Substitutionally doped phosphorene: electronic proper

Nanotechnology 27, 065708 DOI: 10.1088/0957-4484/27/6/065708

Citation Report

#	Article	IF	CITATIONS
1	Structural and Electrical Irregularities Caused by Selected Dopants in Black-Phosphorus. ECS Journal of Solid State Science and Technology, 2016, 5, Q3026-Q3032.	0.9	19
2	Dopants induced structural and optical anomalies of anisotropic edges of black phosphorous thin films and crystals. Ceramics International, 2016, 42, 13113-13127.	2.3	17
3	Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 23080-23088.	1.3	18
4	Tuning anisotropic electronic transport properties of phosphorene via substitutional doping. Physical Chemistry Chemical Physics, 2016, 18, 25869-25878.	1.3	38
5	Review on charge transfer and chemical activity of TiO 2 : Mechanism and applications. Progress in Surface Science, 2016, 91, 183-202.	3.8	76
6	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	11.1	378
7	Nitrogen induced phosphorene formation on the boron phosphide (111) surface: a density functional theory study. RSC Advances, 2016, 6, 108621-108626.	1.7	2
8	A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 272-278.	1.3	20
9	On the stability characteristics of zigzag phosphorene nanotubes: A finite element investigation. Journal of Alloys and Compounds, 2017, 702, 388-398.	2.8	13
10	Magnetic engineering in 3d transition metals on phosphorene by strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1236-1240.	0.9	16
11	Tensile and compressive behaviors of prestrained single-layer black phosphorus: a molecular dynamics study. Nanoscale, 2017, 9, 3609-3619.	2.8	16
12	Noble metal atoms doped phosphorene: electronic properties and gas adsorption ability. Materials Research Express, 2017, 4, 045703.	0.8	20
13	Electrical and optical properties of NO and H <inf>2</inf> S adsorption on Arsenic Phosphorus. , 2017, , .		0
14	A density functional theory-based finite element method to study the vibrational characteristics of zigzag phosphorene nanotubes. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	6
15	DFT coupled with NEGF study of ultra-sensitive HCN and HNC gases detection and distinct <i>I</i> – <i>V</i> response based on phosphorene. Physical Chemistry Chemical Physics, 2017, 19, 30852-30860.	1.3	26
16	Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations. Physical Chemistry Chemical Physics, 2017, 19, 28354-28359.	1.3	13
17	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Materials Horizons, 2017, 4, 997-1019.	6.4	296
18	Strain engineering on transmission carriers of monolayer phosphorene. Journal of Physics Condensed Matter, 2017, 29, 465501.	0.7	5

#	Article	IF	CITATIONS
19	First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene. Superlattices and Microstructures, 2017, 111, 816-823.	1.4	8
20	2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage. Advanced Science, 2018, 5, 1700491.	5.6	174
21	Strongly anisotropic RKKY interaction in monolayer black phosphorus. Journal of Magnetism and Magnetic Materials, 2018, 456, 307-315.	1.0	31
22	Phosphorene as a Template Material for Physisorption of DNA/RNA Nucleobases and Resembling of Base Pairs: A Cluster DFT Study and Comparisons with Graphene. Journal of Physical Chemistry C, 2018, 122, 4870-4880.	1.5	55
23	Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Applied Materials & Interfaces, 2018, 10, 9663-9668.	4.0	93
24	Defects and Low-Frequency Noise in Irradiated Black Phosphorus MOSFETs With HfO ₂ Gate Dielectrics. IEEE Transactions on Nuclear Science, 2018, 65, 1227-1238.	1.2	39
25	Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study. Journal of Computational Electronics, 2018, 17, 499-513.	1.3	37
26	Inâ€Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Angewandte Chemie, 2018, 130, 2630-2634.	1.6	55
27	Inâ€Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 2600-2604.	7.2	209
28	An insight into the dopant selection for CeO2-based resistive-switching memory system: a DFT and experimental study. Applied Nanoscience (Switzerland), 2018, 8, 839-851.	1.6	16
29	Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies. Chinese Physics B, 2018, 27, 036501.	0.7	23
30	Electric field improved the sensitivity of CO on substitutionally doped antimonene. Applied Surface Science, 2018, 427, 388-395.	3.1	77
31	Co-doped phosphorene: Enhanced sensitivity of CO gas sensing. International Journal of Modern Physics B, 2018, 32, 1850068.	1.0	10
32	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
33	Theoretical study of the CO, NO, and N ₂ adsorptions on Li-decorated graphene and boron-doped graphene. Canadian Journal of Chemistry, 2018, 96, 30-39.	0.6	6
34	Tunable transport and optoelectronic properties of monolayer black phosphorus by grafting PdCl2 quantum dots. RSC Advances, 2018, 8, 35226-35236.	1.7	5
35	Effect of metal doping on carbon monoxide adsorption on phosphorene: A first-principles study. Superlattices and Microstructures, 2018, 124, 168-175.	1.4	25
36	A First-Principles Study on Hydrogen Sensing Properties of Pristine and Mo-Doped Graphene. Journal of Nanotechnology, 2018, 2018, 1-5.	1.5	15

