Diet-induced extinctions in the gut microbiota compou

Nature 529, 212-215 DOI: 10.1038/nature16504

Citation Report

#	Article	IF	CITATIONS
1	Effect of Young Barley Leaf Extract Powder on the Fecal Gut Microbiota and Cecal Short-Chain Fatty Acids in Rats. Journal of the Japanese Society for Food Science and Technology, 2016, 63, 510-515.	0.1	0
2	Dietary grape seed proanthocyanidins (CSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget, 2016, 7, 80313-80326.	0.8	108
4	Inflammatory Bowel Disease in Asia: A Second Chance at Uncovering Environmental Factors. Environmental Health Perspectives, 2016, 124, A49-54.	2.8	4
5	Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2016, 2016, 1-7.	0.7	82
6	Role of Vitamin D in the Hygiene Hypothesis: The Interplay between Vitamin D, Vitamin D Receptors, Gut Microbiota, and Immune Response. Frontiers in Immunology, 2016, 7, 627.	2.2	108
7	Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Frontiers in Microbiology, 2016, 7, 634.	1.5	27
8	Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome. Frontiers in Microbiology, 2016, 07, 1058.	1.5	14
9	Molecular Insight into Gut Microbiota and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2016, 17, 431.	1.8	59
10	Enteric Ecosystem Disruption in Autism Spectrum Disorder: Can the Microbiota and Macrobiota be Restored?. Current Pharmaceutical Design, 2016, 22, 6107-6121.	0.9	18
11	Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. Journal of Molecular Biology, 2016, 428, 3230-3252.	2.0	375
12	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clinical Pharmacology and Therapeutics, 2016, 99, 588-599.	2.3	24
13	Microbial contributions to chronic inflammation and metabolic disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 257-262.	1.3	19
14	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
15	Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 2016, 13, 43.	1.7	338
16	Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nature Communications, 2016, 7, 13699.	5.8	145
17	The Microbiome: What Will the Future Hold?. Seminars in Liver Disease, 2016, 36, 354-359.	1.8	4
19	Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends in Food Science and Technology, 2016, 57, 201-212.	7.8	48
20	Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Current Opinion in Lipidology, 2016, 27, 615-622.	1.2	36

		Report	
#	Article	IF	CITATIONS
21	Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 2016, 5, e82.	1.7	196
22	The Fiber Cap and the Disappearing Gut Microbiome: Implications for Human Nutrition. Trends in Endocrinology and Metabolism, 2016, 27, 239-242.	3.1	155
23	Antibiotic use and its consequences for the normal microbiome. Science, 2016, 352, 544-545.	6.0	632
24	The healthy human microbiome. Genome Medicine, 2016, 8, 51.	3.6	1,214
25	Novel perspectives on therapeutic modulation of the gut microbiota. Therapeutic Advances in Gastroenterology, 2016, 9, 580-593.	1.4	63
26	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	5.1	190
27	Microbiota-Mediated Immunomodulation and Asthma: Current and Future Perspectives. Current Treatment Options in Allergy, 2016, 3, 292-309.	0.9	6
28	Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environmental Microbiology Reports, 2016, 8, 1016-1023.	1.0	40
29	Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes, 2016, 7, 459-470.	4.3	144
30	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
31	Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 2016, 16, 639-649.	10.6	613
32	An overview of major metagenomic studies on human microbiomes in health and disease. Quantitative Biology, 2016, 4, 192-206.	0.3	10
33	The changing microbial landscape of Western society: Diet, dwellings and discordance. Molecular Metabolism, 2016, 5, 737-742.	3.0	60
34	Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10376-10381.	3.3	369
35	The pattern of GPI-80 expression is a useful marker for unusual myeloid maturation in peripheral blood. Clinical and Experimental Immunology, 2016, 186, 373-386.	1.1	8
36	The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Medicine, 2016, 8, 77.	3.6	282
37	Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology, 2016, 31, 327-335.	1.6	48
38	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158

#	Article	IF	CITATIONS
40	Insights into human evolution from ancient and contemporary microbiome studies. Current Opinion in Genetics and Development, 2016, 41, 14-26.	1.5	49
41	Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature, 2016, 540, 544-551.	13.7	371
42	Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. International Journal of Food Microbiology, 2016, 239, 125-132.	2.1	30
43	Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews, 2016, 40, 648-663.	3.9	71
44	The microbiome, microbial-generated proinflammatory neurotoxins, and Alzheimer's disease. Journal of Sport and Health Science, 2016, 5, 393-396.	3.3	27
45	Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 2016, 7, 1111-1121.	2.9	51
46	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	1.0	34
47	Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice. Scientific Reports, 2016, 6, 33969.	1.6	54
48	Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Scientific Reports, 2016, 6, 32953.	1.6	104
49	Tiny microbes, enormous impacts: what matters in gut microbiome studies?. Genome Biology, 2016, 17, 217.	3.8	128
50	Normoxic Recovery Mimicking Treatment of Sleep Apnea Does Not Reverse Intermittent Hypoxia-Induced Bacterial Dysbiosis and Low-Grade Endotoxemia in Mice. Sleep, 2016, 39, 1891-1897.	0.6	70
51	The rich and the poor: environmental biodiversity protecting from allergy. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 421-426.	1.1	29
53	Microbes and Oxytocin. International Review of Neurobiology, 2016, 131, 91-126.	0.9	59
54	The Importance of Diet and Gut Health to the Treatment and Prevention of Mental Disorders. International Review of Neurobiology, 2016, 131, 325-346.	0.9	33
55	What's bugging your teen?—The microbiota and adolescent mental health. Neuroscience and Biobehavioral Reviews, 2016, 70, 300-312.	2.9	44
56	New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clinical and Translational Immunology, 2016, 5, e87.	1.7	85
57	From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 2016, 165, 1332-1345.	13.5	3,962
58	Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspectives in Public Health, 2016, 136, 213-224.	0.8	206

		CITATION R	EPORT	
#	Article		IF	Citations
59	Venturing into new realms? Microorganisms in space. FEMS Microbiology Reviews, 201	6, 40, 722-737.	3.9	75
60	Fibre for the future. Nature, 2016, 529, 158-159.		13.7	26
61	A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Met 5, 317-320.	abolism, 2016,	3.0	262
62	Transgenerational missing taxa. Nature Reviews Microbiology, 2016, 14, 132-133.		13.6	5
63	Signaling in Host-Associated Microbial Communities. Cell, 2016, 164, 1288-1300.		13.5	130
64	Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology, 2017, 42, 178-192.		2.8	174
65	Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molec and Food Research, 2017, 61, 1500902.	ular Nutrition	1.5	194
66	Prebiotics as a modulator of gut microbiota in paediatric obesity. Pediatric Obesity, 20	17, 12, 265-273.	1.4	27
67	Young microbes for adult obesity. Pediatric Obesity, 2017, 12, e28-e32.		1.4	15
68	Gut microbiota, diet, and obesityâ€related disorders—The good, the bad, and the fut Molecular Nutrition and Food Research, 2017, 61, 1600252.	ıre challenges.	1.5	143
69	Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacolog 399-412.	y, 2017, 112,	2.0	424
70	Current views on hunterâ€gatherer nutrition and the evolution of the human diet. Ame Physical Anthropology, 2017, 162, 84-109.	rican Journal of	2.1	115
71	Eat Well, or Get Roommates Who Do. Cell Host and Microbe, 2017, 21, 123-125.		5.1	2
72	Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 2	017, 8, 130-142.	4.3	177
73	The Gut Microbiota in Inflammatory Bowel Disease. Gastroenterology Clinics of North A 46, 143-154.	America, 2017,	1.0	68
74	Basic Definitions and Concepts: Organization of the Gut Microbiome. Gastroenterolog North America, 2017, 46, 1-8.	/ Clinics of	1.0	15
75	The Influence of the Microbiome on Allergic Sensitization to Food. Journal of Immunolo 581-589.	gy, 2017, 198,	0.4	92
76	Are Gut Microbes Responsible for Post-dieting Weight Rebound?. Cell Metabolism, 201	7, 25, 6-7.	7.2	7

		CITATION REF	PORT	
#	Article		IF	CITATIONS
77	Gut Microbiome of the Canadian Arctic Inuit. MSphere, 2017, 2, .		1.3	40
78	Gut microbiota and systemic inflammation changes after bread consumption: The ingredients and processing influence. Journal of Functional Foods, 2017, 32, 98-105.	d the	1.6	23
80	Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes, 2017, 8, 238-252.		4.3	295
81	The human gut microbiome as source of innovation for health: Which physiological and therapeu outcomes could we expect?. Therapie, 2017, 72, 21-38.	tic	0.6	28
82	Microbes and Diet-Induced Obesity: Fast, Cheap, and Out of Control. Cell Host and Microbe, 201 278-281.	7,21,	5.1	61
83	Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. Food Research International, 2017, 95, 19-27.		2.9	44
84	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 213-224.	183,	1.4	64
85	Probiotic mixture VSL#3 reduces colonic inflammation and improves intestinal barrier function in Muc2 mucin-deficient mice. American Journal of Physiology - Renal Physiology, 2017, 312, G34-G	45.	1.6	72
86	Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8, 172-184.		4.3	1,027
87	Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Scientific Reports, 2017, 7, 43412.		1.6	249
88	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.		10.6	1,102
89	Glycomacropeptide Sustains Microbiota Diversity and Promotes Specific Taxa in an Artificial Colo Model of Elderly Gut Microbiota. Journal of Agricultural and Food Chemistry, 2017, 65, 1836-184	n 6.	2.4	35
90	Chemical signaling between gut microbiota and host chromatin: What is your gut really saying?. Journal of Biological Chemistry, 2017, 292, 8582-8593.		1.6	41
91	The role of the microbiome in cancer development and therapy. Ca-A Cancer Journal for Clinicians 2017, 67, 326-344.	, ,	157.7	447
93	An insider's perspective: Bacteroides as a window into the microbiome. Nature Microbiology, 201 17026.	7, 2,	5.9	416
94	The shrinking human gut microbiome. Current Opinion in Microbiology, 2017, 38, 30-35.		2.3	47
95	Introduction to the human gut microbiota. Biochemical Journal, 2017, 474, 1823-1836.		1.7	1,988
96	Evolution of commensal bacteria in the intestinal tract of mice. Current Opinion in Microbiology, 2017, 38, 114-121.		2.3	33

		CITATION RE	PORT	
#	Article		IF	Citations
97	The microbiome and hepatobiliary-pancreatic cancers. Cancer Letters, 2017, 402, 9-15.		3.2	105
98	Gut microbiota and host defense in critical illness. Current Opinion in Critical Care, 2017, 23	8, 257-263.	1.6	43
99	Mucosa-associated microbiota signature in colorectal cancer. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2073-2083.		1.3	91
100	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 2017 531-543.	7, 15,	13.6	150
101	Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and adaptive thermogenesis. Nature Medicine, 2017, 23, 839-849.	promotes	15.2	225
102	Post-dieting weight gain: the role of persistent microbiome changes. Future Microbiology, 2 555-559.	017, 12,	1.0	8
103	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrit 147, 1468S-1475S.	ion, 2017,	1.3	268
104	Microbiome effects on immunity, health and disease in the lung. Clinical and Translational Immunology, 2017, 6, e133.		1.7	225
105	Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. Journal of Nutrition, 727-745.	, 2017, 147,	1.3	280
106	Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Reviews Gastroenterology and Hepatology, 2017, 14, 315-320.	. Nature	8.2	96
107	NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and prom- protective commensal bacterial growth. Nature Immunology, 2017, 18, 541-551.	oting	7.0	225
108	Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. International Journal of Obesity, 2017, 41, 1099-1105.		1.6	268
109	Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota v presented in a mixture. Journal of Functional Foods, 2017, 32, 347-357.	when	1.6	91
110	Gastric microbiota features associated with cancer risk factors and clinical outcomes: A pilo in gastric cardia cancer patients from Shanxi, China. International Journal of Cancer, 2017, 1	t study 41, 45-51.	2.3	29
111	The ecology of human microbiota: dynamics and diversity in health and disease. Annals of th York Academy of Sciences, 2017, 1399, 78-92.	ie New	1.8	88
112	Metabolic effects of <i><scp>L</scp>actobacillus reuteri</i> <scp>DSM</scp> 17938 in per 2 diabetes: <scp>A</scp> randomized controlled trial. Diabetes, Obesity and Metabolism, 20 579-589.	ople with type 017, 19,	2.2	199
113	Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Re Diet Interventions. Cell Host and Microbe, 2017, 21, 84-96.	sponses to	5.1	129
114	Metabolomic data suggest regulation of black howler monkey (<i>Alouatta pigra</i>) diet composition at the molecular level. American Journal of Primatology, 2017, 79, 1-10.		0.8	8

#	Article	IF	Citations
115	Linking dietary patterns with gut microbial composition and function. Gut Microbes, 2017, 8, 113-129.	4.3	137
116	Microbiota shuns the modern world. Nature Reviews Microbiology, 2017, 15, 710-710.	13.6	4
118	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
119	Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Scientific Reports, 2017, 7, 14312.	1.6	48
120	Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 2017, 17, 94.	2.0	513
121	The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, 39, 669-675.	2.8	80
122	Antibiotics ameliorate lupus-like symptoms in mice. Scientific Reports, 2017, 7, 13675.	1.6	93
123	Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nature Microbiology, 2017, 2, 17121.	5.9	661
124	Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science, 2017, 357, 802-806.	6.0	694
125	Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunological Reviews, 2017, 279, 8-22.	2.8	101
126	Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. Journal of Experimental Biology, 2017, 220, 4204-4212.	0.8	56
127	Investigation into the stability and culturability of Chinese enterotypes. Scientific Reports, 2017, 7, 7947.	1.6	32
128	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017, 2, 747-756.	3.7	408
129	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	2.2	34
130	Microbiomarkers in inflammatory bowel diseases: caveats come with caviar. Gut, 2017, 66, 1734-1738.	6.1	47
131	Comparison of Fecal Microbial Composition and Antibiotic Resistance Genes from Swine, Farm Workers and the Surrounding Villagers. Scientific Reports, 2017, 7, 4965.	1.6	18
132	Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. MicrobiologyOpen, 2017, 6, e00476.	1.2	46
133	The effect of fiber and prebiotics on children's gastrointestinal disorders and microbiome. Expert Review of Gastroenterology and Hepatology, 2017, 11, 1031-1045.	1.4	54

#	Article	IF	CITATIONS
134	The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surgical Oncology, 2017, 26, 368-376.	0.8	67
135	Strategies to increase the efficacy of using gut microbiota for the modulation of obesity. Obesity Reviews, 2017, 18, 1260-1271.	3.1	24
136	Evolution, human-microbe interactions, and life history plasticity. Lancet, The, 2017, 390, 521-530.	6.3	178
137	The theory of disappearing microbiota and the epidemics of chronic diseases. Nature Reviews Immunology, 2017, 17, 461-463.	10.6	147
138	Hygiene Hypothesis: What Is the Current Thinking?. Current Otorhinolaryngology Reports, 2017, 5, 175-180.	0.2	2
140	Food and microbiota in the FDA regulatory framework. Science, 2017, 357, 39-40.	6.0	28
141	The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 2017, 57, 690-704.	0.9	301
142	Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific Reports, 2017, 7, 7267.	1.6	9
144	Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180.	0.1	6
145	Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice. Cell Reports, 2017, 21, 1521-1533.	2.9	177
146	The Human Microbiome and Obesity: Moving beyond Associations. Cell Host and Microbe, 2017, 22, 589-599.	5.1	366
147	Holistic View on Health: Two Protective Layers of Biodiversity. Annales Zoologici Fennici, 2017, 54, 39-49.	0.2	35
148	Feeding the microbiota: transducer of nutrient signals for the host. Gut, 2017, 66, 1709-1717.	6.1	124
149	The Critical Roles of Polysaccharides in Gut Microbial Ecology and Physiology. Annual Review of Microbiology, 2017, 71, 349-369.	2.9	185
150	An exposome perspective: Early-life events and immune development in a changing world. Journal of Allergy and Clinical Immunology, 2017, 140, 24-40.	1.5	149
151	Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Molecular Nutrition and Food Research, 2017, 61, 1600620.	1.5	43
152	Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 2017, 152, 313-321.e2.	0.6	777
153	Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Applied and Environmental Microbiology, 2017, 83, .	1.4	33

