Ion Migration in Organometal Trihalide Perovskite and Efficiency and Stability

Accounts of Chemical Research

49, 286-293

DOI: 10.1021/acs.accounts.5b00420

Citation Report

#	Article	IF	CITATIONS
3	Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films. Molecules, 2016, 21, 1081.	1.7	33
4	Airâ€Stable, Efficient Mixedâ€Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Advanced Energy Materials, 2016, 6, 1600372.	10.2	275
5	lodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. Journal of Physical Chemistry Letters, 2016, 7, 5168-5175.	2.1	225
6	Three-Dimensional Optical Tomography and Correlated Elemental Analysis of Hybrid Perovskite Microstructures: An Insight into Defect-Related Lattice Distortion and Photoinduced Ion Migration. Journal of Physical Chemistry Letters, 2016, 7, 5227-5234.	2.1	37
7	Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films. ACS Applied Materials & Interfaces, 2016, 8, 34590-34597.	4.0	32
8	The physics of photon induced degradation of perovskite solar cells. AIP Advances, 2016, 6, .	0.6	48
9	Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nature Communications, 2016, 7, 13831.	5.8	616
10	Super-Resolution Luminescence Microspectroscopy Reveals the Mechanism of Photoinduced Degradation in CH ₃ NH ₃ Pbl ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 10711-10719.	1.5	127
11	Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. ACS Energy Letters, 2016, 1, 757-763.	8.8	317
12	Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite. Journal of Materials Chemistry C, 2016, 4, 9060-9068.	2.7	77
13	Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27148-27157.	1.3	75
14	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	1.7	69
15	Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18, 30484-30490.	1.3	322
16	Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2016, 4, 16975-16981.	5.2	67
17	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	11.1	130
18	PbI ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	6.6	107
19	Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials. Nano Letters, 2016, 16, 5756-5763.	4.5	91
20	Fast self-diffusion of ions in CH ₃ NH ₃ PbI ₃ : the interstiticaly mechanism versus vacancy-assisted mechanism. Journal of Materials Chemistry A, 2016, 4, 13105-13112.	5.2	74

#	Article	IF	CITATIONS
21	Ion Migration in Hybrid Perovskite Solar Cells. , 2016, , 137-162.		16
22	Radiation Hardness and Selfâ€Healing of Perovskite Solar Cells. Advanced Materials, 2016, 28, 8726-8731.	11.1	195
23	Dynamics of Photocarrier Separation in MAPbI ₃ Perovskite Multigrain Films under a Quasistatic Electric Field. Journal of Physical Chemistry C, 2016, 120, 19595-19602.	1.5	22
24	Highly-Efficient and Long-Term Stable Perovskite Solar Cells Enabled by a Cross-Linkable <i>n</i> Doped Hybrid Cathode Interfacial Layer. Chemistry of Materials, 2016, 28, 6305-6312.	3.2	38
25	Solution-Processable Ionic Liquid as an Independent or Modifying Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34464-34473.	4.0	111
26	Crystalline Intermediates and Their Transformation Kinetics during the Formation of Methylammonium Lead Halide Perovskite Thin Films. Chemistry of Materials, 2016, 28, 9041-9048.	3.2	29
27	Near infrared photodetectors based on subâ€gap absorption in organohalide perovskite single crystals. Laser and Photonics Reviews, 2016, 10, 1047-1053.	4.4	64
28	Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. ChemSusChem, 2016, 9, 2541-2558.	3.6	88
29	Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites. Chemistry of Materials, 2016, 28, 6848-6859.	3.2	132
30	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30107-30115.	4.0	28
31	Formation of Perovskite Heterostructures by Ion Exchange. ACS Applied Materials & Interfaces, 2016, 8, 33273-33279.	4.0	56
32	Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays. CheM, 2016, 1, 776-789.	5.8	153
33	Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation. ACS Applied Materials & amp; Interfaces, 2016, 8, 32366-32375.	4.0	19
34	Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy, 2016, 30, 570-579.	8.2	110
35	Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and Environmental Science, 2016, 9, 3650-3656.	15.6	239
36	Influence of Perovskite Morphology on Slow and Fast Charge Transport and Hysteresis in the Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4614-4621.	2.1	39
37	Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH ₃ NH ₃ PbI ₃ . Chemistry of Materials, 2016, 28, 4349-4357.	3.2	139
38	Tracking lodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation. ACS Energy Letters, 2016, 1, 290-296.	8.8	321

#	Article	IF	CITATIONS
39	Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites. ACS Nano, 2016, 10, 6933-6941.	7.3	115
40	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	23.0	1,343
41	Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and Ultrahigh Mobility of Iodine. Journal of Physical Chemistry Letters, 2016, 7, 2356-2361.	2.1	125
42	Low temperature synthesis of hierarchical TiO ₂ nanostructures for high performance perovskite solar cells by pulsed laser deposition. Physical Chemistry Chemical Physics, 2016, 18, 27067-27072.	1.3	29
43	Thermodynamic Origin of Photoinstability in the CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Hybrid Halide Perovskite Alloy. Journal of Physical Chemistry Letters, 2016, 7, 1083-1087.	2.1	298
44	Adverse Effects of Excess Residual PbI ₂ on Photovoltaic Performance, Charge Separation, and Trapâ€State Properties in Mesoporous Structured Perovskite Solar Cells. Chemistry - A European Journal, 2017, 23, 3986-3992.	1.7	63
45	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.	15.6	525
46	Double Charged Surface Layers in Lead Halide Perovskite Crystals. Nano Letters, 2017, 17, 2021-2027.	4.5	60
47	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
48	Enhanced long-term stability of perovskite solar cells by 3-hydroxypyridine dipping. Chemical Communications, 2017, 53, 1829-1831.	2.2	59
49	Impact of Excess CH ₃ NH ₃ I on Free Carrier Dynamics in High-Performance Nonstoichiometric Perovskites. Journal of Physical Chemistry C, 2017, 121, 3143-3148.	1.5	49
50	Coupled Slow and Fast Charge Dynamics in Cesium Lead Bromide Perovskite. ACS Energy Letters, 2017, 2, 488-496.	8.8	13
51	Photo-induced ferroelectric switching in perovskite CH ₃ NH ₃ PbI ₃ films. Nanoscale, 2017, 9, 3806-3817.	2.8	86
52	Origins and mechanisms of hysteresis in organometal halide perovskites. Journal of Physics Condensed Matter, 2017, 29, 193001.	0.7	55
53	Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices. Advanced Energy Materials, 2017, 7, 1602283.	10.2	47
54	Stable monolithic hole-conductor-free perovskite solar cells using TiO 2 nanoparticle binding carbon films. Organic Electronics, 2017, 45, 131-138.	1.4	49
55	Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Scientific Reports, 2017, 7, 43794.	1.6	103
56	Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies. Molecular Simulation, 2017, 43, 774-796.	0.9	4

