From blood–brain barrier to blood–brain interface: delivery

Nature Reviews Drug Discovery 15, 275-292

DOI: 10.1038/nrd.2015.21

Citation Report

#	Article	IF	CITATIONS
1	Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 108.	2.9	25
2	Perillyl Alcohol and Its Drug-Conjugated Derivatives as Potential Novel Methods of Treating Brain Metastases. International Journal of Molecular Sciences, 2016, 17, 1463.	4.1	33
3	Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. International Journal of Nanomedicine, 2016, Volume 11, 5381-5414.	6.7	301
4	Neuropeptides, Microbiota, and Behavior. International Review of Neurobiology, 2016, 131, 67-89.	2.0	41
5	Perispinal Delivery of CNS Drugs. CNS Drugs, 2016, 30, 469-480.	5.9	25
6	Delivery of Fluorescent Nanoparticles to the Brain. Journal of Molecular Neuroscience, 2016, 60, 405-409.	2.3	16
7	Elucidation of Exosome Migration Across the Blood–Brain Barrier Model In Vitro. Cellular and Molecular Bioengineering, 2016, 9, 509-529.	2.1	368
8	In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discovery Today, 2016, 21, 1367-1386.	6.4	48
9	InÂvitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials, 2016, 103, 229-255.	11.4	48
10	Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, G _{M1} -gangliosidosis and Fabry diseases. Chemical Communications, 2016, 52, 5497-5515.	4.1	122
11	The vasculature as a neural stem cell niche. Neurobiology of Disease, 2017, 107, 4-14.	4.4	26
12	Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Human Antibodies, 2017, 25, 131-146.	1.5	14
13	A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nature Reviews Microbiology, 2017, 15, 149-159.	28.6	203
14	Vitamin-Derived Nanolipoidal Carriers for Brain Delivery of Dimethyl Fumarate: A Novel Approach with Preclinical Evidence. ACS Chemical Neuroscience, 2017, 8, 1390-1396.	3.5	23
15	Size-selective opening of the bloodâ€"brain barrier by targeting endothelial sphingosine 1â€"phosphate receptor 1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4531-4536.	7.1	167
16	Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature, 2017, 545, 305-310.	27.8	247
17	Organoid and Organ-on-a-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease. Current Stem Cell Reports, 2017, 3, 98-111.	1.6	22
18	Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Advanced Drug Delivery Reviews, 2017, 119, 159-174.	13.7	25

#	ARTICLE	IF	CITATIONS
19	Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. Current Opinion in Hematology, 2017, 24, 256-264.	2.5	24
20	Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?. AAPS Journal, 2017, 19, 931-939.	4.4	61
21	Covalent nano delivery systems for selective imaging and treatment of brain tumors. Advanced Drug Delivery Reviews, 2017, 113, 177-200.	13.7	67
22	InÂvitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 2017, 486, 577-583.	2.1	31
23	Multifunctional Hybrid Nanoparticles for Traceable Drug Delivery and Intracellular Microenvironmentâ€Controlled Multistage Drugâ€Release in Neurons. Small, 2017, 13, 1603966.	10.0	21
24	Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Scientific Reports, 2017, 7, 44718.	3.3	48
25	Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron, 2017, 93, 1325-1333.e3.	8.1	126
26	Pericytes, an overlooked player in vascular pathobiology. , 2017, 171, 30-42.		165
27	Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation. Biochemical and Biophysical Research Communications, 2017, 482, 1160-1164.	2.1	7
28	Barrier function in the peripheral and central nervous system—a review. Pflugers Archiv European Journal of Physiology, 2017, 469, 123-134.	2.8	216
29	Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nature Communications, 2017, 8, 1001.	12.8	191
30	To Boldly Go Where One Has Gone Before. Brain, Behavior, and Immunity, 2017, 66, 1-8.	4.1	10
31	Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting. Journal of Materials Chemistry B, 2017, 5, 7721-7735.	5.8	39
32	Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment. Biochemical and Biophysical Research Communications, 2017, 493, 120-125.	2.1	30
33	Plasmonic silver nanoshells for drug and metabolite detection. Nature Communications, 2017, 8, 220.	12.8	166
34	Colloids for drug delivery to the brain. Journal of Drug Delivery Science and Technology, 2017, 42, 193-206.	3.0	13
35	Time-sequenced drug delivery approaches towards effective chemotherapeutic treatment of glioma. Materials Horizons, 2017, 4, 977-996.	12.2	14
36	Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron, 2017, 96, 966-988.	8.1	54

#	ARTICLE	IF	CITATIONS
37	Exogenous iron redistribution between brain and liver after administering 57Fe3O4 ferrofluid to a rat brain ventricle. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 788-792.	0.6	1
38	Blood–brain barrier and laser technology for drug brain delivery. Journal of Innovative Optical Health Sciences, 2017, 10, 1730011.	1.0	4
39	NIH workshop report on the trans-agency blood–brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids and Barriers of the CNS, 2017, 14, 12.	5.0	16
40	L-type amino acid transporter 1 utilizing prodrugs: How to achieve effective brain delivery and low systemic exposure of drugs. Journal of Controlled Release, 2017, 261, 93-104.	9.9	62
41	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	28.8	125
42	Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells. International Journal of Nanomedicine, 2017, Volume 12, 5511-5523.	6.7	51
43	Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents. Marine Drugs, 2017, 15, 366.	4.6	42
44	β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules, 2017, 22, 1692.	3.8	82
45	Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Frontiers in Neuroscience, 2017, 11, 224.	2.8	145
46	Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting. Drug Design, Development and Therapy, 2017, Volume11, 325-335.	4.3	35
47	Inhibiting Kinases in the CNS., 2017,, 408-446.		0
48	Obstacles to Brain Tumor Therapy: Key ABC Transporters. International Journal of Molecular Sciences, 2017, 18, 2544.	4.1	67
49	Neurodegenerative Disease: A Perspective on Cell-Based Therapy in the New Era of Cell-Free Nano-Therapy. Current Pharmaceutical Design, 2017, 23, 776-783.	1.9	21
50	Advances in Drug Discovery and Development in Geriatric Psychiatry. Current Psychiatry Reports, 2018, 20, 10.	4.5	5
51	Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. Journal of Controlled Release, 2018, 277, 89-101.	9.9	212
52	Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model. Biological Chemistry, 2018, 399, 711-721.	2.5	6
53	A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell, 2018, 173, 130-139.e10.	28.9	162
54	Selective drug delivery approaches to lesioned brain through blood brain barrier disruption. Expert Opinion on Drug Delivery, 2018, 15, 335-349.	5.0	21

#	ARTICLE	IF	CITATIONS
55	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	38.1	352
56	An In Vivo Blood-brain Barrier Permeability Assay in Mice Using Fluorescently Labeled Tracers. Journal of Visualized Experiments, 2018, , .	0.3	25
57	Brain Delivery of Multifunctional Dendrimer Protein Bioconjugates. Advanced Science, 2018, 5, 1700897.	11.2	44
58	Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacological Reviews, 2018, 70, 278-314.	16.0	242
59	Current Challenges and Opportunities in Treating Glioblastoma. Pharmacological Reviews, 2018, 70, 412-445.	16.0	571
60	Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Advanced Drug Delivery Reviews, 2018, 128, 29-53.	13.7	159
61	The Role and Mechanism of Borneol to Open the Blood-Brain Barrier. Integrative Cancer Therapies, 2018, 17, 806-812.	2.0	26
62	Focused shockwave induced blood-brain barrier opening and transfection. Scientific Reports, 2018, 8, 2218.	3.3	27
63	The ability of liposomes, tailored for blood–brain barrier targeting, to reach the brain is dramatically affected by the disease state. Nanomedicine, 2018, 13, 585-594.	3.3	11
64	Assessment of Blood Brain Barrier Leakage with Gadolinium-Enhanced MRI. Methods in Molecular Biology, 2018, 1718, 395-408.	0.9	18
65	Mitochondria at the neuronal presynapse in health and disease. Nature Reviews Neuroscience, 2018, 19, 63-80.	10.2	486
66	Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy. Trends in Biotechnology, 2018, 36, 562-575.	9.3	139
67	In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. Journal of Controlled Release, 2018, 273, 108-130.	9.9	43
68	Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery. Physics in Medicine and Biology, 2018, 63, 035002.	3.0	42
69	Porous Substrates Promote Endothelial Migration at the Expense of Fibronectin Fibrillogenesis. ACS Biomaterials Science and Engineering, 2018, 4, 222-230.	5.2	15
70	Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 2018, 12, 24-43.	14.6	192
71	Interoception and Inflammation in Psychiatric Disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 514-524.	1.5	61
72	Twoâ€Step Targeted Hybrid Nanoconstructs Increase Brain Penetration and Efficacy of the Therapeutic Antibody Trastuzumab against Brain Metastasis of HER2â€Positive Breast Cancer. Advanced Functional Materials, 2018, 28, 1705668.	14.9	32

#	ARTICLE	IF	CITATIONS
73	Crosstalk between the immune, endocrine, and nervous systems in immunotoxicology. Current Opinion in Toxicology, 2018, 10, 37-45.	5.0	19
74	Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy – an illustration with firsthand examples. Acta Pharmacologica Sinica, 2018, 39, 825-844.	6.1	85
75	Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacological Research, 2018, 132, 47-68.	7.1	101
76	Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano, 2018, 12, 4105-4115.	14.6	239
77	Amino Acid Transporters as Disease Modifiers and Drug Targets. SLAS Discovery, 2018, 23, 303-320.	2.7	41
78	Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. Journal of Neuroimmunology, 2018, 319, 80-92.	2.3	53
79	Selfâ€Assembled pHâ€Sensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer. Advanced Functional Materials, 2018, 28, 1707582.	14.9	22
80	Modulation of blood-brain barrier function by a heteroduplex oligonucleotide in vivo. Scientific Reports, 2018, 8, 4377.	3.3	20
81	Polymyxins for CNS infections: Pharmacology and neurotoxicity. , 2018, 181, 85-90.		71
82	Disturbances in the control of capillary flow in an aged APPswe/PS1î"E9 model of Alzheimer's disease. Neurobiology of Aging, 2018, 62, 82-94.	3.1	30
83	The Promise and Challenge of <i>In Vivo</i> Delivery for Genome Therapeutics. ACS Chemical Biology, 2018, 13, 376-382.	3.4	69
84	Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029322.	5.5	75
85	The blood-brain interface: a culture change. Brain, Behavior, and Immunity, 2018, 68, 11-16.	4.1	16
86	Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1104-1118.	4.3	74
87	Calnexin is necessary for T cell transmigration into the central nervous system. JCI Insight, 2018, 3, .	5.0	14
88	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	21.0	415
89	Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nuclear Medicine and Molecular Imaging, 2018, 52, 407-419.	1.0	8
90	Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. Journal of Controlled Release, 2018, 292, 210-220.	9.9	37

#	Article	IF	CITATIONS
91	Astrocytes and Aging. Frontiers in Aging Neuroscience, 2018, 10, 337.	3.4	149
92	Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers, 2018, 6, 1479568.	3.2	46
93	MRI and histological evaluation of pulsed focused ultrasound and microbubbles treatment effects in the brain. Theranostics, 2018, 8, 4837-4855.	10.0	53
94	Alzheimer's disease (AD) therapeutics – 2: Beyond amyloid – Re-defining AD and its causality to discover effective therapeutics. Biochemical Pharmacology, 2018, 158, 376-401.	4.4	24
95	Optimization of 8-Hydroxyquinolines as Inhibitors of Catechol <i>O </i> Methyltransferase. Journal of Medicinal Chemistry, 2018, 61, 9647-9665.	6.4	18
96	Peptide-decorated polymeric nanomedicines for precision cancer therapy. Journal of Controlled Release, 2018, 290, 11-27.	9.9	63
97	The role of neutrophil granulocytes in immune-to-brain communication. Temperature, 2018, 5, 296-307.	3.0	27
98	Boosting RNAi therapy for orthotopic glioblastoma with nontoxic brain-targeting chimaeric polymersomes. Journal of Controlled Release, 2018, 292, 163-171.	9.9	52
99	Gene Silencing in the Right Place at the Right Time. Molecular Therapy, 2018, 26, 2539-2541.	8.2	0
100	Exosome Drug Delivery through the Blood–Brain Barrier: Experimental Approaches and Potential Applications. Neurochemical Journal, 2018, 12, 195-204.	0.5	26
101	Effective and Targeted Human Orthotopic Glioblastoma Xenograft Therapy via a Multifunctional Biomimetic Nanomedicine. Advanced Materials, 2018, 30, e1803717.	21.0	148
102	Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nature Protocols, 2018, 13, 2827-2843.	12.0	185
103	Borneol, a messenger agent, improves central nervous system drug delivery through enhancing blood–brain barrier permeability: a preclinical systematic review and meta-analysis. Drug Delivery, 2018, 25, 1617-1633.	5.7	33
104	Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the bloodâ \in "brain barrier. Fluids and Barriers of the CNS, 2018, 15, 30.	5.0	142
105	miR-1303 regulates BBB permeability and promotes CNS lesions following CA16 infections by directly targeting MMP9. Emerging Microbes and Infections, 2018, 7, 1-15.	6.5	37
107	Current Strategies for Brain Drug Delivery. Theranostics, 2018, 8, 1481-1493.	10.0	598
108	Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Frontiers in Molecular Neuroscience, 2018, 11, 166.	2.9	92
109	Recent Progress in the Development of Microfluidic Vascular Models. Analytical Sciences, 2018, 34, 755-764.	1.6	34

