Bioresorbable silicon electronic sensors for the brain

Nature 530, 71-76 DOI: 10.1038/nature16492

Citation Report

#	Article	IF	CITATIONS
1	Brain Freeze. Neurosurgery, 2016, 79, N19-N21.	0.6	0
2	A User-Configurable Headstage for Multimodality Neuromonitoring in Freely Moving Rats. Frontiers in Neuroscience, 2016, 10, 382.	1.4	2
3	Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors. Sensors, 2016, 16, 1229.	2.1	24
4	A Viewpoint on Wearable Technology-Enabled Measurement of Wellbeing and Health-Related Quality of Life in Parkinson's Disease. Journal of Parkinson's Disease, 2016, 6, 279-287.	1.5	40
5	A clinical view on the development of technology-based tools in managing Parkinson's disease. Movement Disorders, 2016, 31, 1263-1271.	2.2	131
6	Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels. Journal of Materials Chemistry B, 2016, 4, 8016-8024.	2.9	28
7	Smart e-Patch for drugs monitoring in schizophrenia. , 2016, , .		18
8	Inorganic dissolvable electronics: materials and devices for biomedicine and environment. Journal of Materials Research, 2016, 31, 2549-2570.	1.2	28
9	Polymers with autonomous life-cycle control. Nature, 2016, 540, 363-370.	13.7	322
10	The rise of plastic bioelectronics. Nature, 2016, 540, 379-385.	13.7	1,280
11	E-skin module with heterogeneously integrated graphene touch sensors and CMOS circuitry. , 2016, , .		1
12	Insinuating electronics in the brain. Journal of the Royal College of Surgeons of Edinburgh, 2016, 14, 213-218.	0.8	3
13	Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity fromÂthe cerebral cortex. Nature Materials, 2016, 15, 782-791.	13.3	400
14	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	4.0	596
15	Biodegradable electronics: cornerstone for sustainable electronics and transient applications. Journal of Materials Chemistry C, 2016, 4, 5531-5558.	2.7	184
16	Multiplicity of morphologies in poly (<scp>l</scp> -lactide) bioresorbable vascular scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11670-11675.	3.3	38
17	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
18	Bioresorbable Intracranial Sensors: A New Frontier for Neurosurgeons. World Neurosurgery, 2016, 93, 421-422.	0.7	0

ATION REDO

# 19	ARTICLE Wireless Intracranial Monitor: A Bioresorbable Silicon Sensor. World Neurosurgery, 2016, 95, 582-586.	IF 0.7	Citations
20	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	1.5	65
21	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	7.3	118
22	Biodegradable resistive switching memory based on magnesium difluoride. Nanoscale, 2016, 8, 15048-15055.	2.8	20
23	Thiol–epoxy/maleimide ternary networks as softening substrates for flexible electronics. Journal of Materials Chemistry B, 2016, 4, 5367-5374.	2.9	14
24	Highly elastic polymer substrates with tunable mechanical properties for stretchable electronic applications. RSC Advances, 2016, 6, 107793-107799.	1.7	15
25	Transient Micromotors That Disappear When No Longer Needed. ACS Nano, 2016, 10, 10389-10396.	7.3	109
26	Materials and technologies for soft implantable neuroprostheses. Nature Reviews Materials, 2016, 1, .	23.3	485
27	Transparent deoxyribonucleic acid substrate with high mechanical strength for flexible and biocompatible organic resistive memory devices. Chemical Communications, 2016, 52, 13463-13466.	2.2	27
28	Chemical Control of Grafted Human Pluripotent Stem Cell–Derived Neurons in a Mouse Parkinson Disease Model. Neurosurgery, 2016, 79, N18-N19.	0.6	0
29	Bioresorbable Silicon Electronic Sensors for the Brain. Neurosurgery, 2016, 79, N19.	0.6	8
30	Electroactive biomimetic collagen-silver nanowire composite scaffolds. Nanoscale, 2016, 8, 14146-14155.	2.8	40
31	Bendable CMOS Digital and Analog Circuits Monolithically Integrated with a Temperature Sensor. Advanced Materials Technologies, 2016, 1, 1600058.	3.0	16
32	Soluble sensors successful in rats. Nature Reviews Neurology, 2016, 12, 128-128.	4.9	0
33	Electronic Devices for Humanâ€Machine Interfaces. Advanced Materials Interfaces, 2017, 4, 1600709.	1.9	76
34	Improved transfer process for fabrication of cantilever with precise air-gap formation. Japanese Journal of Applied Physics, 2017, 56, 05EB01.	0.8	3
35	Patterning of Stretchable Organic Electrochemical Transistors. Chemistry of Materials, 2017, 29, 3126-3132.	3.2	116
36	Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics. Small, 2017, 13, 1700065.	5.2	50

#	Article	IF	Citations
37	Elasticity Solutions to Nonbuckling Serpentine Ribbons. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	37
38	Electrochemical-mechanically triggered transient electronics. , 2017, , .		1
39	Stretchable thin-film generator with dual working modes for body motion energy harvesting. , 2017, , .		1
40	In Vivo Biosensing: Progress and Perspectives. ACS Sensors, 2017, 2, 327-338.	4.0	149
41	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	14.8	557
43	Ultrathin and Wearable Microtubular Epidermal Sensor for Realâ€Time Physiological Pulse Monitoring. Advanced Materials Technologies, 2017, 2, 1700016.	3.0	68
44	Effects of Ultraviolet Radiation on Glioma: Systematic Review. Journal of Cellular Biochemistry, 2017, 118, 4063-4071.	1.2	7
45	Low ost Manufacturing of Bioresorbable Conductors by Evaporation–Condensationâ€Mediated Laser Printing and Sintering of Zn Nanoparticles. Advanced Materials, 2017, 29, 1700172.	11.1	88
46	Quasi-Two-Dimensional Metal Oxide Semiconductors Based Ultrasensitive Potentiometric Biosensors. ACS Nano, 2017, 11, 4710-4718.	7.3	79
47	Invasive and noninvasive means of measuring intracranial pressure: a review. Physiological Measurement, 2017, 38, R143-R182.	1.2	154
48	Destructive electronics from electrochemical-mechanically triggered chemical dissolution. Journal of Micromechanics and Microengineering, 2017, 27, 065010.	1.5	14
49	High-performance green semiconductor devices: materials, designs, and fabrication. Semiconductor Science and Technology, 2017, 32, 063002.	1.0	18
50	Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 531-542.	0.7	19
51	Scalable Synthesis of 2D Si Nanosheets. Advanced Materials, 2017, 29, 1701777.	11.1	77
52	Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics. Advanced Energy Materials, 2017, 7, 1700157.	10.2	196
53	A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie - International Edition, 2017, 56, 9454-9458.	7.2	69
54	Instant tough bonding of hydrogels for soft machines and electronics. Science Advances, 2017, 3, e1700053.	4.7	359
55	A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie, 2017, 129, 9582-9586.	1.6	7

#	Article	IF	CITATIONS
56	The fabrication and characterization of flexible single-crystalline silicon and germanium p-intrinsic-n photodetectors on plastic substrates. Applied Physics Letters, 2017, 110, .	1.5	14
57	Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy, 2017, 38, 43-50.	8.2	201
58	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	4.7	377
59	Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.2	12
60	Nanoscale silicon for subcellular biointerfaces. Journal of Materials Chemistry B, 2017, 5, 4276-4289.	2.9	24
61	Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing. Applied Physics Letters, 2017, 110, .	1.5	15
62	Intracranial pressure management in patients with traumatic brain injury. Current Opinion in Critical Care, 2017, 23, 110-114.	1.6	10
63	Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano, 2017, 11, 4507-4513.	7.3	435
64	Expandable Polymer Enabled Wirelessly Destructible Highâ€Performance Solid State Electronics. Advanced Materials Technologies, 2017, 2, 1600264.	3.0	20
65	A simple functional carbon nanotube fiber for in vivo monitoring of NO in a rat brain following cerebral ischemia. Analyst, The, 2017, 142, 1452-1458.	1.7	13
66	Wrinkled nitrile rubber films for stretchable and ultra-sensitive respiration sensors. Extreme Mechanics Letters, 2017, 11, 128-136.	2.0	36
67	Renewable-emodin-based wearable supercapacitors. Nanoscale, 2017, 9, 1423-1427.	2.8	17
68	Nonlinear Frameworks for Reversible and Pluripotent Wetting on Topographic Surfaces. Advanced Materials, 2017, 29, 1605078.	11.1	18
69	Organic flash memory on various flexible substrates for foldable and disposable electronics. Nature Communications, 2017, 8, 725.	5.8	88
70	Buckling analysis in stretchable electronics. Npj Flexible Electronics, 2017, 1, .	5.1	57
71	Resistive switching memory using biomaterials. Journal of Electroceramics, 2017, 39, 223-238.	0.8	70
72	Inorganic semiconducting materials for flexible and stretchable electronics. Npj Flexible Electronics, 2017, 1, .	5.1	144
74	Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics. Advanced Materials, 2017, 29, 1702665.	11.1	71

#	Article	IF	CITATIONS
75	Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics. IEEE Transactions on Electron Devices, 2017, 64, 4554-4560.	1.6	12
76	A patterned single layer graphene resistance temperature sensor. Scientific Reports, 2017, 7, 8811.	1.6	117
77	Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.	4.7	122
78	Fabrication and mechanical properties of mesoporous silica nanoparticles reinforced magnesium matrix composite. Journal of Alloys and Compounds, 2017, 728, 413-423.	2.8	12
79	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	18.7	322
80	Capacitor Mismatch Calibration Technique to Improve the SFDR of 14-Bit SAR ADC. , 2017, , .		6
81	Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things. Advanced Functional Materials, 2017, 27, 1702390.	7.8	178
82	A wearable pressure and temperature sensor array using polysilicon thin film on polyimide. , 2017, , .		3
83	Triggered degradation of 250 μm-thick Mg targets using acetic acid for transient electronic applications. Heliyon, 2017, 3, e00366.	1.4	2
85	Visible-Light-Responsive Surfaces for Efficient, Noninvasive Cell Sheet Harvesting. ACS Applied Materials & Interfaces, 2017, 9, 28250-28259.	4.0	26
86	A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsystems and Nanoengineering, 2017, 3, 17057.	3.4	61
88	Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.	7.3	82
89	A Silk Fibroin Bio-Transient Solution Processable Memristor. Scientific Reports, 2017, 7, 14731.	1.6	47
90	Stability of MOSFET-Based Electronic Components in Wearable and Implantable Systems. IEEE Transactions on Electron Devices, 2017, 64, 3443-3451.	1.6	16
91	A diffraction-based degradation sensor for polymer thin films. Polymer Degradation and Stability, 2017, 142, 102-110.	2.7	3
92	Materials and processing approaches for foundry-compatible transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5522-E5529.	3.3	93
93	Highâ€Adhesion Stretchable Electrodes Based on Nanopile Interlocking. Advanced Materials, 2017, 29, 1603382.	11.1	168
94	Ultraâ€Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	11.1	153