ARTICLE IF CITATIONS Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent 57 11.1 320 Efficiency and Stability. Advanced Materials, 2017, 29, 1606806. Density of photoinduced free carriers in perovskite thin films via purely optical detection. Journal of 2.7 Materials Chemistry C, 2017, 5, 3283-3287. Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy. ACS 59 8.8 97 Energy Letters, 2017, 2, 906-914. Metal Acetylacetonate Series in Interface Engineering for Full Lowâ€Temperatureâ€Processed, Highâ€Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm² Scale. Advanced Materials, 2017, 29, 1603923. 11.1 190 Investigation of Ion-Mediated Charge Transport in Methylammonium Lead Iodide Perovskite. Journal of 61 1.5 20 Physical Chemistry C, 2017, 121, 5515-5522. Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane) $\hat{a} \in$ "urea copolymers. Journal of Materials Chemistry A, 2017, 5, 5486-5494. 5.2 Crystallographic orientation propagation in metal halide perovskite thin films. Journal of Materials 63 5.2 57 Chemistry A, 2017, 5, 7796-7800. Improved Charge Collection in Highly Efficient CsPbBrl₂ Solar Cells with Light-Induced Dealloying. ACS Energy Letters, 2017, 2, 1043-1049. 64 8.8 Effects of Small Polar Molecules (MA⁺ and H₂O) on Degradation Processes 65 4.0 29 of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 14960-14966. Electrical Stress Influences the Efficiency of CH₃NH₃PbI₃ 11.1 Perovskite Light Emitting Devices. Advanced Materials, 2017, 29, 1605317. Temperature and Electrical Poling Effects on Ionic Motion in MAPbI₃ Photovoltaic Cells. 67 10.2 26 Advanced Energy Materials, 2017, 7, 1700265. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide. Nature 68 5.8 Communications, 2017, 8, 15152. Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602761. 69 10.2 193 Dual function of a high-contrast hydrophobicâ€"hydrophilic coating for enhanced stability of 5.8 perovskite solar cells in extremely humid environments. Nano Research, 2017, 10, 3885-3895. Reversible and Irreversible Electric Field Induced Morphological and Interfacial Transformations of 71 4.0 27 Hybrid Lead Iodide Perovskites. ACS Applied Materials & amp; Interfaces, 2017, 9, 33478-33483. "Supertrap―at Work: Extremely Efficient Nonradiative Recombination Channels in MAPbI₃ Perovskites Revealed by Luminescence Super-Resolution Imaging and Spectroscopy. ACS Nano, 2017, 11, 5391-5404. Junction Propagation in Organometal Halide Perovskite–Polymer Composite Thin Films. Journal of 73 2.130 Physical Chemistry Letters, 2017, 8, 2412-2419. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect 74 8.8 lons. ACS Energy Letters, 2017, 2, 1214-1222.

#	Article	IF	CITATIONS
75	B-Site Metal Cation Exchange in Halide Perovskites. ACS Energy Letters, 2017, 2, 1190-1196.	8.8	99
76	Matching Charge Extraction Contact for Wideâ€Bandgap Perovskite Solar Cells. Advanced Materials, 2017, 29, 1700607.	11.1	178
77	Controllable deposition of TiO 2 nanopillars at room temperature for high performance perovskite solar cells with suppressed hysteresis. Solar Energy Materials and Solar Cells, 2017, 168, 172-182.	3.0	18
78	Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1103-1111.	5.2	155
79	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321-1344.	8.2	240
80	Pressure Dependence of Mixed Conduction and Photo Responsiveness in Organolead Tribromide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2944-2950.	2.1	33
81	UV-Sintered Low-Temperature Solution-Processed SnO ₂ as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 21909-21920.	4.0	123
82	Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability and metal-free electrode. Organic Electronics, 2017, 48, 308-313.	1.4	18
83	Membranes for artificial photosynthesis. Energy and Environmental Science, 2017, 10, 1320-1338.	15.6	65
84	Photon-generated carriers excite superoxide species inducing long-term photoluminescence enhancement of MAPbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 12048-12053.	5.2	34
85	Diammonium and Monoammonium Mixedâ€Organicâ€Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444.	10.2	121
86	Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 5965-5973.	3.2	267
87	Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic: A Perspective. Helvetica Chimica Acta, 2017, 100, e1700090.	1.0	24
88	The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. Nano Letters, 2017, 17, 4270-4276.	4.5	226
89	Tetragonal CH ₃ NH ₃ PbI ₃ is ferroelectric. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5504-E5512.	3.3	240
90	Nonradiative Losses in Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1515-1525.	8.8	290
91	Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films. ACS Applied Materials & Amp; Interfaces, 2017, 9, 20711-20718.	4.0	21
92	Suppressed Ion Migration in Low-Dimensional Perovskites. ACS Energy Letters, 2017, 2, 1571-1572.	8.8	404