#	Article	IF	CITATIONS
110	Nanoparticle-Based Strategies to Treat Neuro-Inflammation. Materials, 2018, 11, 270.	2.9	35
111	Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots across the Blood–Brain Barrier. ACS Omega, 2018, 3, 7888-7896.	3.5	27
112	Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood–brain barrier in leptin resistant mice. Molecular Metabolism, 2018, 13, 77-82.	6. 5	25
113	A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nature Biotechnology, 2018, 36, 865-874.	17.5	310
114	Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Frontiers in Aging Neuroscience, 2018, 10, 234.	3.4	19
115	Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier disruption. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8717-E8726.	7.1	159
116	Beyond the Blood:Brain Barrier: The Importance of Central Nervous System (CNS) Pharmacokinetics for the Treatment of CNS Tumors, Including Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2018, 8, 239.	2.8	135
117	Dendrimer-based magnetic resonance imaging agents for brain cancer. Science China Materials, 2018, 61, 1420-1443.	6.3	9
118	Temporal and Spatial Effects of Blast Overpressure on Blood-Brain Barrier Permeability in Traumatic Brain Injury. Scientific Reports, 2018, 8, 8681.	3.3	60
119	Annexin A2 is a Robo4 ligand that modulates ARF6 activation-associated cerebral trans-endothelial permeability. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2048-2060.	4.3	26
120	What human blood-brain barrier models can tell us about BBB function and drug discovery?. Expert Opinion on Drug Discovery, 2019, 14, 1113-1123.	5.0	9
121	Gene Therapy for Human Sensorineural Hearing Loss. Frontiers in Cellular Neuroscience, 2019, 13, 323.	3.7	52
122	Focused ultrasound in Parkinson's disease: A twofold path toward disease modification. Movement Disorders, 2019, 34, 1262-1273.	3.9	25
123	The role for the microbiome in the regulation of the circadian clock and metabolism. , 2019, , 231-248.		2
124	Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. Micromachines, 2019, 10, 414.	2.9	25
125	Cerebral Open Flow Microperfusion to Monitor Drug Transport Across the Bloodâ€Brain Barrier. Current Protocols in Pharmacology, 2019, 85, e60.	4.0	12
126	Challenging the CNS Targeting Potential of Systemically Administered Nanoemulsion Delivery Systems: a Case Study with Rapamycin-Containing Fish Oil Nanoemulsions in Mice. Pharmaceutical Research, 2019, 36, 134.	3 . 5	7
127	Development and Cell Biology of the Blood-Brain Barrier. Annual Review of Cell and Developmental Biology, 2019, 35, 591-613.	9.4	251

#	Article	IF	CITATIONS
128	Liposomes for drug delivery in stroke. Brain Research Bulletin, 2019, 152, 246-256.	3.0	44
129	In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study. Journal of Neuroinflammation, 2019, 16, 155.	7.2	40
130	Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. International Journal of Molecular Sciences, 2019, 20, 3108.	4.1	61
131	The 100 Most-Cited Articles About Convection-Enhanced Delivery to the Brain: A Bibliometric Analysis. World Neurosurgery, 2019, 129, 497-502.e6.	1.3	4
132	Intravenous and Intravascular Drug Delivery. , 2019, , 165-191.		0
133	Liposomal Formulations for Nose-to-Brain Delivery: Recent Advances and Future Perspectives. Pharmaceutics, 2019, 11, 540.	4.5	101
134	L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs). International Journal of Pharmaceutics, 2019, 571, 118714.	5.2	23
135	Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model. Cell Transplantation, 2019, 28, 1585-1602.	2.5	25
136	Polymeric Nanomedicine., 2019,, 233-267.		1
137	NEUROPROTECTIVE IMMUNITY: Leukaemia Inhibitory Factor (LIF) as guardian of brain health. Medicine in Drug Discovery, 2019, 2, 100006.	4.5	8
138	<p>Recent expansions of novel strategies towards the drug targeting into the brain</p> . International Journal of Nanomedicine, 2019, Volume 14, 5895-5909.	6.7	105
139	Protected rituximab aims at brain metastases. Nature Biomedical Engineering, 2019, 3, 678-679.	22.5	0
140	Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chemical Neuroscience, 2019, 10, 4394-4406.	3.5	8
141	Peptide decorated glycolipid nanomicelles for drug delivery across the blood–brain barrier (BBB). Biomaterials Science, 2019, 7, 4017-4021.	5.4	18
142	Brain Delivery of a Potent Opioid Receptor Agonist, Biphalin during Ischemic Stroke: Role of Organic Anion Transporting Polypeptide (OATP). Pharmaceutics, 2019, 11, 467.	4.5	27
143	Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Frontiers in Oncology, 2019, 9, 966.	2.8	64
144	Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opinion on Drug Delivery, 2019, 16, 1287-1311.	5.0	15
145	Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110488.	5.0	9

#	Article	IF	CITATIONS
146	Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. Journal of Industrial and Engineering Chemistry, 2019, 73, 8-18.	5.8	49
147	High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS Nano, 2019, 13, 1365-1384.	14.6	122
148	The blood–brain barrier as an endocrine tissue. Nature Reviews Endocrinology, 2019, 15, 444-455.	9.6	100
149	Inhibition of metal-induced amyloid β-peptide aggregation by a blood–brain barrier permeable silica–cyclen nanochelator. RSC Advances, 2019, 9, 14126-14131.	3.6	11
150	Copper-Targeting Approaches in Alzheimer's Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorganic Chemistry, 2019, 58, 13509-13527.	4.0	61
151	Controversial roles for dexamethasone in glioblastoma – Opportunities for novel vascular targeting therapies. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1460-1468.	4.3	33
152	Mechanistic Study on the Use of thel-Type Amino Acid Transporter 1 for Brain Intracellular Delivery of Ketoprofen via Prodrug: A Novel Approach Supporting the Development of Prodrugs for Intracellular Targets. Molecular Pharmaceutics, 2019, 16, 3261-3274.	4.6	22
153	The Need for Physiological Micro-Nanofluidic Systems of the Brain. Frontiers in Bioengineering and Biotechnology, 2019, 7, 100.	4.1	22
154	MicroRNA based theranostics for brain cancer: basic principles. Journal of Experimental and Clinical Cancer Research, 2019, 38, 231.	8.6	81
155	Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. Nanoscale, 2019, 11, 11227-11235.	5.6	27
156	Crossing biological barriers with nanogels to improve drug delivery performance. Journal of Controlled Release, 2019, 307, 221-246.	9.9	118
157	The Therapeutic Potential of Mesenchymal Stem Cell–Derived Exosomes in Treatment of Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 8157-8167.	4.0	89
158	A Simplified, Fully Defined Differentiation Scheme for Producing Blood-Brain Barrier Endothelial Cells from Human iPSCs. Stem Cell Reports, 2019, 12, 1380-1388.	4.8	143
159	Translational challenges in advancing regenerative therapy for treating neurological disorders using nanotechnology. Advanced Drug Delivery Reviews, 2019, 148, 60-67.	13.7	23
160	Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chemical Society Reviews, 2019, 48, 2967-3014.	38.1	389
161	Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Frontiers in Neuroscience, 2019, 13, 521.	2.8	159
162	Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nature Medicine, 2019, 25, 988-1000.	30.7	260
163	Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials Science and Engineering C, 2019, 102, 362-372.	7.3	43

#	Article	IF	CITATIONS
164	Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy. Nanoscale, 2019, 11, 11285-11304.	5.6	27
165	Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2019, 14, 595-607.	4.1	16
166	Drug delivery to the brain. , 2019, , 461-514.		9
167	Nanoparticles for drug delivery targeting neurodegeneration in brain and eye., 2019, , 149-183.		1
168	Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties. Science Advances, 2019, 5, eaau7375.	10.3	135
169	Nanomaterials for Drug Delivery to the Central Nervous System. Nanomaterials, 2019, 9, 371.	4.1	96
170	Imaging Hyperpolarized Pyruvate and Lactate after Blood–Brain Barrier Disruption with Focused Ultrasound. ACS Chemical Neuroscience, 2019, 10, 2591-2601.	3.5	10
171	Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano, 2019, 13, 4028-4040.	14.6	147
172	Cannabidiol Enhances the Passage of Lipid Nanocapsules across the Blood–Brain Barrier Both in Vitro and in Vivo. Molecular Pharmaceutics, 2019, 16, 1999-2010.	4.6	44
173	A Human Blood-Brain Interface Model to Study Barrier Crossings by Pathogens or Medicines and Their Interactions with the Brain. Journal of Visualized Experiments, 2019, , .	0.3	5
174	Brain-transportable dipeptides across the blood-brain barrier in mice. Scientific Reports, 2019, 9, 5769.	3.3	44
175	Review: Peering through a keyhole: liquid biopsy in primary and metastatic central nervous system tumours. Neuropathology and Applied Neurobiology, 2019, 45, 655-670.	3.2	14
176	<p>Comparing the efficacy of concurrent EGFR-TKI and whole-brain radiotherapy vs EGFR-TKI alone as a first-line therapy for advanced EGFR-mutated non-small-cell lung cancer with brain metastases: a retrospective cohort study</p> . Cancer Management and Research, 2019, Volume 11, 2129-2138.	1.9	29
177	A Bioinspired Platform for Effective Delivery of Protein Therapeutics to the Central Nervous System. Advanced Materials, 2019, 31, e1807557.	21.0	79
178	Optimization of Blood–Brain Barrier Permeability with Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibitors Having a 2-Aminopyridine Scaffold. Journal of Medicinal Chemistry, 2019, 62, 2690-2707.	6.4	29
179	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
180	In Vitro Priming and Hyper-Activation of Brain Microglia: an Assessment of Phenotypes. Molecular Neurobiology, 2019, 56, 6409-6425.	4.0	26
181	Nanoemulsions for "Nose-to-Brain―Drug Delivery. Pharmaceutics, 2019, 11, 84.	4.5	158

#	Article	IF	CITATIONS
182	Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment ("chemobrainâ€), a condition that significantly impairs the quality of life of many cancer survivors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1088-1097.	3.8	75
183	The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB. Journal of Nanobiotechnology, 2019, 17, 115.	9.1	20
184	Temporal Characterization of Blood–Brain Barrier Disruption with High-Frequency Electroporation. Cancers, 2019, 11, 1850.	3.7	34
185	Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules, 2019, 9, 790.	4.0	110
186	Polarizing receptor activation dissociates fibroblast growth factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathologica Communications, 2019, 7, 212.	5.2	13
187	Localised non-viral delivery of nucleic acids for nerve regeneration in injured nervous systems. Experimental Neurology, 2019, 319, 112820.	4.1	11
188	The triangle of death of neurons: Oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment ("chemobrainâ€) involving TNF-α. Free Radical Biology and Medicine, 2019, 134, 1-8.	2.9	59
189	Cell-Penetrating Peptides as Theranostics Against Impaired Blood-Brain Barrier Permeability: Implications for Pathogenesis and Therapeutic Treatment of Neurodegenerative Disease. Neuromethods, 2019, , 115-136.	0.3	0
190	New Cell-Penetrating Peptide (KRP) with Multiple Physicochemical Properties Endows Doxorubicin with Tumor Targeting and Improves Its Therapeutic Index. ACS Applied Materials & Interfaces, 2019, 11, 2448-2458.	8.0	21
191	microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Research Reviews, 2019, 49, 125-143.	10.9	87
192	Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Clinical Cancer Research, 2019, 25, 2042-2048.	7.0	77
193	1988–2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Archives of Biochemistry and Biophysics, 2019, 661, 74-86.	3.0	54
194	L-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery. European Journal of Pharmaceutical Sciences, 2019, 129, 99-109.	4.0	41
195	Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews, 2019, 99, 21-78.	28.8	1,232
196	Recent progress in blood-brain barrier transportation research. , 2019, , 33-51.		12
197	Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharmaceutica Sinica B, 2019, 9, 49-58.	12.0	51
198	In vitro and in vivo models of BBB to evaluate brain targeting drug delivery., 2019,, 53-101.		17
199	High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiology of Aging, 2019, 74, 121-134.	3.1	52

