Making and Breaking of Lead Halide Perovskites

Accounts of Chemical Research 49, 330-338 DOI: 10.1021/acs.accounts.5b00455

Citation Report

#	Article	IF	CITATIONS
1	Recent Developments in Solar Energy Applications Based on Perovskites: A Current Commentary. Science Progress, 2016, 99, 335-345.	1.0	2
2	Effects of Solution-Based Fabrication Conditions on Morphology of Lead Halide Perovskite Thin Film Solar Cells. Advances in Materials Science and Engineering, 2016, 2016, 1-12.	1.0	11
3	Scalable Route to the Fabrication of CH ₃ NH ₃ PbI ₃ Perovskite Thin Films by Electrodeposition and Vapor Conversion. ACS Omega, 2016, 1, 1296-1306.	1.6	44
4	Sulfamic Acid-Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrates. Journal of the American Chemical Society, 2016, 138, 5410-5416.	6.6	86
5	Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chemistry of Materials, 2016, 28, 2902-2906.	3.2	152
6	Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy and Environmental Science, 2016, 9, 2072-2082.	15.6	188
7	Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium lodide toward High-Performance Photovoltaic Devices. ACS Energy Letters, 2016, 1, 757-763.	8.8	317
8	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
9	Comparing the Effect of Mesoporous and Planar Metal Oxides on the Stability of Methylammonium Lead Iodide Thin Films. Chemistry of Materials, 2016, 28, 7344-7352.	3.2	45
10	Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy. ACS Nano, 2016, 10, 9787-9793.	7.3	43
11	Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. Journal of Materials Chemistry A, 2016, 4, 16536-16545.	5.2	55
12	Facile Thiolâ€Ene Thermal Crosslinking Reaction Facilitated Holeâ€Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601165.	10.2	62
13	Ab initio static and dynamic study of CH ₃ NH ₃ PbI ₃ degradation in the presence of water, hydroxyl radicals, and hydroxide ions. RSC Advances, 2016, 6, 76938-76947.	1.7	22
14	Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite. Journal of Physical Chemistry A, 2016, 120, 6880-6887.	1.1	13
15	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
16	Crystalline Intermediates and Their Transformation Kinetics during the Formation of Methylammonium Lead Halide Perovskite Thin Films. Chemistry of Materials, 2016, 28, 9041-9048.	3.2	29
17	Solution-Grown CsPbBr ₃ Perovskite Single Crystals for Photon Detection. Chemistry of Materials, 2016, 28, 8470-8474.	3.2	294
18	On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Scientific Reports, 2016, 6, 31896.	1.6	197

~		<u> </u>	
		REP	NDT
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
19	Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology. Scientific Reports, 2016, 6, 35973.	1.6	103
20	Direct Observation of Reversible Transformation of CH ₃ NH ₃ PbI ₃ and NH ₄ PbI ₃ Induced by Polar Gaseous Molecules. Journal of Physical Chemistry Letters, 2016, 7, 5068-5073.	2.1	62
21	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
22	Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. ChemSusChem, 2016, 9, 2541-2558.	3.6	88
23	Postsynthetic and Selective Control of Lead Halide Perovskite Microlasers. Journal of Physical Chemistry Letters, 2016, 7, 3886-3891.	2.1	37
24	Ligand-Mediated Modulation of Layer Thicknesses of Perovskite Methylammonium Lead Bromide Nanoplatelets. Chemistry of Materials, 2016, 28, 6909-6916.	3.2	89
25	A facile approach for selective and sensitive detection of aqueous contamination in DMF by using perovskite material. Materials Letters, 2016, 183, 135-138.	1.3	25
26	Frustrated Lewis pair-mediated recrystallization of CH ₃ NH ₃ PbI ₃ for improved optoelectronic quality and high voltage planar perovskite solar cells. Energy and Environmental Science, 2016, 9, 3770-3782.	15.6	117
27	ls Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and Environmental Science, 2016, 9, 3650-3656.	15.6	239
28	Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. Journal of Materials Chemistry A, 2016, 4, 18614-18620.	5.2	19
29	Surface Restructuring of Hybrid Perovskite Crystals. ACS Energy Letters, 2016, 1, 1119-1126.	8.8	140
30	A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families. Advanced Materials, 2016, 28, 10701-10709.	11.1	100
31	Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1049-1056.	8.8	37
32	<i>N</i> -Methylformamide as a Source of Methylammonium Ions in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals. ACS Energy Letters, 2016, 1, 1042-1048.	8.8	59
33	Microwave Induced Crystallization of the Hybrid Perovskite CH ₃ NH ₃ PbI ₃ from a Supramolecular Single-Source Precursor. Chemistry of Materials, 2016, 28, 4134-4138.	3.2	11
34	Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation. ACS Energy Letters, 2016, 1, 290-296.	8.8	321
35	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	23.0	1,343
36	Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Physical Chemistry Chemical Physics, 2016, 18, 27051-27066.	1.3	325

#	Article	IF	CITATIONS
37	Band Gaps of the Lead-Free Halide Double Perovskites Cs ₂ BiAgCl ₆ and Cs ₂ BiAgBr ₆ from Theory and Experiment. Journal of Physical Chemistry Letters, 2016, 7, 2579-2585.	2.1	529
38	Hydrogen-like Wannier–Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite. ACS Nano, 2016, 10, 6363-6371.	7.3	151
39	Colorimetric polarity chemosensor based on a organometal halide perovskite functional dye. Dyes and Pigments, 2016, 133, 73-78.	2.0	10
40	Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7717-7721.	3.3	331
41	Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. Journal of Physical Chemistry Letters, 2016, 7, 1254-1259.	2.1	761
42	How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 1368-1373.	2.1	160
43	Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C, 2016, 4, 2545-2552.	2.7	53
44	Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy. Structural Dynamics, 2017, 4, 044002.	0.9	61
45	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378
46	Direct observation of intrinsic twin domains in tetragonal CH3NH3Pbl3. Nature Communications, 2017, 8, 14547.	5.8	191
47	Nanocube Superlattices of Cesium Lead Bromide Perovskites and Pressureâ€Induced Phase Transformations at Atomic and Mesoscale Levels. Advanced Materials, 2017, 29, 1606666.	11.1	238
48	The PV-Researcher's Siren: Hybrid metal halide perovskites. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 72-76.	3.2	8
49	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	2.5	150
50	Strong Interaction at the Perovskite/TiO ₂ Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 3797-3806.	1.5	69
51	Zero-Dimensional Cs ₄ PbBr ₆ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 961-965.	2.1	299
52	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	15.6	942
53	Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters, 2017, 2, 889-896.	8.8	367
54	Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy. ACS Energy Letters, 2017, 2, 906-914.	8.8	97

#	Article	IF	CITATIONS
55	Three-Photon Absorption Induced Photoluminescence in Organo-Lead Mixed Halide Perovskites. Journal of Electronic Materials, 2017, 46, 3622-3626.	1.0	7
56	Double Perovskite Cs ₂ BBiX ₆ (B = Ag, Cu; X = Br, Cl)/TiO ₂ Heterojunction: An Efficient Pb-Free Perovskite Interface for Charge Extraction. Journal of Physical Chemistry C, 2017, 121, 4471-4480.	1.5	87
57	Highly Reproducible Organometallic Halide Perovskite Microdevices based on Topâ€Down Lithography. Advanced Materials, 2017, 29, 1606205.	11.1	138
58	Low-toxic metal halide perovskites: opportunities and future challenges. Journal of Materials Chemistry A, 2017, 5, 11436-11449.	5.2	123
59	Ab initio study of the role of oxygen and excess electrons in the degradation of CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2017, 5, 9042-9049.	5.2	71
60	Fabrication of stable organometallic halide perovskite NWs based optoelectronic devices. Science Bulletin, 2017, 62, 645-647.	4.3	18
61	A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH ₃ NH ₃ PbI ₃ : an attempt to rationalise contradictory experimental results. Sustainable Energy and Fuels, 2017, 1, 1351-1357.	2.5	97
62	From CsPbBr ₃ Nano-Inks to Sintered CsPbBr ₃ –CsPb ₂ Br ₅ Films via Thermal Annealing: Implications on Optoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 11956-11961.	1.5	96
63	Stabilitävon Perowskitâ€Solarzellen: Einfluss der Substitution von Aâ€Kation und Xâ€Anion. Angewandte Chemie, 2017, 129, 1210-1233.	1.6	27
64	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321-1344.	8.2	240
65	Lowâ€Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. Angewandte Chemie, 2017, 129, 9146-9150.	1.6	42
66	Current Trends in Semiconductor Photoelectrochemistry. ACS Energy Letters, 2017, 2, 1425-1428.	8.8	7
67	Lowâ€Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. Angewandte Chemie - International Edition, 2017, 56, 9018-9022.	7.2	242
68	Thermochromic Perovskite Inks for Reversible Smart Window Applications. Chemistry of Materials, 2017, 29, 3367-3370.	3.2	130
69	Poly(4â€Vinylpyridine)â€Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells. ChemSusChem, 2017, 10, 2473-2479.	3.6	157
70	Moisture-driven phase transition for improved perovskite solar cells with reduced trap-state density. Nano Research, 2017, 10, 1413-1422.	5.8	20
71	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	1.9	57
72	Semiconductor Surface Chemistry as Holy Grail in Photocatalysis and Photovoltaics. Accounts of Chemical Research, 2017, 50, 527-531.	7.6	95