ARTICLE IF CITATIONS A PbI_{2â⁻x}Cl_x seed layer for obtaining efficient planar-heterojunction 2.8 15 93 perovskite solar cells via an interdiffusion process. Nanoscale, 2017, 9, 9396-9403. Highâ€Efficiency Solutionâ€Processed Inorganic Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced 94 11.1 193 Materials, 2017, 29, 1700579. Recent efficient strategies for improving the moisture stability of perovskite solar cells. Journal of 95 5.2 125 Materials Chemistry A, 2017, 5, 15447-15459. Direct Experimental Evidence of Halide Ionic Migration under Bias in CH₃NH₃Pbl<sub>3â€"<i>x</i>Solar Cells Using GD-OES Analysis. ACS Energy Letters, 2017, 2, 943-949. Positron Annihilation Spectroscopic Investigation on the Origin of Temperature-Dependent Electrical Response in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 97 2.1 17 1745-1751. Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic–Inorganic Perovskites in Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 2.1 220 1784-1792. Ions Matter: Description of the Anomalous Electronic Behavior in Methylammonium Lead Halide 100 7.8 65 Perovskite Devices. Advanced Functional Materials, 2017, 27, 1606584. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices. Journal of 2.1 10 Physical Chemistry Letters, 2017, 8, 1429-1435. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Science Advances, 102 4.7 165 2017, 3, e1602164. Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007. Ï€â€Conjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar 104 11.1 543 Cells. Advanced Materials, 2017, 29, 1604545. Influence of Interface Morphology on Hysteresis in Vaporâ€Deposited Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600470. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole 106 15.6 436 transporting material interface. Energy and Environmental Science, 2017, 10, 621-627. Lessons Learnt from Spatially Resolved Electro―and Photoluminescence Imaging: Interfacial Delamination in CH₃NH₃Pbl₃Planar Perovskite Solar Cells upon Illumination. Advanced Energy Materials, 2017, 7, 1602111. 10.2 Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: 108 proof of the field screening by mobile ions and determination of the space charge layer widths. 15.6 150 Energy and Environmental Science, 2017, 10, 192-204. Successive surface engineering of TiO₂ compact layers via dual modification of fullerene 109 derivatives affording hysteresis-suppressed high-performance perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1724-1733. Kinetic Isotope Effects Provide Experimental Evidence for Proton Tunneling in Methylammonium Lead 110 6.6 20 Triiodide Perovskites. Journal of the American Chemical Society, 2017, 139, 16359-16364. Ab initio study of the role of iodine in the degradation of CH3NH3PbI3. Journal of Materials Chemistry 5.2 A, 2017, 5, 23976-23986.

#	Article	IF	CITATIONS
112	Fermi level alignment by copper doping for efficient ITO/perovskite junction solar cells. Journal of Materials Chemistry A, 2017, 5, 25211-25219.	5.2	53
113	Pinning Down the Anomalous Light Soaking Effect toward High-Performance and Fast-Response Perovskite Solar Cells: The Ion-Migration-Induced Charge Accumulation. Journal of Physical Chemistry Letters, 2017, 8, 5069-5076.	2.1	60
114	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vapor–Solution Method. Advanced Materials, 2017, 29, 1703256.	11.1	121
115	Irreversible light-soaking effect of perovskite solar cells caused by light-induced oxygen vacancies in titanium oxide. Applied Physics Letters, 2017, 111, .	1.5	56
116	Metalâ€Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Advanced Materials, 2017, 29, 1702838.	11.1	117
117	Organometal Halide Perovskite Solar Cells with Improved Thermal Stability via Grain Boundary Passivation Using a Molecular Additive. Advanced Functional Materials, 2017, 27, 1703546.	7.8	101
118	Realâ€īime Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites. Small, 2017, 13, 1701711.	5.2	148
119	Stabilizing the Ag Electrode and Reducing <i>J</i> – <i>V</i> Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36338-36349.	4.0	129
120	Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy. Npj Quantum Materials, 2017, 2, .	1.8	43
121	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	5.2	70
122	Improved perovskite film quality and solar cell performances using dual single solution coating. Journal of Applied Physics, 2017, 122, .	1.1	13
123	Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells with Suppressed Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 34833-34843.	4.0	21
124	Absence of ferroelectricity in methylammonium lead iodide perovskite. AIP Advances, 2017, 7, 095110.	0.6	27
125	Field-Effect Transistors Based on van-der-Waals-Grown and Dry-Transferred All-Inorganic Perovskite Ultrathin Platelets. Journal of Physical Chemistry Letters, 2017, 8, 4785-4792.	2.1	91
126	Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. Nature Communications, 2017, 8, 613.	5.8	66
127	Intrinsic Broadband Whiteâ€Light Emission from Ultrastable, Cationic Lead Halide Layered Materials. Angewandte Chemie - International Edition, 2017, 56, 14411-14416.	7.2	115
128	Intrinsic Broadband Whiteâ€Light Emission from Ultrastable, Cationic Lead Halide Layered Materials. Angewandte Chemie, 2017, 129, 14603-14608.	1.6	16
129	Solutionâ€Processable Methyl Ammonium Lead Iodide Single Crystal Photodetectors for Visible Light and Xâ€Ray. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700538.	0.8	15