#	Article	IF	CITATIONS
200	Alzheimer's Disease Phenotype or Inflammatory Insult Does Not Alter Function of L-Type Amino Acid Transporter 1 in Mouse Blood-Brain Barrier and Primary Astrocytes. Pharmaceutical Research, 2019, 36, 17.	3.5	30
201	In vivo monitoring bloodâ€brain barrier permeability using spectral imaging through optical clearing skull window. Journal of Biophotonics, 2019, 12, e201800330.	2.3	20
202	Targeting central nervous system pathologies with nanomedicines. Journal of Drug Targeting, 2019, 27, 542-554.	4.4	16
203	Ultrasound Enhanced Anti-tumor Effect of Temozolomide in Glioblastoma Cells and Glioblastoma Mouse Model. Cellular and Molecular Bioengineering, 2019, 12, 99-106.	2.1	1
204	Interferon-alpha-Induced Changes in NODDI Predispose to the Development of Fatigue. Neuroscience, 2019, 403, 111-117.	2.3	27
205	Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annual Review of Psychology, 2020, 71, 49-78.	17.7	152
206	Lipid Nanocarriers for Enhanced Delivery of Temozolomide to the Brain. Methods in Molecular Biology, 2020, 2059, 285-298.	0.9	11
207	3D brain angiogenesis model to reconstitute functional human blood–brain barrier in vitro. Biotechnology and Bioengineering, 2020, 117, 748-762.	3.3	79
208	Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nature Communications, 2020, 11, 175.	12.8	236
209	Neuroinflammation and the blood–brain interface: New findings in brain pathology. Clinical and Experimental Neuroimmunology, 2020, 11, 16-20.	1.0	4
210	Ultrathin Silicon Membranes for <i>in Situ</i> Optical Analysis of Nanoparticle Translocation across a Human Blood–Brain Barrier Model. ACS Nano, 2020, 14, 1111-1122.	14.6	33
211	Spatiotemporal Distribution of Agrin after Intrathecal Injection and Its Protective Role in Cerebral Ischemia/Reperfusion Injury. Advanced Science, 2020, 7, 1902600.	11.2	5
212	A pumpâ€free tricellular blood–brain barrier onâ€aâ€chip model to understand barrier property and evaluate drug response. Biotechnology and Bioengineering, 2020, 117, 1127-1136.	3.3	45
213	Phosphorylation Signaling in APP Processing in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 209.	4.1	51
214	The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nature Reviews Cancer, 2020, 20, 26-41.	28.4	908
215	Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets. Nature Reviews Cancer, 2020, 20, 57-70.	28.4	187
216	Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. Journal of Controlled Release, 2020, 317, 312-321.	9.9	35
217	Self-Assembled Nanomaterials for Enhanced Phototherapy of Cancer. ACS Applied Bio Materials, 2020, 3, 86-106.	4.6	52

#	Article	IF	CITATIONS
218	Brain metastasis. Nature Reviews Cancer, 2020, 20, 4-11.	28.4	221
219	Dual and multi-targeted nanoparticles for site-specific brain drug delivery. Journal of Controlled Release, 2020, 317, 195-215.	9.9	72
220	Glioma-sensitive delivery of Angiopep-2 conjugated iron gold alloy nanoparticles ensuring simultaneous tumor imaging and hyperthermia mediated cancer theranostics. Applied Materials Today, 2020, 18, 100510.	4.3	20
221	Discovery of Novel, Potent, Brain-Permeable, and Orally Efficacious Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptor [4-(5-(4-Chlorophenyl)-4-methyl-2-propionylthiophen-3-yl)benzenesulfonamide]: Structure–Activity Relationship and Preclinical Characterization, Journal of Medicinal Chemistry, 2020, 63, 944-960.	6.4	19
222	Diffusion Tensor Imaging and Chemical Exchange Saturation Transfer MRI Evaluation on the Long-Term Effects of Pulsed Focused Ultrasound and Microbubbles Blood Brain Barrier Opening in the Rat. Frontiers in Neuroscience, 2020, 14, 908.	2.8	3
223	Brain Delivery of Single-Domain Antibodies: A Focus on VHH and VNAR. Pharmaceutics, 2020, 12, 937.	4.5	43
224	Lactose-appended \hat{l}^2 -cyclodextrin as an effective nanocarrier for brain delivery. Journal of Controlled Release, 2020, 328, 722-735.	9.9	17
225	Transport Studies Using Blood-Brain Barrier In Vitro Models: A Critical Review and Guidelines. Handbook of Experimental Pharmacology, 2020, , 187-204.	1.8	11
226	Polyethylenimine-based theranostic nanoplatform for glioma-targeting single-photon emission computed tomography imaging and anticancer drug delivery. Journal of Nanobiotechnology, 2020, 18, 143.	9.1	18
227	TRPV4-Mediated Regulation of the Blood Brain Barrier Is Abolished During Inflammation. Frontiers in Cell and Developmental Biology, 2020, 8, 849.	3.7	11
228	Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Frontiers in Immunology, 2020, 11, 573256.	4.8	122
229	Tetravalent Bispecific Tandem Antibodies Improve Brain Exposure and Efficacy in an Amyloid Transgenic Mouse Model. Molecular Therapy - Methods and Clinical Development, 2020, 19, 58-77.	4.1	13
230	Pharmacokinetic Principles and Their Application to Central Nervous System Tumors. Pharmaceutics, 2020, 12, 948.	4.5	10
231	Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with \hat{l}^2 -Amyloid Aggregation and Alleviate \hat{l}^2 -Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner. Marine Drugs, 2020, 18, 488.	4.6	25
232	Computationally Guided Intracerebral Drug Delivery via Chronically Implanted Microdevices. Cell Reports, 2020, 31, 107734.	6.4	5
233	Combination of Alanine and Glutathione as Targeting Ligands of Nanoparticles Enhances Cargo Delivery into the Cells of the Neurovascular Unit. Pharmaceutics, 2020, 12, 635.	4.5	14
234	Inducing a Functional-Pharmacological Coupling in the Human Brain to Achieve Improved Drug Effect. Frontiers in Neuroscience, 2020, 14, 557874.	2.8	0
235	Glycation Increases the Risk of Microbial Traversal through an Endothelial Model of the Human Blood-Brain Barrier after Use of Anesthetics. Journal of Clinical Medicine, 2020, 9, 3672.	2.4	6

#	Article	IF	CITATIONS
236	Kidney Ischemia/Reperfusion Injury Induces Changes in the Drug Transporter Expression at the Blood–Brain Barrier in vivo and in vitro. Frontiers in Physiology, 2020, 11, 569881.	2.8	19
237	The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Frontiers in Physiology, 2020, 11, 601320.	2.8	18
238	Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics, 2020, 12, 1120.	4.5	7
239	<i>In Situ</i> Surface Modification of Microfluidic Blood–Brain-Barriers for Improved Screening of Small Molecules and Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56753-56766.	8.0	36
240	Targeting the Ubiquitin System in Glioblastoma. Frontiers in Oncology, 2020, 10, 574011.	2.8	21
241	On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias. Science Advances, 2020, 6, .	10.3	41
242	Clinically approved IVIg delivered to the hippocampus with focused ultrasound promotes neurogenesis in a model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32691-32700.	7.1	48
243	The Legacy of Sickness Behaviors. Frontiers in Psychiatry, 2020, 11, 607269.	2.6	16
244	Microglial responses to peripheral type 1 interferon. Journal of Neuroinflammation, 2020, 17, 340.	7.2	35
245	Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson's disease in the precision medicine era. Medicinal Research Reviews, 2020, 40, 2650-2681.	10.5	32
246	Application of advances in endocytosis and membrane trafficking to drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 118-141.	13.7	44
247	Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 290-296.	4.3	16
248	Biological evaluation of [99mTc]Tc-labeled Buthus martensii Karsch Chlorotoxin peptide for glioma imaging. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 193-199.	1.5	0
249	Treatment Patterns and Survival Outcomes of Non-Small Cell Lung Cancer Patients Initially Diagnosed With Brain Metastases in Real-World Clinical Practice. Frontiers in Oncology, 2020, 10, 581729.	2.8	6
250	Multifunctional bioreactive-nanoconstructs for sensitive and accurate MRI of cerebrospinal fluid pathology and intervention of Alzheimer's disease. Nano Today, 2020, 35, 100965.	11.9	12
251	Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today, 2020, 35, 101006.	11.9	23
252	miR-143 Regulates Lysosomal Enzyme Transport across the Blood-Brain Barrier and Transforms CNS Treatment for Mucopolysaccharidosis Type I. Molecular Therapy, 2020, 28, 2161-2176.	8.2	4
253	Non-Human Primate Blood–Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model. Pharmaceutics, 2020, 12, 967.	4.5	10

#	Article	IF	Citations
254	Human iPSCâ€Derived Bloodâ€Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development?. Current Protocols in Stem Cell Biology, 2020, 55, e122.	3.0	26
255	The Blood–Brain Barrier Cell-Targeted Gene Delivery System to Enhance Nerve Growth Factor Protein Secretion in the Brain. ACS Biomaterials Science and Engineering, 2020, 6, 6207-6216.	5.2	8
256	Photodynamic Priming Modulates Endothelial Cell–Cell Junction Phenotype for Light-activated Remote Control of Drug Delivery. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 27, 1-1.	2.9	23
257	Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain?. Stem Cells International, 2020, 2020, 1-8.	2.5	16
258	Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood–Brain Barrier. ACS Biomaterials Science and Engineering, 2020, 6, 4916-4928.	5.2	90
259	Sex-Dependent Macromolecule and Nanoparticle Delivery in Experimental Brain Injury. Tissue Engineering - Part A, 2020, 26, 688-701.	3.1	30
260	Vaccination against β-Amyloid as a Strategy for the Prevention of Alzheimer's Disease. Biology, 2020, 9, 425.	2.8	26
261	Effects of Drugs of Abuse on the Blood-Brain Barrier: A Brief Overview. Frontiers in Neuroscience, 2020, 14, 513.	2.8	73
262	Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 305.	2.8	41
263	Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. Journal of Physiology, 2020, 598, 2791-2811.	2.9	26
264	Periodontal disease as a possible cause for Alzheimer's disease. Periodontology 2000, 2020, 83, 242-271.	13.4	76
265	<p>Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 2563-2582.	6.7	110
266	Tight junction modulators for drug delivery to the central nervous system. Drug Discovery Today, 2020, 25, 1477-1486.	6.4	12
267	Potential circadian effects on translational failure for neuroprotection. Nature, 2020, 582, 395-398.	27.8	85
268	Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine, 2020, 15, 1239-1261.	3.3	68
269	Endo/Lysosomeâ€Escapable Delivery Depot for Improving BBB Transcytosis and Neuron Targeted Therapy of Alzheimer's Disease. Advanced Functional Materials, 2020, 30, 1909999.	14.9	71
270	Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme. Journal of Controlled Release, 2020, 324, 181-193.	9.9	14
271	Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacologica Sinica, 2020, 41, 936-953.	6.1	38

#	Article	IF	CITATIONS
272	â€~Prodrug-Like' Acetylmannosamine Modified Liposomes Loaded With Arsenic Trioxide for the Treatment of Orthotopic Glioma in Mice. Journal of Pharmaceutical Sciences, 2020, 109, 2861-2873.	3.3	7
273	Advances in Management of Brain and Leptomeningeal Metastases. Current Neurology and Neuroscience Reports, 2020, 20, 26.	4.2	10
274	Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Frontiers in Oncology, 2020, 10, 739.	2.8	113
275	Progress and perspectives on nanoplatforms for drug delivery to the brain. Journal of Drug Delivery Science and Technology, 2020, 57, 101636.	3.0	13
276	Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging. Biomaterials, 2020, 243, 119939.	11.4	12
277	LRR domain of NLRX1 protein delivery by dNP2 inhibits T cell functions and alleviates autoimmune encephalomyelitis. Theranostics, 2020, 10, 3138-3150.	10.0	19
278	In vitro modeling of blood–brain barrier and interface functions in neuroimmune communication. Fluids and Barriers of the CNS, 2020, 17, 26.	5.0	56
279	Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2020, 10, 92.	2.8	22
280	Rabies Virusâ€Inspired Metal–Organic Frameworks (MOFs) for Targeted Imaging and Chemotherapy of Glioma. Angewandte Chemie, 2020, 132, 17130-17136.	2.0	7
281	Rabies Virusâ€Inspired Metal–Organic Frameworks (MOFs) for Targeted Imaging and Chemotherapy of Glioma. Angewandte Chemie - International Edition, 2020, 59, 16982-16988.	13.8	53
282	T807-modified human serum albumin biomimetic nanoparticles for targeted drug delivery across the blood–brain barrier. Journal of Drug Targeting, 2020, 28, 1085-1095.	4.4	5
283	MerTK inhibition decreases immune suppressive glioblastoma-associated macrophages and neoangiogenesis in glioblastoma microenvironment. Neuro-Oncology Advances, 2020, 2, vdaa065.	0.7	16
284	Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. International Journal of Molecular Sciences, 2020, 21, 4407.	4.1	236
285	Novel Blood–Brain Barrier Shuttle Peptides Discovered through the Phage Display Method. Molecules, 2020, 25, 874.	3.8	25
286	Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment <i>via</i>) nanotechnology. Theranostics, 2020, 10, 3223-3239.	10.0	59
287	Intrathecal Injection in a Rat Model: A Potential Route to Deliver Human Wharton's Jelly-Derived Mesenchymal Stem Cells into the Brain. International Journal of Molecular Sciences, 2020, 21, 1272.	4.1	22
288	Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. Advanced Materials, 2020, 32, e1903759.	21.0	39
289	Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Advances in Colloid and Interface Science, 2020, 278, 102123.	14.7	119