#	Article	IF	CITATIONS
37	Exchange interaction of magnetic impurities in a biased bilayer phosphorene nanoribbon. Physical Review B, 2018, 98, .	1.1	11
38	Observation of ferromagnetism in black phosphorus nanosheets with high magnetization by liquid exfoliation. Solid State Communications, 2018, 281, 1-5.	0.9	15

First-principles study on electronic and magnetic and optical properties of rare-earth metals (RE = La,) Tj ETQq0 0 0.073 H /Overlock 10 Tf

40	Enhanced Efficiency of Flexible GaN/Perovskite Solar Cells Based on the Piezo-Phototronic Effect. ACS Applied Energy Materials, 2018, 1, 3063-3069.	2.5	22
41	Anisotropic electronic heat capacity and electrical conductivity of monolayer biased impurity-infected black phosphorus. Solid State Communications, 2018, 280, 39-44.	0.9	26
42	Partially-oxidized phosphorene sensor for the detection of sub-nano molar concentrations of nitric oxide: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 19083-19091.	1.3	6
43	Loading and release of anticancer drug from phosphorene as a template material with high efficient carrier: From vacuum to cell membrane. Journal of Molecular Liquids, 2019, 291, 111346.	2.3	26
44	Enhanced photocatalytic performance of black phosphorene by isoelectronic co-dopants. Inorganic Chemistry Frontiers, 2019, 6, 2369-2378.	3.0	12
45	A first-principles study of Cu and Al doping in ZrO2 for RRAM device applications. Vacuum, 2019, 168, 108842.	1.6	24
46	Electronic and structural properties of black phosphorene doped with Si, B and N. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125945.	0.9	16
47	Nitrogen-based gas molecule adsorption of monolayer phosphorene under metal functionalization. Scientific Reports, 2019, 9, 12498.	1.6	25
48	Ultrahigh-sensitive gas sensors based on doped phosphorene: A first-principles investigation. Applied Surface Science, 2019, 497, 143660.	3.1	35
49	Transport and photogalvanic properties of covalent functionalized monolayer black phosphorus. New Journal of Chemistry, 2019, 43, 377-385.	1.4	10
50	A first-principles investigation of spintronics of nitrophosphorene doped with 3d transition metals. Journal of Applied Physics, 2019, 125, 233902.	1.1	2
51	Adsorption of thiophene on metal doped Phosphorene; a density functional theory study. Materials Research Express, 2019, 6, 1250k4.	0.8	3
52	Penta-Graphene as a Potential Gas Sensor for NOx Detection. Nanoscale Research Letters, 2019, 14, 306.	3.1	52
53	First-Principles Study of Gas Molecule Adsorption on C-doped Zigzag Phosphorene Nanoribbons. Coatings, 2019, 9, 763.	1.2	11
54	Design of spin-filtering devices with rectifying effects and negative differential resistance using armchair phosphorene nanoribbon. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5