#	ARTICLE	IF	CITATIONS
154	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	2.2	351
155	Rethinking Diet to Aid Human–Microbe Symbiosis. Trends in Microbiology, 2017, 25, 100-112.	3.5	99
156	"We are what our bacteria eat― The role of bacteria in personalizing nutrition therapy in gastrointestinal conditions. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 352-357.	1.4	7
157	Tea, cocoa, coffee, and affective disorders: vicious or virtuous cycle?. Journal of Affective Disorders, 2017, 224, 61-68.	2.0	31
158	Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology, 2017, 13, 11-25.	4.3	273
159	Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 2017, 595, 489-503.	1.3	520
160	Evolving Ecosystems: Inheritance and Selection in the Light of the Microbiome. Archives of Medical Research, 2017, 48, 780-789.	1.5	20
162	Food quality affects the expression of antimicrobial peptide genes upon simulated parasite attack in the larvae of greater wax moth. Entomologia Experimentalis Et Applicata, 2017, 165, 129-137.	0.7	8
163	Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterology Clinics of North America, 2017, 46, 689-729.	1.0	27
164	Microbiome at the Frontier of Personalized Medicine. Mayo Clinic Proceedings, 2017, 92, 1855-1864.	1.4	138
165	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155
166	The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health1,2. Journal of Animal Science, 2017, 95, 3225-3246.	0.2	84
167	Lien entre les probiotiques et le microbiote : vision du clinicien. Cahiers De Nutrition Et De Dietetique, 2017, 52, S5-S12.	0.2	1
169	Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by <i>Fusobacterium nucleatum</i> in Tumor Tissue. JAMA Oncology, 2017, 3, 921.	3.4	243
170	5. Endogene Mechanismen. , 2017, , 96-126.		0
171	Association between dietary patterns and mental disorders in pregnant women in Southern Brazil. Revista Brasileira De Psiquiatria, 2017, 39, 208-215.	0.9	24
172	Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium) Tj ETQq0 0 0 r	gBT /Overl 1.1	oc <u></u> ჯ 10 Tf 50
173	Astrofood, Priorities and Pandemics: Reflections of an Ultra-Processed Breakfast Program and Contemporary Dysbiotic Drift. Challenges, 2017, 8, 24.	0.9	13

	CITATION	ICLPORT	
#	Article	IF	CITATIONS
174	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	1.5	20
175	The Maternal Diet, Gut Bacteria, and Bacterial Metabolites during Pregnancy Influence Offspring Asthma. Frontiers in Immunology, 2017, 8, 365.	2.2	74
176	Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. Frontiers in Immunology, 2017, 8, 548.	2.2	114
177	Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases. Frontiers in Immunology, 2017, 8, 1882.	2.2	149
178	Carbohydrate Staple Food Modulates Gut Microbiota of Mongolians in China. Frontiers in Microbiology, 2017, 8, 484.	1.5	40
179	Inbred Mouse Populations Exhibit Intergenerational Changes in Intestinal Microbiota Composition and Function Following Introduction to a Facility. Frontiers in Microbiology, 2017, 8, 608.	1.5	21
180	The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Frontiers in Microbiology, 2017, 8, 802.	1.5	68
181	The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Frontiers in Microbiology, 2017, 8, 837.	1.5	78
182	Variation of Carbohydrate-Active Enzyme Patterns in the Gut Microbiota of Italian Healthy Subjects and Type 2 Diabetes Patients. Frontiers in Microbiology, 2017, 8, 2079.	1.5	20
183	Microbial Ecology along the Gastrointestinal Tract. Microbes and Environments, 2017, 32, 300-313.	0.7	372
184	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	1.7	36
185	Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. Genes and Nutrition, 2017, 12, 25.	1.2	26
186	The human microbiome in evolution. BMC Biology, 2017, 15, 127.	1.7	243
187	Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 2017, 5, 121.	4.9	70
188	Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections. Scientific Reports, 2017, 7, 10164.	1.6	38
189	Down to Earth: Planetary Health and Biophilosophy in the Symbiocene Epoch. Challenges, 2017, 8, 19.	0.9	37
191	Difference between right-sided and left-sided colorectal cancers: from embryology to molecular subtype. Expert Review of Anticancer Therapy, 2018, 18, 351-358.	1.1	60
192	Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease. , 2018, , 119-144.		1

	CITATION	Report	
#	Article	IF	Citations
193	The Past and Future Biology of the Human Microbiome in an Age of Extinctions. Cell, 2018, 172, 1173-1177.	13.5	52
194	Early development and reproductive lifespan of rabbit females: implications of growth rate, rearing diet and body condition at first mating. Animal, 2018, 12, 2347-2355.	1.3	15
195	Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Applied and Environmental Microbiology, 2018, 84, .	1.4	62
196	Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nature Microbiology, 2018, 3, 662-669.	5.9	185
197	Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity, 2018, 26, 801-809.	1.5	110
198	Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats. Biomedicine and Pharmacotherapy, 2018, 102, 1025-1036.	2.5	86
199	A system biology perspective on environment–host–microbe interactions. Human Molecular Genetics, 2018, 27, R187-R194.	1.4	37
200	Urbanization and the gut microbiota in health and inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 440-452.	8.2	187
201	The Intestinal Microbiota in Colorectal Cancer. Cancer Cell, 2018, 33, 954-964.	7.7	543
202	Time for food: The impact of diet on gut microbiota and human health. Nutrition, 2018, 51-52, 80-85.	1.1	94
203	Microbial diversity and chemical analysis of the starters used in traditional Chinese sweet rice wine. Food Microbiology, 2018, 73, 319-326.	2.1	116
204	Multiâ€omics approach to elucidate the gut microbiota activity: Metaproteomics and metagenomics connection. Electrophoresis, 2018, 39, 1692-1701.	1.3	28
205	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	3.9	244
206	Diet and microbiota linked in health and disease. Food and Function, 2018, 9, 688-704.	2.1	148
207	Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum. Cell Metabolism, 2018, 27, 362-377.e8.	7.2	114
208	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	1.9	122
209	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	5.1	477
210	Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell Host and Microbe, 2018, 23, 41-53.e4.	5.1	410

#	Article	IF	CITATIONS
211	Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 318-326.	1.7	401
212	Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. Journal of the Academy of Nutrition and Dietetics, 2018, 118, 606-616.e3.	0.4	27
213	Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiology, 2018, 18, 28.	1.3	19
214	The social network of microorganisms — how auxotrophies shape complex communities. Nature Reviews Microbiology, 2018, 16, 383-390.	13.6	311
215	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	4.9	176
216	Digestible energy of sorghum grain for pigs could be predicted using a computer-controlled simulated digestion system. Animal Feed Science and Technology, 2018, 240, 31-39.	1.1	13
217	A letter of reply to: Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Davis, H.C. Ir J Med Sci (2017). https://doi.org/10.1007/s11845-017-1686-9. Irish Journal of Medical Science, 2018, 187, 537-537.	0.8	1
218	Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver International, 2018, 38, 50-58.	1.9	72
219	Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microbial Ecology, 2018, 75, 515-527.	1.4	106
220	Landscape biodiversity correlates with respiratory health in Australia. Journal of Environmental Management, 2018, 206, 113-122.	3.8	50
221	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	1.0	95
222	Identification of a sustainable two-plant diet that effectively prevents age-related metabolic syndrome and extends lifespan in aged mice. Journal of Nutritional Biochemistry, 2018, 51, 16-26.	1.9	13
223	A computer-controlled simulated digestion system is a promising in vitro digestibility technique to predict digestible energy of corn grain for growing pigs. Animal Feed Science and Technology, 2018, 235, 43-49.	1.1	13
224	The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study. Beneficial Microbes, 2018, 9, 21-34.	1.0	27
225	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiology Spectrum, 2017, 5, .	1.2	125
226	Mechanisms of weight loss and improved metabolism following bariatric surgery. Annals of the New York Academy of Sciences, 2018, 1411, 53-64.	1.8	99
227	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 83, 214-223.	0.7	129
228	Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. International Journal of Obesity, 2018, 42, 746-754.	1.6	31

#	ARTICLE	IF	CITATIONS
229	Dietary Fiber in Health and Disease. , 2018, , .		6
230	Commensal Koch's postulates: establishing causation in human microbiota research. Current Opinion in Microbiology, 2018, 42, 47-52.	2.3	84
231	Insights on the Role of Fiber in Colonic Microbiota Health. , 2018, , 41-66.		2
232	Connection Between Fiber, Colonic Microbiota, and Health Across the Human Life Cycle. , 2018, , 67-93.		1
233	Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. International Journal of Obesity, 2018, 42, 424-432.	1.6	48
234	Recipe for IBD: can we use food to control inflammatory bowel disease?. Seminars in Immunopathology, 2018, 40, 145-156.	2.8	26
235	Recent developments in understanding the role of the gut microbiota in brain health and disease. Annals of the New York Academy of Sciences, 2018, 1420, 5-25.	1.8	227
236	Xenobiotic and endobiotic handling by the mucosal immune system. Current Opinion in Gastroenterology, 2018, 34, 404-412.	1.0	6
237	Mycobacteria, Immunoregulation, and Autoimmunity. , 2018, , 121-154.		1
238	Effect of Wheat Bran on Fecal Butyrate-Producing Bacteria and Wheat Bran Combined with Barley on Bacteroides Abundance in Japanese Healthy Adults. Nutrients, 2018, 10, 1980.	1.7	35
239	The Microbiome and the Epigenetics of Diabetes Mellitus. , 0, , .		4
240	Prokaryotes Rule the World. , 2018, , .		1
241	Wildlife-microbiome interactions and disease: exploring opportunities for disease mitigation across ecological scales. Drug Discovery Today: Disease Models, 2018, 28, 105-115.	1.2	25
242	Rice straw biochar as a novel niche for improved alterations to the cecal microbial community in rats. Scientific Reports, 2018, 8, 16426.	1.6	6
243	Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 2018, 16, e2005396.	2.6	128
244	Bacterial butyrate prevents atherosclerosis. Nature Microbiology, 2018, 3, 1332-1333.	5.9	46
245	Mechanistic Insights Into the Cross-Feeding of Ruminococcus gnavus and Ruminococcus bromii on Host and Dietary Carbohydrates. Frontiers in Microbiology, 2018, 9, 2558.	1.5	125
246	Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Scientific Reports, 2018, 8, 16655.	1.6	62

#	Article	IF	CITATIONS
247	The gut microbiota at the intersection of diet and human health. Science, 2018, 362, 776-780.	6.0	683
248	A Microbiota Assimilation. Cell Metabolism, 2018, 28, 675-677.	7.2	5
249	A Metabologenomic Approach Reveals Changes in the Intestinal Environment of Mice Fed on American Diet. International Journal of Molecular Sciences, 2018, 19, 4079.	1.8	41
250	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	1.8	70
251	Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function. Frontiers in Microbiology, 2018, 9, 2682.	1.5	42
252	How Can We Define "Optimal Microbiota?― A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Frontiers in Nutrition, 2018, 5, 90.	1.6	61
253	Preserving microbial diversity. Science, 2018, 362, 33-34.	6.0	133
254	Effect of dietary fiber content on nutrient digestibility and fecal microbiota composition in growing-finishing pigs. PLoS ONE, 2018, 13, e0206159.	1.1	54
255	Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology, 2018, 3, 1461-1471.	5.9	310
256	Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host and Microbe, 2018, 24, 637-652.e8.	5.1	517
257	Association of dietary fibre intake and gut microbiota in adults. British Journal of Nutrition, 2018, 120, 1014-1022.	1.2	63
258	Transmission modes of the mammalian gut microbiota. Science, 2018, 362, 453-457.	6.0	189
259	Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiology Ecology, 2019, 95, .	1.3	28
260	Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes. Current Opinion in Chemical Biology, 2018, 47, 126-133.	2.8	35
261	US Immigration Westernizes the Human Gut Microbiome. Cell, 2018, 175, 962-972.e10.	13.5	511
262	Dietary Corn Bran Altered the Diversity of Microbial Communities and Cytokine Production in Weaned Pigs. Frontiers in Microbiology, 2018, 9, 2090.	1.5	48
263	Phylogenetic Diversity and Conservation Evaluation: Perspectives on Multiple Values, Indices, and Scales of Application. , 2018, , 1-26.		32
264	Antibiotic treatment of rat dams affects bacterial colonization and causes decreased weight gain in pups. Communications Biology, 2018, 1, 145.	2.0	14

#	Article	IF	CITATIONS
265	A Comparative Study on the Faecal Bacterial Community and Potential Zoonotic Bacteria of Muskoxen (Ovibos moschatus) in Northeast Greenland, Northwest Greenland and Norway. Microorganisms, 2018, 6, 76.	1.6	10
266	Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. Journal of Nutritional Biochemistry, 2018, 62, 76-86.	1.9	80
267	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
268	Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Scientific Reports, 2018, 8, 13037.	1.6	114
269	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	1.4	11
270	Changes in the Gut Microbiota of Urban Subjects during an Immersion in the Traditional Diet and Lifestyle of a Rainforest Village. MSphere, 2018, 3, .	1.3	34
271	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. , 0, , 453-483.		8
272	Alopecia areata and the gut—the link opens up for novel therapeutic interventions. Expert Opinion on Therapeutic Targets, 2018, 22, 503-511.	1.5	43
273	Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in <i>Bacteroides thetaiotaomicron</i> Strains. MSphere, 2018, 3, .	1.3	29
274	Microbial Metabolism in the Mammalian Gut. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, S72-S79.	0.9	15
275	Gut Microbiota and Human Health: Insights From Ecological Restoration. Quarterly Review of Biology, 2018, 93, 73-90.	0.0	10
276	Childhood Microbial Experience, Immunoregulation, Inflammation, and Adult Susceptibility to Psychosocial Stressors and Depression. , 2018, , 17-44.		3
277	The importance of the exposome and allostatic load in the planetary health paradigm. Journal of Physiological Anthropology, 2018, 37, 15.	1.0	38
278	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology. , 2018, , 755-766.		1
279	Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids. ELife, 2018, 7,	2.8	14
280	Intestinal Microbiome in Health and Disease: Introduction. , 2018, , 1-3.		2
282	Gut-Brain Psychology: Rethinking Psychology From the Microbiota–Gut–Brain Axis. Frontiers in Integrative Neuroscience, 2018, 12, 33.	1.0	169
283	Composition and Function of the Gut Microbiome. , 2018, , 5-30.		5

# 284	ARTICLE Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.	IF	CITATIONS 3
285	Microbiome and Diet. , 2018, , 79-88.		1
286	Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Scientific Reports, 2018, 8, 10762.	1.6	149
287	Coreopsis Tinctoria Modulates Lipid Metabolism by Decreasing Low-Density Lipoprotein and Improving Gut Microbiota. Cellular Physiology and Biochemistry, 2018, 48, 1060-1074.	1.1	9
288	Moderate Dietary Protein Restriction Optimized Gut Microbiota and Mucosal Barrier in Growing Pig Model. Frontiers in Cellular and Infection Microbiology, 2018, 8, 246.	1.8	70
289	Ecological Restoration of Antibiotic-Disturbed Gastrointestinal Microbiota in Foregut and Hindgut of Cows. Frontiers in Cellular and Infection Microbiology, 2018, 8, 79.	1.8	31
290	Microbiome and Allergic Diseases. Frontiers in Immunology, 2018, 9, 1584.	2.2	211
291	Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Frontiers in Microbiology, 2018, 9, 890.	1.5	392
292	Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Frontiers in Nutrition, 2018, 5, 28.	1.6	125
293	Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes, 2018, 9, 10.	1.0	38
294	Recognizing Depression from the Microbiota–Gut–Brain Axis. International Journal of Molecular Sciences, 2018, 19, 1592.	1.8	191
295	Dietary Polysaccharide from Enteromorpha Clathrata Modulates Gut Microbiota and Promotes the Growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp Marine Drugs, 2018, 16, 167.	2.2	59
296	The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients, 2018, 10, 365.	1.7	452
297	Higher Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes among Middle-Aged Men and Women: The Danish Diet, Cancer, and Health Cohort. Journal of Nutrition, 2018, 148, 1434-1444.	1.3	56
298	Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clinical Nutrition, 2018, 37, 2191-2197.	2.3	29
299	Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates. Microbiome, 2018, 6, 99.	4.9	42
300	Dysbiotic drift and biopsychosocial medicine: how the microbiome links personal, public and planetary health. BioPsychoSocial Medicine, 2018, 12, 7.	0.9	40
301	Bacteria in the ageing gut: did the taming of fire promote a long human lifespan?. Environmental Microbiology, 2018, 20, 1966-1987.	1.8	12

ARTICLE IF CITATIONS # An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature, 2018, 557, 302 13.7 262 434-438. Gut Microbiota in Tibetan Herdsmen Reflects the Degree of Urbanization. Frontiers in Microbiology, 1.5 2018, 9, 1745. Molecular Variances Between Right- and Left-sided Colon Cancers. Current Colorectal Cancer 304 1.0 5 Reports, 2018, 14, 152-158. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Frontiers in Microbiology, 2018, 9, 2013. Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell, 2018, 173, 307 13.5 171 1742-1754.e17. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host and Microbe, 2018, 23, 705-715. 308 5.1 1,441 Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. 309 13.6 432 Nature Reviews Microbiology, 2018, 16, 457-470. The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 4.0 148 611-636. 311 Gut Microbiota, Early Colonization and Factors in its Development that Influence Health., 2018, , 1-35. 0 Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome 2.7 them. Mucosal Immunology, 2019, 12, 1-9. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut 313 4.4236 microbiomes. ISME Journal, 2019, 13, 576-587. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. 1.6 186 Microorganisms, 2019, 7, 271. Connection between gut microbiome and the development of obesity. European Journal of Clinical 315 1.3 48 Microbiology and Infectious Diseases, 2019, 38, 1987-1998. Maternal nutrition, epigenetic programming and metabolic syndrome., 2019, , 153-166. When Cultures Meet: The Landscape of "Social―Interactions between the Host and Its Indigenous 317 1.2 3 Microbes. BioEssays, 2019, 41, 1900002. Diet-microbiome interactions and the regulation of the epigenome., 2019,, 401-407. Acute stressor alters inter-species microbial competition for resistant starch-supplemented medium. 319 4.3 7 Gut Microbes, 2019, 10, 439-446. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 2019, 7, 103.