#	Article	IF	CITATIONS
95	Dissolvable tattoo sensors: from science fiction to a viable technology. Physica Scripta, 2017, 92, 013001.	1.2	20
96	Telemetric intra-cranial pressure monitoring: clinical and financial considerations. British Journal of Neurosurgery, 2017, 31, 300-306.	0.4	17
97	Industrial Internet of Things. Springer Series in Wireless Technology, 2017, , .	1.1	172
98	PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording. Biomedical Microdevices, 2017, 19, 75.	1.4	11
99	Designing the Health-Related Internet of Things: Ethical Principles and Guidelines. SSRN Electronic Journal, 0, , .	0.4	4
100	Biomaterial microlasers implantable in the cornea, skin, and blood. Optica, 2017, 4, 1080.	4.8	64
101	Designing the Health-related Internet of Things: Ethical Principles and Guidelines. Information (Switzerland), 2017, 8, 77.	1.7	40
102	Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices. Micromachines, 2017, 8, 359.	1.4	42
103	Wireless Biological Electronic Sensors. Sensors, 2017, 17, 2289.	2.1	13
104	Micro- and Nanotechnology-Based Implantable Devices and Bionics. , 2017, , 249-290.		2
105	Recent Advances on Implantable Wireless Sensor Networks. , 0, , .		7
106	One-batch transfer process for the additive manufacturing of a cantilever with a weight. Japanese Journal of Applied Physics, 2017, 56, 06GN03.	0.8	1
107	Nanotechnology in neurosurgical oncology. , 2017, , 139-170.		2
108	ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein. IEEE Electron Device Letters, 2018, 39, 31-34.	2.2	42
109	Biomimetic approaches toward smart bio-hybrid systems. Nano Research, 2018, 11, 3009-3030.	5.8	26
110	Biomolecule based fiber supercapacitor for implantable device. Nano Energy, 2018, 47, 385-392.	8.2	103
111	Largeâ€6cale Directâ€Writing of Aligned Nanofibers for Flexible Electronics. Small, 2018, 14, e1703521.	5.2	126
112	Talking to Cells: Semiconductor Nanomaterials at the Cellular Interface. Advanced Biology, 2018, 2, 1700242.	3.0	16

#	Article	IF	CITATIONS
115	Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Materials Science and Engineering Reports, 2018, 128, 1-31.	14.8	48
116	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	7.6	407
117	Advanced Materials and Devices for Bioresorbable Electronics. Accounts of Chemical Research, 2018, 51, 988-998.	7.6	152
118	Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nature Electronics, 2018, 1, 237-245.	13.1	86
119	Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces. Accounts of Chemical Research, 2018, 51, 1014-1022.	7.6	21
120	A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy, 2018, 48, 383-390.	8.2	118
121	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	5.8	247
122	Biodegradable Monocrystalline Silicon Photovoltaic Microcells as Power Supplies for Transient Biomedical Implants. Advanced Energy Materials, 2018, 8, 1703035.	10.2	98
123	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	13.7	1,588
124	Deformable conductors for human–machine interface. Materials Today, 2018, 21, 508-526.	8.3	163
125	Metal microparticle – Polymer composites as printable, bio/ecoresorbable conductive inks. Materials Today, 2018, 21, 207-215.	8.3	64
126	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	1.5	34
127	Biodegradable Piezoelectric Force Sensor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 909-914.	3.3	259
128	Engineering precision biomaterials for personalized medicine. Science Translational Medicine, 2018, 10,	5.8	145
129	Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats. Advanced Materials, 2018, 30, 1704955.	11.1	72
130	Materials and applications of bioresorbable electronics. Journal of Semiconductors, 2018, 39, 011003.	2.0	25
131	Recent progress on biodegradable materials and transient electronics. Bioactive Materials, 2018, 3, 322-333.	8.6	149
132	Implantable and Biodegradable Poly(<scp>l</scp> â€lactic acid) Fibers for Optical Neural Interfaces. Advanced Optical Materials, 2018, 6, 1700941.	3.6	92

#	Article	IF	CITATIONS
133	The emerging role of nanomaterials in immunological sensing — a brief review. Molecular Immunology, 2018, 98, 28-35.	1.0	10
134	High Linearity SAR ADC for High Performance Sensor System. , 2018, , .		10
135	Recent Advances in Polyanhydride Based Biomaterials. Advanced Materials, 2018, 30, e1706815.	11.1	64
136	MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Research, 2018, 11, 2083-2092.	5.8	47
137	Tissue–electronics interfaces: from implantable devices to engineered tissues. Nature Reviews Materials, 2018, 3, .	23.3	372
138	A self-powered brain multi-perception receptor for sensory-substitution application. Nano Energy, 2018, 44, 43-52.	8.2	44
139	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45
140	Organic bioelectronic plasma polymerised polyterpenol thin films: preservation of properties relevant to biomedical and organic electronic applications following exposure to sterilising doses of gamma radiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 801-812.	1.1	4
141	Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. Journal of Materials Science, 2018, 53, 2638-2647.	1.7	61
142	The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. Journal of the Mechanics and Physics of Solids, 2018, 120, 199-207.	2.3	62
143	In vitro dissolution behavior of hydrogenated amorphous silicon thin-film transistors. Npj Materials Degradation, 2018, 2, .	2.6	0
144	Graphene Oxide-Chitosan Based Ultra-Flexible Electrochemical Sensor for Detection of Serotonin. , 2018, , .		10
145	A Pilot Study of Neural Stimulation and Motion Intervention via Self-powered Wearable Electronics*. , 2018, , .		0
146	3D printing of a self-healing nanocomposite for stretchable sensors. Journal of Materials Chemistry C, 2018, 6, 12180-12186.	2.7	70
147	Bioresorbable Silicon Nanomembranes and Iron Catalyst Nanoparticles for Flexible, Transient Electrochemical Dopamine Monitors. Advanced Healthcare Materials, 2018, 7, e1801071.	3.9	48
148	Inorganic semiconductor biointerfaces. Nature Reviews Materials, 2018, 3, 473-490.	23.3	154
149	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	3.0	128
150	Frequency-tunable toughening in a polymer-metal-ceramic stack using an interfacial molecular nanolayer. Nature Communications, 2018, 9, 5249.	5.8	8

		Report	
#	Article	IF	CITATIONS
151	An Inductively Coupled Biodegradable Capacitive Pressure Sensor. Proceedings (mdpi), 2018, 2, .	0.2	3
152	Methods for powering bioelectronic microdevices. Bioelectronics in Medicine, 2018, 1, 201-217.	2.0	15
153	Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine, 2018, 24, 1830-1836.	15.2	331
154	Flexible Transient Phototransistors by Use of Waferâ€Compatible Transferred Silicon Nanomembranes. Small, 2018, 14, e1802985.	5.2	17
155	Materials and Devices for Biodegradable and Soft Biomedical Electronics. Materials, 2018, 11, 2108.	1.3	66
156	Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS Applied Bio Materials, 2018, 1, 1677-1686.	2.3	3
157	A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Fullâ€Range Human–Machine Interfacing. Small, 2018, 14, e1803018.	5.2	156
158	Direct Fabrication of Stretchable Electronics on a Polymer Substrate with Processâ€Integrated Programmable Rigidity. Advanced Functional Materials, 2018, 28, 1804604.	7.8	63
159	Physically Transient Field-Effect Transistors Based on Black Phosphorus. ACS Applied Materials & Interfaces, 2018, 10, 42630-42636.	4.0	22
160	Crimping-induced structural gradients explain the lasting strength of poly <scp>l</scp> -lactide bioresorbable vascular scaffolds during hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10239-10244.	3.3	13
161	Nanobiotechnology: 1D nanomaterial building blocks for cellular interfaces and hybrid tissues. Nano Research, 2018, 11, 5372-5399.	5.8	14
162	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5.3	47
163	Highâ€Temperatureâ€Triggered Thermally Degradable Electronics Based on Flexible Silicon Nanomembranes. Advanced Functional Materials, 2018, 28, 1801448.	7.8	34
164	Cytotoxicity and in Vitro Degradation Kinetics of Foundry-Compatible Semiconductor Nanomembranes and Electronic Microcomponents. ACS Nano, 2018, 12, 9721-9732.	7.3	18
165	Single-step selective metallization on insulating substrates by laser-induced molten transfer. Applied Surface Science, 2018, 454, 16-22.	3.1	6
166	A Fully Biodegradable Battery for Selfâ€Powered Transient Implants. Small, 2018, 14, e1800994.	5.2	113
167	Physically Transient Threshold Switching Device Based on Magnesium Oxide for Security Application. Small, 2018, 14, e1800945.	5.2	44
168	Monitoring rehabilitation with transient sensors. Nature Electronics, 2018, 1, 272-273.	13.1	11

#	Article	IF	CITATIONS
169	Biosafe, Ecoâ€Friendly Levan Polysaccharide toward Transient Electronics. Small, 2018, 14, e1801332.	5.2	33
170	Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics, 2018, 12, 041501.	1.2	16
171	Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. Advanced Materials, 2018, 30, e1707624.	11.1	133
172	Laserâ€Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel. Advanced Healthcare Materials, 2018, 7, e1800231.	3.9	26
173	Flexible Transient Optical Waveguides and Surfaceâ€Wave Biosensors Constructed from Monocrystalline Silicon. Advanced Materials, 2018, 30, e1801584.	11.1	55
174	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 2018, 140, 9001-9019.	6.6	34
175	Natural Wax for Transient Electronics. Advanced Functional Materials, 2018, 28, 1801819.	7.8	90
176	Biodegradable and Flexible Resistive Memory for Transient Electronics. Journal of Physical Chemistry C, 2018, 122, 16909-16915.	1.5	52
177	A Water Dissolvable Electrolyte with an Ionic Liquid for Ecoâ€Friendly Electronics. Small, 2018, 14, e1800937.	5.2	18
178	Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules, 2018, 51, 5944-5949.	2.2	68
179	Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Small, 2018, 14, e1801711.	5.2	144
180	Bioresorbable optical fiber Bragg gratings. Optics Letters, 2018, 43, 671.	1.7	24
181	Self-powered data erasing of nanoscale flash memory by triboelectricity. Nano Energy, 2018, 52, 63-70.	8.2	11
182	Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene. Materials, 2018, 11, 1163.	1.3	54
183	Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces. Materials, 2018, 11, 187.	1.3	166
184	Biomaterials for Enhancing Neuronal Repair. Frontiers in Materials, 2018, 5, .	1.2	29
185	Self-Cleaning, Chemically Stable, Reshapeable, Highly Conductive Nanocomposites for Electrical Circuits and Flexible Electronic Devices. ACS Applied Materials & Interfaces, 2018, 10, 25697-25705.	4.0	10
186	Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications. Nanoscale, 2018, 10, 14893-14901.	2.8	90

