Parameterization of a calibrated geothermal energy pile

Geomechanics for Energy and the Environment 5, 1-15

DOI: 10.1016/j.gete.2015.11.001

Citation Report

#	Article	IF	CITATIONS
1	Structural and Geotechnical Effects of Thermal Loads in Energy Walls. Procedia Engineering, 2016, 158, 224-229.	1.2	11
2	Development of a new multi-stage building energy model calibration methodology and validation in a public library. Energy and Buildings, 2017, 146, 182-199.	3.1	44
3	Investigation of potential dragdown/uplift effects on energy piles. Geomechanics for Energy and the Environment, 2017, 10, 21-28.	1.2	66
4	Thermally induced group effects among energy piles. Geotechnique, 2017, 67, 374-393.	2.2	127
5	Investigation on the behaviour of a thermo-active diaphragm wall by thermo-mechanical analyses. Geomechanics for Energy and the Environment, 2017, 9, 1-20.	1.2	45
6	Thermal Effect on Structural Interaction between Energy Pile and Its Host Soil. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.0	3
7	Investigations of pile–soil interaction under thermo-mechanical loading. Canadian Geotechnical Journal, 2018, 55, 1016-1028.	1.4	17
8	Investigation on the Thermo-Mechanical Behavior of an Energy Pile and the Surrounding Soil by Model Test and 2D Finite Element-Finite Difference Method. , 2018, , 696-709.		1
9	Enhanced Heat Transfer Characteristics of Graphite Concrete and Its Application in Energy Piles. Advances in Materials Science and Engineering, 2018, 2018, 1-12.	1.0	3
10	Axial and Radial Thermal Responses of a Field-Scale Energy Pile under Monotonic and Cyclic Temperature Changes. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	1.5	83
11	Effects of Cyclic Temperature Variations on Thermal Response of an Energy Pile under a Residential Building. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	1.5	50
12	Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings. Applied Energy, 2019, 254, 113711.	5.1	37
13	Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions. Energies, 2019, 12, 770.	1.6	10
14	An Appraisal of Pile Capacity Interpretation Methods Using Model Piles. Sustainable Civil Infrastructures, 2019, , 125-140.	0.1	O
15	Axial and radial thermal responses of energy pile under six storey residential building. Canadian Geotechnical Journal, 2019, 56, 1019-1033.	1.4	31
16	Heating and cooling induced stresses and displacements in heat exchanger piles in sand. Renewable Energy, 2020, 147, 2599-2617.	4.3	13
17	Investigation on thermo-mechanical behavior of reinforced concrete energy pile with large cross-section in saturated sandy soil by model experiments. Underground Space (China), 2020, 5, 229-241.	3.4	12
18	Energy geostructures: A review of analysis approaches, in situ testing and model scale experiments. Geomechanics for Energy and the Environment, 2020, 22, 100173.	1.2	79

#	Article	IF	Citations
19	Thermomechanical behaviour of single energy piles. , 2020, , 271-298.		0
20	Heat transfer analysis of energy piles with parallel U-Tubes. Renewable Energy, 2020, 161, 1046-1058.	4.3	13
21	Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger. Energies, 2020, 13, 5822.	1.6	20
22	A tabulated sizing method for the early stage design of geothermal energy piles including thermal storage. Energy and Buildings, 2020, 223, 110178.	3.1	9
23	Effect of slab stiffness on the geotechnical performance of energy piled-raft foundation under thermo-mechanical loads. European Journal of Environmental and Civil Engineering, 2020, , 1-25.	1.0	5
24	Analyses of the thermo-hydro-mechanical responses of energy pile subjected to non-isothermal heat exchange condition. Renewable Energy, 2020, 157, 150-163.	4.3	20
25	Finite-Element Modeling of Heat Transfer in Ground Source Energy Systems with Heat Exchanger Pipes. International Journal of Geomechanics, 2020, 20, 04020041.	1.3	10
26	Investigating the thermal performance of energy soldier pile walls. Geomechanics for Energy and the Environment, 2022, 30, 100242.	1.2	9
27	Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency. Energies, 2021, 14, 1190.	1.6	6
28	Global sensitivity analysis of behavior of energy pile under thermo-mechanical loads. Soils and Foundations, 2021, 61, 283-302.	1.3	5
29	A review on energy piles design, evaluation, and optimization. Journal of Cleaner Production, 2021, 292, 125802.	4.6	35
30	Energy performance assessment of thermo-active micro-piles via numerical modeling and statistical analysis. Geomechanics for Energy and the Environment, 2022, 29, 100268.	1.2	9
31	Effect of nearby piles and soil properties on thermal behaviour of a field-scale energy pile. Canadian Geotechnical Journal, 2021, 58, 1351-1364.	1.4	22
32	Cross-sectional thermo-mechanical responses of energy piles. Computers and Geotechnics, 2021, 138, 104320.	2.3	17
33	Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy productionâ€"a numerical investigation. Renewable Energy, 2021, 176, 115-134.	4.3	25
34	Assessment of Geothermal Potential and Estimation of Ground Settlements Following the Implementation of a Thermo-active Piles System in Southern Peru. Smart Innovation, Systems and Technologies, 2021, , 833-844.	0.5	0
35	Thermo-mechanical behavior of a full-scale energy pile equipped with a spiral pipe configuration. Canadian Geotechnical Journal, 2021, 58, 1757-1769.	1.4	22
37	Construction and application of a PCC energy pile model test system. IOP Conference Series: Earth and Environmental Science, 0, 570, 032065.	0.2	1

#	Article	IF	CITATIONS
38	The influence of thermal interaction on energy harvesting efficiency of geothermal piles in a group. Applied Thermal Engineering, 2022, 200, 117673.	3.0	12
39	Comparison Study on the Performance of a Novel and Traditional Energy Piles by Laboratory Tests. Symmetry, 2021, 13, 1958.	1.1	5
40	A New Environmentally Friendly Utilization of Energy Piles into Geotechnical Engineering in Northern China. Advances in Civil Engineering, 2021, 2021, 1-13.	0.4	O
41	A simple method for analyzing thermomechanical response of an energy pile in a group. Geomechanics for Energy and the Environment, 2022, 32, 100309.	1.2	3
42	Geomechanics for energy and the environment: Current developments. Geomechanics for Energy and the Environment, 2022, 32, 100345.	1.2	1
43	Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients. Renewable Energy, 2022, 190, 1066-1077.	4.3	11
44	Soil Thermal Response to Temperature Cycles and End Boundary Conditions of Energy Piles. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	8
45	Stresses and deformations induced by geothermal operations of energy tunnels. Tunnelling and Underground Space Technology, 2022, 124, 104438.	3.0	8
46	Thermomechanical Responses of Thermally Interacting Field-Scale Energy Piles. International Journal of Geomechanics, 2022, 22, .	1.3	3
47	Determining the insulation resistance of DC cables used in photovoltaic systems under operational conditions. IEEE Transactions on Industry Applications, 2022, , 1-11.	3.3	O
48	Thermo-hydro-mechanical behavior of energy barrettes: Field experiments and numerical simulations. Geomechanics for Energy and the Environment, 2023, 34, 100451.	1.2	2