#	Article	IF	CITATIONS
73	Inorganic Lead Halide Perovskite Single Crystals: Phase‧elective Lowâ€Temperature Growth, Carrier Transport Properties, and Selfâ€Powered Photodetection. Advanced Optical Materials, 2017, 5, 1600704.	3.6	362
74	Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Letters, 2017, 17, 523-530.	4.5	232
75	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal Physics D: Applied Physics, 2017, 50, 033001.	1.3	42
76	Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials. ACS Applied Materials & Interfaces, 2017, 9, 1077-1085.	4.0	19
77	The renaissance of hydrides as energy materials. Nature Reviews Materials, 2017, 2, .	23.3	349
78	Multinuclear Magnetic Resonance Tracking of Hydro, Thermal, and Hydrothermal Decomposition of CH ₃ NH ₃ Pbl ₃ . Journal of Physical Chemistry C, 2017, 121, 1013-1024.	1.5	77
79	The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. Angewandte Chemie - International Edition, 2017, 56, 16073-16076.	7.2	16
80	Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr ₃ and CsPb(Br/I) ₃ Quantum Dots at Low Temperature. Journal of Physical Chemistry C, 2017, 121, 26054-26062.	1.5	120
81	Spectroscopic and electrical signatures of acceptor states in solution processed Cu ₂ ZnSn(S,Se) ₄ solar cells. Journal of Materials Chemistry C, 2017, 5, 12720-12727.	2.7	18
82	Ab initio study of the role of iodine in the degradation of CH3NH3PbI3. Journal of Materials Chemistry A, 2017, 5, 23976-23986.	5.2	17
83	Lead―and Iodideâ€Deficient (CH ₃ NH ₃)PbI ₃ (<i>d</i> â€MAPI): The Bridge between 2D and 3D Hybrid Perovskites. Angewandte Chemie - International Edition, 2017, 56, 16067-16072.	² 7.2	75
84	A Redoxâ€Based Resistive Switching Memory Device Consisting of Organic–Inorganic Hybrid Perovskite/Polymer Composite Thin Film. Advanced Electronic Materials, 2017, 3, 1700344.	2.6	67
85	Lead―and Iodideâ€Deficient (CH ₃ NH ₃)PbI ₃ (<i>d</i> â€MAPI): The Bridge between 2D and 3D Hybrid Perovskites. Angewandte Chemie, 2017, 129, 16283-16288.	² 1.6	11
86	Coaxial hybrid perovskite fibers: Synthesis and encapsulation <i>in situ</i> via electrospinning. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	7
87	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vapor–Solution Method. Advanced Materials, 2017, 29, 1703256.	11.1	121
88	Free Carrier Radiative Recombination and Photon Recycling in Lead Halide Perovskite Solar Cell Materials. Bulletin of the Chemical Society of Japan, 2017, 90, 1129-1140.	2.0	65
89	Hybrid organic–inorganic CH ₃ NH ₃ PbI ₃ perovskite building blocks: Revealing ultraâ€strong hydrogen bonding and mulliken inner complexes and their implications in materials design. Journal of Computational Chemistry, 2017, 38, 2802-2818.	1.5	32
90	Simple synthesis and molecular engineering of low-cost and star-shaped carbazole-based hole transporting materials for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20263-20276.	5.2	92

#	Article	IF	CITATIONS
91	Water-resistant, monodispersed and stably luminescent CsPbBr ₃ /CsPb ₂ Br ₅ core–shell-like structure lead halide perovskite nanocrystals. Nanotechnology, 2017, 28, 445602.	1.3	101
92	Heat- and Gas-Induced Transformation in CH ₃ NH ₃ PbI ₃ Perovskites and Its Effect on the Efficiency of Solar Cells. Chemistry of Materials, 2017, 29, 8478-8485.	3.2	50
93	The influence of stoichiometry on the structure and fluorescence of two organic–inorganic hybrid complexes incorporating of 2-(2-aminoethyl)-1-methylpyrrolidine and lead iodide. Journal of Solid State Chemistry, 2017, 256, 184-188.	1.4	6
94	Luminescent and Photoconductive Layered Lead Halide Perovskite Compounds Comprising Mixtures of Cesium and Guanidinium Cations. Inorganic Chemistry, 2017, 56, 11552-11564.	1.9	130
95	Impact of H ₂ O on organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2017, 10, 2284-2311.	15.6	345
96	Facet-controlled preparation of hybrid perovskite microcrystals in the gas phase and the remarkable effect on optoelectronic properties. CrystEngComm, 2017, 19, 4615-4621.	1.3	10
97	Updating the road map to metal-halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2017, 5, 17135-17150.	5.2	33
98	Reversible solid-state thermochromism of a 2D organic–inorganic hybrid perovskite structure based on iodoplumbate and 2-aminomethyl-pyridine. New Journal of Chemistry, 2017, 41, 9586-9589.	1.4	26
99	Detection of volatile organic compounds (VOCs), aliphatic amines, using highly fluorescent organic-inorganic hybrid perovskite nanoparticles. Dyes and Pigments, 2017, 147, 1-5.	2.0	50
100	Role of Methylammonium Orientation in Ion Diffusion and Current–Voltage Hysteresis in the CH ₃ NH ₃ Pbl ₃ Perovskite. ACS Energy Letters, 2017, 2, 1997-2004.	8.8	68
101	Hole Transfer in Dye-Sensitized Cesium Lead Halide Perovskite Photovoltaics: Effect of Interfacial Bonding. Journal of Physical Chemistry C, 2017, 121, 20113-20125.	1.5	14
102	Computational Verification of So-Called Perovskite Solar Cells as Pbl ₆ ^{4â^'} -Aligned Solar Cells. Journal of the Electrochemical Society, 2017, 164, E3598-E3605.	1.3	3
103	Photoelectrochemical Solar Cells with Semiconductor Nanoparticles and Liquid Electrolytes: a Review. Theoretical and Experimental Chemistry, 2017, 53, 145-179.	0.2	7
104	High Stability Bilayered Perovskites through Crystallization Driven Self-Assembly. ACS Applied Materials & Interfaces, 2017, 9, 28743-28749.	4.0	20
105	Microstructure variations induced by excess PbX ₂ or AX within perovskite thin films. Chemical Communications, 2017, 53, 12966-12969.	2.2	9
106	The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. Angewandte Chemie, 2017, 129, 16289-16292.	1.6	0
107	Application of luminescence downshifting materials for enhanced stability of CH3NH3PbI3(1-x)Cl3x perovskite photovoltaic devices. Organic Electronics, 2017, 49, 129-134.	1.4	25
108	The Role of Surface Tension in the Crystallization of Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1782-1788.	8.8	155

#	Article	IF	CITATIONS
109	Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin–Orbitronics. Journal of Physical Chemistry Letters, 2017, 8, 3362-3370.	2.1	150
110	Loading Dependent Electrical Properties of Hybrid Perovskite Composite Media. MRS Advances, 2017, 2, 3069-3076.	0.5	0
111	Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites. Advanced Materials, 2017, 29, 1603072.	11.1	166
112	Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 2017, 56, 92-101.	1.9	117
113	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	10.2	298
114	Stability of Perovskite Solar Cells: A Prospective on the Substitution of the Aâ€Cation and Xâ€Anion. Angewandte Chemie - International Edition, 2017, 56, 1190-1212.	7.2	473
115	Synthesis by Low Temperature Solution Processing of Ferroelectric Perovskite Oxide Thin Films as Candidate Materials for Photovoltaic Applications. , 2018, , 45-81.		2
116	Mechanochemical Synthesis of Methylammonium Lead Mixed–Halide Perovskites: Unraveling the Solid-Solution Behavior Using Solid-State NMR. Chemistry of Materials, 2018, 30, 2309-2321.	3.2	85
117	Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5507-5537.	5.2	104
118	Coating Evaporated MAPI Thin Films with Organic Molecules: Improved Stability at High Temperature and Implementation in High-Efficiency Solar Cells. ACS Energy Letters, 2018, 3, 835-839.	8.8	30
119	Present status and future prospects of perovskite photovoltaics. Nature Materials, 2018, 17, 372-376.	13.3	590
120	Phase Transition Control for High Performance Ruddlesden–Popper Perovskite Solar Cells. Advanced Materials, 2018, 30, e1707166.	11.1	244
121	Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 2196-2201.	2.1	104
122	Molecular Engineering Using an Anthanthrone Dye for Lowâ€Cost Hole Transport Materials: A Strategy for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703007.	10.2	154
123	Visualization and Studies of Ion-Diffusion Kinetics in Cesium Lead Bromide Perovskite Nanowires. Nano Letters, 2018, 18, 1807-1813.	4.5	136
124	Improved Stability of Organometal Halide Perovskite Films and Solar Cells toward Humidity via Surface Passivation with Oleic Acid. ACS Applied Energy Materials, 2018, 1, 387-392.	2.5	66
125	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy, 2018, 163, 215-223.	2.9	36
126	Facile surface modification of CH ₃ NH ₃ PbI ₃ films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6255-6264.	5.2	34

ARTICLE IF CITATIONS # Research progress on organic–inorganic halide perovskite materials and solar cells. Journal Physics 127 1.3 56 D: Applied Physics, 2018, 51, 093001. Inorganic Perovskite Solar Cells: A Rapidly Growing Field. Solar Rrl, 2018, 2, 1700188. 3.1 193 Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide 129 4.0 32 Perovskites by a Self-Assembled Monolayer. ACS Applied Materials & amp; Interfaces, 2018, 10, 5511-5518. Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557. Realizing Efficient Leadâ€Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential 131 11.1 198 Deposition Route. Advanced Materials, 2018, 30, 1703800. Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy 10.2 Materials, 2018, 8, 1702073. One step facile synthesis of a novel anthanthrone dye-based, dopant-free hole transporting material 133 2.7 61 for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 3699-3708. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. Journal of Materials 134 5.2 26 Chemistry A, 2018, 6, 1423-1442. 135 Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2018, 3, 204-213. 8.8 444 Cu₂1₂Se₆: A Metalâ€"Inorganic Framework Wide-Bandgap Semiconductor for Photon Detection at Room Temperature. Journal of the American Chemical Society, 6.6 2018, 140, 1894-1899. Polymerâ€Passivated Inorganic Cesium Lead Mixedâ€Halide Perovskites for Stable and Efficient Solar Cells 137 11.1 401 with High Openâ€Circuit Voltage over 1.3 V. Advanced Materials, 2018, 30, 1705393. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector. ACS Applied Materials & amp; Interfaces, 2018, 10, 4121-4130. 133 Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. 139 19.8 722 Nature Energy, 2018, 3, 68-74. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. 140 8.8 143 AČS Énergy Letters, 2018, 3, 322-328. Tuning the Size of CsPbBr₃ Nanocrystals: All at One Constant Temperature. ACS Energy 141 151 8.8 Letters, 2018, 3, 329-334. Alternative Perovskites for Photovoltaics. Advanced Energy Materials, 2018, 8, 1703120. 142 Layered Perovskites L₂(Pb_{1â€"<i>x</i>}Mn_{<i>x</i>})Cl₄ 143 8.8 65 to Mn-Doped CsPbCl₃ Perovskite Platelets. ACS Energy Letters, 2018, 3, 1247-1253. Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. Journal of Materials 144 Chemistry A, 2018, 6, 9220-9227.