#	Article	IF	CITATIONS
55	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
56	Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 137-141.	1.3	3
57	Superior Sensing Properties of Black Phosphorus as Gas Sensors: A Case Study on the Volatile Organic Compounds. Advanced Theory and Simulations, 2019, 2, 1800103.	1.3	53
58	Effect of C and O dopant atoms on the electronic properties of black phosphorus nanotubes. Computational Materials Science, 2019, 156, 292-300.	1.4	13
59	First-principles study of methanol adsorption on heteroatom-doped phosphorene. Chinese Chemical Letters, 2019, 30, 207-210.	4.8	15
60	Tailoring magnetic characteristics of phosphorene by the doping of Ce and Ti: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106, 352-356.	1.3	5
61	Adsorption of rare gases on pristine and doped phosphorene. Applied Surface Science, 2020, 504, 144326.	3.1	12
62	Transition metal doped arsenene: Promising materials for gas sensing, catalysis and spintronics. Applied Surface Science, 2020, 506, 144660.	3.1	28
63	Improvement of H2O detection in armchair phosphorene nanoribbons by introducing dopant. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113839.	1.3	0
64	Selective adsorption of harmful molecules on zigzag phosphorene nanoribbon for sensing applications. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113838.	1.3	5
65	Enhancing Na-Ion Storage at Subzero Temperature via Interlayer Confinement of Sn ²⁺ . ACS Nano, 2020, 14, 13765-13774.	7.3	22
66	Transition metal (TMÂ=ÂCr, Mn, Fe, Co, Ni) doped phosphorene as anode material for lithium-ion batteries predicted from first-principle calculations. Computational Materials Science, 2020, 183, 109877.	1.4	11
67	Substitutional doped GeSe: tunable oxidative states with strain engineering. Journal of Materials Chemistry C, 2020, 8, 13655-13667.	2.7	16
68	First-principle study of the adsorption of volatile sulfur compounds on black phosphorene nanosheets doped with some transition metals. Monatshefte Für Chemie, 2020, 151, 1501-1510.	0.9	2
69	A first-principles description of the stability of transition-metal doped phosphorene nanosheets. Surfaces and Interfaces, 2020, 21, 100786.	1.5	5
70	Defect Engineering of 2D Materials for Electrochemical Energy Storage. Advanced Materials Interfaces, 2020, 7, 2000494.	1.9	19
71	Uptake of formaldehyde onto doped phosphorene nanosheets: A cluster DFT study of single and co-adsorption states. Journal of Alloys and Compounds, 2020, 831, 154885.	2.8	26
72	Theoretical insights into hydrogen sensing capabilities of black phosphorene modified through ZnO doping and decoration. International Journal of Hydrogen Energy, 2020, 45, 16918-16928.	3.8	35

#	Article	IF	CITATIONS
73	Embedded carbon nanowire in black phosphorene and C-doping: the rule to control electronic properties. Nanotechnology, 2020, 31, 275201.	1.3	7
74	Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials, 2020, 7, 032002.	2.0	103
75	Removal of arsenic from water using iron-doped phosphorene nanoadsorbents: A theoretical DFT study with solvent effects. Journal of Molecular Liquids, 2020, 307, 112958.	2.3	23
76	First-principles study of CO and NO adsorption on pristine and transition metal doped blue phosphorene. Vacuum, 2020, 179, 109503.	1.6	28
77	Effect of surface oxidation on the electronic transport properties of phosphorene gas sensors: a computational study. RSC Advances, 2020, 10, 6893-6899.	1.7	8
78	Gas adsorption and light interaction mechanism in phosphorene-based field-effect transistors. Physical Chemistry Chemical Physics, 2020, 22, 5949-5958.	1.3	14
79	Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations. RSC Advances, 2020, 10, 1400-1409.	1.7	7
80	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	23.0	158
81	Defective Phosphorene as a Promising Anchoring Material for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 2739-2746.	1.5	39
82	Exploring the Nature of Interaction and Stability between Water-Soluble Arsenic Pollutants and Metal–Phosphorene Hybrids: A Density Functional Theory Study. Journal of Physical Chemistry A, 2020, 124, 3662-3671.	1.1	9
83	Thermodynamic stability and vibrational anharmonicity of black phosphorene - beyond quasi-harmonic analysis. Journal of Physics Condensed Matter, 2020, 32, 335402.	0.7	2
84	Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Advanced Functional Materials, 2021, 31, 2005957.	7.8	37
85	Structural dependence of electrosynthesized cobalt phosphide/black phosphorus pre-catalyst for oxygen evolution in alkaline media. Nanoscale, 2021, 13, 7381-7388.	2.8	21
86	Recent advances in 2D black phosphorus based materials for gas sensing applications. Journal of Materials Chemistry C, 2021, 9, 3773-3794.	2.7	51
87	Blue-AsP monolayer as a promising anode material for lithium- and sodium-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 5143-5151.	1.3	28
88	Electronic, magnetic and optical properties of blue phosphorene doped with Y, Zr, Nb and Mo: A first-principles study. Thin Solid Films, 2021, 720, 138523.	0.8	12
90	Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications. Nanomaterials, 2021, 11, 832.	1.9	36
91	Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. Research, 2021, 2021, 9863038.	2.8	29