#	Article	IF	CITATIONS
321	Fusobacterium�nucleatum‑positive colorectal cancer (Review). Oncology Letters, 2019, 18, 975-982.	0.8	20
322	Geographic location and food availability offer differing levels of influence on the bacterial communities associated with larval sea urchins. FEMS Microbiology Ecology, 2019, 95, .	1.3	10
323	Spatial metagenomic characterization of microbial biogeography in the gut. Nature Biotechnology, 2019, 37, 877-883.	9.4	103
324	Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nature Methods, 2019, 16, 731-736.	9.0	54
325	Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Applied Microbiology and Biotechnology, 2019, 103, 7287-7315.	1.7	53
327	Seasonality of <i>Clostridium difficile</i> in the natural environment. Transboundary and Emerging Diseases, 2019, 66, 2440-2449.	1.3	16
328	The Microbiome and Ocular Surface Disease. Current Ophthalmology Reports, 2019, 7, 196-203.	0.5	13
329	InÂvitro growth of gut microbiota with selenium nanoparticles. Animal Nutrition, 2019, 5, 424-431.	2.1	25
330	Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients, 2019, 11, 1468.	1.7	50
331	Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma. World Journal of Gastroenterology, 2019, 25, 2149-2161.	1.4	73
332	Gut microbiota density influences host physiology and is shaped by host and microbial factors. ELife, 2019, 8, .	2.8	118
333	Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food and Function, 2019, 10, 4372-4380.	2.1	40
334	Effect of Temperature on Micromechanical Properties of Pol-yvinyl Alcohol Fiber–Matrix interface and Uniaxial Tensile Properties of High-Ductility Cementitious Composites. IOP Conference Series: Earth and Environmental Science, 2019, 304, 052089.	0.2	0
335	Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. BioEssays, 2019, 41, e1900034.	1.2	21
336	Polymorphic Immune Mechanisms Regulate Commensal Repertoire. Cell Reports, 2019, 29, 541-550.e4.	2.9	55
337	Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 2019, 11, 2393.	1.7	374
338	The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations. Cell Host and Microbe, 2019, 26, 666-679.e7.	5.1	274
339	Emerging Frontiers in Microbiome Engineering. Trends in Immunology, 2019, 40, 952-973.	2.9	47

#	Article	IF	CITATIONS
340	Incorporating functional trade-offs into studies of the gut microbiota. Current Opinion in Microbiology, 2019, 50, 20-27.	2.3	14
341	Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food and Function, 2019, 10, 7174-7187.	2.1	43
342	The Gut Microbiome. , 2019, , 61-98.		2
343	Comparative Study of Gut Microbiota in Wild and Captive Giant Pandas (Ailuropoda melanoleuca). Genes, 2019, 10, 827.	1.0	69
344	Distinct Successions of Common and Rare Bacteria in Soil Under Humic Acid Amendment – A Microcosm Study. Frontiers in Microbiology, 2019, 10, 2271.	1.5	36
345	Advances in Nutrition Science and Integrative Physiology: Insights From Controlled Feeding Studies. Frontiers in Physiology, 2019, 10, 1341.	1.3	13
346	Recovery of the Gut Microbiota after Antibiotics Depends on Host Diet, Community Context, and Environmental Reservoirs. Cell Host and Microbe, 2019, 26, 650-665.e4.	5.1	166
347	Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24285-24295.	3.3	139
348	Vulnerability of the industrialized microbiota. Science, 2019, 366, .	6.0	177
349	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
350	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105
351	Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. Infection, Genetics and Evolution, 2019, 74, 104010.	1.0	16
352	Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints. MSphere, 2019, 4, .	1.3	40
353	The human gut chemical landscape predicts microbe-mediated biotransformation of foods and drugs. ELife, 2019, 8, .	2.8	39
354	Microbiome, Breastfeeding and Public Health Policy in the United States: The Case for Dietary Fiber. Nutrition and Metabolic Insights, 2019, 12, 117863881986959.	0.8	6
355	Evolutionary and Ecological Consequences of Gut Microbial Communities. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 451-475.	3.8	175
356	Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 2019, 26, 314-324.	5.1	247
357	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514

ARTICLE IF CITATIONS # Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 358 0.5 107 44, 1. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. 1.6 Scientific Reports, 2019, 9, 13424. Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived 360 13.5 224 Glycans. Cell, 2019, 179, 59-73.e13. Anti-Inflammatory Diets and Fatigue. Nutrients, 2019, 11, 2315. 54 Metabolic and Vascular Effect of the Mediterranean Diet. International Journal of Molecular 362 1.8 144 Sciences, 2019, 20, 4716. Translating the gut microbiome: ready for the clinic?. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 656-661. 8.2 Specific Wheat Fractions Influence Hepatic Fat Metabolism in Diet-Induced Obese Mice. Nutrients, 2019, 364 1.7 9 11, 2348. Prenatal and postnatal contributions of the maternal microbiome on offspring programming. 2.5 Frontiers in Neuroendocrinology, 2019, 55, 100797. Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME Journal, 2019, 366 4.4 29 13, 1379-1390. Gut Microbiota Profiling of Aflatoxin B1-Induced Rats Treated with Lactobacillus casei Shirota. 1.5 Toxins, 2019, 11, 49. Engineering mucus to study and influence the microbiome. Nature Reviews Materials, 2019, 4, 134-145. 368 23.3 55 Cyanobiont diversity in six Azolla spp. and relation to Azolla-nutrient profiling. Planta, 2019, 249, 1.6 1435-1447. Carbohydrate Monotony as Protection and Treatment for Inflammatory Bowel Disease. Journal of 370 0.6 18 Crohn's and Colitis, 2019, 13, 942-948. Effects of BARLEYmax and high-Î²-glucan barley line on short-chain fatty acids production and 371 1.1 24 microbiota from the cecum to the distal colon in rats. PLoS ONE, 2019, 14, e0218118. Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545. 372 140 4.1 Healthy diets and sustainable food systems. Lancet, The, 2019, 394, 214. Modulation of the Caecal Gut Microbiota of Mice by Dietary Supplement Containing Resistant Starch: 374 1.518 Impact Is Donor-Dependent. Frontiers in Microbiology, 2019, 10, 1234. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 701 2019, 177, 1600-1618.e17.

#	Article	IF	CITATIONS
376	Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host and Microbe, 2019, 25, 789-802.e5.	5.1	441
377	Multidisciplinarity in Microbiome Research: A Challenge and Opportunity to Rethink Causation, Variability, and Scale. BioEssays, 2019, 41, e1900007.	1.2	12
378	Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. American Journal of Pathology, 2019, 189, 1300-1310.	1.9	31
379	Early-Life Microbiota Perturbations and Behavioral Effects. Trends in Microbiology, 2019, 27, 567-569.	3.5	9
381	Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2293-2311.	2.7	76
382	The ancestral and industrialized gut microbiota and implications for human health. Nature Reviews Microbiology, 2019, 17, 383-390.	13.6	255
383	Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Frontiers in Genetics, 2019, 10, 454.	1.1	104
384	Exposure of the Host-Associated Microbiome to Nutrient-Rich Conditions May Lead to Dysbiosis and Disease Development—an Evolutionary Perspective. MBio, 2019, 10, .	1.8	19
385	A Randomized Placebo-controlled Trial of an Oral Preparation of High Molecular Weight Fucoidan in Patients with Type 2 Diabetes with Evaluation of Taste Sensitivity. Yonago Acta Medica, 2019, 62, 014-023.	0.3	28
386	Gut microbiota and probiotic intervention as a promising therapeutic for pregnant women with cardiometabolic disorders: Present and future directions. Pharmacological Research, 2019, 145, 104252.	3.1	34
387	Dietary Factors in Sulfur Metabolism and Pathogenesis of Ulcerative Colitis. Nutrients, 2019, 11, 931.	1.7	35
388	Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome, 2019, 7, 41.	4.9	30
389	Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Journal of Cellular Physiology, 2019, 234, 17023-17049.	2.0	116
390	Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 2019, 71, 198-224.	7.1	211
391	Changes in Mouse Gut Microbial Community in Response to the Different Types of Commonly Consumed Meat. Microorganisms, 2019, 7, 76.	1.6	11
392	The human-microbiome superorganism and its modulation to restore health. International Journal of Food Sciences and Nutrition, 2019, 70, 781-795.	1.3	77
393	Comparison of the gut microbiota composition between the wild and captive Tibetan wild ass () Tj ETQq0 0 0 rgE	3T /Overloo 1,4	ck 10 Tf 50 1

394	A review of 10Âyears of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome, 2019, 7, 31.	4.9	155
-----	--	-----	-----

ARTICLE IF CITATIONS The founder hypothesis: A basis for microbiota resistance, diversity in taxa carriage, and colonization 395 2.1 67 resistance against pathogens. PLoS Pathogens, 2019, 15, e1007563. Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model. Cell Reports, 2019, 26, 3772-3783.e6. Gut microbiota dysbiosis in a cohort of patients with psoriasis. British Journal of Dermatology, 2019, 397 1.4 128 181, 1287-1295. Paternal Programming of Liver Function and Lipid Profile Induced by a Paternal Pre-Conceptional Unhealthy Diet: Potential Association with Altered Gut Microbiome Composition. Kidney and Blood 0.9 Pressure Research, 2019, 44, 133-148. High dietary fat intake induces a microbiota signature that promotes food allergy. Journal of Allergy 399 1.5 84 and Clinical Immunology, 2019, 144, 157-170.e8. Microbiome potentiates endurance exercise through intestinal acetate production. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E956-E966. 1.8 Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global 401 4.9 72 diversity. Microbiome, 2019, 7, 39. Species identity dominates over environment in shaping the microbiota of small mammals. Ecology 402 94 Letters, 2019, 22, 826-837. 403 Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 2019, 24, 530-541. 4.3 233 Reconstructing functional networks in the human intestinal tract using synthetic microbiomes. 404 3.3 Current Opinion in Biotechnology, 2019, 58, 146-154. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations 405 in the Bioaccessibility of Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 106 2.4 9124-9138. The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and 1.4 Technological Innovation.. Biomedicines, 2019, 7, 24. Developmental Programming and Transgenerational Transmission of Obesity., 2019, , 1395-1412. 407 0 Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 2019, 15, 263-274. 408 4.1 409 The Dimension of Time in Host-Microbiome Interactions. MSystems, 2019, 4, . 49 1.7 Microbiome Dependent Regulation of Tregs and Th17 Cells in Mucosa. Frontiers in Immunology, 2019, 2.2 163 10, 426. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid 411 production and gut microbiota community structure. LWT - Food Science and Technology, 2019, 105, 2.540 355-362. Seeing the wood for the trees: A new way to view the human intestinal microbiome and its connection with non-communicable disease. Medical Hypotheses, 2019, 125, 70-74.

#	Article	IF	CITATIONS
413	Dietary Short Chain Fatty Acids: How the Gut Microbiota Fight Against Autoimmune and Inflammatory Diseases. , 2019, , 139-159.		5
414	Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. Current Colorectal Cancer Reports, 2019, 15, 70-77.	1.0	6
415	Review article: dietary fibre in the era of microbiome science. Alimentary Pharmacology and Therapeutics, 2019, 49, 506-515.	1.9	97
416	The Glucoamylase Inhibitor Acarbose Has a Diet-Dependent and Reversible Effect on the Murine Gut Microbiome. MSphere, 2019, 4, .	1.3	68
417	Chapter 17 Fibre and fibre breakdown products as microbial and immune defence modulators. , 2019, , 297-311.		0
418	Chapter 18 Cross-feeding during human colon fermentation. , 2019, , 313-338.		1
419	Live and Diet by Your Gut Microbiota. MBio, 2019, 10, .	1.8	8
420	Whole barley prevents obesity and dyslipidemia without the involvement of the gut microbiota in germ free C57BL/6J obese mice. Food and Function, 2019, 10, 7498-7508.	2.1	14
421	Framing the discussion of microorganisms as a facet of social equity in human health. PLoS Biology, 2019, 17, e3000536.	2.6	32
422	Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 2019, 11, 2862.	1.7	449
423	Fiber, Fat, and Colorectal Cancer: New Insight into Modifiable Dietary Risk Factors. Current Gastroenterology Reports, 2019, 21, 62.	1.1	62
425	Intergenerational Transmission of Characters Through Genetics, Epigenetics, Microbiota, and Learning in Livestock. Frontiers in Genetics, 2019, 10, 1058.	1.1	12
426	Engineering dual-glycan responsive expression systems for tunable production of heterologous proteins in Bacteroides thetaiotaomicron. Scientific Reports, 2019, 9, 17400.	1.6	11
427	The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer, 2019, 19, 1233.	1.1	12
428	Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 2019, 45, 613-648.	2.7	30
429	Personalized Nutrition. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 633-638.	0.9	15
430	Dietary Factors in the Control of Gut Homeostasis, Intestinal Stem Cells, and Colorectal Cancer. Nutrients, 2019, 11, 2936.	1.7	25
431	Does Exercise Alter Gut Microbial Composition? A Systematic Review. Medicine and Science in Sports and Exercise, 2019, 51, 160-167.	0.2	64