#	Article	IF	CITATIONS
290	Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 192-217.	4.3	69
291	Dense hydroxyl polyethylene glycol dendrimer targets activated glia in multiple CNS disorders. Science Advances, 2020, 6, eaay8514.	10.3	43
292	Translational studies of intravenous and intracerebroventricular routes of administration for CNS cellular biodistribution for BMN 250, an enzyme replacement therapy for the treatment of Sanfilippo type B. Drug Delivery and Translational Research, 2020, 10, 425-439.	5.8	13
293	Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Letters, 2020, 20, 1637-1646.	9.1	102
294	A Conditionally Releasable "Do not Eat Me―CD47 Signal Facilitates Microglia‶argeted Drug Delivery for the Treatment of Alzheimer's Disease. Advanced Functional Materials, 2020, 30, 1910691.	14.9	33
295	Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Research Bulletin, 2020, 160, 65-73.	3.0	27
296	Targeting Strategies for Tissue-Specific Drug Delivery. Cell, 2020, 181, 151-167.	28.9	474
297	Amphetamine decorated cationic lipid nanoparticles cross the blood–brain barrier: therapeutic promise for combating glioblastoma. Journal of Materials Chemistry B, 2020, 8, 4318-4330.	5.8	33
298	Meridianins and Lignarenone B as Potential GSK3 \hat{l}^2 Inhibitors and Inductors of Structural Neuronal Plasticity. Biomolecules, 2020, 10, 639.	4.0	15
299	Peptide gels for controlled release of proteins. Therapeutic Delivery, 2020, 11, 193-211.	2.2	14
300	Use of a Noninvasive Brain-Penetrating Peptide-Drug Conjugate Strategy to Improve the Delivery of Opioid Pain Relief Medications to the Brain. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 52-61.	2.5	11
301	Thin platelet-like COF nanocomposites for blood brain barrier transport and inhibition of brain metastasis from renal cancer. Journal of Materials Chemistry B, 2020, 8, 4475-4488.	5.8	16
302	New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opinion on Investigational Drugs, 2020, 29, 443-459.	4.1	31
303	Biomedical Microâ€∤Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. Advanced Materials, 2021, 33, e2000512.	21.0	195
304	Adult Endogenous Dopaminergic Neuroregeneration Against Parkinson's Disease: Ideal Animal Models?. Neurotoxicity Research, 2021, 39, 504-532.	2.7	1
305	Current approaches and prospective drug targeting to brain. Journal of Drug Delivery Science and Technology, 2021, 61, 102098.	3.0	11
306	Lipidâ€Based Nanocarriers for The Treatment of Glioblastoma. Advanced NanoBiomed Research, 2021, 1, 2000054.	3.6	17
307	Legumain-induced intracerebrally crosslinked vesicles for suppressing efflux transport of Alzheimer's disease multi-drug nanosystem. Bioactive Materials, 2021, 6, 1750-1764.	15.6	8

#	ARTICLE	IF	CITATIONS
308	Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Research, 2021, 71, 122-137.	1.7	15
309	Neural Circuits of Interoception. Trends in Neurosciences, 2021, 44, 17-28.	8.6	148
310	Microbubbles Containing Lysolipid Enhance Ultrasoundâ€Mediated Blood–Brain Barrier Breakdown In Vivo. Advanced Healthcare Materials, 2021, 10, e2001343.	7.6	8
311	Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. Journal of Controlled Release, 2021, 330, 1152-1167.	9.9	91
312	Presynaptic vesicular accumulation is required for antipsychotic efficacy in psychotic-like rats. Journal of Psychopharmacology, 2021, 35, 65-77.	4.0	4
313	The blood-brain barrier dysfunction in sepsis. Tissue Barriers, 2021, 9, 1840912.	3.2	32
314	Epstein–Barr virus infection modulates blood–brain barrier cells and its co-infection with <i>Plasmodium falciparum</i> induces RBC adhesion. Pathogens and Disease, 2021, 79, .	2.0	23
315	Heparan sulfate proteoglycanâ€mediated dynaminâ€dependent transport of neural stem cell exosomes in an in vitro blood–brain barrier model. European Journal of Neuroscience, 2021, 53, 706-719.	2.6	36
316	Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells, 2021, 10, 262.	4.1	48
317	Development of curcumin-loaded zein nanoparticles for transport across the blood–brain barrier and inhibition of glioblastoma cell growth. Biomaterials Science, 2021, 9, 7092-7103.	5.4	46
318	Apolipoprotein E, low-density lipoprotein receptor, and immune cells control blood-brain barrier penetration by AAV-PHP.eB in mice. Theranostics, 2021, 11, 1177-1191.	10.0	8
319	Prodrug strategy for enhanced therapy of central nervous system disease. Chemical Communications, 2021, 57, 8842-8855.	4.1	13
320	Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. Progress in Brain Research, 2021, 265, 1-97.	1.4	8
321	Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Medical Gas Research, 2021, 11, 158.	2.3	7
322	Gold-based nanomaterials for the treatment of brain cancer. Cancer Biology and Medicine, 2021, 18, 372-387.	3.0	18
323	Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. Journal of Materials Chemistry B, 2021, 9, 2756-2784.	5.8	32
324	Development, characterization and potential applications of a multicellular spheroidal human blood-brain barrier model integrating three conditionally immortalized cell lines. Biological and Pharmaceutical Bulletin, 2021, 44, 984-991.	1.4	10
325	Early administration of MPC-n(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke. Theranostics, 2021, 11, 8197-8217.	10.0	13

#	Article	IF	CITATIONS
326	New technique and device for controlled and continuous drug delivery into the brain: a proof-of-concept study. BMJ Innovations, 2021, 7, 470-477.	1.7	4
327	MiR-211 determines brain metastasis specificity through SOX11/NGN2 axis in triple-negative breast cancer. Oncogene, 2021, 40, 1737-1751.	5.9	19
328	Engineered Microglia Potentiate the Action of Drugs against Glioma Through Extracellular Vesicles and Tunneling Nanotubes. Advanced Healthcare Materials, 2021, 10, e2002200.	7.6	19
329	Inhibition of miR-96-5p in the mouse brain increases glutathione levels by altering NOVA1 expression. Communications Biology, 2021, 4, 182.	4.4	13
330	Peripheral Blood and Salivary Biomarkers of Blood–Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Frontiers in Neurology, 2020, 11, 577312.	2.4	36
331	Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. Advanced Science, 2021, 8, 2004025.	11.2	96
332	A Spontaneous Membrane-Adsorption Approach to Enhancing Second Near-Infrared Deep-Imaging-Guided Intracranial Tumor Therapy. ACS Nano, 2021, 15, 4518-4533.	14.6	9
334	Species differences in the intra-brain distribution of an L-type amino acid transporter 1 (LAT1) -utilizing compound between mice and rats. International Journal of Pharmaceutics, 2021, 596, 120300.	5.2	5
337	Advances in dendrimer-mediated targeted drug delivery to the brain. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	33
338	Strategies for delivering therapeutics across the blood–brain barrier. Nature Reviews Drug Discovery, 2021, 20, 362-383.	46.4	417
339	Recent Advances in the Use of Lipid-Based Nanoparticles Against Glioblastoma Multiforme. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 8.	2.3	12
340	Targeted Regulation of Blood–Brain Barrier for Enhanced Therapeutic Efficiency of Hypoxia-Modifier Nanoparticles and Immune Checkpoint Blockade Antibodies for Glioblastoma. ACS Applied Materials & Interfaces, 2021, 13, 11657-11671.	8.0	34
341	Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Frontiers in Physiology, 2021, 12, 645646.	2.8	50
342	Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics, 2021, 13, 334.	4.5	2
343	Application of Nanocellulose Derivatives as Drug Carriers; A Novel Approach in Drug Delivery. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 692-702.	1.7	7
344	Early Diagnosis of Cerebral Ischemia Reperfusion Injury and Revelation of Its Regional Development by a H ₃ R Receptor-Directed Probe. ACS Sensors, 2021, 6, 1330-1338.	7.8	3
345	Design, Synthesis, and Validation of a Novel [11C]Promethazine PET Probe for Imaging Abeta Using Autoradiography. Molecules, 2021, 26, 2182.	3.8	0
346	Targeting the blood-brain barrier for the delivery of stroke therapies. Advanced Drug Delivery Reviews, 2021, 171, 332-351.	13.7	63

#	Article	IF	CITATIONS
347	Bloodâ \in brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
348	Blood–brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes?. Open Biology, 2021, 11, 200396.	3.6	8
349	Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level. International Journal of Molecular Sciences, 2021, 22, 3742.	4.1	21
350	Biomaterials for Drugs Nose–Brain Transport: A New Therapeutic Approach for Neurological Diseases. Materials, 2021, 14, 1802.	2.9	16
352	Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles. Pharmaceutics, 2021, 13, 492.	4.5	23
353	14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends in Pharmacological Sciences, 2021, 42, 226-238.	8.7	31
354	HMGB1 Promotes the Release of Sonic Hedgehog From Astrocytes. Frontiers in Immunology, 2021, 12, 584097.	4.8	8
355	Progress in tumour-targeted drug delivery based on cell-penetrating peptides. Journal of Drug Targeting, 2022, 30, 46-60.	4.4	15
356	Integrin-dependent migratory switches regulate the translocation of Toxoplasma-infected dendritic cells across brain endothelial monolayers. Cellular and Molecular Life Sciences, 2021, 78, 5197-5212.	5.4	12
357	High-gravity technology intensified Knoevenagel condensation-Michael addition polymerization of poly (ethylene glycol)-poly (n-butyl cyanoacrylate) for blood-brain barrier delivery. Chinese Journal of Chemical Engineering, 2022, 46, 94-103.	3.5	2
358	BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. Journal of Controlled Release, 2021, 333, 129-138.	9.9	41
359	Nanomedicine against Alzheimer's and Parkinson's Disease. Current Pharmaceutical Design, 2021, 27, 1507-1545.	1.9	7
360	Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers, 2021, 9, 1904773.	3.2	34
361	Localized Delivery of Theranostic Nanoparticles and Highâ€Energy Photons using Microneedlesâ€onâ€Bioelectronics. Advanced Materials, 2021, 33, e2100425.	21.0	43
363	Endothelial genetic deletion of CD147 induces changes in the dual function of the bloodâ€brain barrier and is implicated in Alzheimer's disease. CNS Neuroscience and Therapeutics, 2021, 27, 1048-1063.	3.9	7
364	Multifaceted Therapy of Nanocatalysts in Neurological Diseases. Journal of Biomedical Nanotechnology, 2021, 17, 711-743.	1.1	4
365	Catalyticâ€Enhanced Lactoferrinâ€Functionalized Auâ€Bi ₂ Se ₃ Nanodots for Parkinson's Disease Therapy via Reactive Oxygen Attenuation and Mitochondrial Protection. Advanced Healthcare Materials, 2021, 10, e2100316.	7.6	21
366	Cubosomes enhance drug permeability across the blood–brain barrier in zebrafish. International Journal of Pharmaceutics, 2021, 600, 120411.	5.2	22

#	Article	IF	CITATIONS
367	Vancomycin-related convulsion in a pediatric patient with neuroblastoma: A case report and review of the literature. World Journal of Clinical Cases, 2021, 9, 3070-3078.	0.8	2
368	Hydrodynamic Focusing-Enabled Blood Vessel Fabrication for in Vitro Modeling of Neural Surrogates. Journal of Medical and Biological Engineering, 2021, 41, 456-469.	1.8	1
369	Miniaturization and Automation of a Human In Vitro Blood–Brain Barrier Model for the High-Throughput Screening of Compounds in the Early Stage of Drug Discovery. Pharmaceutics, 2021, 13, 892.	4.5	12
370	Development of Novel Therapeutics Targeting the Blood–Brain Barrier: From Barrier to Carrier. Advanced Science, 2021, 8, e2101090.	11.2	75
371	Sphingosine 1â€Phosphate Liposomes for Targeted Nitric Oxide Delivery to Mediate Anticancer Effects against Brain Glioma Tumors. Advanced Materials, 2021, 33, e2101701.	21.0	41
372	The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Frontiers in Immunology, 2021, 12, 670931.	4.8	3
373	The Conspicuous Link between Ear, Brain and Heart–Could Neurotrophin-Treatment of Age-Related Hearing Loss Help Prevent Alzheimer's Disease and Associated Amyloid Cardiomyopathy?. Biomolecules, 2021, 11, 900.	4.0	10
374	Discovery of a Highly Conserved Peptide in the Iron Transporter Melanotransferrin that Traverses an Intact Blood Brain Barrier and Localizes in Neural Cells. Frontiers in Neuroscience, 2021, 15, 596976.	2.8	5
375	Targeting microRNAs to Regulate the Integrity of the Blood–Brain Barrier. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673415.	4.1	9
376	Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. International Journal of Molecular Sciences, 2021, 22, 6442.	4.1	38
377	Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nature Communications, 2021, 12, 4121.	12.8	58
378	Mapping Knowledge Structure and Research Frontiers of Ultrasound-Induced Blood-Brain Barrier Opening: A Scientometric Study. Frontiers in Neuroscience, 2021, 15, 706105.	2.8	37
379	Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics, 2021, 13, 1084.	4.5	27
380	Scientific and Clinical Challenges within Neuro-Oncology. World Neurosurgery, 2021, 151, 402-410.	1.3	3
381	Strategies to Improve Insulin Delivery through Oral Route: A Review. Current Drug Delivery, 2022, 19, 317-336.	1.6	2
382	ENT2 facilitates brain endothelial cell penetration and blood-brain barrier transport by a tumor-targeting anti-DNA autoantibody. JCI Insight, 2021, 6, .	5.0	4
383	Plant pharmacology: Insights into <i>in-planta</i> kinetic and dynamic processes of xenobiotics. Critical Reviews in Environmental Science and Technology, 2022, 52, 3525-3546.	12.8	11
384	Weaving Enzymes with Polymeric Shells for Biomedical Applications. Advanced Materials, 2021, 33, e2008438.	21.0	14