#	Article	IF	CITATIONS
145	Scalable Deposition of High-Efficiency Perovskite Solar Cells by Spray-Coating. ACS Applied Energy Materials, 2018, 1, 1853-1857.	2.5	78
146	Structural and Chemical Changes to CH ₃ NH ₃ PbI ₃ Induced by Electron and Gallium Ion Beams. Advanced Materials, 2018, 30, e1800629.	11.1	120
147	Computational Study of Structural and Electronic Properties of Lead-Free CsMI ₃ Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba). Journal of Physical Chemistry C, 2018, 122, 7838-7848.	1.5	62
148	Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 2018, 3, .	23.3	764
149	Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 3417-3423.	7.3	109
150	Top-Down Approaches Towards Single Crystal Perovskite Solar Cells. Scientific Reports, 2018, 8, 4906.	1.6	34
151	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	1.6	12
152	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	7.2	109
153	Revealing the Selfâ€Degradation Mechanisms in Methylammonium Lead Iodide Perovskites in Dark and Vacuum. ChemPhysChem, 2018, 19, 1507-1513.	1.0	56
154	Alloy ontrolled Work Function for Enhanced Charge Extraction in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. ChemSusChem, 2018, 11, 1432-1437.	3.6	62
155	Inter-phase charge and energy transfer in Ruddlesden–Popper 2D perovskites: critical role of the spacing cations. Journal of Materials Chemistry A, 2018, 6, 6244-6250.	5.2	94
156	Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions. Chemistry of Materials, 2018, 30, 561-569.	3.2	110
157	Origin of ultra-low lattice thermal conductivity in Cs2BiAgX6 (X=Cl, Br) and its impact on thermoelectric performance. Journal of Alloys and Compounds, 2018, 748, 63-72.	2.8	65
158	Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers. Materials Chemistry Frontiers, 2018, 2, 81-89.	3.2	43
159	Enhancing efficiency of perovskite solar cells by reducing defects through imidazolium cation incorporation. Materials Today Energy, 2018, 7, 161-168.	2.5	47
160	Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. Advanced Energy Materials, 2018, 8, 1701726.	10.2	28
161	Stability of Molecular Devices: Halide Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 477-531.	0.4	1
162	The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation. Applied Surface Science, 2018, 428, 140-147.	3.1	39

#	Article	IF	CITATIONS
163	Influence of Solvent Coordination on Hybrid Organic–Inorganic Perovskite Formation. ACS Energy Letters, 2018, 3, 92-97.	8.8	273
164	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183.	11.7	105
165	Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2018, 6, 1067-1074.	5.2	94
166	Interface Engineering for Highly Efficient and Stable Planar pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701883.	10.2	338
167	Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.	3.0	66
168	Theoretical investigations on crystal crosslinking in perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 234-241.	2.7	14
169	Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. Lecture Notes in Quantum Chemistry II, 2018, , 161-240.	0.3	0
170	Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Science China Materials, 2018, 61, 73-79.	3.5	31
171	Modulation of Charge Recombination in CsPbBr ₃ Perovskite Films with Electrochemical Bias. Journal of the American Chemical Society, 2018, 140, 86-89.	6.6	41
172	Room temperature precipitated dual phase CsPbBr ₃ –CsPb ₂ Br ₅ nanocrystals for stable perovskite light emitting diodes. Nanoscale, 2018, 10, 19262-19271.	2.8	48
173	Incorporation of potassium halides in the mechanosynthesis of inorganic perovskites: feasibility and limitations of ion-replacement and trap passivation. RSC Advances, 2018, 8, 41548-41551.	1.7	21
174	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	5.2	37
175	High performance ambient-air-stable FAPbI ₃ perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy and Environmental Science, 2018, 11, 3358-3366.	15.6	196
176	Validity of density-functional-theory-based molecular modeling for UV/visible spectroscopy and rationale of panchromatic PbI6 4â^'(MeNH3 +)4-structured molecular solar cells. Japanese Journal of Applied Physics, 2018, 57, 121602.	0.8	1
177	CH3NH3PbX3 (X = l, Br) encapsulated in silicon carbide/carbon nanotube as advanced diodes. Scientific Reports, 2018, 8, 15187.	1.6	7
178	Blue-Emitting CsPbCl ₃ Nanocrystals: Impact of Surface Passivation for Unprecedented Enhancement and Loss of Optical Emission. Journal of Physical Chemistry Letters, 2018, 9, 6884-6891.	2.1	101
179	Improving the stability of methylammonium lead iodide perovskite solar cells by cesium doping. Thin Solid Films, 2018, 667, 40-47.	0.8	24
180	The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of Morphology and Crystalline Phase of TiO ₂ Contact. Advanced Materials Interfaces, 2018, 5, 1801076	1.9	30

#	Article	IF	CITATIONS
181	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters, 2018, 10, 68.	14.4	50
182	Recovering MAPbI ₃ -Based Perovskite Films From Water-Caused Permanent Degradations by Dipping in MAI Solution. IEEE Journal of Photovoltaics, 2018, 8, 1692-1700.	1.5	2
183	A New Type of Three-Dimensional Hybrid Polymeric Haloplumbate Based on Rare High-Nuclear Heterometallic Clusters. Inorganic Chemistry, 2018, 57, 12860-12868.	1.9	31
184	Unravelling the Improved Electronic and Structural Properties of Methylammonium Lead Iodide Deposited from Acetonitrile. Chemistry of Materials, 2018, 30, 7737-7743.	3.2	23
185	Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites. Advanced Materials, 2018, 30, e1804792.	11.1	128
186	Vapor Deposition of Transparent, p-Type Cuprous lodide Via a Two-Step Conversion Process. ACS Applied Energy Materials, 2018, 1, 6953-6963.	2.5	10
187	Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites. Chemistry of Materials, 2018, 30, 7423-7427.	3.2	67
188	Luminescent Intermediates and Humidity-Dependent Room-Temperature Conversion of the MAPbl ₃ Perovskite Precursor. ACS Omega, 2018, 3, 14494-14502.	1.6	21
189	Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr ₃ perovskite solar cells. Dalton Transactions, 2018, 47, 15283-15287.	1.6	28
190	Mirrors of Bonding in Metal Halide Perovskites. Journal of the American Chemical Society, 2018, 140, 12996-13010.	6.6	75
191	The crucial role of density functional nonlocality and on-axis CH3NH3 rotation induced I2 formation in hybrid organic-inorganic CH3NH3PbI3 cubic perovskite. Scientific Reports, 2018, 8, 13161.	1.6	12
192	Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990.	11.7	181
193	A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18635-18640.	5.2	20
194	Thermal stability and miscibility of co-evaporated methyl ammonium lead halide (MAPbX ₃ ,) Tj ETQq1 2018, 6, 11496-11506.	1 0.7843 5.2	14 rgBT /O∨ 46
195	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	18.7	177
196	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	2.7	54
197	<i>In situ</i> identification of cation-exchange-induced reversible transformations of 3D and 2D perovskites. Chemical Communications, 2018, 54, 5879-5882.	2.2	12
198	Publications of Prashant V. Kamat. Journal of Physical Chemistry C, 2018, 122, 13214-13232.	1.5	2

ARTICLE IF CITATIONS Ion Migration in Hybrid Perovskites., 2018, , 163-196. 199 10 Less-Lead Control toward Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2018, 10, 24242-24248. Allâ€Inorganic CsPb_{1â^'<i>x</i>}Ge_{<i>x</i>}I₂Br Perovskite with 201 1.6 31 Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie, 2018, 130, 12927-12931. Luminescent Nanofluids of Organometal Halide Perovskite Nanocrystals in Silicone Oils with Ultrastability. ACS Applied Materials & amp; Interfaces, 2018, 10, 27244-27251. Allâ€Inorganic CsPb_{1â^'<i>x</i>}Ge_{<i>x</i>}I₂Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie - International Edition, 203 7.2 157 2018, 57, 12745-12749. Long Carrier Lifetimes in Pbl₂-Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. ACS Energy Letters, 2018, 3, 1868-1874. 204 8.8 Control of the Morphology and Crystallinity of a PbI₂ Layer for Large-Area Perovskite 205 2.513 Films Prepared by Close Space Sublimation. ACS Applied Energy Materials, 2018, 1, 3843-3849. Pressure-Induced Phase Transformation and Band-Gap Engineering of Formamidinium Lead Iodide 206 2.1 78 Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 4199-4205. A theoretical study of perovskites related to CH₃NH₃PbX₃(X = F,) Tj ETQq0,0 rgBT Q verlock 1 207

