.2	9
1028	Isoindoliumâ€Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
1029	Isoindoliumâ€Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angewandte Chemie, 2023, 135, .	1.6	0
1030	Crystallinity-tuned ultrasoft polymeric DNA networks for controlled release of anticancer drugs. Journal of Controlled Release, 2023, 355, 7-17.	4.8	4
1031	Biodegradable porous polymeric drug as a drug delivery system: alleviation of doxorubicin-induced cardiotoxicity <i>via</i> passive targeted release. RSC Advances, 2023, 13, 5444-5456.	1.7	1
1032	Cucurbit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Letters, 2023, 12, 295-301.	2.3	8
1033	Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. Journal of Controlled Release, 2023, 355, 552-578.	4.8	27
1034	Rational design of stimuliâ€responsive magnetic polymer hybrid (nano)materials. Polymer International, 2023, 72, 899-919.	1.6	3
1035	Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioengineering, 2023, 7, .	3.3	8
1036	Importance of Nanocarriers in Colon Cancer. , 2023, , 228-254.		1
1037	Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Drug Delivery, 2023, 30, .	2.5	13
1038	Enhancing Oral Performance of Paclitaxel Lipidâ€Mimic Prodrug via Modulating Type of Fatty Acids. Advanced Healthcare Materials, 2023, 12, .	3.9	0
1039	Introduction to Stimuli-Responsive Materials and Their Biomedical Applications. ACS Symposium Series, 0, , 1-30.	0.5	3
1040	Enzyme-Responsive Materials: Properties, Design, and Applications. ACS Symposium Series, 0, , 203-229.	0.5	2
1041	Exploring Zrâ€based Metal–Organic Frameworks as Smart Electrochromic Sensors by Coordinationâ€Driven Surface Engineering. Chemistry - <u>A European Journal, 0, , .</u>	1.7	1

#	Article	IF	CITATIONS
1042	A Boronate Ester Driven Rechargeable Antibacterial Membrane for Fast Molecular Sieving. Advanced Functional Materials, 2023, 33, .	7.8	9
1043	Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. Small, 2023, 19, .	5.2	4
1044	Rational Design in Photopharmacology with Molecular Photoswitches. Angewandte Chemie, 2023, 135,	1.6	3
1045	Rational Design in Photopharmacology with Molecular Photoswitches. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1046	A Novel NQO1 Enzyme-Responsive Polyurethane Nanocarrier for Redox-Triggered Intracellular Drug Release. Biomacromolecules, 2023, 24, 2225-2236.	2.6	13
1047	Biomaterial-Based Delivery Systems for Chemotherapeutics. Biological and Medical Physics Series, 2023, , 105-178.	0.3	2
1048	Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	1
1049	Phototriggered structures: Latest advances in biomedical applications. Acta Pharmaceutica Sinica B, 2023, 13, 2844-2876.	5.7	1
1050	Low-intensity focused ultrasound targeted microbubble destruction reduces tumor blood supply and sensitizes anti-PD-L1 immunotherapy. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	4
1051	Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS Nano, 2023, 17, 8004-8025.	7.3	28
1055	Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries. Energy and Environmental Science, 2023, 16, 2804-2824.	15.6	5
1077	Clinical and Structural Highlights for Nanoparticle Formulations of Anticancer Drugs. , 2023, , 1-22.		0
1079	Advanced Technologies in Health and Neurodegenerative Diseases. , 2023, , 629-653.		0
1081	Nanotechnological strategies for drug delivery and treatment of COVID-19. , 2023, , 301-333.		0
1083	Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomaterials Science, 2023, 11, 6687-6710.	2.6	1
1086	Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. Journal of Materials Chemistry B, 2023, 11, 7873-7912.	2.9	2
1088	Theranostic Applications of Functionalized Polymeric Nanoparticles. , 2023, , 77-95.		0
1093	IONPs-Based Treatment Methods. Nanomedicine and Nanotoxicology, 2023, , 129-240.	0.1	0

#	Article	IF	CITATIONS
1102	Smart nanosystems for wound healing and infection control. , 2023, , 207-238.		0
1105	Liposome-Based Drug Delivery—A New Therapeutic Paradigm. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2023, , 21-48.	0.7	0
1112	Stimuli-Responsive Interfaces. ACS Symposium Series, 0, , 149-194.	0.5	0
1114	Applications of Micro/Nanorobot Swarms in Biomedicine. , 2023, , 261-306.		0
1116	Combination of Photodynamic Therapy with Chemotherapy. , 2023, , 153-192.		0
1121	Nutraceuticals and Nanonutraceuticals Formulation for Chronic Disease $\hat{a} \in \hat{~}$ Cancer. , 2024, , 1-41.		0
1122	Formation and Navigation of Microswarms in Dynamic Environments. , 2023, , 239-260.		0
1128	Prodrug-based nanomedicines for rheumatoid arthritis. , 2024, 19, .		0
1131	Nanomedicine in the Treatment of Viral Diseases. Learning Materials in Biosciences, 2023, , 123-149.	0.2	0
1135	The promise of nanomedicine in ovarian cancer treatment: a review and outlook. , 2024, , .		0