#	Article	IF	CITATIONS
385	The Immune Microenvironment in Brain Metastases of Non-Small Cell Lung Cancer. Frontiers in Oncology, 2021, 11, 698844.	2.8	8
386	Nanomedicine Applications in Treatment of Primary Central Nervous System Lymphoma: Current State of the Art. Journal of Biomedical Nanotechnology, 2021, 17, 1459-1485.	1.1	3
387	Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discovery Today, 2021, 26, 1944-1952.	6.4	62
388	B3Pred: A Random-Forest-Based Method for Predicting and Designing Blood–Brain Barrier Penetrating Peptides. Pharmaceutics, 2021, 13, 1237.	4.5	27
390	Activatable luminescent probes for imaging brain diseases. Nano Today, 2021, 39, 101239.	11.9	9
391	Safety and efficacy of an anti-claudin-5 monoclonal antibody to increase blood–brain barrier permeability for drug delivery to the brain in a non-human primate. Journal of Controlled Release, 2021, 336, 105-111.	9.9	16
392	Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 2021, 275, 120942.	11.4	24
393	Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. Frontiers in Physiology, 2021, 12, 719701.	2.8	9
394	Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharmaceutical Research, 2021, 38, 1497-1518.	3.5	14
395	Quantitative blood flow estimation in vivo by optical speckle image velocimetry. Optica, 2021, 8, 1092.	9.3	21
396	Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39018-39029.	8.0	5
397	Structure and mechanism of blood–brain-barrier lipid transporter MFSD2A. Nature, 2021, 596, 444-448.	27.8	43
398	Localized blood–brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions–controlled focused ultrasound. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
399	Inflammation, Sickness Behaviour and Depression. , 2021, , 109-138.		1
400	Blood-brain barrier models: Rationale for selection. Advanced Drug Delivery Reviews, 2021, 176, 113859.	13.7	23
401	Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics, 2021, 13, 1484.	4.5	10
402	From Psychoneuroimmunology to Immunopsychiatry: An Historical Perspective., 2021,, 25-50.		0
403	Protease Responsive Nanogels for Transcytosis across the Bloodâ´'Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells. Advanced Healthcare Materials, 2021, 10, e2100812.	7.6	18

#	Article	IF	CITATIONS
404	Emerging trends in the delivery of nanoformulated oxytocin across Blood-Brain barrier. International Journal of Pharmaceutics, 2021, 609, 121141.	5.2	9
405	Transport study of interleukin-1 inhibitors using a human in vitro model of the blood-brain barrier. Brain, Behavior, & Immunity - Health, 2021, 16, 100307.	2.5	14
406	Quantum dot: Heralding a brighter future in neurodegenerative disorders. Journal of Drug Delivery Science and Technology, 2021, 65, 102700.	3.0	12
407	Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies. Biomedicine and Pharmacotherapy, 2021, 143, 112214.	5.6	5
408	Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 191-206.	1.5	30
409	Synaptic vesicle-inspired nanoparticles with spatiotemporally controlled release ability as a "nanoguard―for synergistic treatment of synucleinopathies. Materials Horizons, 2021, 8, 1199-1206.	12.2	7
410	BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway. Annals of Translational Medicine, 2021, 9, 1617-1617.	1.7	10
411	Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics, 2021, 11, 8926-8944.	10.0	95
412	Intranasal gene therapy for the treatment of neurological disorders. , 2021, , 351-387.		2
413	Extracellular Vesicles Derived from a Human Brain Endothelial Cell Line Increase Cellular ATP Levels. AAPS PharmSciTech, 2021, 22, 18.	3.3	22
414	Neutrophil-like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery. ACS Nano, 2021, 15, 2263-2280.	14.6	170
415	The Advances of Biomacromolecule-based Nanomedicine in Brain Disease. , 2019, , 181-208.		2
416	Chemo-physical Strategies to Advance the <i>in Vivo</i> Functionality of Targeted Nanomedicine: The Next Generation. Journal of the American Chemical Society, 2021, 143, 538-559.	13.7	148
417	Physical insights into the blood–brain barrier translocation mechanisms. Physical Biology, 2017, 14, 041001.	1.8	27
423	Insulin-coated gold nanoparticles as an effective approach for bypassing the blood-brain barrier. , 2019, , .		9
424	Catheter placement selection for convection-enhanced delivery of therapeutic agents to brain tumors. F1000Research, 0, 9, 1415.	1.6	3
425	C-type natriuretic peptide-modified lipid vesicles: fabrication and use for the treatment of brain glioma. Oncotarget, 2017, 8, 40906-40921.	1.8	5
426	Polymer Nanoparticles as Smart Carriers for the Enhanced Release of Therapeutic Agents to the CNS. Current Pharmaceutical Design, 2017, 23, 393-410.	1.9	11

#	Article	IF	CITATIONS
427	Potential Regulation Mechanisms of P-gp in the Blood-Brain Barrier in Hypoxia. Current Pharmaceutical Design, 2019, 25, 1041-1051.	1.9	13
428	Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Current Pharmaceutical Design, 2020, 26, 1466-1485.	1.9	35
429	Brain Drug Delivery: Overcoming the Blood-brain Barrier to Treat Tauopathies. Current Pharmaceutical Design, 2020, 26, 1448-1465.	1.9	2
430	The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Current Pharmaceutical Design, 2020, 26, 1438-1447.	1.9	34
431	Active Targeting Towards and Inside the Brain based on Nanoparticles: A Review. Current Pharmaceutical Biotechnology, 2020, 21, 374-383.	1.6	11
432	Transdermal Drug Delivery Systems and their Potential in Alzheimer's Disease Management. CNS and Neurological Disorders - Drug Targets, 2020, 19, 360-373.	1.4	7
433	Papain-based Single Cell Isolation of Primary Murine Brain Endothelial Cells Using Flow Cytometry. Bio-protocol, 2018, 8, .	0.4	17
434	Central Nervous System Migration of Astaxanthin and Adonixanthin Following Their Oral Administration in Cynomolgus Monkeys. Journal of Nutritional Science and Vitaminology, 2020, 66, 488-494.	0.6	5
435	The Effect of Chronic Cerebral Hypoperfusion on Blood-Brain Barrier Permeability in a Transgenic Alzheimer's Disease Mouse Model (PS1V97L)1. Journal of Alzheimer's Disease, 2020, 74, 261-275.	2.6	14
436	Cytokines in CAR T Cell–Associated Neurotoxicity. Frontiers in Immunology, 2020, 11, 577027.	4.8	110
437	Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration (Review). Experimental and Therapeutic Medicine, 2020, 19, 1554-1559.	1.8	11
438	Virus-inspired nanosystems for drug delivery. Nanoscale, 2021, 13, 18912-18924.	5.6	15
439	Nanotheranostics: The Future Remedy of Neurological Disorders. Nanotechnology in the Life Sciences, 2021, , 117-154.	0.6	3
440	Selfâ€Catalytic Small Interfering RNA Nanocarriers for Synergistic Treatment of Neurodegenerative Diseases. Advanced Materials, 2022, 34, e2105711.	21.0	30
441	Human serum albumin fusion protein as therapeutics for targeting amyloid beta in Alzheimer's diseases. Neuroscience Letters, 2022, 767, 136298.	2.1	3
442	Small, Smart, and LDLR-Specific Micelles Augment Sorafenib Therapy of Glioblastoma. Biomacromolecules, 2021, 22, 4814-4822.	5.4	13
444	Structural and Functional Characteristics of Different Histohematological Barriers of the Organism in Norm and during the Pathological Changes, their Medical Significance and Role in Forming Clinical Thinking of Junior Students. Ukraìnsʹkij þurnal Medicini Bìologìì Ta Sportu, 2018, 3, 245-252.	0.2	1
445	Solving the Puzzle of Neurodegeneration. , 2018, , 1-22.		2

#	Article	IF	Citations
447	3D Tissue Modelling of the Central Nervous System. Biomaterials Science Series, 2019, , 171-183.	0.2	0
448	Approaches in Barriers, Modifications, Route of Administrations, and Formulations of Therapeutic Agents for Brain Delivery., 2019,, 383-401.		0
449	CFD Simulation and Validation of Flow in Small Arteries to Enable Further Drug Delivery Studies. Revista Facultad De Ingenier \tilde{A} a, 0, , .	0.5	2
451	An efficient drug delivery system crossing the blood-brain barrier in response to glycemic control. Drug Delivery System, 2019, 34, 352-359.	0.0	0
452	Blood-brain barrier transport kinetics of NOTA-modified proteins: the somatropin case. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, 64, 105-114.	0.7	0
453	Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Advanced Drug Delivery Reviews, 2021, 179, 113999.	13.7	32
454	Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion. Advanced Science, 2021, 8, e2101923.	11,2	11
455	Recent Advances in Nanocarrier-Based Brain-Targeted Drug Delivery for Effective Treatment of Central Nervous System Disorders. , 2020, , 187-203.		0
456	Gallic acidâ€gold nanoparticles enhance radiationâ€induced cell death of human glioma <scp>U251</scp> cells. IUBMB Life, 2021, 73, 398-407.	3.4	15
457	Protein-Based Drug Delivery in Brain Tumor Therapy. Advances in Experimental Medicine and Biology, 2020, 1249, 203-221.	1.6	2
459	Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. Journal of Pharmaceutical Investigation, 2022, 52, 49-74.	5. 3	25
460	Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges. Methods in Molecular Biology, 2022, 2390, 1-59.	0.9	11
462	Liposomes vs Phytosomes: Principles, Methodologies, and Therapeutic Applications with Emphasis on CNS Disorders. Environmental Chemistry for A Sustainable World, 2021, , 1-71.	0.5	1
463	Polyphenols as Potential Therapeutic Drugs in Neurodegeneration. , 0, , .		1
465	The Use of Peptide and Protein Vectors to Cross the Blood-Brain Barrier for the Delivery of Therapeutic Concentration of Biologics. Neuromethods, 2021, , 119-147.	0.3	1
466	Trifluoperazine prolongs the survival of experimental brain metastases by STAT3-dependent lysosomal membrane permeabilization. American Journal of Cancer Research, 2020, 10, 545-563.	1.4	3
467	Newly Diagnosed Glioblastoma: A Review on Clinical Management. Oncology, 2019, 33, 91-100.	0.5	42
468	Adolescent neuroimmune function and its interaction with alcohol. International Review of Neurobiology, 2022, 161, 167-208.	2.0	6

#	Article	IF	CITATIONS
469	Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines, 2021, 9, 1734.	3.2	16
470	Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Frontiers in Molecular Neuroscience, 2021, 14, 750810.	2.9	15
471	Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. International Journal of Molecular Sciences, 2021, 22, 12111.	4.1	17
472	Generation of Interconnected Neural Clusters in Multiscale Scaffolds from Human-Induced Pluripotent Stem Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55939-55952.	8.0	8
473	Nanotherapeutics Overcoming the Blood-Brain Barrier for Glioblastoma Treatment. Frontiers in Pharmacology, 2021, 12, 786700.	3.5	30
474	Brain metastases: nanomedicine-boosted diagnosis and treatment. Medicine in Drug Discovery, 2021, 13, 100111.	4.5	1
475	Multi-disciplinary Approach for Drug and Gene Delivery Systems to the Brain. AAPS PharmSciTech, 2022, 23, 11.	3.3	18
476	Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes?. Annual Review of Pharmacology and Toxicology, 2022, 62, 55-84.	9.4	24
477	Smart Nanomedicine to Enable Crossing Blood–Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS Nano, 2022, 16, 664-674.	14.6	49
478	Human Blood-Brain-Barrier In Vitro Models: Overview and Applications. Handbook of Experimental Pharmacology, 2021, , 205-222.	1.8	1
479	Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regeneration Research, 2022, 17, 1717.	3.0	4
480	<i>Neisseria meningitidis</i> Opca Protein/MnO ₂ Hybrid Nanoparticles for Overcoming the Blood–Brain Barrier to Treat Glioblastoma. Advanced Materials, 2022, 34, e2109213.	21.0	40
481	Brain barriers and their potential role in migraine pathophysiology. Journal of Headache and Pain, 2022, 23, 16.	6.0	17
482	Lamotrigine and retigabine increase motor threshold in transcranial magnetic stimulation at the dose required to produce an antiepileptic effect against maximal electroshock-induced seizure in rats. Neuroscience Letters, 2022, 771, 136460.	2.1	0
484	Claudin-5 binder enhances focused ultrasound-mediated opening in an <i>in vitro</i> blood-brain barrier model. Theranostics, 2022, 12, 1952-1970.	10.0	18
488	Memory enhancement effect of saponins from <i>Eleutherococcus senticosus</i> leaves and bloodâ€"brain barrier-permeated saponins profiling using a pseudotargeted monitoring strategy. Food and Function, 2022, 13, 3603-3620.	4.6	10
489	Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharmaceutical Nanotechnology, 2022, 10, 42-55.	1.5	5
490	Transcriptomic Analysis of Rat Cerebral Cortex Reveals the Potential Mechanism of Electroacupuncture Opening Blood Brain Barrier. Frontiers in Neuroscience, 2022, 16, 834683.	2.8	2