208	Elucidation of Chemical Species and Reactivity at Methylammonium Lead Iodide and Cesium Tin Bromide Perovskite Surfaces via Orthogonal Reaction Chemistry. Journal of Physical Chemistry C, 2018, 122, 17882-17894.	1.5	16
209	Double-edged sword effects of cation rotation and additive passivation on perovskite solar cell performance: an ab initio investigation. Solar Energy Materials and Solar Cells, 2018, 186, 349-355.	3.0	29
210	Inorganic CsPb _{1â^²} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	10.2	192
211	Fabrication of optically active fiber mats via melt electrospinning. MRS Communications, 2018, 8, 1098-1103.	0.8	3
212	Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications. Small Methods, 2018, 2, 1800242.	4.6	26
213	Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH ₃ NH ₃ PbX ₃ . Journal of Physical Chemistry Letters, 2018, 9, 3756-3765.	2.1	137
214	Two new oxyiodoplumbates: the unique 3-D hybrid oxyiodoplumbate based on neutral 2-D [Pb2I4]nlayers. Dalton Transactions, 2018, 47, 8442-8447.	1.6	7
215	Surface properties of lead-free halide double perovskites: Possible visible-light photo-catalysts for water splitting. Applied Physics Letters, 2018, 112, .	1.5	46
216	Electrodeposition of Hole-Transport Layer on Methylammonium Lead Iodide Film: A Strategy To Assemble Perovskite Solar Cells. Chemistry of Materials, 2018, 30, 4202-4206.	3.2	16

		CITATION REPORT		
#	Article		IF	CITATIONS
217	I ₂ vapor-induced degradation of formamidinium lead iodide based perovskite solar ce under heat–light soaking conditions. Energy and Environmental Science, 2019, 12, 3074-3088.	lls	15.6	131
218	Role of Capped Oleyl Amine in the Moistureâ€Induced Structural Transformation of CsPbBr ₃ Perovskite Nanocrystals. Physica Status Solidi - Rapid Research Letters, 2019 1900387.	, 13,	1.2	31
219	An effective surface modification strategy with high reproducibility for simultaneously improving efficiency and stability of inverted MA-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 21476-21487.		5.2	18
220	Roomâ€Temperature Cubic Phase Crystallization and High Stability of Vacuumâ€Deposited Methylammonium Lead Triiodide Thin Films for Highâ€Efficiency Solar Cells. Advanced Materials, 2 e1902692.	019, 31,	11.1	47
221	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019 2147-2167.	4,	8.8	161
222	All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chemical Science, 2019, 10, 9530-9541.		3.7	43
223	A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, 2019, 7, 18275-18284.		5.2	28
224	Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy and Environmental Science, 2019, 12, 2860-2889.		15.6	132
225	Enhanced the stability of Cesium lead bromide perovskite nanocrystals. Journal of Luminescence, 2 215, 116593.	.019,	1.5	6
226	Rational Core–Shell Design of Open Air Low Temperature In Situ Processable CsPbI _{3Quasiâ€Nanocrystals for Stabilized pâ€iâ€n Solar Cells. Advanced Energy Materials, 2019, 9, 1901}		10.2	53
227	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.		16.0	95
228	Giant Humidity Effect on Hybrid Halide Perovskite Microstripes: Reversibility and Sensing Mechanis ACS Applied Materials & Interfaces, 2019, 11, 29821-29829.	m.	4.0	71
229	Chalcogenide Materials and Derivatives for Photovoltaic Applications. Energy Technology, 2019, 7 1900819.		1.8	53
230	Controlling Homogenous Spherulitic Crystallization for Highâ€Efficiency Planar Perovskite Solar Cells Fabricated under Ambient Highâ€Humidity Conditions. Small, 2019, 15, e1904422.		5.2	30
231	Nanosecond, Time-Resolved Shift of the Photoluminescence Spectra of Organic, Lead-Halide Perovskites Reveals Structural Features Resulting from Excess Organic Ammonium Halide. Journal Physical Chemistry C, 2019, 123, 29964-29971.	of	1.5	1
232	Drying Dynamics of Solutionâ€Processed Perovskite Thinâ€Film Photovoltaics: In Situ Characteriza Modeling, and Process Control. Advanced Energy Materials, 2019, 9, 1901581.	tion,	10.2	42
233	Ultrastable Carbon Quantum Dots-Doped MAPbBr ₃ Perovskite with Silica Encapsulat ACS Applied Materials & Interfaces, 2019, 11, 34348-34354.	on.	4.0	19
234	Reversible Color Switching in Dual-Emitting Mn(II)-Doped CsPbBr3 Perovskite Nanorods: Dilution versus Evaporation. ACS Energy Letters, 2019, 4, 2353-2359.		8.8	25

#	Article	IF	CITATIONS
235	Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride. Nanomaterials, 2019, 9, 1120.	1.9	31
236	Arm Growth and Facet Modulation in Perovskite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 16160-16168.	6.6	84
237	Temperature-driven anion migration in gradient halide perovskites. Journal of Chemical Physics, 2019, 151, 134703.	1.2	31
238	Advances in modelling and simulation of halide perovskites for solar cell applications. JPhys Energy, 2019, 1, 022001.	2.3	53
239	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	11.1	92
240	Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 2019, 7, 2275-2282.	5.2	105
241	Ultrahigh Durability Perovskite Solar Cells. Nano Letters, 2019, 19, 1251-1259.	4.5	30
242	Effect of Water on the Structural, Optical, and Hot-Carrier Cooling Properties of the Perovskite Material MASnl ₃ . Journal of Physical Chemistry C, 2019, 123, 4056-4063.	1.5	13
243	Dynamic Screening and Slow Cooling of Hot Carriers in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1803054.	11.1	86
244	Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 2019, 19, 684-691.	4.5	72
245	Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure. Nanoscale, 2019, 11, 820-825.	2.8	34
246	Ultraviolet Light-Induced Degradation of Luminescence in Mn-Doped CsPbCl ₃ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 14849-14857.	1.5	28
247	Single-Source Vapor Deposition of Quantum-Cutting Yb3+:CsPb(Cl1–xBrx)3 and Other Complex Metal-Halide Perovskites. ACS Applied Energy Materials, 2019, 2, 4560-4565.	2.5	44
248	Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer. Journal of Power Sources, 2019, 432, 48-54.	4.0	94
249	Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. Journal of the American Chemical Society, 2019, 141, 10812-10820.	6.6	104
250	Nb2O5 dye-sensitized solar cells. , 2019, , 287-322.		14
251	Simulation studies of Sn-based perovskites with Cu back-contact for non-toxic and non-corrosive devices. Journal of Materials Research, 2019, 34, 2789-2795.	1.2	10
252	Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells. Science China Chemistry, 2019, 62, 810-821.	4.2	40

#	Article	IF	CITATIONS
253	Could Nanocomposites Continue the Success of Halide Perovskites?. ACS Energy Letters, 2019, 4, 1446-1454.	8.8	9
254	Blue-Emitting CsPbBr ₃ Perovskite Quantum Rods and Their Wide-Area 2D Self-Assembly. ACS Energy Letters, 2019, 4, 1437-1442.	8.8	39
255	Unraveling the Effect of Crystal Structure on Degradation of Methylammonium Lead Halide Perovskite. ACS Applied Materials & Interfaces, 2019, 11, 22228-22239.	4.0	23
256	Synthetic Evolution of Colloidal Metal Halide Perovskite Nanocrystals. Langmuir, 2019, 35, 11609-11628.	1.6	47
257	Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. Journal of Materials Chemistry A, 2019, 7, 15476-15490.	5.2	85
258	Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite?. Advanced Energy Materials, 2019, 9, 1900084.	10.2	54
259	Effects of Solvent Coordination Strength on the Morphology of Solution-Processed Bil ₃ Thin Films. Journal of Physical Chemistry C, 2019, 123, 13394-13400.	1.5	16
260	Water-resistant AgBiS ₂ colloidal nanocrystal solids for eco-friendly thin film photovoltaics. Nanoscale, 2019, 11, 9633-9640.	2.8	37
261	Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%. IScience, 2019, 15, 156-164.	1.9	81
262	Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. ACS Applied Energy Materials, 2019, 2, 3400-3409.	2.5	74
263	High-Performance CsPbl2Br Perovskite Solar Cells with Zinc and Manganese Doping. Nanoscale Research Letters, 2019, 14, 116.	3.1	49
264	Phase Evolution During Perovskite Formation—Insight from Pair Distribution Function Analysis. Chemistry of Materials, 2019, 31, 3498-3506.	3.2	26
265	Hydration of mixed halide perovskites investigated by Fourier transform infrared spectroscopy. APL Materials, 2019, 7, 031107.	2.2	17
266	Solvent Polarity: How Does This Influence the Precursor Activation, Reaction Rate, Crystal Growth, and Doping in Perovskite Nanocrystals?. ACS Energy Letters, 2019, 4, 926-932.	8.8	44
267	Surprising discoveries on the way to an old compound: four transient iodido antimonates. Dalton Transactions, 2019, 48, 5222-5229.	1.6	7
268	Toward Stable Deep-Blue Luminescent Colloidal Lead Halide Perovskite Nanoplatelets: Systematic Photostability Investigation. Chemistry of Materials, 2019, 31, 2486-2496.	3.2	55
269	Acid–Amine Equilibria for Formation and Long-Range Self-Organization of Ultrathin CsPbBr ₃ Perovskite Platelets. Journal of Physical Chemistry Letters, 2019, 10, 1300-1305.	2.1	34
270	Halide Photoredox Chemistry. Chemical Reviews, 2019, 119, 4628-4683.	23.0	127