#	Article	IF	Citations
432	Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2019, 26, 705-719.	0.9	24
433	Assessing the Influence of Dietary History on Gut Microbiota. Current Microbiology, 2019, 76, 237-247.	1.0	10
434	Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 233-238.	3.3	71
435	Hypocholesterolemic Effect of the Lignin-Rich Insoluble Residue of Brewer's Spent Grain in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2019, 67, 1104-1114.	2.4	37
436	Intergenerational and transgenerational epigenetic inheritance in animals. Nature Cell Biology, 2019, 21, 143-151.	4.6	365
437	The Role of the Microbiome in Asthma: The Gut–Lung Axis. International Journal of Molecular Sciences, 2019, 20, 123.	1.8	162
438	Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe, 2019, 55, 67-77.	1.0	78
439	Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 2019, 169, 483-493.	3.7	694
441	Cancer and Infection. , 2019, , 97-114.		0
442	Impact of dietary fiber supplementation on modulating microbiota–host–metabolic axes in obesity. Journal of Nutritional Biochemistry, 2019, 64, 228-236.	1.9	88
443	The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clinical Gastroenterology and Hepatology, 2019, 17, 322-332.	2.4	285
444	A mini-review on the microbial continuum: consideration of a link between judicious consumption of a varied diet of macroalgae and human health and nutrition. Journal of Oceanology and Limnology, 2019, 37, 790-805.	0.6	10
445	A great-ape view of the gutÂmicrobiome. Nature Reviews Genetics, 2019, 20, 195-206.	7.7	49
446	Fecal <i>Fusobacterium nucleatum</i> for the diagnosis of colorectal tumor: A systematic review and metaâ€analysis. Cancer Medicine, 2019, 8, 480-491.	1.3	48
447	The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends in Microbiology, 2019, 27, 131-147.	3.5	467
448	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
450	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	8.2	980
451	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38

#	Article	IF	CITATIONS
452	Antibiotic-induced Disruption of Intestinal Microbiota Contributes to Failure of Vertical Sleeve Gastrectomy. Annals of Surgery, 2019, 269, 1092-1100.	2.1	29
453	Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health. Journal of Sport and Health Science, 2020, 9, 110-118.	3.3	20
454	Establishing a three-generation prospective study: Bogalusa daughters. Journal of Developmental Origins of Health and Disease, 2020, 11, 188-195.	0.7	6
455	Diet and Environment in Colorectal Cancer Development, Roles of. , 2020, , 33-50.		0
456	Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1. Food Microbiology, 2020, 86, 103336.	2.1	20
457	Microbial Contribution to the Human Metabolome: Implications for Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 345-369.	9.6	104
458	Natural diets promote retention of the native gut microbiota in captive rodents. ISME Journal, 2020, 14, 67-78.	4.4	83
459	Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Nutrition, 2020, 11, 616-629.	2.9	70
460	In vitro digestibility and prebiotic activities of a sulfated polysaccharide from Gracilaria Lemaneiformis. Journal of Functional Foods, 2020, 64, 103652.	1.6	74
461	Nurturing and modulating gut microbiota with jujube powder to enhance anti-PD-L1 efficiency against murine colon cancer. Journal of Functional Foods, 2020, 64, 103647.	1.6	22
462	Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. Journal of Eukaryotic Microbiology, 2020, 67, 279-295.	0.8	16
463	Hydroxycinnamic acids and human health: recent advances. Journal of the Science of Food and Agriculture, 2020, 100, 483-499.	1.7	96
464	Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of the Total Environment, 2020, 701, 134684.	3.9	98
465	Interâ€breed diversity and temporal dynamics of the faecal microbiota in healthy horses. Journal of Animal Breeding and Genetics, 2020, 137, 103-120.	0.8	28
466	Effects of Added Dietary Fiber and Rearing System on the Gut Microbial Diversity and Gut Health of Chickens. Animals, 2020, 10, 107.	1.0	23
467	Rapid PCR identification of Prevotella copri in an Australian cohort of pregnant women. Journal of Developmental Origins of Health and Disease, 2020, 11, 228-234.	0.7	2
468	A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer. American Journal of Clinical Nutrition, 2020, 111, 406-419.	2.2	52
469	Novel Strategies for Targeting the Control of Mucosal Inflammation. , 2020, , 869-879.		0

#	Article	IF	CITATIONS
470	Interplay Between Gut Microbiota and Gastrointestinal Peptides:ÂPotential Outcomes on the Regulation of Clucose Control. Canadian Journal of Diabetes, 2020, 44, 359-367.	0.4	14
471	Gut microbiome composition and diversity are related to human personality traits. Human Microbiome Journal, 2020, 15, 100069.	3.8	119
472	Gut microbiota structure differs between honeybees in winter and summer. ISME Journal, 2020, 14, 801-814.	4.4	175
473	The Gut Microbiome as a Therapeutic Target for Cognitive Impairment. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1242-1250.	1.7	39
474	Host determinants of among-species variation in microbiome composition in drosophilid flies. ISME Journal, 2020, 14, 217-229.	4.4	27
475	Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Science and Nutrition, 2020, 8, 199-213.	1.5	53
476	The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 608-623.	0.4	24
477	Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 2020, 12, 17.	1.7	57
478	The Change in the Content of Nutrients in Diets Eliminating Products of Animal Origin in Comparison to a Regular Diet from the Area of Middle-Eastern Europe. Nutrients, 2020, 12, 2986.	1.7	16
479	Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. Nutrients, 2020, 12, 3032.	1.7	10
480	Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health. Medicina (Lithuania), 2020, 56, 490.	0.8	12
481	Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity, 2020, 53, 264-276.	6.6	77
482	Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients, 2020, 12, 3045.	1.7	154
483	Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Research, 2020, 293, 113471.	1.7	34
484	Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	2.0	26
485	A comprehensive analysis of the microbiota composition and gene expression in colorectal cancer. BMC Microbiology, 2020, 20, 308.	1.3	17
486	Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population. Nutrients, 2020, 12, 2938.	1.7	24
487	Prebioticsâ€Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer. Advanced Materials, 2020, 32, e2004529.	11.1	128

#	Article	IF	CITATIONS
488	SSAT State-of-the-Art Conference: Advancements in the Microbiome. Journal of Gastrointestinal Surgery, 2021, 25, 1885-1895.	0.9	1
489	A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. Pharmacological Research, 2020, 160, 105088.	3.1	34
490	The gut microbiota of brood parasite and host nestlings reared within the same environment: disentangling genetic and environmental effects. ISME Journal, 2020, 14, 2691-2702.	4.4	19
491	Effect of bean structure on microbiota utilization of plant nutrients: An in-vitro study using the simulator of the human intestinal microbial ecosystem (SHIME®). Journal of Functional Foods, 2020, 73, 104087.	1.6	21
492	Comparative Analysis of the Fecal Microbiota of Wild and Captive Beal's Eyed Turtle (Sacalia bealei) by 16S rRNA Gene Sequencing. Frontiers in Microbiology, 2020, 11, 570890.	1.5	12
493	Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415.	1.3	45
494	From probiotics to psychobiotics – the gut-brain axis in psychiatric disorders. Beneficial Microbes, 2020, 11, 717-732.	1.0	36
495	Should There Be a Recommended Daily Intake of Microbes?. Journal of Nutrition, 2020, 150, 3061-3067.	1.3	48
496	Effects of Acupuncture Treatment in Reducing Sleep Disorder and Gut Microbiota Alterations in PCPA-Induced Insomnia Mice. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-14.	0.5	24
497	Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Current Biology, 2020, 30, 2520-2531.e7.	1.8	63
498	How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annual Review of Microbiology, 2020, 74, 787-813.	2.9	27
500	In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes. Microorganisms, 2020, 8, 966.	1.6	4
501	Diversity of Gut Microbiota and Bifidobacterial Community of Chinese Subjects of Different Ages and from Different Regions. Microorganisms, 2020, 8, 1108.	1.6	15
502	Diet with a High Proportion of Rice Alters Profiles and Potential Function of Digesta-Associated Microbiota in the lleum of Goats. Animals, 2020, 10, 1261.	1.0	8
503	Modification of fecal microbiota as a mediator of effective weight loss and metabolic benefits following bariatric surgery. Expert Review of Endocrinology and Metabolism, 2020, 15, 363-373.	1.2	19
504	Consumption of Wild Rice (Zizania latifolia) Prevents Metabolic Associated Fatty Liver Disease through the Modulation of the Gut Microbiota in Mice Model. International Journal of Molecular Sciences, 2020, 21, 5375.	1.8	8
505	The microbiome and health. , 2020, , 605-624.		0
506	Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD. Nutrients, 2020, 12, 2380.	1.7	19

#	Δρτιςι ε	IF	CITATIONS
507	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in	11 9 9	221
507	Immunology, 2020, 11, 571731.	2,2	281
508	Fiber and Prebiotic Interventions in Pediatric Inflammatory Bowel Disease: What Role Does the Gut Microbiome Play?. Nutrients, 2020, 12, 3204.	1.7	19
509	Drugging the microbiome. Journal of Experimental Medicine, 2020, 217, .	4.2	11
510	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, .	1.7	58
511	Dysbiosis of the intestinal microbiota and colorectal cancer. , 2020, , 135-155.		1
512	Gut microbiome adaptation to extreme cold winter in wild plateau pika (<i>Ochotona curzoniae</i>) on the Qinghai-Tibet Plateau. FEMS Microbiology Letters, 2020, 367, .	0.7	14
513	Inclusive inheritance for residual feed intake in pigs and rabbits. Journal of Animal Breeding and Genetics, 2020, 137, 535-544.	0.8	3
515	Cultural isolation of spore-forming bacteria in human feces using bile acids. Scientific Reports, 2020, 10, 15041.	1.6	13
516	Does Fibre-fix provided to people with irritable bowel syndrome who are consuming a low FODMAP diet improve their gut health, gut microbiome, sleep and mental health? A double-blinded, randomised controlled trial. BMJ Open Gastroenterology, 2020, 7, e000448.	1.1	2
517	Brain–gut–microbiome interactions in obesity and food addiction. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 655-672.	8.2	127
519	Understanding the effects of dietary components on the gut microbiome and human health. Food Science and Biotechnology, 2020, 29, 1463-1474.	1.2	10
520	Nutrition, Bioenergetics, and Metabolic Syndrome. Nutrients, 2020, 12, 2785.	1.7	26
521	Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. BMC Microbiology, 2020, 20, 283.	1.3	41
522	Roles of the gut microbiota in the adaptive evolution of mammalian species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190597.	1.8	83
523	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	3.2	87
524	Nutritional Modulation of the Microbiome and Immune Response. Journal of Immunology, 2020, 205, 1479-1487.	0.4	24
525	Selenization of S. cerevisiae increases its protective potential in experimental autoimmune encephalomyelitis by triggering an intestinal immunomodulatory loop. Scientific Reports, 2020, 10, 22190.	1.6	8
526	Developments and challenges in dermatology: an update from the Interactive Derma Academy (IDeA) 2019. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 3-18.	1.3	3

#	Article	IF	CITATIONS
527	Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. Journal of Agricultural and Food Chemistry, 2020, 68, 14728-14738.	2.4	21
528	A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nature Communications, 2020, 11, 6389.	5.8	269
529	Alternative stable states in the intestinal ecosystem: proof of concept in a rat model and a perspective of therapeutic implications. Microbiome, 2020, 8, 153.	4.9	21
530	Impact of Microbiota: A Paradigm for Evolving Herd Immunity against Viral Diseases. Viruses, 2020, 12, 1150.	1.5	7
531	Dietary Emulsifier Sodium Stearoyl Lactylate Alters Gut Microbiota in vitro and Inhibits Bacterial Butyrate Producers. Frontiers in Microbiology, 2020, 11, 892.	1.5	23
532	Wild primate microbiomes prevent weight gain in germ-free mice. Animal Microbiome, 2020, 2, 16.	1.5	7
533	Commensal Bacteria Impact a Protozoan's Integration into the Murine Gut Microbiota in a Dietary Nutrient-Dependent Manner. Applied and Environmental Microbiology, 2020, 86, .	1.4	15
534	Effect of longâ€ŧerm consumption of tea (<i>Camellia sinensis</i> L.) flower polysaccharides on maintaining intestinal health in BALB/c mice. Journal of Food Science, 2020, 85, 1948-1955.	1.5	11
535	Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. European Respiratory Journal, 2020, 56, 1902320.	3.1	17
536	The role of the microbiome in the neurobiology of social behaviour. Biological Reviews, 2020, 95, 1131-1166.	4.7	72
537	Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proceedings of the Nutrition Society, 2020, 79, 514-530.	0.4	22
538	The Clinical Drug Ebselen Attenuates Inflammation and Promotes Microbiome Recovery in Mice after Antibiotic Treatment for CDI. Cell Reports Medicine, 2020, 1, 100005.	3.3	26
539	An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell, 2020, 181, 1276-1290.e13.	13.5	110
540	Exosomeâ€mediated effects and applications in inflammatory bowel disease. Biological Reviews, 2020, 95, 1287-1307.	4.7	89
541	Nitrogen utilization is lower for sorghum-based diets compared with corn-based diets in pigs. Livestock Science, 2020, 237, 104066.	0.6	7
542	Gut Microbiota Metabolism and Interaction with Food Components. International Journal of Molecular Sciences, 2020, 21, 3688.	1.8	88
543	The central role of gut microbiota in drug metabolism and personalized medicine. Future Medicinal Chemistry, 2020, 12, 1197-1200.	1.1	11
544	Supplementation with Sea Vegetables Palmaria mollis and Undaria pinnatifida Exerts Metabolic Benefits in Diet-Induced Obesity in Mice. Current Developments in Nutrition, 2020, 4, nzaa072.	0.1	8

#	Article	IF	CITATIONS
545	Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions. Food Hydrocolloids, 2020, 108, 106080.	5.6	12
546	Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nature Biotechnology, 2020, 38, 1288-1297.	9.4	70
547	The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation?. Nutrients, 2020, 12, 1654.	1.7	39
548	Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Frontiers in Immunology, 2020, 11, 1164.	2.2	20
549	Maize Bran Particle Size Governs the Community Composition and Metabolic Output of Human Gut Microbiota in in vitro Fermentations. Frontiers in Microbiology, 2020, 11, 1009.	1.5	15
550	Perspectives on personalised food. Trends in Food Science and Technology, 2020, 102, 169-177.	7.8	22
551	The Effects of Temperature on Animal Gut Microbiomes. Frontiers in Microbiology, 2020, 11, 384.	1.5	150
552	The carnivorous digestive system and bamboo diet of giant pandas may shape their low gut bacterial diversity. , 2020, 8, coz104.		17
553	Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nature Communications, 2020, 11, 1452.	5.8	84
554	Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutrition Reviews, 2020, 78, 798-812.	2.6	71
555	Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes, 2020, 11, 680-690.	4.3	45
556	Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. Journal of Neuroinflammation, 2020, 17, 77.	3.1	64
557	Goat Milk Consumption Enhances Innate and Adaptive Immunities and Alleviates Allergen-Induced Airway Inflammation in Offspring Mice. Frontiers in Immunology, 2020, 11, 184.	2.2	21
558	Triclosan has a robust, yet reversible impact on human gut microbial composition in vitro. PLoS ONE, 2020, 15, e0234046.	1.1	6
559	Effects of captivity, diet, and relocation on the gut bacterial communities of whiteâ€footed mice. Ecology and Evolution, 2020, 10, 4677-4690.	0.8	22
560	Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports, 2020, 47, 6229-6237.	1.0	115
561	Spaceship Earth Revisited: The Co-Benefits of Overcoming Biological Extinction of Experience at the Level of Person, Place and Planet. International Journal of Environmental Research and Public Health, 2020, 17, 1407.	1.2	8
562	Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 223-237.	8.2	893

#	Article	IF	CITATIONS
563	Transient invaders can induce shifts between alternative stable states of microbial communities. Science Advances, 2020, 6, eaay8676.	4.7	92
564	Food matrix and the microbiome: considerations for preclinical chronic disease studies. Nutrition Research, 2020, 78, 1-10.	1.3	13
566	Investigation of the impact of gut microbiotas on fertility of stored sperm by types of hens. Poultry Science, 2020, 99, 1174-1184.	1.5	5
567	The Gastrointestinal Microbiome in Chronic Renal Diseases. Current Oral Health Reports, 2020, 7, 45-53.	0.5	0
568	Anti-Inflammatory, Antioxidant, and Microbiota-Modulating Effects of Camellia Oil from Camellia brevistyla on Acetic Acid-Induced Colitis in Rats. Antioxidants, 2020, 9, 58.	2.2	27
569	Fecal metatranscriptomics and glycomics suggest that bovine milk oligosaccharides are fully utilized by healthy adults. Journal of Nutritional Biochemistry, 2020, 79, 108340.	1.9	8
570	Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annual Review of Food Science and Technology, 2020, 11, 119-143.	5.1	58
571	The hunt for a healthy microbiome. Nature, 2020, 577, S6-S8.	13.7	59
572	Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host and Microbe, 2020, 27, 389-404.e6.	5.1	298
573	Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Research in Microbiology, 2020, 171, 107-114.	1.0	18
574	Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients, 2020, 12, 381.	1.7	265
575	Bioinformatics analysis of endophytic bacteria related to berberine in the Chinese medicinal plant Coptis teeta Wall. 3 Biotech, 2020, 10, 96.	1.1	20
576	Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biology, 2020, 21, 99.	3.8	73
577	Integrating the Ecosystem Services Framework to Define Dysbiosis of the Breastfed Infant Gut: The Role of B. infantis and Human Milk Oligosaccharides. Frontiers in Nutrition, 2020, 7, 33.	1.6	39
578	Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients, 2020, 12, 1265.	1.7	28
579	Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Beneficial Microbes, 2020, 11, 101-129.	1.0	48
580	The diet-microbiome tango: how nutrients lead the gut brain axis. Current Opinion in Neurobiology, 2020, 62, 122-132.	2.0	53
581	From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Molecular Cell, 2020, 78, 584-596.	4.5	177