		CITATION R	EPORT	
#	Article		IF	CITATIONS
187	Advances in Materials for Recent Low-Profile Implantable Bioelectronics. Materials, 201	.8, 11, 522.	1.3	38
188	Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conduct Interconnects. Materials, 2018, 11, 1102.	ve	1.3	16
189	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 20)18, 18, 5.	2.1	32
190	Highly sensitive pressure sensors based on conducting polymer-coated paper. Sensors B: Chemical, 2018, 273, 1195-1201.	and Actuators	4.0	37
191	A remote control for switching. Nature Chemical Biology, 2018, 14, 749-750.		3.9	0
192	Microfiberâ€Knitted Crossweave Patterns for Multiresolution Physical Kineses Analysis Advanced Materials Technologies, 2018, 3, 1800107.	Electronics.	3.0	9
193	A taste of bioelectronics. Nature Electronics, 2018, 1, 373-373.		13.1	1
194	Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancemen Prospects. Frontiers in Bioengineering and Biotechnology, 2018, 6, 47.	ts, and Future	2.0	132
195	Transient Light Emitting Devices Based on Soluble Polymer Composites. Scientific Repo 6408.	orts, 2018, 8,	1.6	23
196	Recent progress in flexible pressure sensor arrays: from design to applications. Journal Chemistry C, 2018, 6, 11878-11892.	of Materials	2.7	194
197	Self-Powered All-in-One Fluid Sensor Textile with Enhanced Triboelectric Effect on All-In Dendritic Liquid–Solid Interface. ACS Applied Materials & Interfaces, 2018, 10, 3	1mersed 30819-30826.	4.0	20
198	Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable ele Asia Materials, 2018, 10, 810-820.	ctronics. NPG	3.8	36
199	Flexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spikeâ€Tir Plasticity. Advanced Functional Materials, 2018, 28, 1800553.	ningâ€Đependent	7.8	124
200	Micropatterned Elastic Goldâ€Nanowire/Polyacrylamide Composite Hydrogels for Wea Sensors. Advanced Materials Technologies, 2018, 3, 1800051.	rable Pressure	3.0	59
201	Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices. IScience, 2018	, 4, 302-311.	1.9	119
202	Progressive contact-separate triboelectric nanogenerator based on conductive polyure regulated with a Bennet doubler conditioning circuit. Nano Energy, 2018, 51, 10-18.	thane foam	8.2	88
203	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 64	43-656.	1.7	30
204	Biodegradable Frequencyâ€Selective Magnesium Radioâ€Frequency Microresonators f Biomedical Implants. Advanced Functional Materials, 2019, 29, 1903051.	or Transient	7.8	24

#	Article	IF	CITATIONS
205	Ultraminiature and Flexible Sensor Based on Interior Corner Flow for Direct Pressure Sensing in Biofluids. Small, 2019, 15, e1900950.	5.2	11
206	Silk Flexible Electronics: From <i>Bombyx mori</i> Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators. Advanced Functional Materials, 2019, 29, 1904777.	7.8	71
207	Fabrication and Characterization of a Wireless Bioresorbable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1900428.	3.0	22
208	Bioâ€Multifunctional Smart Wearable Sensors for Medical Devices. Advanced Intelligent Systems, 2019, 1, 1900040.	3.3	115
209	Sensing and memorising liquids with polarity-interactive ferroelectric sound. Nature Communications, 2019, 10, 3575.	5.8	25
210	Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nature Biomedical Engineering, 2019, 3, 644-654.	11.6	98
211	An ultraflexible organic differential amplifier for recording electrocardiograms. Nature Electronics, 2019, 2, 351-360.	13.1	114
212	In Reply: Long-Term Effect of Decompressive Craniectomy on Intracranial Pressure and Possible Implications for Intracranial Fluid Movements. Neurosurgery, 2019, 85, E627-E628.	0.6	1
213	Flexible Circuits for Moisture Measurement in Cylindrical Timber of Wood. , 2019, , .		4
214	Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. Npj 2D Materials and Applications, 2019, 3, .	3.9	31
215	Biodegradable Piezoelectric Sensor. , 2019, , .		1
216	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	2.0	18
217	Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. Chemistry of Materials, 2019, 31, 6315-6346.	3.2	55
218	Silicon-Based Sensors for Biomedical Applications: A Review. Sensors, 2019, 19, 2908.	2.1	86
219	Controllable Configuration of Sensing Band in a Pressure Sensor by Lenticular Pattern Deformation on Designated Electrodes. Advanced Materials, 2019, 31, e1902689.	11.1	33
220	An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution. Nano Energy, 2019, 63, 103884.	8.2	47
221	Futuristic medical implants using bioresorbable materials and devices. Biosensors and Bioelectronics, 2019, 142, 111489.	5.3	58
222	An atlas of nano-enabled neural interfaces. Nature Nanotechnology, 2019, 14, 645-657.	15.6	129

#	Article	IF	CITATIONS
223	Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Science Advances, 2019, 5, eaaw1899.	4.7	146
224	Thermoresponsive Transient Radio Frequency Antennas: Toward Triggered Wireless Transient Circuits. Advanced Materials Technologies, 2019, 4, 1900528.	3.0	7
225	A Bioresorbable Magnetically Coupled System for Lowâ€Frequency Wireless Power Transfer. Advanced Functional Materials, 2019, 29, 1905451.	7.8	58
226	Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Central Science, 2019, 5, 1884-1891.	5.3	92
227	Transient Lightâ€Emitting Diodes Constructed from Semiconductors and Transparent Conductors that Biodegrade Under Physiological Conditions. Advanced Materials, 2019, 31, e1902739.	11.1	43
228	Transition from rectification to resistive-switching in Ti/MgF2/Pt memory. AIP Advances, 2019, 9, 105117.	0.6	4
229	Laser Sintering of Zn Microparticles and Its Application in Printable Biodegradable Electronics. Advanced Electronic Materials, 2019, 5, 1800693.	2.6	36
230	Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Applied Materials & Interfaces, 2019, 11, 33165-33172.	4.0	58
231	Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems and Nanoengineering, 2019, 5, 41.	3.4	124
232	Super-capacitors and Other Fiber-Shaped Batteries as Energy Storage Devices for Flexible Electronic Devices. , 2019, , .		3
233	Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time Micropressure Monitoring of Cardiovascular Walls. ACS Nano, 2019, 13, 10062-10073.	7.3	66
234	Domesticating the foreign body response: Recent advances and applications. Advanced Drug Delivery Reviews, 2019, 144, 148-161.	6.6	126
235	Hydrogel-Based Organic Subdural Electrode with High Conformability to Brain Surface. Scientific Reports, 2019, 9, 13379.	1.6	42
236	Synthesis and Use of Bio-Based Dielectric Substrate for Implanted Radio Frequency Antennas. IEEE Access, 2019, 7, 123268-123279.	2.6	2
237	A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications, 2019, 10, 4405.	5.8	188
238	A water-retaining, self-healing hydrogel as ionic skin with a highly pressure sensitive properties. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 318-329.	2.7	12
239	Highly Permeable Skin Patch with Conductive Hierarchical Architectures Inspired by Amphibians and Octopi for Omnidirectionally Enhanced Wet Adhesion. Advanced Functional Materials, 2019, 29, 1807614.	7.8	129
240	A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Letters, 2019, 19, 1143-1150.	4.5	538

# 241	Article Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	IF 18.7	Citations
242	Advanced electronic skin devices for healthcare applications. Journal of Materials Chemistry B, 2019, 7, 173-197.	2.9	193
243	Transient fiber-shaped flexible electronics comprising dissolvable polymer composites toward multicolor lighting. Journal of Materials Chemistry C, 2019, 7, 1472-1476.	2.7	18
244	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019, 13, 10972-10979.	7.3	134
245	Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions. ACS Nano, 2019, 13, 7898-7904.	7.3	8
246	Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sensors and Actuators B: Chemical, 2019, 297, 126743.	4.0	86
247	Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care. Annual Review of Biomedical Engineering, 2019, 21, 523-549.	5.7	42
248	In Vivo Biosensing Using Resonance Energy Transfer. Biosensors, 2019, 9, 76.	2.3	36
249	CMOS Compatible Transient Resistive Memory with Prolonged Lifetime. Advanced Materials Technologies, 2019, 4, 1900217.	3.0	4
250	Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials, 2019, 9, 813.	1.9	286
251	Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain. Advanced Healthcare Materials, 2019, 8, e1801649.	3.9	44
252	A highly sensitive biodegradable pressure sensor based on nanofibrous dielectric. Sensors and Actuators A: Physical, 2019, 294, 140-147.	2.0	57
253	Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61, 517-532.	8.2	135
254	Laser Transfer, Printing, and Assembly Techniques for Flexible Electronics. Advanced Electronic Materials, 2019, 5, 1800900.	2.6	91
255	Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 2019, 31, e1806739.	11.1	540
256	Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 18013-18023.	4.0	17
257	Symbiotic cardiac pacemaker. Nature Communications, 2019, 10, 1821.	5.8	429
258	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	4.1	23

#	Article	IF	CITATIONS
259	Flexible Sensors—From Materials to Applications. Technologies, 2019, 7, 35.	3.0	139
260	Emerging Trends in Flexible Active Multielectrode Arrays. Chemistry of Materials, 2019, 31, 6347-6358.	3.2	43
261	Highly transparent triboelectric nanogenerator utilizing in-situ chemically welded silver nanowire network as electrode for mechanical energy harvesting and body motion monitoring. Nano Energy, 2019, 59, 508-516.	8.2	69
262	From Microbial Fuel Cells to Biobatteries: Moving toward Onâ€Demand Micropower Generation for Smallâ€5cale Singleâ€Use Applications. Advanced Materials Technologies, 2019, 4, 1900079.	3.0	29
263	Materials for biointegrated electronic and microfluidic systems. MRS Bulletin, 2019, 44, 195-202.	1.7	6
264	Flexible artificial synesthesia electronics with sound-synchronized electroluminescence. Nano Energy, 2019, 59, 773-783.	8.2	21
265	Electroceutical Residue-Free Graphene Device for Dopamine Monitoring and Neural Stimulation. ACS Biomaterials Science and Engineering, 2019, 5, 2013-2020.	2.6	5
266	In vitro and in vivo hemocompatibility assessment of ultrathin sulfobetaine polymer coatings for silicon-based implants. Journal of Biomaterials Applications, 2019, 34, 297-312.	1.2	10
267	In-plane silicon microneedles with open capillary microfluidic networks by deep reactive ion etching and sacrificial layer based sharpening. Sensors and Actuators A: Physical, 2019, 292, 149-157.	2.0	24
268	Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Advanced Healthcare Materials, 2019, 8, e1801660.	3.9	86
269	Polymer-based flexible bioelectronics. Science Bulletin, 2019, 64, 634-640.	4.3	50
270	Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosensors and Bioelectronics, 2019, 132, 343-351.	5.3	58
271	Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chemical Society Reviews, 2019, 48, 1787-1825.	18.7	226
272	Structural Design for Stretchable Microstrip Antennas. ACS Applied Materials & Interfaces, 2019, 11, 8867-8877.	4.0	61
273	Electric Conductivity of Electrolytic Copper Powder Filled Poly(Lactide-co-Glycolide) Composites. International Journal of Electrochemical Science, 2019, 14, 9825-9837.	0.5	3
274	Minimally invasive medical catheter with highly flexible FDSOI-based integrated circuits. , 2019, , .		2
275	Maskless Patterning of Biodegradable Conductors by Selective Laser Sintering of Microparticle Inks and Its Application in Flexible Transient Electronics. ACS Applied Materials & Interfaces, 2019, 11, 45844-45852.	4.0	35
276	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	5.8	148