#	Article	IF	CITATIONS
271	First-Principles Study on Structural, Electronic, and Optical Properties of Inorganic Ge-Based Halide Perovskites. Inorganic Chemistry, 2019, 58, 4134-4140.	1.9	68
272	Rapid Growth of Halide Perovskite Single Crystals: From Methods to Optimization Control. Chinese Journal of Chemistry, 2019, 37, 616-629.	2.6	24
273	Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3. Nanoscale Research Letters, 2019, 14, 4.	3.1	10
274	Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31, e1806702.	11.1	146
275	Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13, 460-466.	15.6	3,458
276	Electron-beam irradiation-hard metal-halide perovskite nanocrystals. Journal of Materials Chemistry A, 2019, 7, 10912-10917.	5.2	30
277	Two-dimensional eclipsed arrangement hybrid perovskites for tunable energy level alignments and photovoltaics. Journal of Materials Chemistry C, 2019, 7, 5139-5147.	2.7	22
278	Low-dimensional emissive states in non-stoichiometric methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2019, 7, 11104-11116.	5.2	7
279	Shedding Light on the Moisture Stability of 3D/2D Hybrid Perovskite Heterojunction Thin Films. ACS Applied Energy Materials, 2019, 2, 1011-1018.	2.5	56
280	Photodegradation of Organometal Hybrid Perovskite Nanocrystals: Clarifying the Role of Oxygen by Single-Dot Photoluminescence. Journal of Physical Chemistry Letters, 2019, 10, 864-869.	2.1	45
281	Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study. Computational Condensed Matter, 2019, 19, e00374.	0.9	36
282	Improved Efficiency of Perovskite Solar Cells by the Interfacial Modification of the Active Layer. Nanomaterials, 2019, 9, 204.	1.9	12
283	Encapsulation of methylammonium lead bromide perovskite in nanoporous GaN. APL Materials, 2019, 7, .	2.2	22
284	Theoretical study on halide and mixed halide Perovskite solar cells: Effects of halide atoms on the stability and electronic properties. Journal of the Chinese Chemical Society, 2019, 66, 575-582.	0.8	10
285	Charge Transfer Dynamics of Phase-Segregated Halide Perovskites: CH ₃ NH ₃ PbCl ₃ and CH ₃ NH ₃ Pbl ₃ or (C ₄ H ₉ NH ₃) ₂ (CH ₃ NH ₃) ₂	4.0 nâ^'1 </td <td>14 /sub>Pb<i><s< td=""></s<></i></td>	14 /sub>Pb <i><s< td=""></s<></i>
286	Mixtures. ACS Applied Materials & amp; Interfaces, 2019, 11, 9583-9593. CsPbI3 Perovskite Nanoparticles: Room-Temperature Synthesis and Optical Study. Russian Journal of Inorganic Chemistry, 2019, 64, 1587-1591.	0.3	3
287	Photo detector based on graded band gap perovskite crystal. Solar Energy, 2019, 194, 563-568.	2.9	12
288	High-performance and moisture-stable perovskite solar cells with a 2D modified layer <i>via</i> introducing a high dipole moment cation. Journal of Materials Chemistry C, 2019, 7, 15276-15284.	2.7	24

#	Article	IF	CITATIONS
289	Bismuth Enhances the Stability of CH ₃ NH ₃ PbI ₃ (MAPI) Perovskite under High Humidity. Journal of Physical Chemistry C, 2019, 123, 963-970.	1.5	20
290	Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: Morphological and electrical relationships for high current generation. Solar Energy Materials and Solar Cells, 2019, 192, 24-35.	3.0	13
291	Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods. Journal of Solid State Chemistry, 2019, 271, 206-215.	1.4	50
292	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	6.6	61
293	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
294	PbTiO ₃ as Electronâ€Selective Layer for Highâ€Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. Advanced Functional Materials, 2019, 29, 1806427.	7.8	23
295	Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO ₂ for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298.	8.8	75
296	Influence of Sn/Ge Cation Exchange on Vacancyâ€Ordered Double Perovskite Cs ₂ Sn _(1â^'<i>x</i>) Ge <i>_x</i> 6: A Firstâ€Principles Theoretical Study. Physica Status Solidi (B): Basic Research, 2019, 256, 1800427.	0.7	22
297	Insights into the Femtosecond to Nanosecond Charge Carrier Kinetics in Perovskite Materials for Solar Cells. Journal of Physical Chemistry C, 2019, 123, 110-119.	1.5	14
298	Nanoscale Lead(II) Iodide-sensitized Solar Cell. Chemistry Letters, 2019, 48, 144-147.	0.7	1
299	Elucidating the dynamics of solvent engineering for perovskite solar cells. Science China Materials, 2019, 62, 161-172.	3.5	57
300	Simulation and design of energy materials accelerated by machine learning. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1421.	6.2	41
301	Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials, 2020, 10, 1902584.	10.2	124
302	Spectrally Stable Ultraâ€Pure Blue Perovskite Lightâ€Emitting Diodes Boosted by Squareâ€Wave Alternating Voltage. Advanced Optical Materials, 2020, 8, 1901094.	3.6	37
303	Ammonium Fluoride Interface Modification for Highâ€Performance and Longâ€Term Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1901017.	1.8	12
0.04			
304	Lead-free, stable mixed halide double perovskites Cs2AgBiBr6 and Cs2AgBiBr6â^'xClx – A detailed theoretical and experimental study. Chemical Physics, 2020, 529, 110547.	0.9	38
304	Lead-free, stable mixed halide double perovskites Cs2AgBiBr6 and Cs2AgBiBr6â [^] xClx – A detailed theoretical and experimental study. Chemical Physics, 2020, 529, 110547. Enhanced Stability of Perovskite Solar Cells Incorporating Dopantâ€Free Crystalline Spiroâ€OMeTAD Layers by Vacuum Sublimation. Advanced Energy Materials, 2020, 10, 1901524.	0.9	38 30

#	Article	IF	CITATIONS
307	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	1.8	21
308	Ferromagnetic ordering in cobalt doped methylammonium lead bromide: An ab-initio study. Computational Condensed Matter, 2020, 22, e00444.	0.9	3
309	Lattice reconstruction of La-incorporated CsPbI ₂ Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 3351-3358.	2.7	35
310	Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustainable Energy and Fuels, 2020, 4, 324-330.	2.5	35
311	Revolution of Perovskite. Materials Horizons, 2020, , .	0.3	10
312	Insights into the role of the lead/surfactant ratio in the formation and passivation of cesium lead bromide perovskite nanocrystals. Nanoscale, 2020, 12, 623-637.	2.8	48
313	High stress-driven voltages in net-like layer-supported organic–inorganic perovskites. Journal of Materials Chemistry C, 2020, 8, 2643-2658.	2.7	14
314	Ethanol induced structure reorganization of 2D layered perovskites (OA)2(MA)n-1PbnI3n+1. Journal of Luminescence, 2020, 220, 116981.	1.5	6
315	Bypassing Solid-State Intermediates by Solvent Engineering the Crystallization Pathway in Hybrid Organic–Inorganic Perovskites. Crystal Growth and Design, 2020, 20, 1162-1171.	1.4	13
316	Green-Emitting Lead-Free Cs ₄ SnBr ₆ Zero-Dimensional Perovskite Nanocrystals with Improved Air Stability. Journal of Physical Chemistry Letters, 2020, 11, 618-623.	2.1	42
317	Crystal structural and thermochromic luminescence properties modulation by ion liquid cations in bromoplumbate perovskites. Inorganic Chemistry Communication, 2020, 112, 107690.	1.8	4
318	Charge Injection from Excited Cs ₂ AgBiBr ₆ Quantum Dots into Semiconductor Oxides. Chemistry of Materials, 2020, 32, 510-517.	3.2	21
319	Revealing the Dynamics of Hybrid Metal Halide Perovskite Formation via Multimodal In Situ Probes. Advanced Functional Materials, 2020, 30, 1908337.	7.8	40
320	Stabilization of Inorganic CsPb _{0.5} Sn _{0.5} I ₂ Br Perovskite Compounds by Antioxidant Tea Polyphenol. Solar Rrl, 2020, 4, 1900457.	3.1	43
321	Firstâ€Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902830.	10.2	52
322	Reversible multicolor chromism in layered formamidinium metal halide perovskites. Nature Communications, 2020, 11, 5234.	5.8	48
323	Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study. Superlattices and Microstructures, 2020, 146, 106652.	1.4	48
324	A new route for the shape differentiation of cesium lead bromide perovskite nanocrystals with near-unity photoluminescence quantum yield. Nanoscale, 2020, 12, 17053-17063.	2.8	16

#	Article	IF	CITATIONS
325	Combined Computational and Experimental Investigation on the Nature of Hydrated Iodoplumbate Complexes: Insights into the Dual Role of Water in Perovskite Precursor Solutions. Journal of Physical Chemistry B, 2020, 124, 11481-11490.	1.2	21
326	Nonradiative Relaxation Dynamics of a Cesium Lead Halide Perovskite Photovoltaic Architecture: Effect of External Electric Fields. Journal of Physical Chemistry Letters, 2020, 11, 9983-9989.	2.1	11
327	Low-Dimensional Hybrid Indium/Antimony Halide Perovskites: Supramolecular Assembly and Electronic Properties. Journal of Physical Chemistry C, 2020, 124, 25686-25700.	1.5	23
328	Recent progress on nanostructured carbon-based counter/back electrodes for high-performance dye-sensitized and perovskite solar cells. Nanoscale, 2020, 12, 17590-17648.	2.8	48
329	Halide Perovskite Nanocrystal Photocatalysts for CO ₂ Reduction: Successes and Challenges. Journal of Physical Chemistry Letters, 2020, 11, 6921-6934.	2.1	82
330	Building Blocks of Hybrid Perovskites: A Photoluminescence Study of Lead″odide Solution Species. ChemPhysChem, 2020, 21, 2327-2333.	1.0	20
331	Highâ€Efficiency Solutionâ€Processed Twoâ€Terminal Hybrid Tandem Solar Cells Using Spectrally Matched Inorganic and Organic Photoactive Materials. Advanced Energy Materials, 2020, 10, 2001188.	10.2	37
332	Realizing CsPbBr ₃ Light-Emitting Diode Arrays Based on PDMS Template Confined Solution Growth of Single-Crystalline Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 8275-8282.	2.1	21
333	Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13, 3880-3916.	15.6	149
334	Stability of MAPbI ₃ perovskite grown on planar and mesoporous electron-selective contact by inverse temperature crystallization. RSC Advances, 2020, 10, 30767-30775.	1.7	12
335	Structural Evolution of Layered Hybrid Lead Iodide Perovskites in Colloidal Dispersions. ACS Nano, 2020, 14, 11294-11308.	7.3	18
336	Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces. Journal of the American Chemical Society, 2020, 142, 21595-21614.	6.6	32
337	Preferred oriented cation configurations in high pressure phases IV and V of methylammonium lead iodide perovskite. Scientific Reports, 2020, 10, 21138.	1.6	5
338	Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases. Journal of the American Chemical Society, 2020, 142, 19705-19714.	6.6	83
339	Improving the heterointerface in hybrid organic–inorganic perovskite solar cells by surface engineering: Insights from periodic hybrid density functional theory calculations. Journal of Computational Chemistry, 2020, 41, 1740-1747.	1.5	8
340	Tin based organic–inorganic hybrid semiconductors with reversible phase transition and dielectric anomaly. Dalton Transactions, 2020, 49, 7252-7257.	1.6	16
341	Effect of Crystal Symmetry on the Spin States of Fe ³⁺ and Vibration Modes in Lead-free Double-Perovskite Cs ₂ AgBi(Fe)Br ₆ . Journal of Physical Chemistry Letters, 2020, 11, 4873-4878.	2.1	11
342	Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy and Environmental Science, 2020, 13, 2363-2385.	15.6	109