	CHANON	LPORT	
#	ARTICLE	IF	CITATIONS
582	Factors affecting early-life intestinal microbiota development. Nutrition, 2020, 78, 110812.	1,1	126
583	Macroecological dynamics of gut microbiota. Nature Microbiology, 2020, 5, 768-775.	5.9	62
584	Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 2890.	1.8	133
585	You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients, 2020, 12, 1096.	1.7	185
586	Diet and long-term weight loss: what can we learn from our gut microbes?. American Journal of Clinical Nutrition, 2020, 111, 1121-1123.	2.2	3
587	Gastrointestinal host-pathogen interaction in the age of microbiome research. Current Opinion in Microbiology, 2020, 53, 78-89.	2.3	27
588	The role of the gut microbiome in the development of schizophrenia. Schizophrenia Research, 2021, 234, 4-23.	1.1	60
589	Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 2020, 38, 147-170.	9.5	138
590	The Influence of Food Intake Specificity in Children with Autism on Gut Microbiota. International Journal of Molecular Sciences, 2020, 21, 2797.	1.8	26
591	Can the microbiota predict response to systemic cancer therapy, surgical outcomes, and survival? The answer is in the gut. Expert Review of Clinical Pharmacology, 2020, 13, 403-421.	1.3	7
592	Rapid Reconstitution of the Fecal Microbiome after Extended Diet-Induced Changes Indicates a Stable Gut Microbiome in Healthy Adult Dogs. Applied and Environmental Microbiology, 2020, 86, .	1.4	25
593	Metagenomics analysis reveals features unique to Indian distal gut microbiota. PLoS ONE, 2020, 15, e0231197.	1.1	24
594	In sickness and health: Effects of gut microbial metabolites on human physiology. PLoS Pathogens, 2020, 16, e1008370.	2.1	28
595	Polysaccharides: bowel health and gut microbiota. Critical Reviews in Food Science and Nutrition, 2021, 61, 1212-1224.	5.4	91
596	Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition, 2021, 60, 715-727.	1.8	10
597	Diet and cancer risk reduction: The role of diet-microbiota interactions and microbial metabolites. Seminars in Cancer Biology, 2021, 70, 53-60.	4.3	23
598	Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology, 2021, 70, 24-36.	4.3	46
599	Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Seminars in Cancer Biology, 2021, 70, 61-70.	4.3	25

#	Article	IF	CITATIONS
600	Age-related changes in intestinal immunity and the microbiome. Journal of Leukocyte Biology, 2021, 109, 1045-1061.	1.5	33
601	Influence of Probiotic Fermented Fruit and Vegetables on Human Health and the Related Industrial Development Trend. Engineering, 2021, 7, 212-218.	3.2	31
602	Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 2021, 45, .	3.9	27
603	The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Critical Reviews in Oncology/Hematology, 2021, 157, 103165.	2.0	11
604	Regulation effects of indigestible dietary polysaccharides on intestinal microflora: An overview. Journal of Food Biochemistry, 2021, 45, e13564.	1.2	26
605	Communal living: glycan utilization by the human gut microbiota. Environmental Microbiology, 2021, 23, 15-35.	1.8	42
606	Age Patterning in Wild Chimpanzee Gut Microbiota Diversity Reveals Differences from Humans in Early Life. Current Biology, 2021, 31, 613-620.e3.	1.8	31
607	Gut Microbiota in Intestinal and Liver Disease. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 251-275.	9.6	64
609	Chronic Pelvic Pain and Pelvic Dysfunctions. Urodynamics, Neurourology and Pelvic Floor Dysfunctions, 2021, , .	0.0	2
610	Role and mechanism of action of butyrate in atherosclerotic diseases: a review. Journal of Applied Microbiology, 2021, 131, 543-552.	1.4	13
611	Gut microbial metabolites as multi-kingdom intermediates. Nature Reviews Microbiology, 2021, 19, 77-94.	13.6	557
612	Darwinian Medicine: We Evolved to Require Continuing Contact with the Microbiota of the Natural Environment. Evolution Turns the Inevitable into a Necessity. Advances in Environmental Microbiology, 2021, , 327-364.	0.1	3
613	Signatures of landscape and captivity in the gut microbiota of Southern Hairy-nosed Wombats (Lasiorhinus latifrons). Animal Microbiome, 2021, 3, 4.	1.5	9
614	Hologenomics: The Interaction Between Host, Microbiome and Diet. , 2021, , 212-228.		1
615	Detoxification of wheat proteins by enzymatic technology. , 2021, , 155-176.		2
616	Gut microbiota and lipid metabolism and metabolic syndrome. , 2021, , 283-293.		0
617	Dietary Modulation of the Gut Microbiome—Probing the Role of Small RNAs. , 2021, , 380-397.		0
618	Research Progress on the Relationship between Intestinal Flora Disorders and Functional Dyspepsia. Advances in Clinical Medicine, 2021, 11, 3225-3231.	0.0	0

#	Article	IF	CITATIONS
619	Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nature Aging, 2021, 1, 87-100.	5.3	86
620	Personalized nutrition for colorectal cancer. Advances in Cancer Research, 2021, 151, 109-136.	1.9	3
621	Hygiene hypothesis: association between hygiene and asthma among preschool children in Lebanon. Allergologia Et Immunopathologia, 2021, 49, 135-145.	1.0	2
622	Impact of Interplay between Obese Gut Microbiota and Diet in Developing Obesity in Synthetic Community Mice. Journal of Oleo Science, 2021, 70, 1285-1293.	0.6	5
623	Gut microbiota alterations reveal potential gut–brain axis changes in polycystic ovary syndrome. Journal of Endocrinological Investigation, 2021, 44, 1727-1737.	1.8	38
624	Sodium caprylate improves intestinal mucosal barrier function and antioxidant capacity by altering gut microbial metabolism. Food and Function, 2021, 12, 9750-9762.	2.1	9
625	New Insights Into Lactic Acid Bacteria Fermentation of Plant Foods Through Complementary Omics. , 2021, , 157-164.		2
626	The present conception of neonatal microbiome formation. Eastern Ukrainian Medical Journal, 2021, 9, 18-28.	0.0	0
628	<i>Bacteroides uniformis</i> combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes, 2021, 13, 1-20.	4.3	81
629	Comprehensive Gut Microbiota and Drug Processing. , 2021, , .		Ο
630			
	Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , .	0.4	0
631	Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , . Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , .	0.4	0
631 632	 Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , . Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , . The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178. 	0.4	0 0 4
631 632 633	Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , . Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , . The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178. Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States. Scientific Reports, 2021, 11, 1472.	0.4	0 0 4 37
631 632 633 635	 Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , . Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , . The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178. Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States. Scientific Reports, 2021, 11, 1472. Brain–Gut–Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients, 2021, 13, 584. 	0.4 0.4 1.6 1.7	0 0 4 37 26
 631 632 633 635 636 	Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , . Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , . The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178. Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States. Scientific Reports, 2021, 11, 1472. Brain–Gut–Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients, 2021, 13, 584. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacological Reviews, 2021, 73, 571-596.	0.4 0.4 1.6 1.7 7.1	0 0 4 37 26 28
 631 632 633 635 636 637 	Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , . Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , . The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178. Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States. Scientific Reports, 2021, 11, 1472. Brain–Gut–Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients, 2021, 13, 584. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacological Reviews, 2021, 73, 571-596. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. Nutrients, 2021, 13, 699.	0.4 0.4 1.6 1.7 7.1	0 0 4 37 26 28 183

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
639	Diversity and dynamism of IgAâ [~] 'microbiota interactions. Nature Reviews Immunology, 2021, 21, 514-525.	10.6	80
640	Fat, Sugar or Gut Microbiota in Reducing Cardiometabolic Risk: Does Diet Type Really Matter?. Nutrients, 2021, 13, 639.	1.7	4
641	Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. Journal of Experimental Biology, 2021, 224, .	0.8	33
642	Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Current Hypertension Reports, 2021, 23, 8.	1.5	52
643	Xylanase Supplementation Modulates the Microbiota of the Large Intestine of Pigs Fed Corn-Based Fiber by Means of a Stimbiotic Mechanism of Action. Frontiers in Microbiology, 2021, 12, 619970.	1.5	14
644	Effects of domestication on the gut microbiota parallel those of human industrialization. ELife, 2021, 10, .	2.8	42
645	Maternal high sugar and fat diet benefits offspring brain function via targeting on the gut–brain axis. Aging, 2021, 13, 10240-10274.	1.4	6
646	Therapeutic Implications of Diet in Inflammatory Bowel Disease and Related Immune-Mediated Inflammatory Diseases. Nutrients, 2021, 13, 890.	1.7	31
647	Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes. American Journal of Clinical Nutrition, 2021, 113, 1515-1530.	2.2	21
648	Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Advanced Science, 2021, 8, 2003542.	5.6	26
649	Host/microbiota interactions in health and diseases—Time for mucosal microbiology!. Mucosal Immunology, 2021, 14, 1006-1016.	2.7	51
650	Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota. International Journal of Molecular Sciences, 2021, 22, 3343.	1.8	5
651	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	2.9	125
652	A diet-specific microbiota drives Salmonella Typhimurium to adapt its in vivo response to plant-derived substrates. Animal Microbiome, 2021, 3, 24.	1.5	7
653	Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome, 2021, 9, 58.	4.9	60
655	Association of maternal gut microbiota and plasma metabolism with congenital heart disease in offspring: a multi-omic analysis. Scientific Reports, 2021, 11, 5339.	1.6	11
656	Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms, 2021, 9, 618.	1.6	80
657	Should the AIN-93 Rodent Diet Formulas be Revised?. Journal of Nutrition, 2021, 151, 1380-1382.	1.3	14

#	Article	IF	CITATIONS
658	Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host and Microbe, 2021, 29, 394-407.e5.	5.1	137
659	The Effects of Marine Microplastics on Marine Life and Human Health in the Bay of Bengal. Journal of Student Research, 2021, 10, .	0.0	2
660	Comparison of Two Approaches for the Metataxonomic Analysis of the Human Milk Microbiome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 622550.	1.8	7
661	Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacological Research, 2021, 166, 105517.	3.1	16
662	Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants, 2021, 10, 708.	2.2	47
663	The Association Between Intestinal Bacteria and Allergic Diseases—Cause or Consequence?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 650893.	1.8	27
664	Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 627608.	1.8	27
665	Strain inheritance and neonatal gut microbiota development: A meta-analysis. International Journal of Medical Microbiology, 2021, 311, 151483.	1.5	31
666	The Habitat Filters of Microbiota-Nourishing Immunity. Annual Review of Immunology, 2021, 39, 1-18.	9.5	21
667	Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients, 2021, 13, 1506.	1.7	48
668	An In Vitro Pilot Fermentation Study on the Impact of Chlorella pyrenoidosa on Gut Microbiome Composition and Metabolites in Healthy and Coeliac Subjects. Molecules, 2021, 26, 2330.	1.7	4
669	Effects of High-Fat Diet on Carcinogen-Induced Pancreatic Cancer and Intestinal Microbiota in C57BL/6 Wild-Type Mice. Pancreas, 2021, 50, 564-570.	0.5	2
670	A Triple Threat? The Role of Diet, Nutrition, and the Microbiota in T1D Pathogenesis. Frontiers in Nutrition, 2021, 8, 600756.	1.6	11
671	The aging gut microbiome and its impact on host immunity. Genes and Immunity, 2021, 22, 289-303.	2.2	164
672	The evolution and changing ecology of the African hominid oral microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	74
673	The Microbiota and the Gut–Brain Axis in Controlling Food Intake and Energy Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5830.	1.8	37
674	Glycan-based shaping of the microbiota during primate evolution. ELife, 2021, 10, .	2.8	8
675	Host-microbial interactions in the metabolism of different dietary fats. Cell Metabolism, 2021, 33, 857-872.	7.2	29

#	Article	IF	CITATIONS
676	Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Frontiers in Immunology, 2021, 12, 662807.	2.2	19
677	Food intake and its effect on the species and abundance of intestinal flora in colorectal cancer and healthy individuals. Korean Journal of Internal Medicine, 2021, 36, 568-583.	0.7	13
678	The Effect of Dietary Fibre on Gut Microbiota, Lipid Profile, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients, 2021, 13, 1805.	1.7	31
679	The effects of nondigestible fermentable carbohydrates on adults with overweight or obesity: a meta-analysis of randomized controlled trials. Nutrition Reviews, 2022, 80, 165-177.	2.6	4
680	Extracellular Vesicles from Plants: Current Knowledge and Open Questions. International Journal of Molecular Sciences, 2021, 22, 5366.	1.8	58
681	Prevotella diversity, niches and interactions with the human host. Nature Reviews Microbiology, 2021, 19, 585-599.	13.6	248
682	Short- and Branched-Chain Fatty Acids as Fecal Markers for Microbiota Activity in Vegans and Omnivores. Nutrients, 2021, 13, 1808.	1.7	27
683	The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Frontiers in Immunology, 2021, 12, 670286.	2.2	16
684	Gut Microbiome Changes with Acute Diarrheal Disease in Urban Versus Rural Settings in Northern Ecuador. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2275-2285.	0.6	7
685	A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules, 2021, 181, 877-889.	3.6	40
686	Concentrated Raw Fibers Enhance the Fiber-Degrading Capacity of a Synthetic Human Gut Microbiome. International Journal of Molecular Sciences, 2021, 22, 6855.	1.8	4
687	Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms, 2021, 9, 1302.	1.6	46
688	Microbiota and cancer (review of literature). UÄenye Zapiski Sankt-Peterburgskogo Gosudarstvennogo Medicinskogo Universiteta Im Akad I P Pavlova, 2021, 27, 14-27.	0.0	0
689	Dissecting dietary melanoidins: formation mechanisms, gut interactions and functional properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 8954-8971.	5.4	23
690	Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Beneficial Microbes, 2021, 12, 267-281.	1.0	12
691	Can control of gut microbiota be a future therapeutic option for inflammatory bowel disease?. World Journal of Gastroenterology, 2021, 27, 3317-3326.	1.4	25
692	Designer fibre meals sway human gut microbes. Nature, 2021, 595, 32-34.	13.7	0
693	Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice. Biological Trace Element Research, 2022, 200, 1763-1775.	1.9	9