#	Article	IF	CITATIONS
130	Impact of H ₂ O on organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2017, 10, 2284-2311.	15.6	345
131	Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Scientific Reports, 2017, 7, 12183.	1.6	229
132	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with Allâ€inorganic Charge Contacts. Advanced Functional Materials, 2017, 27, 1703068.	7.8	132
133	Enhanced Moisture Stability of Cesiumâ€Containing Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	1.9	65
134	A Hybrid Perovskite Solar Cell Modified With Copper Indium Sulfide Nanocrystals to Enhance Hole Transport and Moisture Stability. Solar Rrl, 2017, 1, 1700078.	3.1	19
135	Tailoring the Performances of Lead Halide Perovskite Devices with Electronâ€Beam Irradiation. Advanced Materials, 2017, 29, 1701636.	11.1	72
136	Trapping charges at grain boundaries and degradation of CH ₃ NH ₃ Pb(I _{1â^'<i>x</i>} Br <i>_x</i>) ₃ perovskite solar cells. Nanotechnology, 2017, 28, 315402.	1.3	23
137	Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26859-26866.	4.0	114
138	A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquidâ€Dopants. Advanced Materials, 2017, 29, 1702157.	11.1	115
139	Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602803.	10.2	147
140	Identifying the charge generation dynamics in Cs ⁺ -based triple cation mixed perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 22905-22914.	1.3	50
141	Dielectric relaxation of CH3NH3PbI3 thin film. Thin Solid Films, 2017, 638, 277-281.	0.8	23
142	Role of Methylammonium Orientation in Ion Diffusion and Current–Voltage Hysteresis in the CH ₃ NH ₃ Pbl ₃ Perovskite. ACS Energy Letters, 2017, 2, 1997-2004.	8.8	68
143	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. Advanced Energy Materials, 2017, 7, 1701235.	10.2	37
144	Computational Verification of So-Called Perovskite Solar Cells as Pbl ₆ ^{4â^'} -Aligned Solar Cells. Journal of the Electrochemical Society, 2017, 164, E3598-E3605.	1.3	3
145	Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. ACS Nano, 2017, 11, 8717-8729.	7.3	67
146	Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. Nanoscale, 2017, 9, 18759-18771.	2.8	25
147	Unraveling the Lightâ€Induced Degradation Mechanisms of CH ₃ NH ₃ PbI ₃ Perovskite Films. Advanced Electronic Materials, 2017, 3, 1700158.	2.6	130

#	Article	IF	CITATIONS
148	Metal/Ion Interactions Induced p–i–n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. Journal of the American Chemical Society, 2017, 139, 17285-17288.	6.6	32
149	Orientational Glass Formation in Substituted Hybrid Perovskites. Chemistry of Materials, 2017, 29, 10168-10177.	3.2	36
150	lodine Vacancy Redistribution in Organic–Inorganic Halide Perovskite Films and Resistive Switching Effects. Advanced Materials, 2017, 29, 1700527.	11.1	268
151	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	10.2	295
152	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	23.3	927
153	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces, 2017, 9, 30197-30246.	4.0	453
154	The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Materials, 2017, 5, .	2.2	80
155	Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction. ACS Applied Materials & Interfaces, 2017, 9, 23624-23634.	4.0	8
156	Impact of Structural Dynamics on the Optical Properties of Methylammonium Lead Iodide Perovskites. Advanced Energy Materials, 2017, 7, 1700286.	10.2	52
157	Dynamic Electronic Junctions in Organic–Inorganic Hybrid Perovskites. Nano Letters, 2017, 17, 4831-4839.	4.5	26
158	Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface. Nano Research, 2017, 10, 483-490.	5.8	8
159	Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study. Applied Surface Science, 2017, 394, 488-497.	3.1	6
160	Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite. Solar Rrl, 2017, 1, 1600001.	3.1	109
161	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	10.2	298
162	Development of a Control Method for Conduction and Magnetism in Molecular Crystals. Bulletin of the Chemical Society of Japan, 2017, 90, 89-136.	2.0	15
163	Modeling hybrid perovskites by molecular dynamics. Journal of Physics Condensed Matter, 2017, 29, 043001.	0.7	66
164	Effect of Cs-Incorporated NiO _{<i>x</i>} on the Performance of Perovskite Solar Cells. ACS Omega, 2017, 2, 9074-9079.	1.6	43
165	Importance of PbI ₂ morphology in two-step deposition of CH ₃ NH ₃ PbI ₃ for high-performance perovskite solar cells. Chinese Physics B, 2017, 26, 128801.	0.7	12

#	Article	IF	CITATIONS
166	Effects of Voltage Biasing on Current Extraction in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701378.	10.2	7
167	Strategic Synthesis of Ultrasmall NiCo ₂ O ₄ NPs as Hole Transport Layer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702722.	10.2	112
168	Density of States Broadening in CH ₃ NH ₃ PbI ₃ Hybrid Perovskites Understood from ab Initio Molecular Dynamics Simulations. ACS Energy Letters, 2018, 3, 787-793.	8.8	28
169	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	11.1	54
170	Competition between Metallic and Vacancy Defect Conductive Filaments in a CH ₃ NH ₃ PbI ₃ -Based Memory Device. Journal of Physical Chemistry C, 2018, 122, 6431-6436.	1.5	115
171	Hydride ion (H ^{â^'}) transport behavior in barium hydride under high pressure. Physical Chemistry Chemical Physics, 2018, 20, 8917-8923.	1.3	17
172	Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth and Design, 2018, 18, 2645-2664.	1.4	75
173	Size Tunable Cesium Antimony Chloride Perovskite Nanowires and Nanorods. Chemistry of Materials, 2018, 30, 2135-2142.	3.2	132
174	Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. Journal of Physical Chemistry Letters, 2018, 9, 1573-1583.	2.1	167
175	Localized Surface Plasmon Enhanced Allâ€Inorganic Perovskite Quantum Dot Lightâ€Emitting Diodes Based onÂCoaxial Core/Shell Heterojunction Architecture. Advanced Functional Materials, 2018, 28, 1707031.	7.8	125
176	High-Efficiency Polycrystalline Perovskite Light-Emitting Diodes Based on Mixed Cations. ACS Nano, 2018, 12, 2883-2892.	7.3	109
177	Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Letters, 2018, 18, 2172-2178.	4.5	186
178	Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy, 2018, 47, 243-256.	8.2	67
179	Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer. Nano Energy, 2018, 49, 230-236.	8.2	15
180	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9, 1607.	5.8	309
181	High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications, 2018, 9, 1609.	5.8	381
182	Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 2018, 47, 4581-4610.	18.7	455
183	Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional Group. Advanced Energy Materials, 2018, 8, 1800715.	10.2	187