#	Article	IF	CITATIONS
343	Ionically Generated Builtâ€In Equilibrium Space Charge Zones—a Paradigm Change for Lead Halide Perovskite Interfaces. Advanced Functional Materials, 2020, 30, 2002426.	7.8	10
344	Femtosecond laser direct writing of perovskite patterns with whispering gallery mode lasing. Journal of Materials Chemistry C, 2020, 8, 7314-7321.	2.7	18
345	CsPbBr ₃ /CH ₃ NH ₃ PbCl ₃ Double Layer Enhances Efficiency and Lifetime of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2191-2199.	8.8	44
346	Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 57-64.	0.4	3
347	Nanocarbon. , 2020, , 131-155.		0
348	First-Principles Investigation of the Thermal Degradation Mechanisms of Methylammonium Lead Triiodide Perovskite. Journal of Physical Chemistry C, 2020, 124, 14521-14530.	1.5	5
349	Directionally Selective Polyhalide Molecular Glue for Stable Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000244.	3.1	4
350	Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367, 1135-1140.	6.0	525
351	Photoinduced Anion Segregation in Mixed Halide Perovskites. Trends in Chemistry, 2020, 2, 282-301.	4.4	141
352	A phase-field model for the evaporation of thin film mixtures. Physical Chemistry Chemical Physics, 2020, 22, 6638-6652.	1.3	17
353	Facets Directed Connecting Perovskite Nanocrystals. Journal of the American Chemical Society, 2020, 142, 7207-7217.	6.6	37
354	Quo vadis, perovskite emitters?. Journal of Chemical Physics, 2020, 152, 130901.	1.2	20
355	Exploring Bi3+ distribution characteristics of MAPbxBi1-xBr3 thin films by space-limited method. Journal of Crystal Growth, 2020, 537, 125604.	0.7	0
356	Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 2020, 5, 1107-1123.	8.8	400
357	Leadâ€Free Perovskite Variant Solid Solutions Cs ₂ Sn _{1–} <i>_x</i> Te <i>_xxx</i>	11.1	169
358	Interface Matters: Enhanced Photoluminescence and Long-Term Stability of Zero-Dimensional Cesium Lead Bromide Nanocrystals <i>via</i> Gas-Phase Aluminum Oxide Encapsulation. ACS Applied Materials & Interfaces, 2020, 12, 35598-35605.	4.0	14
359	Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Solar Energy, 2020, 206, 816-825.	2.9	86
360	A Review and Perspective on Cathodoluminescence Analysis of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903840.	10.2	26

#	Article	IF	CITATIONS
361	Efficient Perovskite Solar Cells by Reducing Interfaceâ€Mediated Recombination: a Bulky Amine Approach. Advanced Energy Materials, 2020, 10, 2000197.	10.2	198
362	A versatile lead iodide particle synthesis and film surface analysis for optoelectronics. Journal of Alloys and Compounds, 2020, 829, 154486.	2.8	10
363	Improvement on performance of hybrid CH3NH3PbI3â°'xClx perovskite solar cells induced sequential deposition by low pressure assisted solution processing. Solar Energy, 2020, 199, 826-831.	2.9	12
364	Structure and optical properties of perovskite-embedded dual-phase microcrystals synthesized by sonochemistry. Communications Chemistry, 2020, 3, .	2.0	26
365	Defect Passivation via the Incorporation of Tetrapropylammonium Cation Leading to Stability Enhancement in Lead Halide Perovskite. Advanced Functional Materials, 2020, 30, 1909737.	7.8	50
366	One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. Journal of Luminescence, 2020, 221, 117079.	1.5	10
367	Recent advances in defect passivation of perovskite active layer via additive engineering: a review. Journal Physics D: Applied Physics, 2020, 53, 183002.	1.3	15
368	Water driven photoluminescence enhancement and recovery of CH3NH3PbBr3/Silicon oil/PDMS-urea composite. Journal of Alloys and Compounds, 2020, 834, 155088.	2.8	7
369	Modulating the emission of CsPbBr3 perovskite nanocrystals via thermally varying magnetic field of La0.67Sr0.33Mn0.9(Ni/Co)0.1O3. AIP Advances, 2020, 10, .	0.6	11
370	Twoâ€Dimensional Metalâ€Halide Perovskiteâ€based Optoelectronics: Synthesis, Structure, Properties and Applications. Energy and Environmental Materials, 2021, 4, 46-64.	7.3	34
371	CsPbBr3 perovskite nanocrystals coated paper substrate as atmospheric humidity sensor. Materials Today: Proceedings, 2021, 41, 610-612.	0.9	8
372	Perovskite tandem solar cells with improved efficiency and stability. Journal of Energy Chemistry, 2021, 58, 219-232.	7.1	32
373	Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Science Bulletin, 2021, 66, 536-544.	4.3	10
374	Achieving Ultrahigh Piezoelectricity in Organic–Inorganic Vacancy-Ordered Halide Double Perovskites for Mechanical Energy Harvesting. ACS Energy Letters, 2021, 6, 16-23.	8.8	28
375	One-step method for the fabrication of high-quality perovskite thin-films under ambient conditions: Stability, morphological, optical, and electrical evaluation. Thin Solid Films, 2021, 717, 138438.	0.8	2
376	Optoelectronic and <scp>photoâ€charging</scp> properties of <scp> CH ₃ NH ₃ Pbl ₃ </scp> / <scp> LiFePO ₄ </scp> system. International Journal of Energy Research, 2021, 45, 6426-6435.	2.2	4
377	Photovoltaic Performance Enhancement of Allâ€Inorganic CsPbBr 3 Perovskite Solar Cells Using In 2 S 3 as Electron Transport Layer via Facile Reflux ondensation Process. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000665.	0.8	4
378	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	5.2	74

#	Article	IF	CITATIONS
379	Enhanced optical properties of perovskite thin film through material optimization for photovoltaic application. E3S Web of Conferences, 2021, 239, 00020.	0.2	4
380	Room Temperature Processed Double Electron Transport Layers for Efficient Perovskite Solar Cells. Nanomaterials, 2021, 11, 329.	1.9	9

Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq0 0 0 $\underset{0.2}{\text{rgBT}}$ /Overlock 10 Tr

382	Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy and Environmental Science, 2021, 14, 5690-5722.	15.6	92
383	Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites. Sustainable Energy and Fuels, 2021, 5, 1255-1279.	2.5	14
384	Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Advances, 2021, 3, 6659-6668.	2.2	9
385	Substance and shadow of formamidinium lead triiodide based solar cells. Physical Chemistry Chemical Physics, 2021, 23, 9049-9060.	1.3	7
386	Semiconductor to metallic transition under induced pressure in Cs ₂ AgBiBr ₆ double halide perovskite: a theoretical DFT study for photovoltaic and optoelectronic applications. RSC Advances, 2021, 11, 24001-24012.	1.7	26
387	Passivation of triple cation perovskites using guanidinium iodide in inverted solar cells for improved open-circuit voltage and stability. Sustainable Energy and Fuels, 2021, 5, 2486-2493.	2.5	5
388	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
389	Structural and optoelectronic behavior of the copper-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Cs</mml:mi>double perovskite: A density functional theory investigation. Physical Review B, 2021, 103, .</mml:mrow></mml:msub></mml:math 	nroby⊉> < m	ml m n>2
390	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
391	Lowâ€Dimensionalâ€Networked Perovskites with A‣iteâ€Cation Engineering for Optoelectronic Devices. Small Methods, 2021, 5, e2001147.	4.6	27
392	A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science, 2021, 2, 100293.	2.8	39
393	Underestimated effect of the polymer encapsulation process on the photoluminescence of perovskite revealed by in situ single-particle detection. Optics Express, 2021, 29, 1851.	1.7	7
394	Inorganic Halide Perovskitoid TIPbI ₃ for Ionizing Radiation Detection. Advanced Functional Materials, 2021, 31, 2006635.	7.8	16
395	Moisture resistance in perovskite solar cells attributed to a water-splitting layer. Communications Materials, 2021, 2, .	2.9	29
396	Halide-driven formation of lead halide perovskites: insight from <i>ab initio</i> molecular dynamics simulations. Materials Advances, 2021, 2, 3915-3926.	2.6	18