#	Article	IF	CITATIONS
694	The gut microbiota as a therapeutic target for obesity: a scoping review. Nutrition Research Reviews, 2022, 35, 207-220.	2.1	14
695	The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	82
696	Distinctive Microbiome Type Distribution in a Young Adult Balinese Cohort May Reflect Environmental Changes Associated with Modernization. Microbial Ecology, 2021, , 1.	1.4	0
697	Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Medicine, 2021, 13, 102.	3.6	62
698	Effects of dietary fiber supplementation in gestation diets on sow performance, physiology and milk composition for successive three parities. Animal Feed Science and Technology, 2021, 276, 114945.	1.1	13
699	Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Frontiers in Endocrinology, 2021, 12, 667066.	1.5	82
700	Investigating efficacy of "microbiota modulation of the gut-lung Axis―combined with chemotherapy in patients with advanced NSCLC: study protocol for a multicenter, prospective, double blind, placebo controlled, randomized trial. BMC Cancer, 2021, 21, 721.	1.1	8
701	Decoding the Role of Gut-Microbiome in the Food Addiction Paradigm. International Journal of Environmental Research and Public Health, 2021, 18, 6825.	1.2	8
702	The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Science of the Total Environment, 2021, 777, 146063.	3.9	35
703	Microbiota Management for Effective Disease Suppression: A Systematic Comparison between Soil and Mammals Gut. Sustainability, 2021, 13, 7608.	1.6	5
704	Fibra dietaria y microbiota, revisión narrativa de un grupo de expertos de la Asociación Mexicana de GastroenterologÃa. Revista De GastroenterologÃa De México, 2021, 86, 287-304.	0.4	9
705	Association of Gut Microbiome Dysbiosis with Neurodegeneration: Can Gut Microbe-Modifying Diet Prevent or Alleviate the Symptoms of Neurodegenerative Diseases?. Life, 2021, 11, 698.	1.1	11
706	Infants' First Solid Foods: Impact on Gut Microbiota Development in Two Intercontinental Cohorts. Nutrients, 2021, 13, 2639.	1.7	22
708	Dietary Selection Pressures and Their Impact on the Gut Microbiome. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 7-18.	2.3	32
709	Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacological Research, 2021, 169, 105667.	3.1	28
710	Dietary fiber and the microbiota: A narrative review by a group of experts from the Asociación Mexicana de GastroenterologÃa. Revista De GastroenterologÃa De México (English Edition), 2021, 86, 287-304.	0.1	13
711	Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. International Journal of Molecular Sciences, 2021, 22, 7613.	1.8	88
712	Bioactive Compounds in Food as a Current Therapeutic Approach to Maintain a Healthy Intestinal Epithelium. Microorganisms, 2021, 9, 1634.	1.6	17

# 713	ARTICLE Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research. 2021, 168, 3-19.	IF 1.0	Citations
714	The structure of Brazilian Amazonian gut microbiomes in the process of urbanisation. Npj Biofilms and Microbiomes, 2021, 7, 65.	2.9	7
715	How the Physical Environment Shapes the Microbiota. MSystems, 2021, 6, e0067521.	1.7	10
716	A wild approach to obesity prevention. Nature Metabolism, 2021, 3, 1038-1039.	5.1	0
717	The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends in Food Science and Technology, 2021, 114, 116-132.	7.8	42
719	Integrative Longitudinal Analysis of Metabolic Phenotype and Microbiota Changes During the Development of Obesity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 671926.	1.8	3
720	Circadian Rhythm Modulation of Microbes During Health and Infection. Frontiers in Microbiology, 2021, 12, 721004.	1.5	10
722	Microbiome in human cancers. Access Microbiology, 2021, 3, 000247.	0.2	2
723	Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients, 2021, 13, 2978.	1.7	7
724	Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nature Metabolism, 2021, 3, 1042-1057.	5.1	23
725	Alteration of Gut Microbiota Relates to Metabolic Disorders in Primary Aldosteronism Patients. Frontiers in Endocrinology, 2021, 12, 667951.	1.5	21
726	Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates. Frontiers in Medicine, 2021, 8, 646710.	1.2	6
727	Gut-microbiota-targeted diets modulate human immune status. Cell, 2021, 184, 4137-4153.e14.	13.5	482
728	Genetic innovations in animal–microbe symbioses. Nature Reviews Genetics, 2022, 23, 23-39.	7.7	60
729	Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biology, 2021, 22, 204.	3.8	25
730	The Role of Dietary Fiber Supplementation in Regulating Uremic Toxins in Patients With Chronic Kidney Disease: A Meta-Analysis of Randomized Controlled Trials. , 2021, 31, 438-447.		22
731	The role of great ape behavioral ecology in One Health: Implications for captive welfare and reâ€habilitation success. American Journal of Primatology, 2022, 84, e23328.	0.8	7
732	Leveraging diet to engineer the gut microbiome. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 885-902.	8.2	86

#	Article	IF	CITATIONS
734	Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa. Nutrients, 2021, 13, 3405.	1.7	3
735	Gut Microbiome Composition and Metabolic Status Are Differently Affected by Early Exposure to Unhealthy Diets in a Rat Model. Nutrients, 2021, 13, 3236.	1.7	9
736	Signaling Pathways Associated with Metabolites of Dietary Fibers Link to Host Health. , 0, , .		0
737	The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease. The Lancet Gastroenterology and Hepatology, 2021, 6, 754-769.	3.7	27
738	Consumo crónico de edulcorantes en ratones y su efecto sobre el sistema inmunitario y la microbiota del intestino delgado. Biomedica, 2021, 41, 504-530.	0.3	4
739	The Gut Microbiome and Inflammatory Bowel Diseases. Annual Review of Medicine, 2022, 73, 455-468.	5.0	57
740	Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Frontiers in Nutrition, 2021, 8, 718356.	1.6	98
741	Similarities and differences of oligo/poly-saccharides' impact on human fecal microbiota identified by in vitro fermentation. Applied Microbiology and Biotechnology, 2021, 105, 7475-7486.	1.7	8
742	Early-Life Microbial Restitution Reduces Colitis Risk Promoted by Antibiotic-Induced Gut Dysbiosis in Interleukin 10–/– Mice. Gastroenterology, 2021, 161, 940-952.e15.	0.6	20
743	The maternal gut microbiome during pregnancy and offspring allergy and asthma. Journal of Allergy and Clinical Immunology, 2021, 148, 669-678.	1.5	55
744	Butyrate Production Pathway Abundances Are Similar in Human and Nonhuman Primate Gut Microbiomes. Molecular Biology and Evolution, 2022, 39, .	3.5	13
745	Impact of orally-administered oligosaccharides in a murine model of food allergy. Journal of Functional Foods, 2021, 85, 104643.	1.6	4
746	Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis. European Journal of Pharmacology, 2021, 908, 174338.	1.7	18
747	Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Research International, 2021, 148, 110594.	2.9	34
748	Gut microbiota of adults with different metabolic phenotypes. Nutrition, 2021, 90, 111293.	1.1	15
749	The longitudinal and cross-sectional heterogeneity of the intestinal microbiota. Current Opinion in Microbiology, 2021, 63, 221-230.	2.3	21
750	Bis(2-ethylhexyl)-tetrabromophthalate induces zebrafish obesity by altering the brain-gut axis and intestinal microbial composition. Environmental Pollution, 2021, 290, 118127.	3.7	10
751	The Role of Microbiota in Gut Inflammation and Sepsis. , 2022, , 370-370.		0

#	ARTICLE Microbiota-Brain-Gut Axis and Neurodegenerative Disorders 2022 412-422	IF	CITATIONS
753	Diet-Induced Alterations in Gut Microbiota Composition and Function. , 2022, , .		1
754	Urbanization and Its Effects on Microbiota. , 2021, , .		0
755	Microbiota Changes Throughout Life - An Overview. , 2022, , 1-12.		1
756	The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules, 2021, 26, 682.	1.7	132
757	The gut microbiome in neurodegenerative disorders. , 2021, , 101-121.		0
758	Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption. Applied Microbiology and Biotechnology, 2021, 105, 789-802.	1.7	14
759	Characterization of intestinal microbiota and fecal cortisol, T3, and IgA in forest musk deer () Tj ETQq1 1 0.7843	14 rgBT /C)verlock 10 22
760	Gut Microbial Dysbiosis and Cardiovascular Diseases. , 2021, , .		0
761	Dietary Fibers: Structural Aspects and Nutritional Implications. , 2021, , 505-524.		1
762	Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults. Nutrients, 2021, 13, 366.	1.7	19
763	The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	100
764	Variability and Stability of the Human Gut Microbiome. Fascinating Life Sciences, 2020, , 63-79.	0.5	4
765	Our Microbiome: On the Challenges, Promises, and Hype. Results and Problems in Cell Differentiation, 2020, 69, 539-557.	0.2	4
767	Effects of isomalto-oligosaccharides as potential prebiotics on performance, immune function and gut microbiota in weaned pigs. Animal Feed Science and Technology, 2017, 230, 126-135.	1.1	59
768	Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. Environmental Pollution, 2020, 264, 114752.	3.7	66
769	Nutrition and gut health: the impact of specific dietary components – it's not just five-a-day. Proceedings of the Nutrition Society, 2021, 80, 9-18.	0.4	10
770	Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nature Microbiology, 2018, 3, 234-242.	5.9	118

#	Article	IF	CITATIONS
771	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.1	2
772	Short-chain fatty acid, acylation and cardiovascular diseases. Clinical Science, 2020, 134, 657-676.	1.8	101
773	Macronutrients, microbiome and precision nutrition. Current Opinion in Gastroenterology, 2021, 37, 145-151.	1.0	7
774	Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192182.	1.2	63
790	Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microbial Biotechnology, 2021, 14, 1300-1315.	2.0	24
791	Biodiversity, the Human Microbiome and Mental Health: Moving toward a New Clinical Ecology for the 21st Century?. International Journal of Biodiversity, 2016, 2016, 1-18.	0.7	26
792	Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. Journal of Clinical Investigation, 2019, 129, 1483-1492.	3.9	50
793	The gut microbiome and metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 4050-4057.	3.9	415
794	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699.	0.8	81
795	Fecal Transplants: What Is Being Transferred?. PLoS Biology, 2016, 14, e1002503.	2.6	128
796	Expanding the UniFrac Toolbox. PLoS ONE, 2016, 11, e0161196.	1.1	58
797	Effects of Brown Rice on Obesity: GENKI Study I (Cross Sectional Epidemiological Study). Journal of Obesity and Chronic Diseases, 2018, 02, .	0.4	8
798	Time-restricted feeding during childhood has persistent effects on mice commensal microbiota. Annals of Translational Medicine, 2019, 7, 556-556.	0.7	10
799	Immunomodulatory effects of intestinal lung axis microecology and other factors on the prognosis of advanced non-small cell lung cancer. Translational Cancer Research, 2019, 8, 2205-2210.	0.4	6
800	Recovery of the Gut Microbiota after Antibiotics Depends on Host Diet and Environmental Reservoirs. SSRN Electronic Journal, 0, , .	0.4	4
801	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	0.9	19
802	Targeting the Infant Gut Microbiota Through a Perinatal Educational Dietary Intervention: Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 2019, 8, e14771.	0.5	11
803	Measuring Microbiome Effectiveness: A Role for Ingestible Sensors. Gastrointestinal Disorders, 2020, 2, 3-11.	0.4	10

		CITATION REPORT	
#	Article	IF	CITATIONS
804	A General Perspective of Microbiota in Human Health and Disease. , 2020, 11, .		3
805	Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 461-466.	0.2	153
806	Phytobiomes are compositionally nested from the ground up. PeerJ, 2019, 7, e6609.	0.9	31
807	Gastrointestinal microbiome and gluten in celiac disease. Annals of Medicine, 2021, 53, 1797-1	805. 1.5	23
808	Microbiome–Gut Dissociation: Investigating the Origins of Obesity. Gastrointestinal Disorder 3, 156-172.	rs, 2021, 0.4	5
809	Captivity and the co-diversification of great ape microbiomes. Nature Communications, 2021, 2	12, 5632. 5.8	23
810	Effect of Saengshik Supplementation on the Gut Microbial Composition of Healthy Korean Adu Single-Group Pilot Study. Frontiers in Nutrition, 2021, 8, 743620.	lts: A 1.6	2
811	Intimate ecosystems: the microbiome and the ecological determinants of health. Canadian Jour Public Health, 2021, 112, 1004-1007.	nal of 1.1	2
813	Microbiota-gut-brain axis and nutritional strategy under heat stress. Animal Nutrition, 2021, 7, 1329-1336.	2.1	15
815	Gut microbiota—a positive contributor in the process of intermittent fasting-mediated obesit control. Animal Nutrition, 2021, 7, 1283-1295.	y 2.1	12
816	An Intervention With Michigan-Grown Wheat in Healthy Adult Humans to Determine Effect on Microbiota: Protocol for a Crossover Trial. JMIR Research Protocols, 2021, 10, e29046.	Gut 0.5	0
817	Comparative Study of the Gut Microbiota Among Four Different Marine Mammals in an Aquariu Frontiers in Microbiology, 2021, 12, 769012.	ım. 1.5	13
818	The final fate of food: On the establishment of in vitro colon models. Food Research Internatior 2021, 150, 110743.	ıal, 2.9	4
819	Establishment of microbiota analytical methods by quantitative PCR method and evaluation of Microbiota-accessible carbohydrates in mice International Journal of Human Culture Studies, 2 2017, 343-348.	.017, 0.0	Ο
820	Developmental Programming and Transgenerational Transmission of Obesity. , 2017, , 1-18.		1
824	Does microbiota influence the risk of childhood obesity?. Revista Espanola De Nutricion Human Dietetica, 2018, 22, 157-168.	a Y 0.1	3
827	Research progress on human microecology and infectious diseases. Infection International, 201 94-100.	.8, 7, 0.1	0
828	Fermented Vegetables as Vectors for Relocation of Microbial Diversity from the Environment to Human Gut. , 2019, , 91-123.	the	2

#	Article	IF	CITATIONS
830	The Gut Microbiome in Inflammatory Bowel Disease. , 2019, , 347-377.		0
831	"We Are What We Eat― How Diet Impacts the Gut Microbiota in Adulthood. , 2019, , 259-283.		1
832	Microbiota: Current Research and Emerging Trends. , 2019, , .		0
833	A Genetically Adaptable Strategy for Ribose Scavenging in a Human Gut Symbiont Plays a Diet-Dependent Role in Colon Colonization. SSRN Electronic Journal, 0, , .	0.4	Ο
834	The profiles of dysbiotic microbial communities. AIMS Microbiology, 2019, 5, 87-101.	1.0	1
836	Commentary: Loss of Function Dysbiosis Associated with Antibiotics and High Fat, High Sugar Diet. Journal of Infectiology, 2019, 2, 1-3.	0.8	Ο
839	Extracellular Vesicles: A New Nano Tool for the Treatment of Inflammatory Bowel Diseases. Current Nanoscience, 2019, 15, 589-595.	0.7	0
841	Relationship of Knowledge on Healthy Lifestyle to Dietary Practices and Physical Activity as Moderated by Age. International Scholar' Conference, 2020, 7, 313-326.	0.1	1
842	Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients, 2021, 13, 3839.	1.7	27
843	Effect of Gut Microbial Enterotypes on the Association between Habitual Dietary Fiber Intake and Insulin Resistance Markers in Mexican Children and Adults. Nutrients, 2021, 13, 3892.	1.7	6
844	Altered gut ecosystems plus the microbiota's potential for rapid evolution: A recipe for inevitable change with unknown consequences. Computational and Structural Biotechnology Journal, 2021, 19, 5969-5977.	1.9	2
845	Does gut microbiota regulate brooding in geese?. Animal Biology, 2021, 71, 1-13.	0.6	Ο
846	Contextâ€dependent effects of glucocorticoids on the lizard gut microbiome. Molecular Ecology, 2022, 31, 185-196.	2.0	11
847	Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chemical Biology, 2021, 16, 2087-2102.	1.6	22
849	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. , 2020, , 125-137.		0
851	Gut Microbiota and Health. , 2020, , 31-79.		0
852	Differences in gut microbial patterns associated with salivary biomarkers in young Japanese adults. Bioscience of Microbiota, Food and Health, 2020, 39, 243-249.	0.8	2
853	Determinants of the Gut Microbiota. , 2020, , 19-62.		0