#	Article	IF	CITATIONS
491	Proteolysis-Targeting Chimera (PROTAC): Is the Technology Looking at the Treatment of Brain Tumors?. Frontiers in Cell and Developmental Biology, 2022, 10, 854352.	3.7	9
492	Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme. Journal of Experimental Medicine, 2022, 219, .	8.5	31
493	Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovascular Research, 2023, 119, 6-27.	3.8	19
494	Multifunctional Targeting Liposomes of Epirubicin Plus Resveratrol Improved Therapeutic Effect on Brain Gliomas. International Journal of Nanomedicine, 2022, Volume 17, 1087-1110.	6.7	12
495	Exploring ITM2A as a new potential target for brain delivery. Fluids and Barriers of the CNS, 2022, 19, 25.	5.0	7
496	Challenges in the Development of Drug Delivery Systems Based on Small Extracellular Vesicles for Therapy of Brain Diseases. Frontiers in Pharmacology, 2022, 13, 839790.	3.5	19
497	Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduction and Targeted Therapy, 2022, 7, 74.	17.1	52
498	Thermodynamics of micellization and oil solubilization in block copolymers P85. Journal of Thermal Analysis and Calorimetry, 0 , 1 .	3.6	0
499	Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro-Oncology, 2022, 24, 1871-1883.	1.2	35
500	Functional analysis of human brain endothelium using a microfluidic device integrating a cell culture insert. APL Bioengineering, 2022, 6, 016103.	6.2	6
501	Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. Journal of Controlled Release, 2022, 343, 777-797.	9.9	23
502	Characterization of Cysteine Cathepsin Expression in the Central Nervous System of Aged Wild-Type and Cathepsin-Deficient Mice. Applied Sciences (Switzerland), 2022, 12, 2608.	2.5	0
503	Lysophosphatidic Acid Receptor 5 (LPA5) Knockout Ameliorates the Neuroinflammatory Response In Vivo and Modifies the Inflammatory and Metabolic Landscape of Primary Microglia In Vitro. Cells, 2022, 11, 1071.	4.1	4
504	Advances and Challenges in Intranasal Delivery of Antipsychotic Agents Targeting the Central Nervous System. Frontiers in Pharmacology, 2022, 13, 865590.	3.5	8
505	Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals, 2022, 15, 358.	3.8	19
506	Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. Research, 2022, 2022, 9847612.	5.7	13
507	Advances in Brain Delivery Systems Based on Biomimetic Nanoparticles. ChemNanoMat, 2022, 8, .	2.8	4
508	Applications of nanodiamonds in the diagnosis and treatment of neurological diseases. Journal of Nanoparticle Research, 2022, 24, .	1.9	8

#	Article	IF	CITATIONS
509	Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. Journal of Controlled Release, 2022, 344, 214-224.	9.9	9
510	γδT cells aggravate blood–brain-barrier injury via IL-17A in experimental ischemic stroke. Neuroscience Letters, 2022, 776, 136563.	2.1	6
511	Enhanced anti-angiogenetic effect of transferrin receptor-mediated delivery of VEGF-trap in a glioblastoma mouse model. MAbs, 2022, 14, 2057269.	5.2	8
512	Relational graph convolutional networks for predicting blood–brain barrier penetration of drug molecules. Bioinformatics, 2022, 38, 2826-2831.	4.1	7
514	A Triple Combination of Targeting Ligands Increases the Penetration of Nanoparticles across a Blood-Brain Barrier Culture Model. Pharmaceutics, 2022, 14, 86.	4.5	8
515	Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Current Drug Delivery, 2022, 19, 860-873.	1.6	17
517	An Investigation for Large Volume, Focal Blood-Brain Barrier Disruption with High-Frequency Pulsed Electric Fields. Pharmaceuticals, 2021, 14, 1333.	3.8	8
518	The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood–Brain Barrier Disruption Without Evidence of Early Brain Injury. Frontiers in Neuroscience, 2021, 15, 791709.	2.8	9
519	Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8, eabm8011.	10.3	71
520	Liver-directed gene therapy corrects neurologic disease in a murine model of mucopolysaccharidosis type I-Hurler. Molecular Therapy - Methods and Clinical Development, 2022, 25, 370-381.	4.1	3
521	Extralysosomal cathepsin B in central nervous system: Mechanisms and therapeutic implications. Brain Pathology, 2022, 32, e13071.	4.1	16
522	Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials. Nano-Micro Letters, 2022, 14, 105.	27.0	18
523	Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. Journal of Controlled Release, 2022, 346, 110-135.	9.9	23
524	Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112503.	5.0	14
529	Blood-brain barrier-on-a-chip for brain disease modeling and drug testing BMB Reports, 2022, , .	2.4	0
530	iPS Cell Differentiation into Brain Microvascular Endothelial Cells. Methods in Molecular Biology, 2022, 2429, 201-213.	0.9	1
531	Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics, 2022, 14, 987.	4.5	44
532	Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Advanced Drug Delivery Reviews, 2022, 186, 114323.	13.7	12

#	Article	IF	CITATIONS
533	Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Subâ€5 Ultrafine Iron Oxide Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2102816.	7.6	6
534	Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Molecular Pharmaceutics, 2022, 19, 1927-1951.	4.6	13
535	Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives. Drug Delivery, 2022, 29, 1370-1383.	5.7	7
536	Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis, 2022, 135, 102208.	1.9	5
537	Shedding Light on the Blood–Brain Barrier Transport with Two-Photon Microscopy In Vivo. Pharmaceutical Research, 2022, 39, 1457-1468.	3.5	5
538	BBPpredict: A Web Service for Identifying Blood-Brain Barrier Penetrating Peptides. Frontiers in Genetics, 2022, 13, .	2.3	8
539	The role of cellâ€penetrating peptides in potential antiâ€cancer therapy. Clinical and Translational Medicine, 2022, 12, e822.	4.0	42
541	Homogeneity of antibody-drug conjugates critically impacts the therapeutic efficacy in brain tumors. Cell Reports, 2022, 39, 110839.	6.4	18
542	Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Advanced Drug Delivery Reviews, 2022, 187, 114362.	13.7	17
543	Blood-brain barrier-on-a-chip for brain disease modeling and drug testing. BMB Reports, 2022, 55, 213-219.	2.4	12
544	Advances of nano drug delivery system for the theranostics of ischemic stroke. Journal of Nanobiotechnology, 2022, 20, .	9.1	13
545	Targeting interleukin-13 receptor $\hat{l}\pm 2$ (IL-13R $\hat{l}\pm 2$) for glioblastoma therapy with surface functionalized nanocarriers. Drug Delivery, 2022, 29, 1620-1630.	5.7	1
546	A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurology and Therapy, 2022, 11, 981-1042.	3.2	5
547	Blood–brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Molecular Brain, 2022, 15, .	2.6	33
548	Central Nervous System Injury Meets Nanoceria: Opportunities and Challenges. International Journal of Energy Production and Management, 0, , .	3.7	5
549	BBB-on-a-Chip: Modeling Functional Human Blood-Brain Barrier by Mimicking 3D Brain Angiogenesis Using Microfluidic Chip. Methods in Molecular Biology, 2022, , 251-263.	0.9	2
550	Challenges in targeting to brain and brain tumors. , 2022, , 51-68.		0
551	Mechanism of polymeric micelles for drug targeting to brain tumors. , 2022, , 367-399.		1

#	Article	IF	CITATIONS
552	The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access. Frontiers in Oncology, $0,12,.$	2.8	4
553	Thinking outside the box: non-canonical targets in multiple sclerosis. Nature Reviews Drug Discovery, 2022, 21, 578-600.	46.4	31
554	Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics, 2022, 14, 1234.	4.5	3
555	Treatment of Neuronopathic Mucopolysaccharidoses with Blood–Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics, 2022, 14, 1240.	4.5	9
556	Retrograde Axonal Transport of Liposomes from Peripheral Tissue to Spinal Cord and DRGs by Optimized Phospholipid and CTB Modification. International Journal of Molecular Sciences, 2022, 23, 6661.	4.1	2
557	Perivascular macrophages in high-fat diet-induced hypothalamic inflammation. Journal of Neuroinflammation, 2022, 19, .	7.2	16
558	Peripherally restricted transthyretin-based delivery system for probes and therapeutics avoiding opioid-related side effects. Nature Communications, 2022, 13, .	12.8	2
559	An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy. Biomaterials, 2022, 287, 121645.	11.4	35
560	Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	12
561	Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Seminars in Cancer Biology, 2022, 86, 805-833.	9.6	15
562	Biodistribution Analysis of an Anti-EGFR Antibody in the Rat Brain: Validation of CSF Microcirculation as a Viable Pathway to Circumvent the Blood-Brain Barrier for Drug Delivery. Pharmaceutics, 2022, 14, 1441.	4.5	7
563	Early biomolecular changes in brain microvascular endothelial cells under Epstein–Barr virus influence: a Raman microspectroscopic investigation. Integrative Biology (United Kingdom), 2022, 14, 89-97.	1.3	4
564	Signaling Pathways in Neurovascular Development. Annual Review of Neuroscience, 2022, 45, 87-108.	10.7	8
565	Low-intensity ultrasound: A novel technique for adjuvant treatment of gliomas. Biomedicine and Pharmacotherapy, 2022, 153, 113394.	5.6	2
566	Simplified inÂvitro 3D co-culture-based blood-brain barrier model using transwell. Biochemical and Biophysical Research Communications, 2022, 620, 63-68.	2.1	6
567	Methane-rich saline protects against sepsis-associated cognitive deficits in mice. Brain Research, 2022, 1791, 148000.	2.2	2
568	Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioactive Materials, 2023, 20, 126-136.	15.6	24
569	The Blood-Brain Barrier in Space: Implications for Space Travelers and for Human Health on Earth. Frontiers in Drug Delivery, 0, 2, .	1.6	2

#	Article	IF	CITATIONS
570	Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. International Journal of Molecular Sciences, 2022, 23, 8281.	4.1	12
571	Investigating inflammation in depression in the chronically ill: Theoretical model and perspectives. Journal of the Royal College of Physicians of Edinburgh, The, 0, , 147827152211157.	0.6	0
572	Multi-Targeting Approach in Glioblastoma Using Computer-Assisted Drug Discovery Tools to Overcome the Blood–Brain Barrier and Target EGFR/PI3Kp110β Signaling. Cancers, 2022, 14, 3506.	3.7	7
574	Organâ€Onâ€Aâ€Chip Models of the Blood–Brain Barrier: Recent Advances and Future Prospects. Small, 2022, 18, .	10.0	14
575	Discovery and engineering of an anti-TREM2 antibody to promote amyloid plaque clearance by microglia in 5XFAD mice. MAbs, 2022, 14 , .	5.2	5
576	Murine Central Nervous System and Bone Marrow Distribution of the Aurora A Kinase Inhibitor Alisertib: Pharmacokinetics and Exposure at the Sites of Efficacy and Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2022, 383, 44-55.	2.5	5
577	The glymphatic system: implications for drugs for central nervous system diseases. Nature Reviews Drug Discovery, 2022, 21, 763-779.	46.4	47
578	Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics, 2022, 14, 1697.	4.5	7
579	Engineered Macrophage-Membrane-Coated Nanoparticles with Enhanced PD-1 Expression Induce Immunomodulation for a Synergistic and Targeted Antiglioblastoma Activity. Nano Letters, 2022, 22, 6606-6614.	9.1	34
580	Overcoming the blood-brain barrier: Exosomes as theranostic nanocarriers for precision neuroimaging. Journal of Controlled Release, 2022, 349, 902-916.	9.9	18
581	Functional validation of the simplified inÂvitro 3D Co-culture based BBB model. Biochemical and Biophysical Research Communications, 2022, 625, 128-133.	2.1	1
582	Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system., 2022, 1, 100087.		5
583	Ultrasound-mediated blood–brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Advanced Drug Delivery Reviews, 2022, 190, 114539.	13.7	34
584	IntraBrain Injector (IBI): A Stereotactic-Guided Device for Repeated Delivery of Therapeutic Agents Into the Brain Parenchyma. Journal of Korean Medical Science, 2022, 37, .	2.5	0
585	LY6E protein facilitates adeno-associated virus crossing in a biomimetic chip model of the human blood–brain barrier. Lab on A Chip, 2022, 22, 4180-4190.	6.0	5
586	Construction of a novel blood brain barrier-glioma microfluidic chip model: Applications in the evaluation of permeability and anti-glioma activity of traditional Chinese medicine components. Talanta, 2023, 253, 123971.	5.5	9
587	Mucopolysaccharidoses and the blood–brain barrier. Fluids and Barriers of the CNS, 2022, 19, .	5.0	6
588	Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo. Biomolecules, 2022, 12, 1348.	4.0	13