#	Article	IF	CITATIONS
397	Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: from aging to degradation. Journal of Materials Chemistry A, 2021, 9, 6732-6748.	5.2	26
398	Compact TiO2 blocking-layer prepared by LbL for perovskite solar cells. Solar Energy, 2021, 214, 510-516.	2.9	7
399	Low-Temperature-Processed Perovskite Solar Cells Fabricated from Presynthesized CsFAPbI ₃ Powder. ACS Applied Energy Materials, 2021, 4, 2600-2606.	2.5	25
400	Two-dimensional halide perovskite single crystals: principles and promises. Emergent Materials, 2021, 4, 865-880.	3.2	14
401	Wide and Tunable Bandgap MAPbBr _{3â^'<i>x</i>} Cl _{<i>x</i>} Hybrid Perovskites with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5, 2000718.	3.1	32
402	CABr Post-Treatment for High-Performance MAPbI3 Solar Cells on Rigid Glass and Flexible Substrate. Nanomaterials, 2021, 11, 750.	1.9	7
403	<i>N</i> Bromosuccinimide as an Interfacial Alleviator for Br/I Exchange in Perovskite for Solar Cell Fabrication. ACS Applied Energy Materials, 2021, 4, 3130-3140.	2.5	4
404	Two Organic Hybrid Iodoplumbates Directed by a Bifunctional Bis(pyrazinyl)triazole. Inorganic Chemistry, 2021, 60, 5362-5366.	1.9	10
405	Perspectives of Organic and Perovskiteâ€Based Spintronics. Advanced Optical Materials, 2021, 9, 2100215.	3.6	46
406	Gentle Materials Need Gentle Fabrication: Encapsulation of Perovskites by Gas-Phase Alumina Deposition. Journal of Physical Chemistry Letters, 2021, 12, 2348-2357.	2.1	8
407	Layered Arrangement of 1D Wavy Chains in the Leadâ€Free Hybrid Perovskite (PyrCO ₂ H) ₂ Bil ₅ : Structural Investigations and Properties. European Journal of Inorganic Chemistry, 2021, 2021, 1452-1458.	1.0	5
408	Defect Passivation of CsPbBr ₃ with AgBr for Highâ€Performance Allâ€Inorganic Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000099.	2.8	18
409	Water-resistant and flexible all-inorganic perovskite nanocrystals films for white light-emitting applications. Journal of Materials Research, 2021, 36, 1835-1845.	1.2	6
410	Toward Green Optoelectronics: Environmental-Friendly Colloidal Quantum Dots Photodetectors. Frontiers in Energy Research, 2021, 9, .	1.2	15
411	A holistic framework towards understanding the optical and dielectric behaviors of CH3NH3PbCl3 perovskites/graphene oxide hybrid films for light absorbing active layer. Journal of Solid State Chemistry, 2021, 298, 122137.	1.4	8
412	Access to Ultrafast Surface and Interface Carrier Dynamics Simultaneously in Space and Time. Journal of Physical Chemistry C, 2021, 125, 14495-14516.	1.5	6
413	Introducing Intermolecular Cationâ€ĩ€ Interactions for Waterâ€6table Low Dimensional Hybrid Lead Halide Perovskites. Angewandte Chemie, 2021, 133, 18413-18419.	1.6	6
414	Modulation of interfacial charge dynamics of semiconductor heterostructures for advanced photocatalytic applications. Coordination Chemistry Reviews, 2021, 438, 213876.	9.5	93

#	Article	IF	CITATIONS
415	The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells. Crystals, 2021, 11, 814.	1.0	17
416	Introducing Intermolecular Cationâ€i€ Interactions for Waterâ€Stable Low Dimensional Hybrid Lead Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 18265-18271.	7.2	64
417	Zwitterionic Ionic Liquid Confer Defect Tolerance, High Conductivity, and Hydrophobicity toward Efficient Perovskite Solar Cells Exceeding 22% Efficiency. Solar Rrl, 2021, 5, 2100352.	3.1	35
418	One-Dimensional Organic–Metal Halide with Highly Efficient Warm White-Light Emission and Its Moisture-Induced Structural Transformation. Chemistry of Materials, 2021, 33, 5668-5674.	3.2	30
419	2D Perovskite Single Crystals for Photodetectors: From Macro―to Microscale. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100183.	1.2	5
420	Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem, 2021, 8, 4396-4411.	1.7	4
421	Matrix Manipulation of Directlyâ€Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. Advanced Functional Materials, 2021, 31, 2104457.	7.8	24
422	Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Advanced Energy Materials, 2021, 11, 2101854.	10.2	52
423	Selfâ€Healing Cs ₃ Bi ₂ Br ₃ I ₆ Perovskite Wafers for Xâ€Ray Detection. Advanced Functional Materials, 2021, 31, 2102713.	7.8	29
424	Stimuli-responsive switchable halide perovskites: Taking advantage of instability. Joule, 2021, 5, 2027-2046.	11.7	56
425	Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells. Materials Today Physics, 2021, 21, 100543.	2.9	14
426	Poly(vinylidene fluorideâ€coâ€hexafluoropropylene) additive in perovskite for stable performance of carbonâ€based perovskite solar cells. International Journal of Energy Research, 2022, 46, 1565-1574.	2.2	12
427	Lead-free indium-silver based double perovskites for thermoelectric applications: Structural, electronic and thermoelectric properties using first-principles approach. Materials Today Communications, 2021, 28, 102609.	0.9	4
428	Mixing of Azetidinium in Formamidinium Tin Triiodide Perovskite Solar Cells for Enhanced Photovoltaic Performance and High Stability in Air. ChemSusChem, 2021, 14, 4415-4421.	3.6	19
429	lodide <i>vs</i> Chloride: The Impact of Different Lead Halides on the Solution Chemistry of Perovskite Precursors. ACS Applied Energy Materials, 2021, 4, 9827-9835.	2.5	11
430	Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. Organic Electronics, 2021, 98, 106295.	1.4	12
431	Is machine learning redefining the perovskite solar cells?. Journal of Energy Chemistry, 2022, 66, 74-90.	7.1	27
432	Zinc ion functional doping for all-inorganic planar CsPblBr ₂ perovskite solar cells with efficiency over 10.5%. Journal of Materials Chemistry C. 2021, 9, 2145-2155.	2.7	43

#	Article	IF	CITATIONS
433	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
434	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
435	Impermeable Charge Transport Layers Enable Aqueous Processing on Top of Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903897.	10.2	30
436	Perovskite Photovoltaics: From Laboratory to Industry. Springer Series in Optical Sciences, 2020, , 219-255.	0.5	9
437	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.5	6
438	The impacts of PbI ₂ purity on the morphology and device performance of one-step spray-coated planar heterojunction perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 436-443.	2.5	34
439	Emergence of hidden phases of methylammonium lead iodide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo> (</mml:mo> <mml:msub> <mml:m upon compression. Physical Review Materials, 2018, 2, .</mml:m </mml:msub></mml:mrow></mml:math 	i> Cl9 <td>11:115i><mml:r< td=""></mml:r<></td>	11 :115 i> <mml:r< td=""></mml:r<>
440	Decoding the charge carrier dynamics in triple cation-based perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 6352-6360.	2.5	10
441	Single-source flash sublimation of metal-halide semiconductors. , 2019, , .		3
442	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1
444	Ab-initio investigations for structural, mechanical, optoelectronic, and thermoelectric properties of Ba2SbXO6 (X Nb, Ta) compounds. Journal of Alloys and Compounds, 2022, 893, 162332.	2.8	7
445	Surface Reconstruction and In Situ Formation of 2D Layer for Efficient and Stable 2D/3D Perovskite Solar Cells. Small Methods, 2021, 5, e2101000.	4.6	33
447	Enhanced Stability of MAPbI 3 Perovskite Films with Zirconium Phosphateâ€Phosphonomethylglycine Nanosheets as Additive. Advanced Materials Interfaces, 0, , 2101888.	1.9	0
448	Nanoporous anodic alumina with ohmic contact between substrate and infill: Application to perovskite solar cells. Energy Science and Engineering, 2022, 10, 30-42.	1.9	3
449	Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Solar Energy, 2021, 230, 954-978.	2.9	19
450	Metal Chalcohalides: Next Generation Photovoltaic Materials?. Solar Rrl, 2022, 6, 2100829.	3.1	29
451	Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Crystals for Improved Structural Stability and Enhanced Photodetection. Advanced Materials, 2022, 34, e2106160.	11.1	18
452	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97

#	Article	IF	CITATIONS
453	Precursor solution-dependent secondary phase defects in CsPbBr ₃ single crystal grown by inverse temperature crystallization. Journal of Materials Chemistry A, 2021, 9, 27718-27726.	5.2	6
454	Morphologically stable and controlled shape of CsPbBr3 perovskite nanoparticle synthesized at room temperature with curing time. AIP Conference Proceedings, 2021, , .	0.3	0
455	Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 283-291.	2.4	16
456	Surface Passivation of MAPbBr ₃ Perovskite Single Crystals to Suppress Ion Migration and Enhance Photoelectronic Performance. ACS Applied Materials & Interfaces, 2022, 14, 10917-10926.	4.0	39
457	Anion Exchange in Lead Halide Perovskites: An Overview. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	12
458	Design and Comparative Performance Analysis of Highâ€Efficiency Leadâ€Based and Leadâ€Free Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	15
459	Conjugated polyelectrolytes for stable perovskite solar cells based on methylammonium lead triiodide. Journal of Materials Chemistry A, 2022, 10, 3321-3329.	5.2	1
460	A comprehensive analysis of PV cell parameters with varying halides stoichiometry in mixed halide perovskite solar cells. Optical Materials, 2022, 123, 111905.	1.7	6
461	Reversible Methanolation of Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 667-672.	6.6	23
462	Azadipyrromethene Dye-Assisted Defect Passivation for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 14388-14399.	4.0	15
463	Lowâ€temperature crystallization and growth of <scp> CsPbIBr ₂ </scp> films through <scp> PbX ₂ â€DMSO </scp> adduct towards stable and efficient carbonâ€based <scp>allâ€inorganic</scp> perovskite solar cells. International Journal of Energy Research, 2022, 46, 9310-9322.	2.2	7
464	What Happens When Halide Perovskites Meet with Water?. Journal of Physical Chemistry Letters, 2022, 13, 2281-2290.	2.1	70
465	Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Reports Physical Science, 2022, 3, 100827.	2.8	16
466	Metal Halide Perovskite Heterojunction for Photocatalytic Hydrogen Generation: Progress and Future Opportunities. Advanced Materials Interfaces, 2022, 9, .	1.9	20
467	Monolayer CVD Graphene Barrier Enhances the Stability of Planar p–i–n Organic–Inorganic Metal Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 52-60.	2.5	5
468	Chalcogenide Perovskites: Tantalizing Prospects, Challenging Materials. Advanced Optical Materials, 2022, 10, .	3.6	58
469	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
470	Investigation on the Facet-Dependent Anisotropy in Halide Perovskite Single Crystals. Journal of Physical Chemistry C 2022 126 8906-8912	1.5	7