ARTICLE IF CITATIONS A Biopolymer Heparin Sodium Interlayer Anchoring TiO₂ and MAPbI₃ Enhances 11.1 199 184 Trap Passivation and Device Stability in Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706924. Efficient and stable hole-conductor-free mesoscopic perovskite solar cells using SiO 2 as blocking 1.4 layer. Organic Electronics, 2018, 58, 69-74. Hindered Formation of Photoinactive Î'-FAPbl₃ Phase and Hysteresis-Free Mixed-Cation Planar Heterojunction Perovskite Solar Cells with Enhanced Efficiency via Potassium Incorporation. 186 2.1 72 Journal of Physical Chemistry Letters, 2018, 9, 2113-2120. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution 205 processed SnO2/MgO composite electron transport layers. Nano Energy, 2018, 49, 290-299. Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence 188 8.2 67 microscopy. Nano Energy, 2018, 46, 356-364. Visualization and Studies of Ion-Diffusion Kinetics in Cesium Lead Bromide Perovskite Nanowires. Nano Letters, 2018, 18, 1807-1813. 189 4.5 RF sputtered CdS films as independent or buffered electron transport layer for efficient planar 190 3.0 39 perovskite solar cell. Solar Energy Materials and Solar Cells, 2018, 178, 186-192. Effect of Bromine Substitution on the Ion Migration and Optical Absorption in MAPbl₃ 2.5 46 Perovskite Solar Cells: The First-Principles Study. ACS Applied Energy Materials, 2018, 1, 1374-1380. Suppressed Ion Migration along the In-Plane Direction in Layered Perovskites. ACS Energy Letters, 2018, 192 8.8 240 3, 684-688. Luminescence Imaging Characterization of Perovskite Solar Cells: A Note on the Analysis and 10.2 Reporting the Results. Advanced Energy Materials, 2018, 8, 1702256. Research progress on organic–inorganic halide perovskite materials and solar cells. Journal Physics 194 1.3 56 D: Applied Physics, 2018, 51, 093001. Progress and Perspective in Lowâ€Dimensional Metal Halide Perovskites for Optoelectronic 3.1 98 Applications. Solar Rrl, 2018, 2, 1700186. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. 196 7.8 543 Advanced Functional Materials, 2018, 28, 1706923. Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Advanced Energy Materials, 2018, 8, 1702772. 10.2 186 Improving the Stability of Metal Halide Perovskite Materials and Lightâ€Emitting Diodes. Advanced 198 11.1 368 Materials, 2018, 30, e1704587. Halide Perovskites for Applications beyond Photovoltaics. Small Methods, 2018, 2, 1700310. 199 94 Design Growth of MAPbI₃ Single Crystal with (220) Facets Exposed and Its Superior 200 2.1 64 Optoelectronic Properties. Journal of Physical Chemistry Letters, 2018, 9, 216-221. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH₃NH₃PbI₃: Implications on Solar Cell Degradation and Choice of Electrode. Advanced Science, 2018, 5, 1700662.

#	Article	IF	CITATIONS
202	Two-in-one additive-engineering strategy for improved air stability of planar perovskite solar cells. Nano Energy, 2018, 45, 229-235.	8.2	41
203	Heat Treatment for Regenerating Degraded Low-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 4860-4865.	4.0	14
204	Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702073.	10.2	74
205	Temperature Gradient-Induced Instability of Perovskite via Ion Transport. ACS Applied Materials & Interfaces, 2018, 10, 835-844.	4.0	15
206	Airâ€Stable Cesium Lead Iodide Perovskite for Ultra‣ow Operating Voltage Resistive Switching. Advanced Functional Materials, 2018, 28, 1705783.	7.8	177
207	Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 1780-1786.	5.2	132
208	Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2018, 3, 204-213.	8.8	444
209	Crystal orientation-dependent optoelectronic properties of MAPbCl ₃ single crystals. Journal of Materials Chemistry C, 2018, 6, 1579-1586.	2.7	78
210	Highâ€Performance Singleâ€Crystalline Perovskite Thinâ€Film Photodetector. Advanced Materials, 2018, 30, 1704333.	11.1	225
211	Post-healing of defects: an alternative way for passivation of carbon-based mesoscopic perovskite solar cells <i>via</i> hydrophobic ligand coordination. Journal of Materials Chemistry A, 2018, 6, 2449-2455.	5.2	66
212	Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. Journal of the American Chemical Society, 2018, 140, 1358-1364.	6.6	708
213	<i>In situ</i> induced core/shell stabilized hybrid perovskites <i>via</i> gallium(<scp>iii</scp>) acetylacetonate intermediate towards highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11, 286-293.	15.6	79
214	Inverted planar organic-inorganic hybrid perovskite solar cells with NiO x hole-transport layers as light-in window. Applied Surface Science, 2018, 451, 325-332.	3.1	15
215	From Ultrafast to Ultraslow: Charge-Carrier Dynamics of Perovskite Solar Cells. Joule, 2018, 2, 879-901.	11.7	190
216	A Lewis Baseâ€Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800055.	3.1	83
217	Highâ€Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustionâ€Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Advanced Energy Materials, 2018, 8, 1703432.	10.2	279
218	The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide Perovskites. Advanced Functional Materials, 2018, 28, 1706995.	7.8	28
219	Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation. ACS Applied Materials & Interfaces, 2018, 10, 11722-11731.	4.0	24