#	Article	IF	CITATIONS
277	Ultra-thin atom layer deposited alumina film enables the precise lifetime control of fully biodegradable electronic devices. Nanoscale, 2019, 11, 22369-22377.	2.8	7
278	Nanotechnology Characterization Tools for Environment, Health, and Safety. , 2019, , .		2
279	Human sweat monitoring using polymer-based fiber. Scientific Reports, 2019, 9, 17294.	1.6	17
280	Thermally Triggered Vanishing Bulk Polyoxymethylene for Transient Electronics. Scientific Reports, 2019, 9, 18107.	1.6	9
281	Biodegradable transient resistive random-access memory based on MoO3/MgO/MoO3 stack. Applied Physics Letters, 2019, 115, .	1.5	13
282	Bioresorbable Conductive Wire with Minimal Metal Content. ACS Biomaterials Science and Engineering, 2019, 5, 1134-1140.	2.6	5
283	Ingestible electronics for diagnostics and therapy. Nature Reviews Materials, 2019, 4, 83-98.	23.3	146
284	Irregular Hexagonal Cellular Substrate for Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	39
285	Flexible Electronics: Stretchable Electrodes and Their Future. Advanced Functional Materials, 2019, 29, 1805924.	7.8	510
286	Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	11.1	112
287	Inkjet-Printed Neural Electrodes with Mechanically Gradient Structure. ACS Applied Bio Materials, 2019, 2, 20-26.	2.3	18
288	Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomedical Engineering, 2019, 3, 37-46.	11.6	185
289	Low cost synthesis of silicon nanowires for photonic applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 34-40.	1.1	14
290	Flexible Hybrid Electronics for Digital Healthcare. Advanced Materials, 2020, 32, e1902062.	11.1	345
291	Anhydrideâ€Assisted Spontaneous Room Temperature Sintering of Printed Bioresorbable Electronics. Advanced Functional Materials, 2020, 30, 1905024.	7.8	14
292	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	7.8	247
293	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	11.1	575
294	Integrating Organs-on-Chips: Multiplexing, Scaling, Vascularization, and Innervation. Trends in Biotechnology, 2020, 38, 99-112.	4.9	69

ARTICLE IF CITATIONS # Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Materials Today, 2020, 295 8.3 65 34, 58-65. Multiscale Softâ€"Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, 11.1 e1902278. Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and 297 11.1 198 Applications. Advanced Materials, 2020, 32, e1902343. Recent progress in tactile sensors and their applications in intelligent systems. Science Bulletin, 2020, 132 65, 70<u>-88</u>. Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews 299 23.3 403 Materials, 2020, 5, 149-165. Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523. 14.8 Biodegradable nanofiber-based piezoelectric transducer. Proceedings of the National Academy of 301 3.3 139 Sciences of the United States of America, 2020, 117, 214-220. Magnesium-based biodegradable microelectrodes for neural recording. Materials Science and 3.8 Engineering C, 2020, 110, 110614. 303 Emerging intraoral biosensors. Journal of Materials Chemistry B, 2020, 8, 3341-3356. 2.9 11 304 Recent Progress of Miniature MEMS Pressure Sensors. Micromachines, 2020, 11, 56. 1.4 Physical sensors for skinâ€inspired electronics. InformaÄnÃ-MateriÃily, 2020, 2, 184-211. 305 8.5 159 Amorphous Oxide Semiconductor Transistors with Air Dielectrics for Transparent and Wearable 3.0 Pressure Sensor Arrays. Advanced Materials Technologies, 2020, 5, 1900928. Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 307 23.3 440 2020, 5, 61-81. Nanostructured Architectures for Biomolecular Detection inside and outside the Cell. Advanced 308 Functional Materials, 2020, 30, 1907701. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a 309 7.3 58 Three-Dimensional Electrical Network. ACS Nano, 2020, 14, 664-675. Advances in Physicochemically Stimuli-Responsive Materials for On-Demand Transient Electronic 5.0 49 Systems. Mattér, 2020, 3, 1031-1052. Recent development of implantable and flexible nerve electrodes. Smart Materials in Medicine, 2020, 1, 311 3.7 61 131-147. Bioinspired Materials for InÂVivo Bioelectronic Neural Interfaces. Matter, 2020, 3, 1087-1113.

#	Article	IF	CITATIONS
313	Elastomers without Covalent Cross-Linking: Concatenated Rings Giving Rise to Elasticity. ACS Macro Letters, 2020, 9, 1458-1463.	2.3	26
314	Conductive Hydrogel for a Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve. ACS Nano, 2020, 14, 16565-16575.	7.3	77
315	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	1.9	57
316	Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Materials, 2020, 12,	3.8	32
317	Three-Decade Evaluation of Cerebrospinal Fluid Pressure in Open-Angle Glaucoma at a Tertiary Care Center. Journal of Ophthalmology, 2020, 2020, 1-8.	0.6	2
318	Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990.	5.8	144
319	Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Research Letters, 2020, 15, 200.	3.1	116
320	Biodegradable Optical Fiber in a Soft Optoelectronic Device for Wireless Optogenetic Applications. Coatings, 2020, 10, 1153.	1.2	11
321	Flexible Discrete Passive Filter with Minor Strain Suffering. , 2020, , .		0
322	Miniaturized Piezo Force Sensor for a Medical Catheter and Implantable Device. ACS Applied Electronic Materials, 2020, 2, 2669-2677.	2.0	23
323	Bioresorbable Wireless Sensors as Temporary Implants for In Vivo Measurements of Pressure. Advanced Functional Materials, 2020, 30, 2003754.	7.8	53
324	A Biodegradable Implant Antenna Detecting Post-Surgical Infection. , 2020, , .		3
325	Development of a Dental Implantable Temperature Sensor for Real-Time Diagnosis of Infectious Disease. Sensors, 2020, 20, 3953.	2.1	20
326	Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Selfâ€Powered Sensing and Security. Advanced Materials Technologies, 2020, 5, 2000368.	3.0	15
327	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
328	Tyrosineâ€Rich Peptide Insulator for Rapidly Dissolving Transient Electronics. Advanced Materials Technologies, 2020, 5, 2000516.	3.0	7
329	Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale, 2020, 12, 17931-17946.	2.8	20
330	A flexible ECG patch compatible with NFC RF communication. Npj Flexible Electronics, 2020, 4, .	5.1	62

#	Article	IF	CITATIONS
331	A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Advanced Healthcare Materials, 2020, 9, e2000790.	3.9	72
332	Perspectives on smart stents with sensors: From conventional permanent to novel bioabsorbable smart stent technologies. Medical Devices & Sensors, 2020, 3, e10116.	2.7	14
333	Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 9460-9469.	2.2	0
334	Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 49398-49406.	4.0	45
335	Stretchable Triboelectric Nanogenerators for Energy Harvesting and Motion Monitoring. IEEE Open Journal of Nanotechnology, 2020, 1, 109-116.	0.9	11
336	Recent Advances in Selfâ€Powered Tribo″Piezoelectric Energy Harvesters: Allâ€Inâ€One Package for Future Smart Technologies. Advanced Functional Materials, 2020, 30, 2004446.	7.8	133
337	Advanced Materials and Systems for Biodegradable, Transient Electronics. Advanced Materials, 2020, 32, e2002211.	11.1	101
338	Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosensors and Bioelectronics, 2020, 168, 112569.	5.3	225
339	Designing Polymeric Mixed Conductors and Their Application to Electrochemicalâ€Transistorâ€Based Biosensors. Macromolecular Bioscience, 2020, 20, e2000211.	2.1	35
340	The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Advanced Science, 2020, 7, 2001116.	5.6	185
341	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
342	Ultrathin and Robust Micro–Nano Composite Coating for Implantable Pressure Sensor Encapsulation. ACS Omega, 2020, 5, 23129-23139.	1.6	9
343	Organic electronics for neuroprosthetics. Healthcare Technology Letters, 2020, 7, 52-57.	1.9	10
344	Conical Microstructure Flexible High-Sensitivity Sensing Unit Adopting Chemical Corrosion. Sensors, 2020, 20, 4613.	2.1	3
345	Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO ₃ membranes. Science Advances, 2020, 6, .	4.7	73
346	Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nature Communications, 2020, 11, 4195.	5.8	60
347	Bioresorbable and Biodegradable Electronics and Photonics. , 2020, , .		0
348	Water-soluble energy harvester as a promising power solution for temporary electronic implants. APL Materials, 2020, 8, .	2.2	13

#	Article	IF	CITATIONS
349	Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Science Translational Medicine, 2020, 12, .	5.8	93
350	The performance and degradation process of a greenly synthesized transient heterojunction diode. Thin Solid Films, 2020, 712, 138312.	0.8	2
351	Ultrafast Self-Healing, Reusable, and Conductive Polysaccharide-Based Hydrogels for Sensitive Ionic Sensors. ACS Sustainable Chemistry and Engineering, 2020, 8, 18506-18518.	3.2	107
352	Bodyâ€Integrated, Enzymeâ€Triggered Degradable, Silkâ€Based Mechanical Sensors for Customized Health/Fitness Monitoring and In Situ Treatment. Advanced Science, 2020, 7, 1903802.	5.6	64
353	Wafer-Scale Two-Dimensional MoS ₂ Layers Integrated on Cellulose Substrates Toward Environmentally Friendly Transient Electronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 25200-25210.	4.0	31
354	Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids and Barriers of the CNS, 2020, 17, 34.	2.4	82
355	Skin-inspired electronics: emerging semiconductor devices and systems. Journal of Semiconductors, 2020, 41, 041601.	2.0	63
356	Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS Applied Materials & Interfaces, 2020, 12, 31148-31161.	4.0	17
357	Flexible porphyrin doped polymer optical fibers for rapid and remote detection of trace DNT vapor. Analyst, The, 2020, 145, 5307-5313.	1.7	9
358	Recent development of bioresorbable electronics using additive manufacturing. Current Opinion in Chemical Engineering, 2020, 28, 118-126.	3.8	6
359	Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics. Advanced Functional Materials, 2020, 30, 2000941.	7.8	67
360	Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Letters, 2020, 20, 2478-2485.	4.5	51
361	Current view and prospect: Implantable pressure sensors for health and surgical care. Medical Devices & Sensors, 2020, 3, e10068.	2.7	10
362	Emerging Modalities and Implantable Technologies for Neuromodulation. Cell, 2020, 181, 115-135.	13.5	152
363	Study of Partially Transient Organic Epidermal Sensors. Materials, 2020, 13, 1112.	1.3	5
364	Bioresorbable, Wireless, Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature. Advanced Healthcare Materials, 2020, 9, e2000942.	3.9	87
365	Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation. Proceedings of the United States of America, 2020, 117, 16864-16871.	3.3	12
366	Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy, 2020, 76, 105017.	8.2	24

#	ARTICLE	IF	CITATIONS
367	Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature Communications, 2020, 11, 3362.	5.8	106
368	Temperature Sensor with a Water-Dissolvable Ionic Gel for Ionic Skin. ACS Applied Materials & Interfaces, 2020, 12, 36449-36457.	4.0	59
369	A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nature Communications, 2020, 11, 3207.	5.8	142
370	Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions. Science Robotics, 2020, 5, .	9.9	50
371	Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. Advanced Materials, 2020, 32, e1907478.	11.1	42
372	Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology, 2020, 31, 252001.	1.3	42
373	Fully transient electrochemical testing strips for eco-friendly point of care testing. RSC Advances, 2020, 10, 7241-7250.	1.7	8
374	Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nature Communications, 2020, 11, 1002.	5.8	101
375	Flexible and fully biodegradable resistance random access memory based on a gelatin dielectric. Nanotechnology, 2020, 31, 255204.	1.3	12
376	Materials, Mechanics Designs, and Bioresorbable Multisensor Platforms for Pressure Monitoring in the Intracranial Space. Advanced Functional Materials, 2020, 30, 1910718.	7.8	53
377	Inorganic materials for transient electronics in biomedical applications. MRS Bulletin, 2020, 45, 103-112.	1.7	62
378	Flexible inorganic bioelectronics. Npj Flexible Electronics, 2020, 4, .	5.1	134
379	Interfacing Bioelectronics and Biomedical Sensing. , 2020, , .		8
380	Integration of Ultrathin Silicon and Metal Nanowires for Highâ€Performance Transparent Electronics. Advanced Materials Technologies, 2020, 5, 1900962.	3.0	2
381	Material strategies for on-demand smart transient electronics. MRS Bulletin, 2020, 45, 129-134.	1.7	16
382	Biodegradable and bioabsorbable sensors based on two-dimensional materials. Journal of Materials Chemistry B, 2020, 8, 1082-1092.	2.9	30
383	A Removable Insertion Shuttle for Ultraflexible Neural Probe Implantation with Stable Chronic Brain Electrophysiological Recording. Advanced Materials Interfaces, 2020, 7, 1901775.	1.9	31
384	Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nature Communications, 2020, 11, 663.	5.8	104