#	Article	IF	CITATIONS
92	2D Materials for Nonlinear Photonics and Electroâ€Optical Applications. Advanced Materials Interfaces, 2021, 8, 2100367.	1.9	30
93	Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Materials, 2021, 4, 951-970.	3.2	24
94	Behaviour of induced states of substitutional and adatom impurity doping on electronic transport properties of single-layer black phosphorus. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114701.	1.3	1
95	Preparation of Ni 2 P Decorated Black Phosphorus Nanosheets Supported on Twoâ€Dimensional αâ€Zirconium Phosphate and Its Catalysis for Hydrodesulfurization of Dibenzothiophene. ChemistrySelect, 2021, 6, 5899-5905.	0.7	2
96	Experimental and molecular dynamics studies of an ultra-fast sequential hydrogen plasma process for fabricating phosphorene-based sensors. Scientific Reports, 2021, 11, 16076.	1.6	6
97	Coordination chemistry of elemental phosphorus. Coordination Chemistry Reviews, 2021, 441, 213927.	9.5	65
98	Highly selective adsorption of SO2 on WX2 (X = S, Se, Te) monolayers and the effect of strain engineering: a DFT study. Journal of Computational Electronics, 2021, 20, 1874-1883.	1.3	1
99	Chemical defect-dependent resistive switching characterization in CeO2 thin films. Materials Science in Semiconductor Processing, 2022, 137, 106177.	1.9	1
100	Anisotropic Raman characterization and electrical properties of black phosphorus. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 037801-037801.	0.2	1
101	Functionalization and Doping of Black Phosphorus. Engineering Materials, 2020, , 1-30.	0.3	11
102	Modifying the sensibility of nonmetal-doped phosphorene by local or global properties. Physical Chemistry Chemical Physics, 2019, 21, 4899-4906.	1.3	7
104	Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. Progress in Solid State Chemistry, 2022, 65, 100336.	3.9	18
105	Facile and rapid exfoliation of black phosphorus assisted by acetic acid. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
106	Adsorption of toxic H2S, CO and NO molecules on pristine and transition metal doped α-AsP monolayer by first-principles calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115109.	1.3	8
107	Interfacial electrical properties and transport properties of monolayer black AsP alloy in contact with metal. Materials Today Communications, 2022, 31, 103262.	0.9	2
108	Metal doped black phosphorene for gas sensing and catalysis: A first-principles perspective. Applied Surface Science, 2022, 586, 152743.	3.1	9
109	First-principles study on N2, H2, O2, NO, NO2, CO, CO2, and SO2 gas adsorption properties of the Sc2CF2 monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 141, 115162.	1.3	7
110	Effects of electric field and biaxial strain on the (NO2, NO, O2, and SO2) gas adsorption properties of Sc2CO2 monolayer. Superlattices and Microstructures, 2022, 163, 107135.	1.4	15

#	Article	IF	CITATIONS
111	Photoelectronic properties and devices of 2D Xenes. Journal of Materials Science and Technology, 2022, 126, 44-59.	5.6	7
112	Sensing properties of nonmetal doped blue phosphorene toward <scp>NO</scp> and <scp>NO₂</scp> molecules: A firstâ€principles study. International Journal of Quantum Chemistry, 2022, 122, .	1.0	4
113	First-principles study of CH4 adsorption on transition metal doped phosphorene with Stone-Wales defects. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115313.	1.3	2
114	Enhanced Third Generation Semiconductor Material-Based Solar Cell Efficiency by Piezo-Phototronic Effect. East European Journal of Physics, 2022, , 70-76.	0.1	0
115	An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge. Composites Part B: Engineering, 2023, 248, 110378.	5.9	21
116	Adsorption of NO gas molecule on the vacancy defected and transition metal doped antimonene: A first-principles study. Vacuum, 2023, 207, 111654.	1.6	7
117	Choloromethane and bromomethane adsorption studies on hex-star phosphorene nanoribbon – A DFT insight. Computational and Theoretical Chemistry, 2023, 1219, 113961.	1.1	24
118	Adsorption of aromatic molecules on a black phosphorene surface: a first-principles study. New Journal of Chemistry, 2023, 47, 1842-1851.	1.4	1
119	Graphene based Nano Gas Sensors: Mechanistic Study. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 043002.	0.7	1
120	Investigation of adsorption behaviors, and electronic and magnetic properties for small gas molecules adsorbed on Pt-doped arsenene by density functional calculations. RSC Advances, 2023, 13, 3807-3817.	1.7	6
121	Pristine and X-doped (XÂ=ÂB, N) phosphorene as platform materials to the removal of phenol: A theoretical insight. Journal of Molecular Liquids, 2023, 374, 121280.	2.3	4
122	First principles study on structural, vibrational, electronic and elastic properties of 2D alkaline-earth carbides as a metallic material. Synthetic Metals, 2023, 293, 117281.	2.1	0
126	The Elemental Layered Solids: Group IV and V Materials. Engineering Materials, 2023, , 69-101.	0.3	0