#	Article	IF	CITATIONS
589	Microâ€Nanocarriers Based Drug Delivery Technology for Bloodâ€Brain Barrier Crossing and Brain Tumor Targeting Therapy. Small, 2022, 18, .	10.0	23
590	An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS ONE, 2022, 17, e0274667.	2.5	2
591	A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer's disease. Science Translational Medicine, 2022, 14, .	12.4	33
592	Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nature Reviews Clinical Oncology, 2022, 19, 733-743.	27.6	8
593	SPECT/CT imaging reveals CNS-wide modulation of glymphatic cerebrospinal fluid flow by systemic hypertonic saline. IScience, 2022, , 105250.	4.1	3
594	Pharmacokinetic considerations to optimize clinical outcomes for COVID-19 drugs. Trends in Pharmacological Sciences, 2022, 43, 1041-1054.	8.7	4
595	Choroid plexus-derived extracellular vesicles exhibit brain targeting characteristics. Biomaterials, 2022, 290, 121830.	11.4	6
596	An Up-to-Date Look at In Vitro Models of Nose-to-Brain Drug Delivery. , 2022, , 115-139.		0
597	Theranostic Nanomaterials for Brain Injury. , 2022, , 307-350.		0
598	Constant-rate perfused array chip for high-throughput screening of drug permeability through brain endothelium. Lab on A Chip, 2022, 22, 4481-4492.	6.0	6
599	Optimizing a therapy for opiate use disorders: Characterizing ondansetron pharmacokinetics in blood and brain. Clinical and Translational Science, 2023, 16, 216-223.	3.1	2
600	Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. International Journal of Molecular Sciences, 2022, 23, 12349.	4.1	7
601	Multiple drug transporters contribute to the brain transfer of levofloxacin. CNS Neuroscience and Therapeutics, 2023, 29, 445-457.	3.9	4
602	The Use of Photodynamic Therapy in the Treatment of Brain Tumorsâ€"A Review of the Literature. Molecules, 2022, 27, 6847.	3.8	18
603	Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. Med, 2022, 3, 860-882.e15.	4.4	21
604	Self-loading microfluidic platform with ultra-thin nanoporous membrane for organ-on-chip by wafer-level processing. Frontiers in Sensors, 0, 3, .	3.3	3
605	Oligonucleotides: A novel area of interest for drug delivery in neurodegenerative diseases. Journal of Drug Delivery Science and Technology, 2022, 77, 103849.	3.0	2
606	Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. Journal of Drug Delivery Science and Technology, 2022, 78, 103932.	3.0	9

#	Article	IF	CITATIONS
607	Meningeal macrophages protect against viral neuroinfection. Immunity, 2022, 55, 2103-2117.e10.	14.3	21
608	Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. Journal of Controlled Release, 2022, 352, 121-145.	9.9	10
609	Polymeric nanoparticles as drug delivery systems for dementia., 2023,, 89-114.		0
610	Penetration and translocation of functional inorganic nanomaterials into biological barriers. Advanced Drug Delivery Reviews, 2022, 191, 114615.	13.7	20
611	Engineering antibody and protein therapeutics to cross the blood–brain barrier. Antibody Therapeutics, 2022, 5, 311-331.	1.9	4
612	Potential pharmacological target of tight junctions to improve the BBB permeability in neonatal Hypoxic-Ischemic encephalopathy Diseases. Biochemical Pharmacology, 2023, 207, 115356.	4.4	2
613	Impact of Cytochrome Induction or Inhibition on the Plasma and Brain Kinetics of $[11C]$ metoclopramide, a PET Probe for P-Glycoprotein Function at the Blood-Brain Barrier. Pharmaceutics, 2022, 14, 2650.	4.5	3
614	Linking Cerebrovascular Dysfunction to Age-Related Hearing Loss and Alzheimer's Disease—Are Systemic Approaches for Diagnosis and Therapy Required?. Biomolecules, 2022, 12, 1717.	4.0	2
615	Synthesis, In Silico and In Vivo Toxicity Assessment of Functionalized Pyridophenanthridinones via Sequential MW-Assisted Intramolecular Friedel-Crafts Alkylation and Direct C–H Arylation. Molecules, 2022, 27, 8112.	3.8	2
618	Roadmap on Nanomedicine for the Central Nervous System. JPhys Materials, 0, , .	4.2	1
619	Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Frontiers in Nutrition, 0, 9, .	3.7	0
621	TJ-M2010-5, a novel CNS drug candidate, attenuates acute cerebral ischemia-reperfusion injury through the MyD88/NF-κB and ERK pathway. Frontiers in Pharmacology, 0, 13, .	3.5	3
622	Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	19
624	The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics. Annual Review of Cancer Biology, 2023, 7, .	4.5	0
625	Subcellular analysis of blood-brain barrier function by micro-impalement of vessels in acute brain slices. Nature Communications, 2023, 14 , .	12.8	5
626	Emerging Selenium Nanoparticles for CNS Intervention. , 0, , .		0
627	The role of blood–brain and blood–retinal barriers in drug delivery. , 2023, , 133-154.		2
628	Tumor–Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles with Orchestrating Immune Responses Promote Therapeutic Efficacy against Glioma. ACS Nano, 2023, 17, 2341-2355.	14.6	26

#	Article	IF	CITATIONS
629	Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules, 2023, 28, 1283.	3.8	5
630	Extracellular Vesicles from Mesenchymal Stem Cells: Towards Novel Therapeutic Strategies for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2023, 24, 2917.	4.1	7
631	Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury. Cell Death and Disease, 2023, 14, .	6.3	6
632	Anti-inflammatory or anti-SARS-CoV-2 ingredients in Huashi Baidu Decoction and their corresponding targets: Target screening and molecular docking study. Arabian Journal of Chemistry, 2023, 16, 104663.	4.9	1
633	An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Advanced Drug Delivery Reviews, 2023, 196, 114816.	13.7	17
634	Nanotechnology-based drug delivery for the treatment of CNS disorders. Translational Neuroscience, 2022, 13, 527-546.	1.4	13
635	Overcoming Blood-Brain Barrier Resistance: Implications for Extracellular Vesicle-Mediated Drug Brain Delivery. Frontiers in Drug Delivery, 0, 2, .	1.6	5
636	Glymphatic-assisted perivascular brain delivery of intrathecal small gold nanoparticles. Journal of Controlled Release, 2023, 355, 135-148.	9.9	5
637	From neurons to the neuro-glio-vascular unit: Seizures and brain homeostasis in networks. Revue Neurologique, 2023, 179, 308-315.	1.5	1
638	Perspective Chapter: Nose-to-Brain Drug Delivery through Liposomes - Recent Applications. , 0, , .		0
639	Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. Journal of Cellular and Molecular Medicine, 2023, 27, 593-608.	3.6	24
640	An antibody–drug conjugate targeting GPR56 demonstrates efficacy in preclinical models of colorectal cancer. British Journal of Cancer, 2023, 128, 1592-1602.	6.4	4
641	Harnessing Reconstructed Macrophage Modulation of Infiltration-Excluded Immune Microenvironments To Delineate Glioma Infiltrative Region. ACS Applied Materials & Samp; Interfaces, 2023, 15, 8811-8823.	8.0	3
642	Cell-Membrane-Coated Nanoparticles for Targeted Drug Delivery to the Brain for the Treatment of Neurological Diseases. Pharmaceutics, 2023, 15, 621.	4.5	9
643	First <i>in vivo</i> fluorine-19 magnetic resonance imaging of the multiple sclerosis drug siponimod. Theranostics, 2023, 13, 1217-1234.	10.0	3
644	Alzheimer's Disease: A Brief History of Immunotherapies Targeting Amyloid β. International Journal of Molecular Sciences, 2023, 24, 3895.	4.1	18
645	Microbubble Delivery Platform for Ultrasound-Mediated Therapy in Brain Cancers. Pharmaceutics, 2023, 15, 698.	4.5	2
646	Engineered microneedle systems for topical cancer therapy. Applied Materials Today, 2023, 31, 101774.	4.3	4

#	Article	IF	CITATIONS
647	<i>Homo medicus</i> : The transition to meat eating increased pathogen pressure and the use of pharmacological plants in <i>Homo</i> . American Journal of Biological Anthropology, 2023, 180, 589-617.	1.1	4
648	Blood–brain barrier endothelial cells in neurodegenerative diseases: Signals from the "barrier― Frontiers in Neuroscience, 0, 17, .	2.8	11
649	Highly Oxidized Ecdysteroids from a Commercial <i>Cyanotis arachnoidea</i> Root Extract as Potent Blood–Brain Barrier Protective Agents. Journal of Natural Products, 2023, 86, 1074-1080.	3.0	3
650	Understanding drug nanocarrier and blood–brain barrier interaction based on a microfluidic microphysiological model. Lab on A Chip, 2023, 23, 1935-1944.	6.0	3
651	A flow cytometry-based protocol for syngenic isolation of neurovascular unit cells from mouse and human tissues. Nature Protocols, 2023, 18, 1510-1542.	12.0	6
652	Multiscale NIR-II Imaging-Guided Brain-Targeted Drug Delivery Using Engineered Cell Membrane Nanoformulation for Alzheimer's Disease Therapy. ACS Nano, 2023, 17, 5033-5046.	14.6	20
653	Effects of potassium bromate on Rattus norvegicus brain antioxidant markers, acetylcholinesterase activity, and DNA fragmentation: investigation of therapeutic effect of Allium cepa. Journal of Basic and Applied Zoology, 2023, 84, .	0.9	0
654	Nose-to-Brain Targeting via Nanoemulsion: Significance and Evidence. Colloids and Interfaces, 2023, 7, 23.	2.1	9
655	Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Translational Lung Cancer Research, 2023, .	2.8	1
656	The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells, 2023, 12, 965.	4.1	4
657	Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opinion on Drug Delivery, 2023, 20, 1681-1698.	5.0	1
658	Antidiabetic Drugs Can Reduce the Harmful Impact of Chronic Smoking on Post-Traumatic Brain Injuries. International Journal of Molecular Sciences, 2023, 24, 6219.	4.1	0
659	Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics, 2023, 15, 1100.	4.5	5
660	New Insights into Alzheimer's Disease: Novel Pathogenesis, Drug Target and Delivery. Pharmaceutics, 2023, 15, 1133.	4.5	2
661	Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opinion on Drug Delivery, 2023, 20, 523-540.	5.0	2
662	Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans. Advances in Neurotoxicology, 2023, , .	1.9	1
663	The Importance of Appropriate Taurine Formulations to Target Mitochondria., 2023,, 308-327.		0
664	Insights into Exosome Transport through the Blood–Brain Barrier and the Potential Therapeutical Applications in Brain Diseases. Pharmaceuticals, 2023, 16, 571.	3.8	18

#	Article	IF	CITATIONS
665	Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors. Science Advances, 2023, 9, .	10.3	9
666	Ferritinâ€based drug delivery system for tumor therapy. , 2023, 1, .		13
667	Recruiting Tâ€Cells toward the Brain for Enhanced Glioblastoma Immunotherapeutic Efficacy by Coâ€Delivery of Cytokines and Immune Checkpoint Antibodies with Macrophageâ€Membraneâ€Camouflaged Nanovesicles. Advanced Materials, 2023, 35, .	21.0	7
668	Targeted glioblastoma therapy by integrating brain-targeting peptides and corn-derived cancer cell-penetrating proteins into nanoparticles to cross blood-brain tumor barriers. Materials Today Nano, 2023, 23, 100347.	4.6	2
669	Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. Journal of Controlled Release, 2023, 357, 606-619.	9.9	6
670	High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Frontiers in Oncology, 0, 13, .	2.8	4
671	A review on in vitro model of the blood-brain barrier (BBB) based on hCMEC/D3 cells. Journal of Controlled Release, 2023, 358, 78-97.	9.9	8
672	Inactive Trojan Bacteria as Safe Drug Delivery Vehicles Crossing the Blood–Brain Barrier. Nano Letters, 2023, 23, 4326-4333.	9.1	5
673	Exosomes: Promising Delivery Tools for Overcoming Blood-Brain Barrier and Glioblastoma Therapy. Molecular Neurobiology, 2023, 60, 4659-4678.	4.0	8
674	Blood-brain barrier perturbations by uremic toxins: Key contributors in chronic kidney disease-induced neurological disorders?. European Journal of Pharmaceutical Sciences, 2023, 187, 106462.	4.0	0
675	Potential theranostic targets in glioblastoma. , 2023, , 631-665.		0
676	Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Advances in Colloid and Interface Science, 2023, 317, 102930.	14.7	17
677	3D Bioprinting of Neurovascular Tissue Modeling with Collagenâ€Based Lowâ€Viscosity Composites. Advanced Healthcare Materials, 2023, 12, .	7.6	1
678	Nanomedicine for Neurodegenerative Diseases. SpringerBriefs in Applied Sciences and Technology, 2023, , 33-43.	0.4	0
679	The role of protein corona on nanodrugs for organ-targeting and its prospects of application. Journal of Controlled Release, 2023, 360, 15-43.	9.9	11
680	Perspectives and new aspects of histone deacetylase inhibitors in the therapy of CNS diseases. European Journal of Medicinal Chemistry, 2023, 258, 115613.	5.5	3
681	Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomedicine and Pharmacotherapy, 2023, 163, 114832.	5.6	3
682	Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes. Journal of Neurochemistry, 0, , .	3.9	0