#	Article	IF	CITATIONS
385	Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. Advanced Science, 2020, 7, 1902872.	5.6	70
386	Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. Journal of the Electrochemical Society, 2020, 167, 037561.	1.3	105
387	Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. Materials, 2020, 13, 1514.	1.3	5
388	Clinical Opportunities for Continuous Biosensing and Closed-Loop Therapies. Trends in Chemistry, 2020, 2, 319-340.	4.4	39
389	Glymphatic clearance of simulated silicon dispersion in mouse brain analyzed by laser induced breakdown spectroscopy. Heliyon, 2020, 6, e03702.	1.4	2
390	Green Strategies to Printed Sensors for Healthcare Applications. Polymer Reviews, 2021, 61, 116-156.	5.3	30
391	Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108293.	2.5	130
392	Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Applied Bio Materials, 2021, 4, 122-139.	2.3	52
393	Edible Electronics: The Vision and the Challenge. Advanced Materials Technologies, 2021, 6, 2000757.	3.0	75
394	Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2001397.	3.9	39
395	Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy, 2021, 81, 105590.	8.2	57
396	Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Applied Electronic Materials, 2021, 3, 68-100.	2.0	46
397	Improved H2 detection performance of GaN sensor with Pt/Sulfide treatment of porous active layer prepared by metal electroless etching. International Journal of Hydrogen Energy, 2021, 46, 4614-4625.	3.8	8
398	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021, 9, 1463-1470.	5.2	31
399	Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Applied Bio Materials, 2021, 4, 163-194.	2.3	133
400	Dealing with the Foreignâ€Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Advanced Functional Materials, 2021, 31, 2007226.	7.8	114
401	Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Science Bulletin, 2021, 66, 147-157.	4.3	17
402	A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosensors and Bioelectronics, 2021, 172, 112781.	5.3	69

ARTICLE IF CITATIONS # Wirelessly triggered bioactive molecule delivery from degradable electroactive polymer films. 403 1.6 17 Polymer International, 2021, 70, 467-474. Micrometer-scale transient ion transport for real-time pH assay in living rat brains. Chemical Science, 404 3.7 2021, 12, 7369-7376. 405 Nanobiosensors for theranostic applications., 2021, , 511-543. 7 Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical 406 199 Micro-nano optical fiber liquid hydrogen ion concentration sensor based on polyaniline film., 2021, , . 407 0 408 Smart electronic yarns and wearable fabrics for human biomonitoring., 2021, 109-123. Beyond homogeneous dispersion: oriented conductive fillers for high $\langle i \rangle \hat{l}^{\circ} / i \rangle$ nanocomposites. 409 6.4 21 Materials Horizons, 2021, 8, 3009-3042. Implantable Device Fabrication and Packaging., 2021, , 1-49. 411 Advanced applications of green materials in bioelectronics applications., 2021,, 631-661. 1 Smart Health Care for Societies: An Insight into the Implantable and Wearable Devices for Remote Health Monitoring. , 2021, , 89-113. Expecting the unexpected: high pressure crystallization significantly boosts up triboelectric outputs 413 5.2 11 of microbial polyesters. Journal of Materials Chemistry A, 2021, 9, 6306-6315. A biodegradable and rechargeable fiber battery. Journal of Materials Chemistry A, 2021, 9, 10104-10109. 5.2 Networks and near-field communication: up-close but far away., 2021, , 197-210. 415 0 Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002236. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. 417 1.7 134 Molecules, 2021, 26, 748. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. 171 ACS Nano, 2021, 15, 1960-2004. Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials. Micromachines, 2021, 12, 419 1.4 24 157. Scalable Superior Chemical Sensing Performance of Stretchable Ionotronic Skin via a πâ€Hole Receptor 11.1 Effect. Advanced Materials, 2021, 33, e2007605.

#	Article	IF	CITATIONS
421	Bio-based Materials for Microwave Devices: A Review. Journal of Electronic Materials, 2021, 50, 1893-1921.	1.0	8
422	A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2004902.	11.1	42
423	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2023, 7, 405-423.	11.6	141
424	Biodegradable Metallic Glass for Stretchable Transient Electronics. Advanced Science, 2021, 8, 2004029.	5.6	21
425	A wireless passive pressure sensor using microstructured ferromagnetic films with tunable effective permeability. Journal of Micromechanics and Microengineering, 2021, 31, 045017.	1.5	5
426	The future of near-field communication-based wireless sensing. Nature Reviews Materials, 2021, 6, 286-288.	23.3	47
427	The New Era of Physio-Logging and Their Grand Challenges. Frontiers in Physiology, 2021, 12, 669158.	1.3	13
428	Soft, wireless and subdermally implantable recording and neuromodulation tools. Journal of Neural Engineering, 2021, 18, 041001.	1.8	13
431	Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Advanced Materials Technologies, 2022, 7, 2001297.	3.0	22
432	Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion. Green Energy and Environment, 2022, 7, 205-220.	4.7	15
433	Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622524.	2.0	161
434	Si nanomebranes: Material properties and applications. Nano Research, 2021, 14, 3010-3032.	5.8	6
435	Printed carbon electronics get recycled. Nature Electronics, 2021, 4, 241-242.	13.1	3
436	Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nature Electronics, 2021, 4, 291-301.	13.1	106
437	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	5.8	18
438	Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Research, 2021, 14, 3096-3111.	5.8	37
439	Wireless and battery-free platforms for collection of biosignals. Biosensors and Bioelectronics, 2021, 178, 113007.	5.3	40
440	In Vitro Models for Studying Respiratory Host–Pathogen Interactions. Advanced Biology, 2021, 5, e2000624.	1.4	16

ARTICLE IF CITATIONS Application of a subâ€"0.1-mm ³ implantable mote for in vivo real-time wireless temperature 441 4.7 59 sensing. Science Advances, 2021, 7, . Transient Electronics as Sustainable Systems: From Fundamentals to Applications. Advanced 442 2.7 Sustainable Systems, 2022, 6, 2100057. 443 Advances in Soft Materials for Sustainable Electronics. Engineering, 2021, 7, 564-580. 3.2 20 Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity. Proceedings of the National Academy of Sciences of the United 444 States of America, 2021, 118, . Allâ€Printed Green Microâ€Supercapacitors Based on a Naturalâ€derived Ionic Liquid for Flexible Transient 445 7.8 38 Electronics. Advanced Functional Materials, 2021, 31, 2102180. Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bioâ€Integrated Electronic Systems. Advanced Sustainable Systems, 2022, 6, 2100075. 447 Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391. 7.8 102 Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. Advanced Materials, 448 11.1 14 2021, 33, e2005930. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. Micromachines, 2021, 12, 449 1.4 8 600. Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. Advanced Materials Technologies, 2021, 6, 2100107. Advanced Materials in Wireless, Implantable Electrical Stimulators that Offer Rapid Rates of 451 17 7.8 Bioresorption for Peripheral Axon Regeneration. Advanced Functional Materials, 2021, 31, 2102724. Feasibility Study on Subcutaneously Implanted Devices in Male Rodents for Cardiovascular Assessment 3.3 Through NearâéField Communicatión Interface. Advanced Intelligent Systems, 2021, 3, 2100053. Review of flexible microelectromechanical system sensors and devices. Nami Jishu Yu Jingmi 453 1.7 23 Gongcheng/Nanotechnology and Precision Éngineering, 2021, 4, 025001. Ingestible, Biofriendly, and Flexible Flour-Based Humidity Sensors with a Wide Sensing Range. ACS 454 Applied Electronic Materials, 2021, 3, 2798-2806. Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation. 455 3.0 8 Advanced Materials Technologies, 2022, 7, 2100176. Biocompatible, Highâ€Performance, Wetâ€Adhesive, Stretchable Allâ€Hydrogel Supercapacitor Implant Based 10.2 on PANI@rGO/Mxenes Electrode and Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2101329. Nano―and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. 457 5.27 Small, 2021, 17, e2100165. Bioresorbable Photonics: Materials, Devices and Applications. Photonics, 2021, 8, 235.

#	Article	IF	CITATIONS
459	Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nature Biotechnology, 2021, 39, 1228-1238.	9.4	163
460	Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nature Communications, 2021, 12, 3435.	5.8	130
461	Conformal manufacturing of soft deformable sensors on the curved surface. International Journal of Extreme Manufacturing, 2021, 3, 042001.	6.3	68
462	Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.	13.3	114
463	Physically transient electronic materials and devices. Materials Science and Engineering Reports, 2021, 145, 100624.	14.8	46
464	All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials, 2021, 274, 120889.	5.7	26
465	Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion Triggered Color/Transmittance Adjustment. ACS Nano, 2021, 15, 12429-12437.	7.3	42
466	Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nature Communications, 2021, 12, 4880.	5.8	116
467	Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. Materials Today, 2021, 50, 24-34.	8.3	98
468	A Composite Microfiber for Biodegradable Stretchable Electronics. Micromachines, 2021, 12, 1036.	1.4	8
469	New two-dimensional functionalised silicon nanosheets prepared by direct exfoliation of calcium disilicide with tosyl chloride. Advances in Materials and Processing Technologies, 2022, 8, 3402-3412.	0.8	1
470	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	11.1	85
471	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	2.0	24
472	A flexible strain-responsive sensor fabricated from a biocompatible electronic ink via an additive-manufacturing process. Materials and Design, 2021, 206, 109700.	3.3	11
473	Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Advanced Functional Materials, 2021, 31, 2104149.	7.8	53
474	Flexible self-powered piezoelectric pressure sensor based on GaN/p-GaN coaxial nanowires. Journal of Alloys and Compounds, 2021, 872, 159661.	2.8	23
475	Intracranial Sensors for Continuous Monitoring of Neurophysiology. Advanced Materials Technologies, 2021, 6, 2100339.	3.0	7
476	Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources, 2021, 10, 93.	1.6	71

#	Article	IF	CITATIONS
477	On the operating mechanisms of flexible microwave inductors and capacitors under mechanical bending conditions. Journal Physics D: Applied Physics, 2021, 54, 485105.	1.3	1
478	Modular Synthesis of Fully Degradable Imine-Based Semiconducting p-Type and n-Type Polymers. Chemistry of Materials, 2021, 33, 7465-7474.	3.2	21
479	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
480	Soft Implantable Bioelectronics. , 2021, 3, 1528-1540.		24
481	Catalytically transformed low energy intensive 2D-layered and single crystal-graphitic renewable carbon cathode conductors. Carbon, 2021, 183, 243-250.	5.4	13
482	Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends in Biotechnology, 2021, 39, 1078-1092.	4.9	96
483	Biosensors and Bioelectronics on Smartphone. , 2022, , 627-655.		0
484	Transient electronics: new opportunities for implantable neurotechnology. Current Opinion in Biotechnology, 2021, 72, 22-28.	3.3	20
485	The Rise of Soft Neural Electronics. Giant, 2021, 8, 100075.	2.5	5
486	Flexible and biodegradable electronic implants for diagnosis and treatment of brain diseases. Current Opinion in Biotechnology, 2021, 72, 13-21.	3.3	16
487	A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 622923.	2.0	31
488	Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Applied Electronic Materials, 2021, 3, 485-503.	2.0	37
489	Recent advances in stretchable field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 7796-7828.	2.7	15
490	Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME Frontiers, 2021, 2021, .	2.2	7
491	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
492	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
493	Advances in Bioresorbable Electronics and Uses in Biomedical Sensing. , 2020, , 29-72.		6
494	Micro- and nanotechnology for neural electrode-tissue interfaces. Biosensors and Bioelectronics, 2020, 170, 112645.	5.3	42