	CITATION R	EPORT	
# 854	ARTICLE The Microbiome in Food Allergy and Eosinophilic Esophagitis. , 2020, , 147-160.	IF	CITATIONS
001			
855	Allergie, Mikrobiom und weitere epigenetische Faktoren. , 2020, , 47-118.		0
858	The Dominating Role of Genetic Background in Shaping Gut Microbiota of Honeybee Queen Over Environmental Factors. Frontiers in Microbiology, 2021, 12, 722901.	1.5	3
862	The Hoops, Hopes, and Hypes of Human Microbiome Research. Yale Journal of Biology and Medicine, 2016, 89, 363-373.	0.2	29
863	Integrative Therapies in Anxiety Treatment with Special Emphasis on the Gut Microbiome. Yale Journal of Biology and Medicine, 2016, 89, 397-422.	0.2	30
864	Natural Selection, The Microbiome, and Public Health. Yale Journal of Biology and Medicine, 2018, 91, 445-455.	0.2	14
865	Commentary: Loss of Function Dysbiosis Associated with Antibiotics and High Fat, High Sugar Diet. , 2019, 2, 23-25.		0
866	Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. Surgical Neurology International, 2021, 12, 210.	0.2	0
867	Western lifestyle as a driver of dysbiosis in colorectal cancer. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	0
868	Riddle of Herd Immunity in SARS-CoV-2-Induced Viral Terrorism: Science to Society. , 2022, , 51-71.		0
870	Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome, 2021, 9, 227.	4.9	28
871	Implications of Gut Microbiota in Complex Human Diseases. International Journal of Molecular Sciences, 2021, 22, 12661.	1.8	20
872	Fatty acid metabolism and acyl-CoA synthetases in the <i>liver-gut axis</i> . World Journal of Hepatology, 2021, 13, 1512-1533.	0.8	12
873	Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (<i>Neotoma</i> spp.). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
874	The Gut Microbiota of an Individual Varies With Intercontinental Four-Month Stay Between Italy and Nigeria: A Pilot Study. Frontiers in Cellular and Infection Microbiology, 2021, 11, 725769.	1.8	2
875	Yeast Beta-Glucans Ingestion Does Not Influence Body Weight: A Systematic Review and Meta-Analysis of Pre-Clinical Studies. Nutrients, 2021, 13, 4250.	1.7	1
876	A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome, 2021, 9, 223.	4.9	83
877	Microbiote intestinal et santéÂ: une nécessaire refonte de notre système agri-alimentaire. Cahiers De Nutrition Et De Dietetique, 2022, 57, 18-27.	0.2	2

#	Article	IF	CITATIONS
878	On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Frontiers in Microbiology, 2021, 12, 784797.	1.5	15
879	Das Mikrobiom: Einfluss auf Adipositas und Diabetes. , 0, , .		0
880	Dietary fiber: Physiological effects and health outcomes. , 2023, , 306-315.		1
881	Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts. Microbiology Spectrum, 2022, 10, e0158021.	1.2	11
882	Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiology, 2022, 22, 19.	1.3	14
883	Plant polysaccharides utilized by gut microbiota: New players in ameliorating cognitive impairment. Journal of Traditional and Complementary Medicine, 2023, 13, 128-134.	1.5	8
884	Microbial Therapeutics in Liver Disease. , 2022, , 271-285.		1
885	Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. , 2021, 12, 210.		0
886	Physical Activity and Dietary Composition Relate to Differences in Gut Microbial Patterns in a Multi-Ethnic Cohort—The HELIUS Study. Metabolites, 2021, 11, 858.	1.3	6
887	Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host and Microbe, 2022, 30, 183-199.e10.	5.1	43
888	Dietary Patterns and Their Association With Symptoms Activity in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2022, 28, 1627-1636.	0.9	20
890	Chewing the Fat with Microbes: Lipid Crosstalk in the Gut. Nutrients, 2022, 14, 573.	1.7	4
891	Food-gut microbiota interactions. , 2022, , 233-256.		0
892	Diet and mental health in pregnancy: Nutrients of importance based on large observational cohort data. Nutrition, 2022, 96, 111582.	1.1	15
893	Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 2022, 23, 1105.	1.8	215
894	Metagenomic Comparisons between Soft and Hard Feces of Plateau Pikas (Ochotona curzoniae). Animals, 2022, 12, 149	1.0	1
895	Establishment and characterization of stable, diverse, fecal-derived inÂvitro microbial communities that model the intestinal microbiota. Cell Host and Microbe, 2022, 30, 260-272.e5.	5.1	58
896	Fecal Microbiota Transplantation Donor and Dietary Fiber Intervention Collectively Contribute to Gut Health in a Mouse Model. Frontiers in Immunology, 2022, 13, 842669.	2.2	2

#	Article	IF	Citations
897	Panoramic Insights into Microevolution and Macroevolution of A Prevotella copri-containing Lineage in Primate Guts. Genomics, Proteomics and Bioinformatics, 2022, 20, 334-349.	3.0	3
899	The gut microbiota as a biomarker for realistic exposures to pesticides: A critical consideration. Neurotoxicology and Teratology, 2022, 91, 107074.	1.2	6
900	Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydrate Polymers, 2022, 284, 119043.	5.1	34
901	Microbial Evolution: An overlooked biomarker of host diet. Cell Host and Microbe, 2022, 30, 146-147.	5.1	3
903	Habitats Show More Impacts Than Host Species in Shaping Gut Microbiota of Sympatric Rodent Species in a Fragmented Forest. Frontiers in Microbiology, 2022, 13, 811990.	1.5	4
904	Control of immunity via nutritional interventions. Immunity, 2022, 55, 210-223.	6.6	44
905	Gut Microbiota and Their Metabolites in Stroke: A Double-Edged Sword. Stroke, 2022, 53, 1788-1801.	1.0	62
907	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	1.4	71
908	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, .	0.5	29
909	Intestinal microbiota research from a global perspective. Gastroenterology Report, 2022, 10, goac010.	0.6	13
910	Glycans and the Gut Microbiota. , 2022, , .		0
912	Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria. MSystems, 2022, 7, e0094721.	1.7	40
913	Evaluation of a Zingiber officinale and Bixa orellana Supplement on the Gut Microbiota of Male Athletes: A Randomized Placebo-Controlled Trial. Planta Medica, 2022, , .	0.7	0
914	Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 2023, 63, 6423-6444.	5.4	13
915	Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Frontiers in Cardiovascular Medicine, 2022, 9, 841928.	1.1	7
916	The primate gut mycobiome-bacteriome interface is impacted by environmental and subsistence factors. Npj Biofilms and Microbiomes, 2022, 8, 12.	2.9	13
917	Bifidobacterium Species Colonization in Infancy: A Global Cross-Sectional Comparison by Population History of Breastfeeding. Nutrients, 2022, 14, 1423.	1.7	17
918	Roles of Microbiota in Cancer: From Tumor Development to Treatment. Journal of Oncology, 2022, 2022, 1-15.	0.6	8

#	Article	IF	CITATIONS
919	The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cellular and Molecular Neurobiology, 2023, 43, 543-559.	1.7	9
920	The 4E approach to the human microbiome: Nested interactions between the gutâ€brain/body system within natural and built environments. BioEssays, 2022, 44, e2100249.	1.2	5
921	Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. Microbial Ecology, 2023, 85, 820-838.	1.4	36
923	Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature Reviews Microbiology, 2022, 20, 542-556.	13.6	139
924	High-Salt Diet Induces Depletion of Lactic Acid-Producing Bacteria in Murine Gut. Nutrients, 2022, 14, 1171.	1.7	12
925	Differential effects of the soluble fiber inulin in reducing adiposity and altering gut microbiome in aging mice. Journal of Nutritional Biochemistry, 2022, 105, 108999.	1.9	12
926	Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes, 2022, 14, 2046244.	4.3	29
928	Anaerobic singleâ€cell dispensing facilitates the cultivation of human gut bacteria. Environmental Microbiology, 2022, 24, 3861-3881.	1.8	15
929	Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy?. Frontiers in Oncology, 2022, 12, 852194.	1.3	5
931	Grape Phytochemicals and Vitamin D in the Alleviation of Lung Disorders. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1276-1292.	0.6	6
932	Preparation of high-quality resistant dextrin through pyrodextrin by a multienzyme complex. Food Bioscience, 2022, 47, 101701.	2.0	3
933	Dietary Fiber Influences Bacterial Community Assembly Processes in the Gut Microbiota of Durco × Bamei Crossbred Pig. Frontiers in Microbiology, 2021, 12, 688554.	1.5	11
935	Variation and transmission of the human gut microbiota across multiple familial generations. Nature Microbiology, 2022, 7, 87-96.	5.9	32
936	Human-provisioned foods reduce gut microbiome diversity in American black bears (<i>Ursus) Tj ETQq1 1 0.7843</i>	814 rgBT / 0.0	Overlock 10
937	A Meta-Analysis of Microbial Therapy Against Metabolic Syndrome: Evidence From Randomized Controlled Trials. Frontiers in Nutrition, 2021, 8, 775216.	1.6	6
938	Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies. American Journal of Clinical Nutrition, 2022, 115, 608-618.	2.2	14
939	Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods, 2021, 10, 3075.	1.9	17
940	Plant protein reduces serum cholesterol levels in hypercholesterolemia hamsters by modulating the compositions of gut microbiota and metabolites. IScience, 2021, 24, 103435.	1.9	15

IF

CITATIONS

942	Microbiota in relation to cancer. , 2022, , 279-309.		0
943	Microbiota and health. , 2022, , 69-92.		0
944	The gut microbiome influences host diet selection behavior. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117537119.	3.3	44
985	Ruminococcus bromii enables the growth of proximal Bacteroides thetaiotaomicron by releasing glucose during starch degradation. Microbiology (United Kingdom), 2022, 168, .	0.7	8
986	Western lifestyle as a driver of dysbiosis in colorectal cancer. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	6
987	Synchronous Seasonality in the Gut Microbiota of Wild Mouse Populations. Frontiers in Microbiology, 2022, 13, 809735.	1.5	14
988	The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Frontiers in Nutrition, 2022, 9, 718710.	1.6	27
989	The influence of maternal unhealthy diet on maturation of offspring gut microbiota in rat. Animal Microbiome, 2022, 4, 31.	1.5	4
990	Eco-Evolutionary Dynamics of the Human-Gut Microbiota Symbiosis in a Changing Nutritional Environment. Evolutionary Biology, 2022, 49, 255-264.	0.5	3
991	Gut Microbiome as a Mediator of Stress Resilience: A Reactive Scope Model Framework. Integrative and Comparative Biology, 2022, 62, 41-57.	0.9	7
992	Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host and Microbe, 2022, 30, 836-847.e6.	5.1	29
993	Maternal heme-enriched diet promotes a gut pro-oxidative status associated with microbiota alteration, gut leakiness and glucose intolerance in mice offspring. Redox Biology, 2022, 53, 102333.	3.9	5
994	Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine?. Life, 2022, 12, 723.	1.1	5
995	In vitro antioxidant and anti-glycation properties of Sargassum horneri from golden tides on the South Korean coast and the effect on gut microbiota of mice fed a high-sucrose and low-fibre diet. Journal of Applied Phycology, 2022, 34, 2211-2222.	1.5	6
996	Advances in Bioactivity of MicroRNAs of Plant-Derived Exosome-Like Nanoparticles and Milk-Derived Extracellular Vesicles. Journal of Agricultural and Food Chemistry, 2022, 70, 6285-6299.	2.4	30
997	Trialling a microbiome-targeted dietary intervention in children with ADHD—the rationale and a non-randomised feasibility study. Pilot and Feasibility Studies, 2022, 8, .	0.5	1
998	Involvement of Gut Microbial Metabolites Derived from Diet on Host Energy Homeostasis. International Journal of Molecular Sciences, 2022, 23, 5562.	1.8	4
999	Maternal Fiber Deprivation Alters Microbiota in Offspring Resulting in Low Grade Inflammation and Predisposition to Obesity. SSRN Electronic Journal, 0, , .	0.4	0

#

ARTICLE

#	Article	IF	CITATIONS
1000	Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients, 2022, 14, 2096.	1.7	25
1001	Dietary fiber-based regulation of bile salt hydrolase activity in the gut microbiota and its relevance to human disease. Gut Microbes, 2022, 14, .	4.3	12
1002	Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clinical Reviews in Allergy and Immunology, 2023, 65, 43-71.	2.9	14
1003	Interaction between Dietary Factors and Gut Microbiota in Ulcerative Colitis. Journal of Digestive Cancer Reports, 2022, 10, 31-38.	0.0	0
1004	The faecal metabolome of black howler monkeys (<i>Alouatta pigra</i>) varies in response to seasonal dietary changes. Molecular Ecology, 2022, 31, 4146-4161.	2.0	4
1005	Walnut Meal Extracts Rich In Polyphenols Mitigate Insulin Resistance and Modulate Gut Microbiota in High Fat Diet-Fed Rats. Journal of Medicinal Food, 2022, 25, 618-629.	0.8	2
1006	Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Frontiers in Neuroscience, 0, 16, .	1.4	3
1007	Potential impact of gut Lactobacillus acidophilus and Bifidobacterium bifidum on hepatic histopathological changes in non-cirrhotic hepatitis C virus patients with different viral load. Gut Pathogens, 2022, 14, .	1.6	3
1008	Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science, 2022, 376, 1220-1223.	6.0	63
1009	Microbiome–Gut Dissociation in the Neonate: Obesity and Coeliac Disease as Examples of Microbiome Function Deficiency Disorder. Gastrointestinal Disorders, 2022, 4, 108-128.	0.4	3
1010	A high periconceptional maternal ultra-processed food consumption impairs embryonic growth: The Rotterdam periconceptional cohort. Clinical Nutrition, 2022, 41, 1667-1675.	2.3	12
1011	Effects of Diets With Different Protein Levels on Lipid Metabolism and Gut Microbes in the Host of Different Genders. Frontiers in Nutrition, 0, 9, .	1.6	8
1012	Environmental Perturbations during the Rehabilitation of Wild Migratory Birds Induce Gut Microbiome Alteration and Antibiotic Resistance Acquisition. Microbiology Spectrum, 2022, 10, .	1.2	3
1013	6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut, 2023, 72, 314-324.	6.1	36
1014	Rejuvenating the human gut microbiome. Trends in Molecular Medicine, 2022, 28, 619-630.	3.5	10
1015	Risk assessment with gut microbiome and metabolite markers in NAFLD development. Science Translational Medicine, 2022, 14, .	5.8	50
1017	Coevolution of the Human Host and Gut Microbiome: Metagenomics of Microbiota. Cureus, 2022, , .	0.2	4
1018	The impact of mass drug administration of antibiotics on the gut microbiota of target populations. Infectious Diseases of Poverty, 2022, 11, .	1.5	8

#	Article	IF	CITATIONS
1019	Role of dietary fiber in promoting immune health—An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3185-3198.	2.7	48
1020	Trimethylamine N-Oxide Reduces the Susceptibility of Escherichia coli to Multiple Antibiotics. Frontiers in Microbiology, 0, 13, .	1.5	2
1021	Symbiosis: the other cells in development. Development (Cambridge), 2022, 149, .	1.2	13
1022	Modifications of Behavior and Inflammation in Mice Following Transplant with Fecal Microbiota from Children with Autism. Neuroscience, 2022, 498, 174-189.	1.1	6
1023	Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3513-3526.	2.7	16
1024	The beneficial role of healthy microbiome in metabolic syndrome and cardiovascular health. , 2022, , 109-124.		1
1026	Potential health benefits of lowering gas production and bifidogenic effect of the blends of polydextrose with inulin in a human gut model. Frontiers in Nutrition, 0, 9, .	1.6	1
1027	Dietary Inulin Supplementation Affects Specific Plasmalogen Species in the Brain. Nutrients, 2022, 14, 3097.	1.7	3
1028	Proximate Drivers of Population-Level Lizard Gut Microbial Diversity: Impacts of Diet, Insularity, and Local Environment. Microorganisms, 2022, 10, 1550.	1.6	5
1030	Evaluation and Management of Reduced Dietary Diversity in Children with Pediatric Feeding Disorder. Journal of Autism and Developmental Disorders, 0, , .	1.7	0
1031	Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. International Journal of Molecular Sciences, 2022, 23, 9588.	1.8	36
1032	The putative role of gut microbiota in cancer: Cysteine is a pivotal coin. , 0, 1, .		2
1033	Feeding Our Microbiota: Stimulation of the Immune/Semiochemical System and the Potential Amelioration of Non-Communicable Diseases. Life, 2022, 12, 1197.	1.1	7
1034	Quorum sensing-based interactions among drugs, microbes, and diseases. Science China Life Sciences, 2023, 66, 137-151.	2.3	9
1035	Higher pathogen load in children from Mozambique vs. USA revealed by comparative fecal microbiome profiling. ISME Communications, 2022, 2, .	1.7	4
1036	The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Frontiers in Microbiology, 0, 13, .	1.5	9
1037	Phaseolus vulgaris extract ameliorates high-fat diet-induced colonic barrier dysfunction and inflammation in mice by regulating peroxisome proliferator-activated receptor expression and butyrate levels. Frontiers in Pharmacology, 0, 13, .	1.6	5
1038	Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. The Lancet Gastroenterology and Hepatology, 2022, 7, 1128-1140.	3.7	93