ARTICLE IF CITATIONS # What Remains Unexplained about the Properties of Halide Perovskites?. Advanced Materials, 2018, 30, 220 11.1 231 e1800691. Improving the photovoltaic performance of planar heterojunction perovskite solar cells by mixed solvent vapor treatment. RSC Advances, 2018, 8, 11574-11579. 221 1.7 Large tunable photoeffect on ion conduction in halide perovskites and implications for 222 13.3 410 photodecomposition. Nature Materials, 2018, 17, 445-449. The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory. Journal of Materials Chemistry C, 2018, 6, 3861-3868. Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 224 11.1 665 2018, 30, e1706576. Perowskitâ€Solarzellen: atomare Ebene, SchichtqualitĤund Leistungsfäigkeit der Zellen. Angewandte 1.6 37 Chemie, 2018, 130, 2582-2598 Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte 226 7.2 413 Chemie - International Edition, 2018, 57, 2554-2569. Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 1.7 118 24, 3083-3100. Inorganic–organic halide perovskites for new photovoltaic technology. National Science Review, 228 4.6 49 2018, 5, 559-576. Extrinsic Movable lons in MAPbl₃ Modulate Energy Band Alignment in Perovskite Solar 229 10.2 Cells. Advanced Energy Materials, 2018, 8, 1701981. Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of 230 7.1 48 Energy Chemistry, 2018, 27, 637-649. Diketopyrrolopyrrole based D-ï€-A-ï€-D type small organic molecules as hole transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1175-1182. Stability of Molecular Devices: Halide Perovskite Solar Cells. Green Chemistry and Sustainable 232 0.4 1 Technology, 2018, , 477-531. Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial 2.7 deterioration. Journal of Materials Chemistry C, 2018, 6, 162-170 Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar 234 11.1 198 Cell on Nickel Oxide. Advanced Materials, 2018, 30, 1703879. Fineâ€Tuned Multilayered Transparent Electrode for Highly Transparent Perovskite Lightâ€Emitting Devices. Advanced Electronic Materials, 2018, 4, 1700285. Reverse Bias Behavior of Halide Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702365. 236 10.2 127 Electric-field assisted perovskite crystallization for high-performance solar cells. Journal of 5.2 Materials Chemistry A, 2018, 6, 1161-1170.

#	Article	IF	CITATIONS
238	Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material. Organic Electronics, 2018, 53, 235-241.	1.4	66
239	Interface Engineering for Highly Efficient and Stable Planar pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701883.	10.2	338
240	Low-temperature photochemical activation of sol-gel titanium dioxide films for efficient planar heterojunction perovskite solar cells. Journal of Alloys and Compounds, 2018, 735, 224-233.	2.8	14
241	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	11.1	162
242	Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells. Nano Energy, 2018, 43, 383-392.	8.2	70
243	Modulation of Charge Recombination in CsPbBr ₃ Perovskite Films with Electrochemical Bias. Journal of the American Chemical Society, 2018, 140, 86-89.	6.6	41
244	The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160.	2.5	209
245	Fabrication of fully non-vacuum processed perovskite solar cells using an inorganic CuSCN hole-transporting material and carbon-back contact. Sustainable Energy and Fuels, 2018, 2, 2778-2787.	2.5	27
246	A highly stable and efficient carbon electrode-based perovskite solar cell achieved <i>via</i> interfacial growth of 2D PEA ₂ PbI ₄ perovskite. Journal of Materials Chemistry A, 2018, 6, 24560-24568.	5.2	76
247	Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 3480-3490.	15.6	274
248	Optical and electronic anisotropies in perovskitoid crystals of Cs ₃ Bi ₂ I ₉ studies of nuclear radiation detection. Journal of Materials Chemistry A, 2018, 6, 23388-23395.	5.2	91
249	Validity of density-functional-theory-based molecular modeling for UV/visible spectroscopy and rationale of panchromatic PbI6 4â° (MeNH3 +)4-structured molecular solar cells. Japanese Journal of Applied Physics, 2018, 57, 121602.	0.8	1
250	Improving the Bulk Emission Properties of CH ₃ NH ₃ PbBr ₃ by Modifying the Halide-Related Defect Structure. Journal of Physical Chemistry C, 2018, 122, 27250-27255.	1.5	4
251	Excess charge-carrier induced instability of hybrid perovskites. Nature Communications, 2018, 9, 4981.	5.8	159
252	Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 44501-44510.	4.0	73
253	Recent Advances in Memristive Materials for Artificial Synapses. Advanced Materials Technologies, 2018, 3, 1800457.	3.0	161
254	An Ultraâ€low Concentration of Gold Nanoparticles Embedded in the NiO Hole Transport Layer Boosts the Performance of pâ€iâ€n Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800278.	3.1	38
255	The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. Journal of Applied Physics, 2018, 124, .	1.1	110