ARTICLE IF CITATIONS # Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications. 497 13.1 9 IEEE Reviews in Biomedical Engineering, 2023, 16, 152-170. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nature 498 11.6 Biomedical Engineering, 2021, 5, 1217-1227. Current status and outlook of biodegradable metals in neuroscience and their potential applications 499 8.6 21 as cerebral vascular stent materials. Bioactive Materials, 2022, 11, 140-153. Organic Electrochemical Transistors for In Vivo Bioelectronics. Advanced Materials, 2021, 33, 11.1 e2101874. Trillion Sensing — Sensory Inspection in IoT Era—. Journal of Japan Institute of 501 0.0 0 Electronics Packaging, 2016, 19, 485-491. Transfer Printing for Cyber-Manufacturing Systems. Springer Series in Wireless Technology, 2017, , 1.1 671-690. 503 Biodegradability of Porous Silicon., 2017, , 1-8. 0 Toward Bioresorbable Photosensitive Fibers for Theranostics., 2018,,. 504 505 Biodegradability of Porous Silicon., 2018, , 547-554. 0 Cerebral Blood Flow Monitoring Using IoT Enabled Cloud Computing for mHealth Applications. Advances in Intelligent Systems and Computing, 2019, , 578-590. Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284. 507 1 Silicon transient electronics: bioresorbable to hardware-secure device., 2019, , . 508 Biodegradable piezoelectric force sensor (Rising Researcher Paper)., 2019,,. 509 0 Phototriggerable Transient Electronics via Fullerene-Mediated Degradation of Polymer:Fullerene 4.0 Encapsulation Layer. ACS Applied Materials & amp; Interfaces, 2021, 13, 904-911 Statistical mechanics of a dielectric polymer chain in the force ensemble. Journal of the Mechanics 511 2.36 and Physics of Solids, 2022, 158, 104658. Biosensors and Bioelectronics on Smartphone., 2020, , 1-29. 513 Inorganic Dissolvable Bioelectronics., 2020, , 73-100. 0 Dissecting Biological and Synthetic Softâ€"Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 514 2022, 122, 5233-5276.

ARTICLE IF CITATIONS # Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional 515 23.0 31 Systems. Chemical Reviews, 2022, 122, 5277-5316. Phosphorescence-based temperature and tactile multi-functional flexible sensing skin. Sensors and Actuators A: Physical, 2021, 332, 113205. Ultrahigh Sensitive Auâ€Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous 517 11.1 69 Skin Temperature Monitoring with High Precision. Advanced Materials, 2022, 34, e2105865. A biodegradable artificial synapse implemented by foundry-compatible materials. Applied Physics Letters, 2020, 117, 192105. Biodegradable all-polymer field-effect transistors printed on Mater-Bi. Journal of Information Display, 519 2.1 8 2021, 22, 247-256. Video Capsule Endoscopy and Ingestible Electronics: Emerging Trends in Sensors, Circuits, Materials, Telemetry, Optics, and Rapid Reading Software. Advanced Devices & Instrumentation, 2021, 2021, . 4.0 Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning 522 2.0 11 of Liquid Metal. ACS Applied Electronic Materials, 2021, 3, 5423-5432. Water soluble flexible and wearable electronic devices: a review. Flexible and Printed Electronics, 1.5 2021, 6, 043006. Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse 524 5.5 17 tissue in vivo. Nature Protocols, 2021, 16, 5707-5738. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced 11.1 44 Materials, 2022, 34, e2106787. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient 526 7.320 Electronics. ACS Nano, 2021, 15, 19310-19320. Neural optoelectrodes merging semiconductor scalability with polymeric-like bendability for low damage acute in vivo neuron readout and stimulation. Journal of Vacuum Science and Technology 0.6 B:Nanotechnology and Microelectronics, 2021, 39, 063001. Recent progress in biodegradable and bioresorbable materials: From passive implants to active 528 2.3 24 electronics. Applied Materials Today, 2021, 25, 101257. Recent advances in recording and modulation technologies for next-generation neural interfaces. IScience, 2021, 24, 103550. 529 1.9 Biocompatibility and degradation comparisons of four biodegradable copolymeric osteosynthesis systems used in maxillofacial surgery: A goat model with four years follow-up. Bioactive Materials, 531 8.6 3 2022, 17, 439-456. Challenges and opportunities in flexible, stretchable and morphable bio-interfaced technologies. National Science Review, 2022, 9, . Neuromonitoring in Severe Traumatic Brain Injury: A Bibliometric Analysis. Neurocritical Care, 2022, 533 1.2 3 36, 1044-1052. Single-crystalline silicon nanomembrane thin-film transistors with anodized aluminum oxide as a gate 534 1.3 dielectric on rigid and flexible substrates. Journal Physics D: Applied Physics, 2022, 55, 175105.

#	Article	IF	CITATIONS
535	Heteroâ€integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System. Advanced Materials, 2022, 34, e2108203.	11.1	28
536	Design and evaluation of in-plane silicon microneedles fabricated with post-CMOS compatible processes. Sensors and Actuators A: Physical, 2022, 336, 113407.	2.0	8
537	Needle Type Pressure Sensor with Parylene Membrane and Silicone Oil Inside. , 2022, , .		0
538	Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry, 2022, 109, 21-51.	2.9	94
539	Applications of nanogenerators for biomedical engineering and healthcare systems. InformaÄnÃ- Materiály, 2022, 4, .	8.5	45
540	In-Vitro Demonstration of Ultra-Reliable, Wireless and Batteryless Implanted Intracranial Sensors Operated on Loci of Exceptional Points. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 287-295.	2.7	10
541	Non-Surgical Removal of Partially Absorbable Bionic Implants. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 530-537.	2.1	1
542	On the mineralization of nanocellulose to produce functional hybrid materials. Journal of Materials Chemistry A, 2022, 10, 9248-9276.	5.2	7
543	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
544	Security Threats and Cryptographic Protocols for Medical Wearables. Mathematics, 2022, 10, 886.	1.1	8
545	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	6.0	230
546	Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. Journal of Mechanical Science and Technology, 2022, 36, 1059-1077.	0.7	8
547	Fully Implantable Neural Stimulator with Variable Parameters. Electronics (Switzerland), 2022, 11, 1104.	1.8	1
548	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. Advanced Electronic Materials, 2022, 8, .	2.6	3
549	High-Performance Carbon Nanotube-Based Transient Complementary Electronics. ACS Applied Materials & Interfaces, 2022, 14, 12515-12522.	4.0	6
550	Ultraâ€robust stretchable electrode for eâ€skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic waterâ€toâ€net interaction. InformaÄnÃ-MateriA¡ly, 2022, 4, .	8.5	47
551	Mechanics modeling of electrodes for wireless and bioresorbable capacitive pressure sensors. Journal of Applied Mechanics, Transactions ASME, 0, , 1-19.	1.1	1
552	Investigation on Piezoresistive Effect of n-Type 4H-SiC Based on All-SiC Pressure Sensors. IEEE Sensors Journal, 2022, 22, 6435-6441.	2.4	5