#	Article	IF	CITATIONS
1040	Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut, 2023, 72, 896-905.	6.1	5
1041	Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Scientific Reports, 2022, 12, .	1.6	14
1042	Diet, microbiota, and the mucus layer: The guardians of our health. Frontiers in Immunology, 0, 13, .	2.2	33
1043	Comparative ileal digestibility of gross energy and amino acids in low and high tannin sorghum fed to growing pigs. Animal Feed Science and Technology, 2022, 292, 115419.	1.1	3
1044	Structural and compositional segregation of the gut microbiota in HCV and liver cirrhotic patients: A clinical pilot study. Microbial Pathogenesis, 2022, 171, 105739.	1.3	4
1045	Cyanidin-3-O-glucoside impacts fecal discharge of polystyrene microplastics in mice: Potential role of microbiota-derived metabolites. Toxicology and Applied Pharmacology, 2022, 453, 116212.	1.3	5
1046	Dietary influence on human microbiome. , 2022, , 59-80.		0
1047	Adaptation of Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Clinical Medicine, 2022, 12, 8280-8286.	0.0	0
1048	Human microbiome and cardiovascular diseases. Progress in Molecular Biology and Translational Science, 2022, , 231-279.	0.9	3
1049	Gut dysbiosis and metabolic diseases. Progress in Molecular Biology and Translational Science, 2022, ,	0.9	0
1050	Immunological paradox for maintaining normal flora: it is all by design, not by chance. , 2022, , 39-73.		0
1051	Supplemental <i>Clostridium butyricum</i> MIYAIRI 588 Affects Intestinal Bacterial Composition of Finishing Pigs. Microbes and Environments, 2022, 37, n/a.	0.7	0
1052	Gut Microbiome Regulation of Appetite and Role in Neurological Disorders. , 2022, , 83-105.		1
1053	Polysaccharides from Bamboo Shoot (Leleba oldhami Nakal) Byproducts Alleviate Antibiotic-Associated Diarrhea in Mice through Their Interactions with Gut Microbiota. Foods, 2022, 11, 2647.	1.9	7
1054	Host Species and Captivity Distinguish the Microbiome Compositions of a Diverse Zoo-Resident Non-Human Primate Population. Diversity, 2022, 14, 715.	0.7	1
1055	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	1.3	1
1056	High replacement of fishmeal by Chlorella meal affects intestinal microbiota and the potential metabolic function in largemouth bass (Micropterus salmoides). Frontiers in Microbiology, 0, 13, .	1.5	10
1057	Comparative digestion and fermentation characteristics of low-tannin or high-tannin sorghum grain in the porcine gastrointestinal tract. Journal of Animal Science, 2022, 100, .	0.2	1

#	Article	IF	Citations
1058	Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Frontiers in Immunology, 0, 13, .	2.2	21
1059	Comparative study of the function and structure of the gut microbiota in Siberian musk deer and Forest musk deer. Applied Microbiology and Biotechnology, 2022, 106, 6799-6817.	1.7	3
1060	Reproducibility and Validity of a Semi-Quantitative Food Frequency Questionnaire for Assessing Dietary Intake of Vegetarians and Omnivores in Harbin, China. Nutrients, 2022, 14, 3975.	1.7	4
1061	Limited microbiome differences in captive and semi-wild primate populations consuming similar diets. FEMS Microbiology Ecology, 2022, 98, .	1.3	6
1063	The influence of different dietary patterns on changes in the intestinal microbiota and human body weight. Medical Alphabet, 2022, , 29-39.	0.0	0
1064	The effects of fermented vegetable consumption on the composition of the intestinal microbiota and levels of inflammatory markers in women: A pilot and feasibility study. PLoS ONE, 2022, 17, e0275275.	1.1	8
1065	Microbiome epidemiology and association studies in human health. Nature Reviews Genetics, 2023, 24, 109-124.	7.7	17
1067	Human activities and changes in the gut microbiome: A perspective. Human Nutrition and Metabolism, 2022, 30, 200165.	0.8	2
1068	Gut Microbial Metabolite Trimethylamine-N-Oxide and its Role in Cardiovascular Diseases. , 0, , .		0
1069	The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews Cardiology, 2023, 20, 217-235.	6.1	31
1070	FABP4 in Paneth cells regulates antimicrobial protein expression to reprogram gut microbiota. Gut Microbes, 2022, 14, .	4.3	3
1071	Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Reports, 2022, 41, 111461.	2.9	14
1072	Intestinal microbiota-mediated dietary fiber bioavailability. Frontiers in Nutrition, 0, 9, .	1.6	3
1073	Bacteroides vulgatus SNUG 40005 Restores Akkermansia Depletion by Metabolite Modulation. Gastroenterology, 2023, 164, 103-116.	0.6	25
1074	Unique Pakistani gut microbiota highlights population-specific microbiota signatures of type 2 diabetes mellitus. Gut Microbes, 2022, 14, .	4.3	4
1075	Resistance is futile? Mucosal immune mechanisms in the context of microbial ecology and evolution. Mucosal Immunology, 2022, 15, 1188-1198.	2.7	0
1076	Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Frontiers in Nutrition, 0, 9, .	1.6	9
1077	Role of gut microbiota in food safety. , 2023, , 812-828.		0

#	Article	IF	CITATIONS
1080	Brain Food: The Impact of Diet, Nutrition, and Nutraceuticals on the Brain and the Microbiota-Gut-Brain Axis. , 2022, , 303-357.		0
1081	Impact of intestinal dysbiosis on breast cancer metastasis and progression. Frontiers in Oncology, 0, 12, .	1.3	3
1082	Microbiome–Gut Dissociation in the Neonate: Autism-Related Developmental Brain Disease and the Origin of the Placebo Effect. Gastrointestinal Disorders, 2022, 4, 291-311.	0.4	1
1083	The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annual Review of Physiology, 2023, 85, 449-468.	5.6	44
1084	Combined Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat of Metabolic Disease: A Review. Nutrients, 2022, 14, 4774.	1.7	9
1085	Starch–protein interaction effects on lipid metabolism and gut microbes in host. Frontiers in Nutrition, 0, 9, .	1.6	9
1086	Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food and Function, 2022, 13, 13014-13027.	2.1	7
1087	Alteration of oral microbiome composition in children living with pesticide-exposed farm workers. International Journal of Hygiene and Environmental Health, 2023, 248, 114090.	2.1	0
1088	Plant-based dietary patterns defined by a priori indices and colorectal cancer risk by sex and race/ethnicity: the Multiethnic Cohort Study. BMC Medicine, 2022, 20, .	2.3	11
1089	Dietary fiber chemical structure determined gut microbiota dynamics. , 2022, 1, .		7
1090	The nonindustrialised microbiome in a modern world. Clinical Science, 2022, 136, 1683-1690.	1.8	5
1091	Survey of the Intestinal Bacterial Compositions of Three Sympatric Passeriformes Species. Journal of Advances in Microbiology, 0, , 10-21.	0.2	0
1092	A sublingual nanofiber vaccine to prevent urinary tract infections. Science Advances, 2022, 8, .	4.7	7
1093	Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health. Annual Review of Food Science and Technology, 2023, 14, 157-182.	5.1	6
1094	Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers, 2022, 14, 5682.	1.7	5
1096	Environmental influences on childhood asthma—The effect of diet and microbiome on asthma. Pediatric Allergy and Immunology, 2022, 33, .	1.1	9
1097	Lower Fiber Consumption in Women with Polycystic Ovary Syndrome: A Meta-Analysis of Observational Studies. Nutrients, 2022, 14, 5285.	1.7	1
1098	Assessment of Dietary Adequacy and Quality in a Sample of Patients with Crohn's Disease. Nutrients, 2022, 14, 5254.	1.7	4

#	Article	IF	CITATIONS
1099	The gut microbiome: linking dietary fiber to inflammatory diseases. Medicine in Microecology, 2022, 14, 100070.	0.7	11
1100	Dietary fiber and SCFAs in the regulation of mucosal immunity. Journal of Allergy and Clinical Immunology, 2023, 151, 361-370.	1.5	43
1101	Mediation effect of intestinal microbiota on the relationship between fiber intake and colorectal cancer. International Journal of Cancer, 2023, 152, 1752-1762.	2.3	2
1102	Foods may modify responsiveness to cancer immune checkpoint blockers by altering both the gut microbiota and activation of estrogen receptors in immune cells. , 0, 1, .		2
1103	Molecular Impact of Dietary Fibre Metabolites on Intestinal Immunity of Host. , 0, , .		0
1104	Maternal fiber deprivation alters microbiota in offspring, resulting in low-grade inflammation and predisposition to obesity. Cell Host and Microbe, 2023, 31, 45-57.e7.	5.1	12
1105	Effects of Dietary Protein Restriction on Colonic Microbiota of Finishing Pigs. Animals, 2023, 13, 9.	1.0	2
1106	Early life gut microbiota profiles linked to synbiotic formula effects: a randomized clinical trial in European infants. American Journal of Clinical Nutrition, 2023, 117, 326-339.	2.2	6
1107	Multispecies biofilm architecture determines bacterial exposure to phages. PLoS Biology, 2022, 20, e3001913.	2.6	17
1108	Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Frontiers in Microbiology, 0, 13, .	1.5	2
1109	Oncotherapeutic Strategies in Early Onset Colorectal Cancer. Cancers, 2023, 15, 552.	1.7	4
1110	Severe, short-term sleep restriction reduces gut microbiota community richness but does not alter intestinal permeability in healthy young men. Scientific Reports, 2023, 13, .	1.6	2
1111	Dietary supplement of mushrooms promotes SCFA production and moderately associates with IgA production: A pilot clinical study. Frontiers in Nutrition, 0, 9, .	1.6	3
1112	The person-to-person transmission landscape of the gut and oral microbiomes. Nature, 2023, 614, 125-135.	13.7	111
1113	Multi-omics analysis of the effects of dietary changes and probiotics on diet-induced obesity. Current Research in Food Science, 2023, 6, 100435.	2.7	1
1114	Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms, 2023, 11, 179.	1.6	4
1115	Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients, 2023, 15, 151.	1.7	19
1116	Components of the Fiber Diet in the Prevention and Treatment of IBD—An Update. Nutrients, 2023, 15, 162.	1.7	4

ARTICLE IF CITATIONS # Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between 1117 1.7 2 insects and mammals. BMC Biology, 2022, 20, . Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Frontiers in 1.6 Pharmacology, 0, 14, . Effects of starters with different NDF/starch ratio on rumen fermentation parameters and rumen 1120 0.9 2 microorganisms in lambs. Frontiers in Veterinary Science, 0, 10, . Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 1121 241. Fecal Protein Analysis of Dusp6 Knockout C57BL/6J Mice by Metaproteomics. Applied Biochemistry and 1122 1.4 0 Biotechnology, 0, , . A microbial tale of farming, invasion and conservation: on the gut bacteria of European and American mink in Western Europe. Biological Invasions, 2023, 25, 1693-1709. 1.2 Natural products in conditions associated with inflammatory bowel diseases: Colorectal cancer, 1124 0 diversion colitis, and obesity., 2023, , 415-442. Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of 5.8 pregnancy. Nature Communications, 2023, 14, . Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal 1127 0 1.4 microecology. World Journal of Gastroenterology, 0, 29, 2034-2049. Fecal microbiota transplantation reduces mouse mortality from Listeria monocytogenes infection. 1.3 Microbial Pathogenesis, 2023, 178, 106036. Distinct respiratory microbiota associates with lung cancer clinicopathological characteristics. 1129 3 1.3 Frontiers in Oncology, 0, 13, . Muc2-dependent microbial colonization of the jejunal mucus layer is diet sensitive and confers local 2.9 resistance to enteric pathogen infection. Cell Reports, 2023, 42, 112084. COVID-19 morbidity in lower versus higher income populations underscores the need to restore lost 1131 1.9 1 biodiversity of eukaryotic symbionts. IScience, 2023, 26, 106167. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy 29 population. Microbiome, 2023, 11, . <i>In silico</i> analysis of dietary polyphenols and their gut microbial metabolites suggest inhibition of SARS-CoV-2 infection, replication, and host inflammatory mediators. Journal of Biomolecular 1133 2.0 0 Structure and Dynamics, 0, , 1-19. The immuneâ€supportive diet in allergy management: AÂnarrative review and proposal. Allergy: European 1134 Journal of Allergy and Clinical Immunology, 2023, 78, 1441-1458. Impact of dietary carbohydrate restriction on the pathobiology of Hepatocellular Carcinoma: The 1135 2.7 2 gut-liver axis and beyond. Seminars in Immunology, 2023, 66, 101736. A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Seminars in Immunology, 2023, 66, 101737.

ARTICLE IF CITATIONS Epigenetic Modifications Induced by the Gut Microbiota May Result from What We Eat: Should We Talk 1137 1.3 3 about Precision Diet in Health and Disease?. Metabolites, 2023, 13, 375. Effects of Diet with High Polyphenol and Protein Content and Diet with High Boron Content on 0.3 Microbiota in Obesity. Current Nutrition and Food Science, 2023, 19, . Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Frontiers in 1139 2.2 18 Immunology, 0, 14, . Cross-Talk Between Gut Microbiota and Immune Cells and Its Impact on Inflammatory Diseases. , 2023, , 1142 139-162. Development of the Anaerobic Microbiome in the Infant Gut. Pediatric Infectious Disease Journal, 0, 1143 1.1 0 Publish Ahead of Print, . A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nature Communications, 2023, 14, . 1144 5.8 Intestinal Microbiomics in Physiological and Pathological Conditions., 0,,. 1145 1 è...,å†...ç[∽]èŒå¢ã«å½±éŸįã,'ä,Žã•ã,‹é£Ÿä⁰‹å›å• Kagaku To Seibutsu, 2022, 60, 156-160. 1146 Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis?. , 2023, 2, . 2 1147 Roles of the gut microbiome in weight management. Nature Reviews Microbiology, 2023, 21, 535-550. 13.6 1164 Interrelationship in Organized Biological Systems., 2023, , 205-257. 0 Gut microbiota bridges dietary nutrients and host immunity. Science China Life Sciences, 2023, 66, 1165 2466-2514. Human Microbiome in Malnutrition., 2023, , 81-100. 1168 0 Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618. 1184 12.8 1189 Extraction and Application of Plant Exosomes., 2023, , 119-136. 0 Control of nutrient metal availability during host-microbe interactions: beyond nutritional immunity. 1.1 Journal of Biological Inorganic Chemistry, 2023, 28, 451-456. Inflammation and gut dysbiosis as drivers of CKD–MBD. Nature Reviews Nephrology, 2023, 19, 646-657. 1195 4.1 3 Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular 1199 4.4 pathways, and anticancer therapy. ISME Journal, 2023, 17, 1535-1551.

#	Article	IF	CITATIONS
1220	Role of Neglected Plant Foods in Achieving Dietary Diversity, Zero Hunger and Good Health. , 2023, , 29-49.		0
1235	Gut Microbiome and Liver Diseases from the Perspective of 3PM: The Predictive, Preventive, and Personalized Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 141-175.	0.6	0
1236	The Microbiome, Metabolism, and Networks in Precision Nutrition. , 2024, , 91-142.		0
1240	Microbiome-based approaches to food allergy treatment. , 2023, , .		0
1250	Fermented foods and gastrointestinal health: underlying mechanisms. Nature Reviews Gastroenterology and Hepatology, 0, , .	8.2	1
1252	Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. , 2023, , 97-125.		0
1254	Critical review on intestinal mucosal barrier protection effects of dietary polysaccharides. Food and Function, 0, , .	2.1	0
1275	Changes in the Gut Microbiome as Seen in Diabetes and Obesity. , 2023, , 61-81.		0

0

1276 How the Microbiome Affects the Risk for Colon Cancer. , 2023, , 97-115.