#	Article	IF	CITATIONS
683	Recent advances of PROTACs technology in neurodegenerative diseases. Arabian Journal of Chemistry, 2023, 16, 105015.	4.9	1
684	Interdependencies of the Neuronal, Immune and Tumor Microenvironment in Gliomas. Cancers, 2023, 15, 2856.	3.7	1
685	Targeting Transcriptional CDKs 7, 8, and 9 with Anilinopyrimidine Derivatives as Anticancer Agents: Design, Synthesis, Biological Evaluation and In Silico Studies. Molecules, 2023, 28, 4271.	3.8	4
686	The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	79
687	Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood–Brain Barrier to Treat Brain Tumors. Pharmaceutics, 2023, 15, 1804.	4.5	4
688	A few good reasons to use nanobodies for cancer treatment. European Journal of Immunology, 2023, 53, .	2.9	3
689	Brain-Targeting Emodin Mitigates Ischemic Stroke via Inhibiting AQP4-Mediated Swelling and Neuroinflammation. Translational Stroke Research, 0, , .	4.2	2
691	Bortezomib Increased Vascular Permeability by Decreasing Cell–Cell Junction Molecules in Human Pulmonary Microvascular Endothelial Cells. International Journal of Molecular Sciences, 2023, 24, 10842.	4.1	0
693	Functionalized nanoparticles crossing the brain–blood barrier to target glioma cells. PeerJ, 0, 11, e15571.	2.0	3
694	Highâ€Throughput Screening of Surface Engineered Cyanine Nanodots for Active Transport of Therapeutic Antibodies into Solid Tumor. Advanced Materials, 2024, 36, .	21.0	4
695	Non-viral approaches for gene therapy and therapeutic genome editing across the blood–brain barrier. , 2023, 1, .		1
696	一çS血脑å±éšœç©¿è¶Šè,½. Science China Materials, 0, , .	6.3	0
697	Engineered Living Materials for Advanced Diseases Therapy. Advanced Materials, 0, , .	21.0	23
698	Open source board based acoustofluidic transwells for reversible disruption of the blood–brain barrier for therapeutic delivery. Biomaterials Research, 2023, 27, .	6.9	0
699	Leveraging translational insights toward precision medicine approaches for brain metastases. Nature Cancer, 2023, 4, 955-967.	13.2	0
701	Estimation of antibody levels after COVID-19 vaccinations: Preliminary evidence for immune interoception. Biological Psychology, 2023, 182, 108636.	2.2	1
702	Imaging the impact of blood-brain barrier disruption induced by focused ultrasound on P-glycoprotein function. Journal of Controlled Release, 2023, 361, 483-492.	9.9	3
703	Applications and Considerations for Microfluidic Systems To Model the Blood–Brain Barrier. ACS Applied Bio Materials, 2023, 6, 3617-3632.	4.6	2

#	Article	IF	CITATIONS
704	Self-immolative nanocapsules precisely regulate depressive neuronal microenvironment for synergistic antidepression therapy. Journal of Nanobiotechnology, 2023, 21, .	9.1	O
705	A dual receptor targeting and blood–brain barrier penetrating co-drug-loaded particle mediating inhibition of oxidative phosphorylation for targeted therapy of glioblastoma. Chemical Engineering Journal, 2023, 473, 145514.	12.7	1
706	Analysis of bioactive compounds in cinnamon leaves and preparation of nanoemulsion and byproducts for improving Parkinson's disease in rats. Frontiers in Nutrition, 0, 10, .	3.7	1
707	Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood–brain barrier. Expert Opinion on Drug Delivery, 2023, 20, 1713-1730.	5.0	2
708	Reactive oxidative species (ROS)-based nanomedicine for BBB crossing and glioma treatment: current status and future directions. Frontiers in Immunology, 0, 14 , .	4.8	0
709	A Fluorescent Vector of Carbon Dot to Deliver Rab13 and Rab14 Plasmids for Promoting Neurite Outgrowth. ACS Applied Bio Materials, 2023, 6, 3739-3749.	4.6	0
710	Next Generation of Brain Cancer Nanomedicines to Overcome the Blood–Brain Barrier (BBB): Insights on Transcytosis, Perivascular Tumor Growth, and BBB Models. Advanced Therapeutics, 2023, 6, .	3.2	0
711	Engineering advanced nanomedicines against central nervous system diseases. Materials Today, 2023, 69, 355-392.	14.2	0
712	Protein corona on brain targeted nanocarriers: Challenges and prospects. Advanced Drug Delivery Reviews, 2023, 202, 115114.	13.7	2
713	Potential applications of mesoporous silica nanoparticles for the treatment of neurological disorders. Journal of Drug Delivery Science and Technology, 2023, 89, 104970.	3.0	1
714	Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 15, .	3.4	0
715	Recent advances in nanotechnology and its application for neuro-disease: a review. Applied Nanoscience (Switzerland), 2023, 13, 6631-6665.	3.1	1
716	Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomedicine and Pharmacotherapy, 2023, 167, 115407.	5.6	0
717	Intranasal administration nanosystems for brain-targeted drug delivery. Nano Research, 2023, 16, 13077-13099.	10.4	1
718	Recent Advancements and Strategies for Overcoming the Blood–Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers, 2023, 15, 3969.	4.5	0
720	The effect of intravenous lidocaine on postoperative cognitive dysfunction: a systematic review and meta-analysis. BMC Anesthesiology, 2023, 23, .	1.8	1
721	Novel systemic delivery of a peptide-conjugated antisense oligonucleotide to reduce α-synuclein in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2023, 186, 106285.	4.4	0
722	Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Therapeutic Delivery, 2023, 14, 571-594.	2.2	4

#	ARTICLE	IF	CITATIONS
723	The blood-brain barrier, a key bridge to treat neurodegenerative diseases. Ageing Research Reviews, 2023, 91, 102070.	10.9	0
724	Acoustofluidic Engineering of Functional Vessel-on-a-Chip. ACS Biomaterials Science and Engineering, 0, , .	5.2	0
725	The Evolving Landscape of Antibody–Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjugate Chemistry, 2023, 34, 1951-2000.	3.6	4
727	Photodynamic therapy in neurooncology. Biomedical Photonics, 2023, 12, 25-35.	1.2	0
728	Non-Invasive Drug Delivery across the Blood–Brain Barrier: A Prospective Analysis. Pharmaceutics, 2023, 15, 2599.	4.5	2
729	Amadori compounds: analysis, composition in food and potential health beneficial functions. Critical Reviews in Food Science and Nutrition, 0 , 1 -23.	10.3	1
730	Cell type-targeting nanoparticles in treating central nervous system diseases: Challenges and hopes. Nanotechnology Reviews, 2023, 12, .	5.8	0
731	Intranasal delivery of sunitinib: A new therapeutic approach for targeting angiogenesis of glioblastoma. Toxicology and Applied Pharmacology, 2023, 481, 116754.	2.8	0
732	Targeting diffuse midline gliomas: The promise of focused ultrasound-mediated blood-brain barrier opening. Journal of Controlled Release, 2024, 365, 412-421.	9.9	1
733	Protein and peptide from blue food for neurological disorder: Advances and prospective. Trends in Food Science and Technology, 2024, 143, 104277.	15.1	0
734	Acupuncture with specific mode electro-stimulation effectively and transiently opens the BBB through Shh signaling pathway. NeuroReport, 2023, 34, 873-886.	1.2	0
735	Recent advances in cancer cell bionic nanoparticles for tumour therapy. Journal of Drug Targeting, 2023, 31, 1065-1080.	4.4	0
736	Nanocrystals for Deep-Tissue <i>In Vivo</i> Luminescence Imaging in the Near-Infrared Region. Chemical Reviews, 2024, 124, 554-628.	47.7	1
737	Not open and shut: Complex and prolonged blood-brain barrier responses after stroke. Journal of Cerebral Blood Flow and Metabolism, 2024, 44, 446-448.	4.3	0
738	Brain-Penetrating Peptide Shuttles across the Blood–Brain Barrier and Extracellular-like Space. Bioconjugate Chemistry, 0, , .	3.6	0
739	Recent advancements on <i>in vitro</i> blood-brain barrier model: A reliable and efficient screening approach for preclinical and clinical investigation. Expert Opinion on Drug Delivery, 2023, 20, 1839-1857.	5.0	0
740	A 3D Microfluidic Device with Vertical Channels toward In Vitro Reconstruction of Blood-Brain Barrier., 2023,,.		0
741	Molecular mechanisms of electropuncture in cerebrovascular protection during enhanced recovery after surgery period., 0, 2, .		0

#	Article	IF	CITATIONS
742	Design of a Novel Drug Delivery Nanosystem that Simultaneously Realizes Realâ€√ime Tracing and Drug Delivery Across the Blood–Brain Barrier. Advanced Materials Interfaces, 2024, 11, .	3.7	0
743	Long and Short-Term Effect of mTOR Regulation on Cerebral Organoid Growth and Differentiations. Tissue Engineering and Regenerative Medicine, 0, , .	3.7	0
744	Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian Journal of Pharmaceutical Sciences, 2024, 19, 100883.	9.1	0
745	Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. Journal of Controlled Release, 2024, 366, 519-534.	9.9	1
746	Cornuside protects against ischemic stroke in rats by suppressing the IL-17F/TRAF6/NF-l ^o B pathway via the brain-gut axis. Experimental Neurology, 2024, 373, 114672.	4.1	0
747	The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. International Journal of Molecular Sciences, 2024, 25, 1150.	4.1	0
748	Cocaine regulates antiretroviral therapy CNS access through pregnane-x receptor-mediated drug transporter and metabolizing enzyme modulation at the blood brain barrier. Fluids and Barriers of the CNS, 2024 , 21 , .	5.0	0
749	Tumor microenvironment targeting for glioblastoma multiforme treatment via hybrid cell membrane coating supramolecular micelles. Journal of Controlled Release, 2024, 366, 194-203.	9.9	1
750	Functionalized Nanomaterials Capable of Crossing the Blood–Brain Barrier. ACS Nano, 2024, 18, 1820-1845.	14.6	1
751	Single-particle imaging of nanomedicine entering the brain. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
752	Potential of the nanoplatform and PROTAC interface to achieve targeted protein degradation through the Ubiquitin–Proteasome system. European Journal of Medicinal Chemistry, 2024, 267, 116168.	5.5	0
753	Bi-directional regulation of AIMP2 and its splice variant on PARP-1-dependent neuronal cell death; Therapeutic implication for Parkinson's disease. Acta Neuropathologica Communications, 2024, 12, .	5.2	0
755	Blood–brain borders: a proposal to address limitations of historical blood–brain barrier terminology. Fluids and Barriers of the CNS, 2024, 21, .	5.0	0
757	Advances in RNA therapeutics for modulation of â€`undruggable' targets. Progress in Molecular Biology and Translational Science, 2024, , 249-294.	1.7	0
758	Anti-Neuroinflammatory Effects of Arecae pericarpium on LPS-Stimulated BV2 Cells. Current Issues in Molecular Biology, 2024, 46, 884-895.	2.4	0
759	Neuroprotection through nanotechnology. , 2024, , 1883-1903.		0
760	Microneedle-mediated nose-to-brain drug delivery for improved Alzheimer's disease treatment. Journal of Controlled Release, 2024, 366, 712-731.	9.9	3
761	Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opinion on Drug Delivery, 2024, 21, 91-110.	5.0	1

#	ARTICLE	IF	CITATIONS
762	Investigating the efficacy of nasal administration for delivering magnetic nanoparticles into the brain for magnetic particle imaging. Journal of Controlled Release, 2024, 367, 515-521.	9.9	0
763	Growth methodologies of boron nitride nanotubes and their neutron shielding applications: a review. Nanoscale, 2024, 16, 3817-3837.	5. 6	0
764	Peptideâ€Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. Advanced Materials, 0, , .	21.0	0
766	Mechanistic insight into glioma through spatially multidimensional proteomics. Science Advances, 2024, 10, .	10.3	0
767	Neurovascular effects of cocaine: relevance to addiction. Frontiers in Pharmacology, 0, 15, .	3.5	0
768	Dopamine-loaded chitosan-coated solid lipid nanoparticles as a promise nanocarriers to the CNS. Neuropharmacology, 2024, 249, 109871.	4.1	0
769	Drug Delivery Strategies in Multiple Sclerosis, Huntington's Disease and Other Neurodegenerative Diseases. , 2023, , 375-403.		0
770	Angiopep-2-Functionalized Lipid Cubosomes for Blood–Brain Barrier Crossing and Glioblastoma Treatment. ACS Applied Materials & Interfaces, 2024, 16, 12161-12174.	8.0	0
771	Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. Advanced Science, 2024, 11 , .	11.2	0
772	Organoid-based models for permeability studies. , 2024, , 627-640.		0
773	Imaging quantitative changes in blood-brain barrier permeability using [$<$ sup $>$ 18 $<$ /sup $>$ F]2-fluoro-2-deoxy-sorbitol ([$<$ sup $>$ 18 $<$ /sup $>$ F]FDS) PET in relation to glial cell recruitment in a mouse model of endotoxemia. Journal of Cerebral Blood Flow and Metabolism, 0, , .	4.3	0
774	Clinical features and prognostic factors of nasopharyngeal carcinoma with brain metastases. Oral Oncology, 2024, 151, 106738.	1.5	0
775	Achievements and prospects for further development of photodynamic therapy technology in the treatment of cerebral tumors., 2024, 4, 44-57.		0
776	X-ray Activated Nanoprodrug for Visualization of Cortical Microvascular Alterations and NIR-II Image-Guided Chemo-Radiotherapy of Glioblastoma. Nano Letters, 2024, 24, 3727-3736.	9.1	0
777	RGD-coated polymeric microbubbles promote ultrasound-mediated drug delivery in an inflamed endothelium-pericyte co-culture model of the blood-brain barrier. Drug Delivery and Translational Research, 0, , .	5.8	0
778	The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. European Journal of Cell Biology, 2024, 103, 151406.	3.6	0