Biologyradable silicon nanoneedles for ocular drug delivery. Science Advances, 2022, 8, exbn1772. 4.7 31 Machanically robust textile based strain and procure multimodel sensors using metal 19 10 Immoniferation of the part of parts. Biolence, 2022, 25, 104052. 6.0 10 Implantable, wheeless, self-fring thermal sensors for continuous measurements of microwascular biols in flops and organ grafts. Biolences and Biolectrones, 2022, 200, 111415. 6.0 10 Implantable, wheeless, self-fring thermal sensors for continuous measurements of microwascular biols in flops and organ grafts. Biolences and Biolectrones, 2022, 200, 111415. 6.0 10 Implantable, wheeless, self-fring thermal sensors for continuous measurements of microwascular biols in flops and organ grafts. Biolences and Biolectrones, 2022, 200, 111415. 6.0 10 Implantable, wheeless, self-fring thermal sensors for continuous measurements of microwascular biols in flops and polydimuchylation and polydimuchylation. Small, 2022, 18, 00 6.2 8 Implantable, Wheeless the biologibio of the needle array-based tissue nanotransfection. Nano Research, 2022, 18, 100 6.2 7 Implantable, Wheeless that insafe localized Strafes Plasmon Research, 2022, 3, . 1.1 12 Implantable, Molydie mun (Mol) and Turgeten (W) Devices: One Step Closer towards Fully-Transient 2.0 5 Implantable, Molydie mun (Mol) and Turgeten (W) Devices: One Step C				
131 Mechanically robust textule based strain and pressure multimodal sensors using metal 1.9 15 155 Importable, wireless, self-fixing thermal sensors for continuous measurements of microvascular 6.3 18 156 Biorogated how in flaps and organ grafts. Biosensors and Biodestronics, 2022, 206, 114145. 6.3 18 157 Biorogated how in flaps and organ grafts. Biosensors and Biodestronics, 2022, 206, 114145. 6.4 18 158 Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small, 2022, 18, 6.2 8 159 Modeling the gene delivery process of the needle array based tissue nanotransfection. Nano Research, 0.8 0 150 Modeling the gene delivery process of the needle array based tissue nanotransfection. Nano Research, 0.8 0 150 Modeling the gene delivery process of the needle array based tissue nanotransfection. Nano Research, 0.8 0 151 Au/S Blayer Nanodyske with Tunable Localized Surface Plasmon Resoance for Optical Coherence 1.7 3 152 Bionegradable Molybénum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient 2.1 12 152 Biodegradable Molybénum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Tansient 2.1 12 154 Robrication of a Flexible	#	Article	IF	CITATIONS
100 10 10 10 101 10 10 10 102 10 10 10 103 Inplantable, wireless, self-faing thermal sensors for continuous measurements of microvascular biood flow in flaps and organ grafts. Biosensors and Biodectronics, 2022, 206, 114145. 5.3 18 103 Biomspired Nearachical polydimetrykilloxane/polyaniline array for ultrasensitive pressure on montoring. Chemical Engineering Journal, 2022, 411, 136028. 6.6 16 103 10 10 10 10 104 Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small, 2022, 18, e210338. 5.2 8 105 2022, 15, 3409 3421. 5.8 6 104 Membranes for Spintronic Devices. Advanced Electronic Materials, 2022, 0, . 2.6 7 105 Au/St Blayer Nanodisks with Turable Localized Surface Plasmon Resonance for Optical Coherence Tromography in the Second Neara-Enfrared Window. Advanced Plotonics Research, 2022, 2, . 17 3 105 Au/St Blayer Nanodisks with Turable Localized Surface Plasmon Resonance for Optical Coherence Tomography in the Second Neara-Enfrared Window. Advanced Plotonics Research, 2022, 2, 1 12 105 Advanced Implantable, Blomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials. 1.9 53 104 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Weara	553	Biodegradable silicon nanoneedles for ocular drug delivery. Science Advances, 2022, 8, eabn1772.	4.7	31
555 blood flow in flaps and organ grafts. Biosensors and Biodectronics, 2022, 206, 114145. 553 18 556 Bioinspired hierarchical polydimethylakioxane/polyamiline array for ultrasensitive pressure 6.6 10 558 Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small, 2022, 18, e2105388. 6.2 8 559 2022, 15, 3403-3421. 6.2 8 560 Modeling the gene delivery process of the needle array-based tissue nanotransfection. Nano Research, 20, 3403-3421. 6.4 7 560 Medeling the gene delivery process of the needle array-based tissue nanotransfection. Nano Research, 2022, 18, is 403-3421. 6.6 7 561 AulSi Blayer Nanodisks with Tunable Localized Surface Plasmon Resonance for Optical Coherence Tomography in the Second NeardeHofrared Window. Advanced Photonics Research, 2022, 3. 17 3 562 Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Translent 2.1 12 564 Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 13, 557. 33 33 566 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Cas Sensor Applications. Polymetric 2022, 13, 557. 0 6 566 Fabrication of disposable sensor strips for	554	Mechanically robust textile-based strain and pressure multimodal sensors using metal nanowire/polymer conducting fibers. IScience, 2022, 25, 104032.	1.9	15
100 10 101 100 102 100 103 100 104 100 105 Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small, 2022, 18, 52 105 100 105 2022, 15, 3409-3421. 105 100 105 100 105 100 105 100 105 100 105 100 105 100 105 100 105 100 105 100 105 100 105 100 106 100 107 12 108 100 108 100 109 100 100 100 100 100 101 112 102 112 103 2022, 12, 1366. 104 100 105 100 108 100 109	555	Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosensors and Bioelectronics, 2022, 206, 114145.	5.3	18
533 e2105388. 5.2 8 539 Modeling the gene delivery process of the needle array-based tissue nanotransfection. Nano Research, 2022, 15, 3409-3421. 5.8 6 560 Flexible Multiferroic Heterostructure Based on Freestanding Single&Crystalline BaTIO (sub) 3 (/sub) 2.6 7 561 Au/Si Bilayer Nanodishs with Tunable Localized Surface Plasmon Resonance for Optical Coherence Tomography in the Second Near&Erifrared Window, Advanced Photonics Research, 2022, 3. 1.7 3 562 Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient 2.1 12 563 Advanced Implants: Sensors, 2022, 22, 3062. 1.9 33 564 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. 2.0 5 565 In-Plane Si Micro-Heater on Elastomer for Wearable Gas Sensor Applications. 1.4 3 566 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer Tor Wearable Gas Sensor Applications. 1.4 3 566 Fabrication of alsposable sensor strips for point-of-care testing of environmental pollutants., 2022, 1, 2022	556	Bioinspired hierarchical polydimethylsiloxane/polyaniline array for ultrasensitive pressure monitoring. Chemical Engineering Journal, 2022, 441, 136028.	6.6	16
359 2022, 15, 3409-3421. 5.5 6 560 Flexible Multiferroic Heterostructure Based on Freestanding Single&Crystalline BaTIO (sub>3 (/sub> 2.6 7 561 Au/Si Bilayer Nanodisks with Tunable Localized Surface Plasmon Resonance for Optical Coherence 1.7 3 562 Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient 2.1 12 563 Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 1366. 33 564 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. 2.0 5 565 In-Plane Si Microneedies: Fabrication, Characterization, Modeling and Applications. Micromachines, 2022, 13, 657. 0 0 566 Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants. , 2022, 4, 200 6 567 Flexible Hybrid Single-Crystalline Silicon Nanomembrane Thin-Film Transistor with Organic Polymeric Polymeric Polymerics as Cate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 226 10 569 High&Performance n&Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Healthcare Materials, 2022, 8, . 13 33 570 Thin-film electronics on active substrates: review of materia	558		5.2	8
300 Membranes for Spintronic Devices. Advanced Electronic Materials, 2022, 8, . 2.5 7 501 Au/Si Bilayer Nanodisks with Tunable Localized Surface Plasmon Resonance for Optical Coherence Tomography in the Second NearäChfrared Window. Advanced Photonics Research, 2022, 3, . 1.7 3 502 Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. Sensors, 2022, 22, 3062. 1.1 12 503 Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 1366. 1.9 33 504 Pabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Cas Sensor Applications. Polymers, 2022, 14, 1557. 2.0 5 505 In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications. Micromachines, 2022, 13, 657. 1.4 3 506 Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants., 2022, 1, 77-94. 0 6 508 Pelytyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2281-2289. 2.0 6 509 Highá@Performance na@Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, 2.0 1.0 33 570 Thin-film electronics on active substrates: review of materials, technolo	559	Modeling the gene delivery process of the needle array-based tissue nanotransfection. Nano Research, 2022, 15, 3409-3421.	5.8	6
101 Tomography in the Second Near&Chfrared Window. Advanced Photonics Research, 2022, 3, 17 17 3 562 Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 1366. 1.9 33 563 Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 1366. 1.9 33 564 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. Polymers, 2022, 14, 1557. 2.0 5 565 In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications. Micromachines, 2022, 13, 657. 1.4 3 566 Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants. , 2022, 1 0 6 568 Polystyrene as a Cate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 220 6 6 569 High&Performance n&Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, . 1.0 6 570 Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002. 1.3 33 571 The Technological Advancement to Engineer Nex	560	Flexible Multiferroic Heterostructure Based on Freestanding Singleâ€Crystalline BaTiO ₃ Membranes for Spintronic Devices. Advanced Electronic Materials, 2022, 8, .	2.6	7
Biomedical Implants. Sensors, 2022, 22, 3062. 21 12 563 Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials, 1.9 33 564 Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. 2.0 5 565 In-Plane SI Microneedles: Fabrication, Characterization, Modeling and Applications. Micromachines, 1.4 3 566 Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants. , 2022, 1, 0 568 Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2.0 6 569 Highà@Performance nà@Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, 10 570 Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002. 33 571 The Technological Advancement to Engineer Nextà@Ceneration Stentà@Crafts: Design, Material, and Say 39 10 572 Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 202 39 10	561		1.7	3
3032022, 12, 1366.15933564Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. Polymers, 2022, 14, 1557.2.05565In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications. Micromachines, 2022, 13, 657.1.43566Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants. , 2022, , 77-94.0568Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants. , 2022, 4, 2281-2289.0568Flexible Hybrid Single-Crystalline Silicon Nanomembrane Thin-Film Transistor with Organic Polymeric Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2281-2289.2.06569Highá€Performance ná€Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .1.333570Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.3.910571The Technological Advancement to Engineer Nextâ€Generation Stentã€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.3.910	562		2.1	12
364Polymers, 2022, 14, 1557.2.05565In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications. Micromachines, 2022, 13, 657.1.43566Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants., 2022, , 77-94.0568Flexible Hybrid Single-Crystalline Silicon Nanomembrane Thin-Film Transistor with Organic Polymeric Polystyrene as a Cate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2281-2289.2.06569Highâ€Performance nâ€Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .2.610570Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.1.333571The Technological Advancement to Engineer Nextâ€Ceneration Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.3.910572Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 2022, 11, e2200271.3.57.	563		1.9	33
5652022, 13, 657.143566Fabrication of disposable sensor strips for point-of-care testing of environmental pollutants. , 2022, , 77-94.0568Flexible Hybrid Single-Crystalline Silicon Nanomembrane Thin-Film Transistor with Organic Polymeric Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2281-2289.2.06569Highâ@Performance nâ@Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .2.610570Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.1.333571The Technological Advancement to Engineer Nextâ@Generation Stentâ@Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.3.910572Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 20271.3.53.5	564		2.0	5
30077-94.0568Flexible Hybrid Single-Crystalline Silicon Nanomembrane Thin-Film Transistor with Organic Polymeric Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2281-2289.2.06569Highâ€Performance nâ€Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .2.610570Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.1.333571The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.3.910572Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 2.52.57	565		1.4	3
568Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4,2.06569Highâ€Performance nâ€Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .2.610570Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.1.333571The Technological Advancement to Engineer Nextâ€Ceneration Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.3.910572Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials,3.57	566			0
569 Electronics. Advanced Electronic Materials, 2022, 8, . 2.6 10 570 Thin-film electronics on active substrates: review of materials, technologies and applications. Journal 1.3 33 570 The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and 3.9 10 571 The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and 3.9 10 572 Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 2.5 7	568	Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4,	2.0	6
570 Physics D: Applied Physics, 2022, 55, 323002. 1.3 33 571 The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271. 3.9 10 572 Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 3.5 7	569	Highâ€Performance nâ€Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	10
571 Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271. 3.9 10 572 Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials,	570		1.3	33
	571	The Technological Advancement to Engineer Nextâ€Generation Stentâ€Grafts: Design, Material, and Fabrication Techniques. Advanced Healthcare Materials, 2022, 11, e2200271.	3.9	10
2022, 0, .	572	Emergence of instability-driven domains in soft stratified materials. Npj Computational Materials, 2022, 8, .	3.5	7

#	Article	IF	CITATIONS
573	Stretchable, Multi-Layered Stack Antenna for Smart/Wearable Electronic Applications. Materials, 2022, 15, 3275.	1.3	2
574	Design and simulation of silicon-based antenna at 5.8 GHz ISM band for fat-intrabody communication. , 2021, , .		1
575	A Repeater Antenna System Utilizing Genetically Modified Bacteria for Multiscale Communications. , 2022, , .		2
576	Investigation of effective stress imposed on flexible single-crystalline semiconductor nanomembrane electronics under bending conditions. Modern Physics Letters B, 2022, 36, .	1.0	1
577	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	6.0	90
578	Micro/nanoarrays and their applications in flexible sensors: A review. Materials Today Nano, 2022, 19, 100224.	2.3	9
579	A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 26595-26603.	4.0	18
580	Functional Nanomaterial-Based Flexible Electronics. Coatings, 2022, 12, 809.	1.2	2
581	2022 roadmap on neuromorphic devices and applications research in China. Neuromorphic Computing and Engineering, 2022, 2, 042501.	2.8	4
584	Wireless interfaces for brain neurotechnologies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	1
585	Transient, Biodegradable Energy Systems as a Promising Power Solution for Ecofriendly and Implantable Electronics. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	8
587	Transient Materials from Hypersensitive Ionic Polymer Fibers. SSRN Electronic Journal, 0, , .	0.4	0
588	Implantable Sensors. , 2022, , .		1
589	Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications. Nature Communications, 2022, 13, .	5.8	16
590	Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science, 2022, 377, 109-115.	6.0	62
591	Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics. ACS Applied Materials & Interfaces, 2022, 14, 33472-33481.	4.0	1
592	Adhesive-Free, Stretchable, and Permeable Multiplex Wound Care Platform. ACS Sensors, 2022, 7, 1996-2005.	4.0	7
593	Functional electrospun polymeric materials for bioelectronic devices: a review. Materials Advances, 2022, 3, 6753-6772.	2.6	11