#	Article	IF	CITATIONS
258	Comprehensive Understanding and Controlling the Defect Structures: An Effective Approach for Organic-Inorganic Hybrid Perovskite-Based Solar-Cell Application. Frontiers in Energy Research, 2018, 6, .	1.2	35
259	Solution-Processed Bil3 Films with 1.1 eV Quasi-Fermi Level Splitting: The Role of Water, Temperature, and Solvent during Processing. ACS Omega, 2018, 3, 12713-12721.	1.6	18
260	Intrinsic Behavior of CH ₃ NH ₃ PbBr ₃ Single Crystals under Light Illumination. Advanced Materials Interfaces, 2018, 5, 1801206.	1.9	18
261	Enhancing the Photocatalytic Hydrogen Evolution Activity of Mixed-Halide Perovskite CH ₃ NH ₃ PbBr _{3–<i>x</i>} I _{<i>x</i>} Achieved by Bandgap Funneling of Charge Carriers. ACS Catalysis, 2018, 8, 10349-10357.	5.5	159
262	Halogen-substituted fullerene derivatives for interface engineering of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 21368-21378.	5.2	40
263	Additive engineering induced perovskite crystal growth for high performance perovskite solar cells. Organic Electronics, 2018, 63, 207-215.	1.4	26
264	Photoinstable hybrid all-inorganic halide perovskite quantum dots as single downconverters for white light emitting devices. Organic Electronics, 2018, 63, 318-327.	1.4	6
265	The formation of a functional pentacene/CH ₃ NH ₃ PbI _{3â^'x} Cl _x perovskite interface: optical gating and field-induced charge retention. Nanoscale, 2018, 10, 19383-19389.	2.8	3
266	Halide Perovskite Quantum Dots for Lightâ€Emitting Diodes: Properties, Synthesis, Applications, and Outlooks. Advanced Electronic Materials, 2018, 4, 1800335.	2.6	50
267	Surface Effect on 2D Hybrid Perovskite Crystals: Perovskites Using an Ethanolamine Organic Layer as an Example. Advanced Materials, 2018, 30, e1804372.	11.1	34
268	Attaining High Photovoltaic Efficiency and Stability with Multidimensional Perovskites. ChemSusChem, 2018, 11, 4193-4202.	3.6	16
269	Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications, 2018, 9, 3880.	5.8	109
270	The Interplay of Contact Layers: How the Electron Transport Layer Influences Interfacial Recombination and Hole Extraction in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 6249-6256.	2.1	68
271	Proton Migration in Hybrid Lead Iodide Perovskites: From Classical Hopping to Deep Quantum Tunneling. Journal of Physical Chemistry Letters, 2018, 9, 6536-6543.	2.1	15
272	Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and Its Influence on Hysteresis. ACS Energy Letters, 2018, 3, 2743-2749.	8.8	17
273	Ionotronic Halide Perovskite Driftâ€Diffusive Synapses for Lowâ€Power Neuromorphic Computation. Advanced Materials, 2018, 30, e1805454.	11.1	146
274	SnO ₂ â€inâ€Polymer Matrix for Highâ€Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability. Advanced Materials, 2018, 30, e1805153.	11.1	185
275	Vacancy-Mediated Anion Photosegregation Kinetics in Mixed Halide Hybrid Perovskites: Coupled Kinetic Monte Carlo and Optical Measurements. ACS Energy Letters, 2018, 3, 2321-2328.	8.8	119

#	Article	IF	CITATIONS
276	Giant Zero-Drift Electronic Behaviors in Methylammonium Lead Halide Perovskite Diodes by Doping Iodine Ions. Materials, 2018, 11, 1606.	1.3	11
277	Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. Journal of Physical Chemistry Letters, 2018, 9, 5474-5480.	2.1	119
278	In Situ Measurement of Electric-Field Screening in Hysteresis-Free PTAA/FA _{0.83} Cs _{0.17} Pb(I _{0.83} Br _{0.17}) ₃ /C60 Perovskite Solar Cells Gives an Ion Mobility of â ¹ /43 × 10 ^{–7} cm ² /(V s), 2 Orders of Magnitude Faster than Reported for Metal-Oxide-Contacted Perovskite Cells with Hysteresis. Journal of the American Chemical Society, 2018, 140, 12775-12784	6.6	47
279	Dependence of hysteresis on the perovskite film thickness: inverse behavior between TiO ₂ and PCBM in a normal planar structure. Journal of Materials Chemistry A, 2018, 6, 18206-18215.	5.2	37
280	In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nature Communications, 2018, 9, 3806.	5.8	227
281	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
282	Dependence of power conversion properties of perovskite solar cells on operating temperature. Applied Physics Letters, 2018, 113, .	1.5	23
283	Improving photovoltaic performance of inverted planar structure perovskite solar cells via introducing photogenerated dipoles in the electron transport layer. Organic Electronics, 2018, 63, 137-142.	1.4	15
284	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
285	Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990.	11.7	181
286	Photoinduced Migration of Ions in Optically Resonant Perovskite Nanoparticles. JETP Letters, 2018, 107, 742-748.	0.4	7
287	Spectroscopic Limited Practical Efficiency (SLPE) model for organometal halide perovskites solar cells evaluation. Organic Electronics, 2018, 59, 389-398.	1.4	6
288	Type-I alignment in MAPbI3 based solar devices with doped-silicon nanocrystals. Nano Energy, 2018, 50, 245-255.	8.2	22
289	Abnormal Synergetic Effect of Organic and Halide Ions on the Stability and Optoelectronic Properties of a Mixed Perovskite via In Situ Characterizations. Advanced Materials, 2018, 30, e1801562.	11.1	55
290	Phase Segregation in Potassium-Doped Lead Halide Perovskites from ³⁹ K Solid-State NMR at 21.1 T. Journal of the American Chemical Society, 2018, 140, 7232-7238.	6.6	130
291	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181
292	Organic–Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses. Advanced Materials, 2018, 30, e1704002.	11.1	205
293	Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation Transmutation. Advanced Materials, 2018, 30, e1802080.	11.1	30

