Optimization models to integrate production and trans co-firing in coal-fired power plants

IIE Transactions 48, 901-920 DOI: 10.1080/0740817x.2015.1126004

Citation Report

#	Article	IF	CITATIONS
1	Two heuristics for coordinating production planning and transportation planning. International Journal of Production Research, 2018, 56, 6872-6889.	4.9	12
2	Analyzing tax incentives for producing renewable energy by biomass cofiring. IISE Transactions, 2018, 50, 332-344.	1.6	12
3	Advanced Woody Biomass Logistics for Co-Firing in Existing Coal Power Plant: Case Study of the Great Lakes States. Transportation Research Record, 2018, 2672, 93-106.	1.0	4
4	Securing the feedstock procurement for bioenergy products: a literature review on the biomass transportation and logistics. Journal of Cleaner Production, 2018, 200, 205-218.	4.6	48
5	Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System. Agriculture (Switzerland), 2018, 8, 74.	1.4	7
6	Simultaneously optimizing the capacity and configuration of biorefineries. Computers and Industrial Engineering, 2018, 124, 12-23.	3.4	5
7	An Overview of Current Models and Approaches to Biomass Supply Chain Design and Management. Current Sustainable/Renewable Energy Reports, 2018, 5, 138-149.	1.2	9
8	A robust optimisation approach for identifying multi-state collaborations to reduce CO ₂ emissions. Journal of the Operational Research Society, 2019, 70, 601-619.	2.1	4
9	Designing a sustainable stochastic electricity generation network with hybrid production strategies. International Journal of Production Research, 2019, 57, 2304-2326.	4.9	17
10	Integrating biomass into energy supply chain networks. Journal of Cleaner Production, 2020, 248, 119246.	4.6	23
11	Optimal governmental incentives for biomass cofiring to reduce emissions in the short-term. IISE Transactions, 2021, 53, 883-896.	1.6	8
12	A biomass-coal co-firing based bi-level optimal approach for carbon emission reduction in China. Journal of Cleaner Production, 2021, 278, 123318.	4.6	19
13	A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains. Annals of Operations Research, 2021, 296, 95-130.	2.6	11
14	Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment. Applied Energy, 2021, 285, 116494.	5.1	28
15	Optimal multi-state partnerships for woody biomass co-firing incorporating a demand-response function for biomass procurement. Optimization Letters, 2022, 16, 821-844.	0.9	2
16	Sustainable production and waste management policies for COVID-19 medical equipment under uncertainty: A case study analysis. Computers and Industrial Engineering, 2021, 157, 107381.	3.4	19
17	Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review. Renewable and Sustainable Energy Reviews, 2021, 148, 111289.	8.2	16
18	Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China. Energies, 2023, 16, 2725.	1.6	1

#	Article	IF	CITATIONS
19	Analysis of multi-objective vehicle routing problem with flexible time windows: The implication for open innovation dynamics. Journal of Open Innovation: Technology, Market, and Complexity, 2023, 9, 100024.	2.6	5