#	Article	IF	CITATIONS
594	Biodegradable germanium electronics for integrated biosensing of physiological signals. Npj Flexible Electronics, 2022, 6, .	5.1	11
595	Wearable Optical Sensing in the Medical Internet of Things (MIoT) for Pervasive Medicine: Opportunities and Challenges. ACS Photonics, 2022, 9, 2579-2599.	3.2	16
596	Remotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostars. Nature Nanotechnology, 2022, 17, 1015-1022.	15.6	56
597	Making electronics that don't last. Nature Electronics, 2022, 5, 479-479.	13.1	2
598	Mechanically Active Materials and Devices for Bioâ€Interfaced Pressure Sensors—A Review. Advanced Materials, 0, , .	11.1	14
599	Implants with Sensing Capabilities. Chemical Reviews, 2022, 122, 16329-16363.	23.0	33
600	Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
601	Two-dimensional silicene photodynamic tumor-targeting nanomedicine. Materials Today Bio, 2022, 16, 100393.	2.6	5
602	Sensors for brain temperature measurement and monitoring – a review. Neuroscience Informatics, 2022, 2, 100106.	2.8	11
603	High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy and Environmental Science, 2022, 15, 4095-4108.	15.6	14
604	Wearable Supercapacitors. Engergy Systems in Electrical Engineering, 2022, , 285-325.	0.5	0
605	Ultraâ€Thin Flexible Encapsulating Materials for Soft Bioâ€Integrated Electronics. Advanced Science, 2022, 9, .	5.6	37
606	Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat, 2023, 5, .	6.8	20
607	Critical Review on Recent Advancement in Nanotechnology for Biomedical Application. Advances in Science and Technology, 0, , .	0.2	Ο
609	Highly Branched Betulin Based Polyanhydrides for Self-Assembled Micellar Nanoparticles Formulation. International Journal of Molecular Sciences, 2022, 23, 11462.	1.8	1
610	A Wide Range and High Repeatability MEMS Pressure Sensor Based on Graphene. IEEE Sensors Journal, 2022, 22, 17737-17745.	2.4	4
611	Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nature Biomedical Engineering, 2023, 7, 486-498.	11.6	25
612	Impact of Planar and Vertical Organic Fieldâ€Effect Transistors on Flexible Electronics. Advanced Materials, 2023, 35, .	11.1	28

ARTICLE IF CITATIONS # Biodegradable polymeric materials for flexible and degradable electronics. Frontiers in Electronics, 613 2.0 10 0, 3, . Totally Organic Hydrogelâ€Based Selfâ€Closing Cuff Electrode for Vagus Nerve Stimulation. Advanced 614 Healthcare Materials, 2022, 11, . Materials and Biomedical Applications of Implantable Electronic Devices. Advanced Materials 615 3.0 6 Technologies, 2023, 8, . A bioresorbable peripheral nerve stimulator for electronic pain block. Science Advances, 2022, 8, . Triboelectric neurostimulator for physiological modulation of leg muscle. Nano Energy, 2022, 103, 617 8.2 4 107861. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nature Communications, 2022, 13, . 5.8 Fully Recyclable Liquidâ€Metalâ€Based Multiâ€Layer Thermally Triggered Transient Electronic Devices. 619 3.0 3 Advanced Materials Technologies, 2023, 8, . Novel Nanotechnology-Driven Prototypes for AI-Enriched Implanted Prosthetics Following Organ 0.4 Failure. Methods in Molecular Biology, 2023, , 195-237. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. Biosensors, 622 2.3 8 2022, 12, 952. Hermetic and Bioresorbable Packaging Materials for MEMS Implantable Pressure Sensors: A Review. 2.4 IEEE Sensors Journal, 2022, 22, 23633-23648. Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals, 624 0 1.0 2022, 12, 1609. Biodegradable Electronics. Springer Handbooks, 2023, , 1019-1041. 0.3 Lowâ€Voltage Intrinsically Stretchable Organic Transistor Amplifiers for Ultrasensitive 626 11.1 7 Electrophysiological Signal Detection. Advanced Materials, 2023, 35, . Strain Effect on the Field-Effect Sensing Property of Si Wires. Physical Chemistry Chemical Physics, 0, , 1.3 Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical 628 18.7 18 Society Reviews, 2023, 52, 795-835. Transient materials from hypersensitive ionic polymer fibers. Chemical Engineering Journal, 2023, 454, 140549. A statistical-chain-based theory for dynamic living polymeric gels with concurrent diffusion, chain 630 remodeling reactions and deformation. Journal of the Mechanics and Physics of Solids, 2023, 172, 2.310 105155. SkinCell: A Modular Tactile Sensor Patch for Physical Humanâ€"Robot Interaction. IEEE Sensors Journal, 2.4 2023, 23, 2833-2846.

#	Article	IF	Citations
632	Polyanhydride Chemistry. Biomacromolecules, 2022, 23, 4959-4984.	2.6	8
633	Ferromagnetic Flexible Electronics for Brainâ€Wide Selective Neural Recording. Advanced Materials, 2023, 35, .	11.1	2
634	Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates. Advanced Materials Technologies, 0, , 2201119.	3.0	0
635	Bio-hybrid electronic and photonic devices. Experimental Biology and Medicine, 2022, 247, 2128-2141.	1.1	3
636	Fiber-Optic Intracranial Pressure Monitoring System Using Wi-Fi—An In Vivo Study. Neurosurgery, 2022, Publish Ahead of Print, .	0.6	0
637	Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS Applied Materials & Interfaces, 2023, 15, 4713-4723.	4.0	6
638	Pathway of transient electronics towards connected biomedical applications. Nanoscale, 2023, 15, 4236-4249.	2.8	6
639	Development of an Automated Design Tool for FEM-Based Characterization of Solid and Hollow Microneedles. Micromachines, 2023, 14, 133.	1.4	2
640	Carbon nanotubes field-effect transistor pressure sensor based on three-dimensional conformal force-sensitive gate modulation. Carbon, 2023, 204, 456-464.	5.4	10
641	Isotropic conductive paste for bioresorbable electronics. Materials Today Bio, 2023, 18, 100541.	2.6	6
642	Implantable Device Fabrication and Packaging. , 2023, , 289-337.		1
643	Engineering Materials for Neurotechnology. Advanced Engineering Materials, 2023, 25, .	1.6	0
644	Biocompatible Microelectrode for In Vivo Sensing with Improved Performance. Langmuir, 2023, 39, 1719-1729.	1.6	5
646	Flame-retardant fibre-particle-polymer semiconductive networks for physically transient supercapacitors and chemiresistors. Chemical Engineering Journal, 2023, 460, 141861.	6.6	3
647	Material Design in Implantable Biosensors toward Future Personalized Diagnostics and Treatments. Applied Sciences (Switzerland), 2023, 13, 4630.	1.3	1
648	Wireless in vivo recording of cortical activity by an ion-sensitive field effect transistor. Sensors and Actuators B: Chemical, 2023, 382, 133549.	4.0	1
649	Structural Engineering of Flexible Electronics. , 2022, , 1-26.		0
650	Bioabsorbable WE43 Mg alloy wires modified by continuous plasma-electrolytic oxidation for implant applications. Part I: Processing, microstructure and mechanical properties. , 2023, 146, 213314.		9

		OKI	
#	Article	IF	CITATIONS
651	Graphene in wearable textile sensor devices for healthcare. Textile Progress, 2022, 54, 201-245.	1.3	2
652	Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Science Advances, 2023, 9, .	4.7	19
653	Semiconducting electrodes for neural interfacing: a review. Chemical Society Reviews, 2023, 52, 1491-1518.	18.7	5
654	Highly Adaptable Strain Capacitive Sensors with Exceptional Selectivity Using Spontaneous Micrometer-Pyramid Electrodes. ACS Applied Electronic Materials, 2023, 5, 977-984.	2.0	3
655	Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. Npj Flexible Electronics, 2023, 7, .	5.1	19
656	<scp>3D</scp> printed peripheral vascular stents based on degradable poly(<scp>trimethylene) Tj ETQq1 1 0.784 1739-1751.</scp>	1314 rgBT 1.6	/Overlock 1
657	Super resolution imaging reconstruction reveals that gold standard methods may not correctly conclude neural/brain functional recovery. Computerized Medical Imaging and Graphics, 2023, 105, 102198.	3.5	3
658	A 3D biomimetic optoelectronic scaffold repairs cranial defects. Science Advances, 2023, 9, .	4.7	10
659	Tunable Biopolymers. , 2022, , 1-44.		0
660	Bioresorbable Pressure Sensor and Its Applications in Abnormal Respiratory Event Identification. ACS Applied Electronic Materials, 2023, 5, 1761-1769.	2.0	8
661	Fabrication of a Silicon Elastomer-Based Self-Powered Flexible Triboelectric Sensor for Wearable Energy Harvesting and Biomedical Applications. ACS Applied Electronic Materials, 2023, 5, 1750-1760.	2.0	11
662	Advanced Bioinspired Organic Sensors for Futureâ€Oriented Intelligent Applications. , 0, , 2200066.		2
663	Grapheneâ€on‧ilicon Hybrid Fieldâ€Effect Transistors. Advanced Electronic Materials, 2023, 9, .	2.6	3
664	Synthesis and Characteristics of Transferrable Single rystalline AlN Nanomembranes. Advanced Electronic Materials, 2023, 9, .	2.6	4
665	Recent Advances in Nanomaterials Used for Wearable Electronics. Micromachines, 2023, 14, 603.	1.4	5
666	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
667	Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sensors, 2023, 8, 974-993.	4.0	4
668	Recent Advances in Biodegradable Green Electronic Materials and Sensor Applications. Advanced Materials, 2023, 35, .	11.1	11

#	Article	IF	CITATIONS
669	Zinc hybrid sintering for printed transient sensors and wireless electronics. Npj Flexible Electronics, 2023, 7, .	5.1	7
670	Review on Healthcare Biosensing Nanomaterials. ACS Applied Nano Materials, 2023, 6, 5042-5074.	2.4	22
671	A Degradable Sensor Based on Insect Protein for Postsurgical Diagnosis of Joint Health. Advanced Materials Technologies, 0, , .	3.0	0
672	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	18.7	41
673	Batteryâ€Free, Wireless, Cuffâ€Type, Multimodal Physical Sensor for Continuous Temperature and Strain Monitoring of Nerve. Small, 2023, 19, .	5.2	6
674	Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nature Communications, 2023, 14, .	5.8	20
675	Nanoporous Cu Prepared through Dealloying by Selectively Etching an Alkaline Metal with Saline. ACS Applied Nano Materials, 2023, 6, 7229-7233.	2.4	3
676	Transient and recyclable organic microwave resonator using nanocellulose for 5G and Internet of Things applications. Chemical Engineering Journal, 2023, 466, 143061.	6.6	5
680	Tunable Biopolymers. , 2023, , 833-876.		1
682	Biodegradable sensor platforms. , 2023, , 775-801.		0
685	Tissue Nanotransfection in Regenerative Medicine. , 2023, , 1051-1074.		0
686	Biodegradable materials and devices for neuroelectronics. MRS Bulletin, 0, , .	1.7	1
694	Recent developments in implantable neural probe technologies. MRS Bulletin, 2023, 48, 484-494.	1.7	2
712	Sputtered Zinc Electrodes on Pullulan Substrates for Flexible Biodegradable Transient Electronics. , 2023, , .		Ο
720	Bioresorbable polymers for medical applications. , 2023, , 357-400.		0
726	Recent advances in smart wearable sensors as electronic skin. Journal of Materials Chemistry B, 2023, 11, 10332-10354.	2.9	0
743	Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. Nano-Micro Letters, 2024, 16, .	14.4	0
755	Implantable soft electronics and sensors. , 2024, , 393-435.		0

#	Article	IF	CITATIONS
757	Processing techniques for bioresorbable-based composites for medical device applications. , 2024, , 41-62.		0
758	Recent trends in the customization of sensor materials for biomedical applications. , 2024, , .		0
760	Transfer-printed devices for biomedical applications. , 2024, , 279-323.		0
764	Organic encapsulants for bioresorbable medical electronics. MRS Bulletin, 2024, 49, 247-255.	1.7	0