#	Article	IF	CITATIONS
471	When Aggregationâ€Induced Emission Meets Perovskites: Efficient Defectâ€Passivation and Chargeâ€Transfer for Ambient Fabrication of Perovskite Solar Cells. Chemistry - A European Journal, 2022, 28, .	1.7	6
472	Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principles. Journal of Chemical Information and Modeling, 2022, 62, 6423-6435.	2.5	5
473	Microstrain and Urbach Energy Relaxation in FAPbI ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Interfaces, 2022, 14, 24546-24556.	4.0	10
474	Indirect to direct band gap transition through order to disorder transformation of Cs ₂ AgBiBr ₆ <i>via</i> creating antisite defects for optoelectronic and photovoltaic applications. RSC Advances, 2022, 12, 15461-15469.	1.7	21
475	Efficacy of Perovskite Photocatalysis: Challenges to Overcome. ACS Energy Letters, 2022, 7, 1994-2011.	8.8	56
476	Halide Double-Perovskite Semiconductors beyond Photovoltaics. ACS Energy Letters, 2022, 7, 2128-2135.	8.8	54
477	Rational Design of Metal Halide Perovskite Nanocrystals for Photocatalytic CO ₂ Reduction: Recent Advances, Challenges, and Prospects. ACS Energy Letters, 2022, 7, 2043-2059.	8.8	89
478	Self-assembly of perovskite nanocrystals. Progress in Materials Science, 2022, 129, 100975.	16.0	25
479	Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation. Nano Energy, 2022, 99, 107401.	8.2	14
480	A review on the sensing mechanisms and recent developments on metal halide-based perovskite gas sensors. Journal of Materials Chemistry C, 2022, 10, 10196-10223.	2.7	25
481	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
482	Aromatic Amino Acid-Mediated Perovskite Nanocrystals: Fluorescence Tuning and Morphological Evolution. Inorganic Chemistry, 2022, 61, 10079-10088.	1.9	7
483	Atomic Layer Deposition of CsI and CsPbI ₃ . Chemistry of Materials, 2022, 34, 6087-6097.	3.2	6
484	Synthesis and Characterization of (FA) ₃ (HEA) ₂ Pb ₃ I ₁₁ : A Rare Example of <1 1 0>-Oriented Multilayered Halide Perovskites. Chemistry of Materials, 2022, 34, 5780-5790.	3.2	2
485	Triangular Microâ€Grating via Femtosecond Laser Direct Writing toward Highâ€Performance Polarizationâ€5ensitive Perovskite Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	14
486	Solvent-Induced Crystallization Method for High-Performance and Long-Term Stability Flexible Perovskite Photodetectors. Frontiers in Materials, 0, 9, .	1.2	0
487	Bandgap Engineering of Cesium Lead Halide Perovskite CsPbBr ₃ through Cu Doping. Advanced Theory and Simulations, 2022, 5, .	1.3	5
488	Semiconductor to metallic transition in double halide perovskites Cs2AgBiCl6 through induced pressure: A DFT simulation for optoelectronic and photovoltaic applications. Heliyon, 2022, 8, e10032.	1.4	4

#	Article	IF	CITATIONS
489	Synthesis, photophysical properties and DFT studies of pyrrolo[1,2â€ <i>a</i>]quinoxaline hosted novel hole transporting molecules for perovskite solar cell (PSC). Journal of Physical Organic Chemistry, 2022, 35, .	0.9	2
490	Computational study of Cs2ScXBr6 (X=Ag, Tl) for renewable energy devices. Physica B: Condensed Matter, 2022, , 414277.	1.3	2
491	Pressure induced band gap shifting from ultra-violet to visible region of RbSrCl ₃ perovskite. Materials Research Express, 2022, 9, 095902.	0.8	7
492	Performance Regulation of Perovskite Solar Cells via Bifacial Modification by F4-TCNQ and PFN-Br. Journal of Physical Chemistry C, 2022, 126, 15128-15134.	1.5	2
493	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
494	Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 24895-24905.	1.1	4
495	A Firstâ€Principles Study on ABBr ₃ (A = Cs, Rb, K, Na; B = Ge, Sn) Halide Perovskites for Photovoltaic Applications. Advanced Theory and Simulations, 2022, 5, .	1.3	8
496	Solar Cell Efficiency Exceeding 25% through Rb-Based Perovskitoid Scaffold Stabilizing the Buried Perovskite Surface. ACS Energy Letters, 2022, 7, 3685-3694.	8.8	44
497	Amine-Free Synthetic Route: An Emerging Approach to Making High-Quality Perovskite Nanocrystals for Futuristic Applications. Journal of Physical Chemistry Letters, 2022, 13, 9480-9493.	2.1	9
498	Efficient Perovskite Solar Cells via Phenethylamine Iodide Cation-Modified Hole Transport Layer/Perovskite Interface. ACS Omega, 2022, 7, 37359-37368.	1.6	3
499	Competition of Iodide/Bromide Ions in the Formation of Methylammonium Lead Halide in Different Solvents. Journal of Physical Chemistry C, 2022, 126, 17656-17662.	1.5	1
500	Roles that Organic Ammoniums Play on the Surface of the Perovskite Film: A Review. Chemistry - A European Journal, 2023, 29, .	1.7	7
501	Recent Advances in Lead-Free Halide Perovskites for Photocatalysis. , 2023, 5, 60-78.		26
502	Stereoelectronic Effect from B-Site Dopants Stabilizes Black Phase of CsPbI ₃ . Chemistry of Materials, 2023, 35, 271-279.	3.2	9
503	Anion Exchange Reaction of CsPbBr ₃ Perovskite Nanocrystals: Affinity of Halide Ion Matters. ChemistrySelect, 2022, 7, .	0.7	4
504	Minimizing the transport loss and degradation of perovskite optoelectronics via grain dimerization technique. EcoMat, 2023, 5, .	6.8	4
505	24.64%â€Efficiency MAâ€Free Perovskite Solar Cell with <i>V</i> oc of 1.19ÂV Enabled by a Hingeâ€Type Fluorineâ€Rich Complex. Advanced Functional Materials, 2023, 33, .	7.8	18
506	Bandgap narrowing and piezochromism of doped two-dimensional hybrid perovskite nanocrystals under pressure. Journal of Materials Chemistry C, 2023, 11, 1726-1732.	2.7	2

#	Article	IF	CITATIONS
507	Hydrazone dye passivator for high-performance and stable perovskite solar cells. Dalton Transactions, 2023, 52, 1702-1710.	1.6	3
508	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	2.5	7
509	Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
510	Lattice Dynamics and Electron–Phonon Coupling in Double Perovskite Cs ₂ NaFeCl ₆ . Journal of Physical Chemistry C, 2023, 127, 1908-1916.	1.5	9
511	Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes. Nanoscale, 2023, 15, 4951-4961.	2.8	1
512	IR Spectroscopic Degradation Study of Thin Organometal Halide Perovskite Films. Molecules, 2023, 28, 1288.	1.7	8
513	Combining Ï€-Conjugation and Cationâ^'ï€ Interaction for Water-Stable and Photoconductive One-Dimensional Hybrid Lead Bromide. Journal of Physical Chemistry Letters, 2023, 14, 1870-1876.	2.1	8
514	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
515	Optical Sensing Capability Evaluation for Methylammonium Based Perovskites for Explosive. Journal of Fluorescence, 0, , .	1.3	1
516	Facet Engineering for Decelerated Carrier Cooling in Polyhedral Perovskite Nanocrystals. Nano Letters, 2023, 23, 1946-1953.	4.5	6
517	Low-temperature synthesis of lead-free Cs ₂ AgBiBr ₆ double-perovskite ink. Nanomaterials and Energy, 2022, 11, 80-84.	0.1	0
518	Predicting Sulfurâ€Rich Oxysulfide Perovskites for Waterâ€Splitting Applications Using Machine Learning. Advanced Theory and Simulations, 2023, 6, .	1.3	2
519	Leveraging Low-Energy Structural Thermodynamics in Halide Perovskites. ACS Energy Letters, 2023, 8, 1705-1715.	8.8	8
520	Carrier–Phonon Interaction Induced Large Negative Thermalâ€Optic Coefficient at Near Band Edge of Quasiâ€2D (PEA) ₂ PbBr ₄ Perovskite. Advanced Functional Materials, 2023, 33, .	7.8	2
521	Non-Adiabatic Dynamics in Condensed Matter and Nanoscale Systems. , 2024, , 394-412.		0
522	Dodecahedron CsPbBr ₃ Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. Journal of Physical Chemistry Letters, 2023, 14, 3953-3960.	2.1	2
525	Can we make color switchable photovoltaic windows?. Chemical Science, 2023, 14, 7828-7841.	3.7	1
527	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21

ARTICLE

IF CITATIONS