		CITATION REPORT		
#	Article		IF	CITATIONS
294	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e180)0682.	5.2	168
295	Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in S Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites. Journa Chemistry C, 2018, 122, 17552-17558.	itu I of Physical	1.5	21
296	Ion Migration in Hybrid Perovskites. , 2018, , 163-196.			10
297	Ionâ€Migration Inhibition by the Cation–i̇́€ Interaction in Perovskite Materials for Effi Perovskite Solar Cells. Advanced Materials, 2018, 30, e1707583.	cient and Stable	11.1	248
298	Revealing the Cooperative Chemistry of the Organic Cation in the Methylammonium Le Perovskite Semiconductor System. ChemistrySelect, 2018, 3, 7269-7282.	ad Triiodide	0.7	12
299	All-Inorganic Bismuth Halide Perovskite-Like Materials A ₃ Bi ₂ I and A ₃ Bi _{1.8} Na _{0.2} I _{8.6} (A = Rb and Switching Resistive Memory. ACS Applied Materials & Interfaces, 2018, 10, 29741	₉ Cs) for Low-Voltage -29749.	4.0	88
300	Giant current amplification induced by ion migration in perovskite single crystal photoc Journal of Materials Chemistry C, 2018, 6, 8042-8050.	letectors.	2.7	31
301	Ferroic domains regulate photocurrent in single-crystalline CH3NH3PbI3 films self-grow substrate. Npj Quantum Materials, 2018, 3, .	/n on FTO/TiO2	1.8	76
302	High Performance and Stable Allâ€Inorganic Metal Halide Perovskiteâ€Based Photodet Communication Applications. Advanced Materials, 2018, 30, e1803422.	ectors for Optical	11.1	342
303	Dew point temperature as an invariant replacement for relative humidity for advanced solar cell fabrication systems. Journal of Materials Chemistry A, 2018, 6, 20695-20701.	perovskite	5.2	10
304	Metal Halide Perovskites: Synthesis, Ion Migration, and Application in Fieldâ€Effect Trai 2018, 14, e1801460.	nsistors. Small,	5.2	88
305	Progress in tailoring perovskite based solar cells through compositional engineering: M properties, photovoltaic performance and critical issues. Materials Today Energy, 2018,	aterials , 9, 440-486.	2.5	58
306	Twin Domains in Organometallic Halide Perovskite Thin-Films. Crystals, 2018, 8, 216.		1.0	16
307	Bias-Dependent Normal and Inverted <i>J</i> – <i>V</i> Hysteresis in Perovskite Solar Materials & Interfaces, 2018, 10, 25604-25613.	Cells. ACS Applied	4.0	77
308	Lightâ€Induced Anomalous Resistive Switches Based on Individual Organic–Inorganic Microâ€INanofibers. Advanced Electronic Materials, 2018, 4, 1800206.	: Halide Perovskite	2.6	26
309	Taking Control of Ion Transport in Halide Perovskite Solar Cells. ACS Energy Letters, 20	18, 3, 1983-1990.	8.8	158
310	Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle efficient light-emitting diodes. Nano Energy, 2018, 52, 329-335.	films for	8.2	64
311	Compositionâ€Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability a Improvement. Advanced Functional Materials, 2018, 28, 1803130.	nd Performance	7.8	121

#	Article	IF	CITATIONS
312	Rear-Surface Passivation by Melaminium Iodide Additive for Stable and Hysteresis-less Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 25372-25383.	4.0	72
313	Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Applied Materials & Interfaces, 2018, 10, 28541-28552.	4.0	72
314	Inorganic pâ€Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells. Advanced Sustainable Systems, 2018, 2, 1800032.	2.7	26
315	Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration. Advanced Materials, 2018, 30, e1707350.	11.1	233
316	Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286.	8.8	106
317	Ionic Liquidâ€Assisted Improvements in the Thermal Stability of CH ₃ NH ₃ PbI ₃ Perovskite Photovoltaics. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800130.	1.2	27
318	Accelerated electron extraction and improved UV stability of TiO2 based perovskite solar cells by SnO2 based surface passivation. Organic Electronics, 2018, 59, 184-189.	1.4	45
319	High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelectrodes. Science Advances, 2018, 4, eaat3604.	4.7	48
320	Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes. Science China Chemistry, 2018, 61, 1047-1061.	4.2	29
321	Anisotropic Carrier Transport in CH ₃ NH ₃ Pbl ₃ Single Crystal Field-Effect Transistor. IEEE Electron Device Letters, 2018, 39, 1389-1392.	2.2	13
322	FA _{0.88} Cs _{0.12} PbI _{3â^'} <i>_x</i> (PF ₆) <i>_{xInterlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability. Advanced Materials, 2018, 30, e1801948.}</i>	ub>11.1	214
323	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materials & Interfaces, 2018, 10, 31586-31593.	4.0	41
324	Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. ACS Applied Materials & Interfaces, 2018, 10, 31452-31461.	4.0	47
325	From Exceptional Properties to Stability Challenges of Perovskite Solar Cells. Small, 2018, 14, e1802385.	5.2	58
326	Dependence of power conversion properties of the hole-conductor-free mesoscopic perovskite solar cells on the thickness of carbon film. Organic Electronics, 2018, 62, 298-303.	1.4	23
327	Defects engineering for high-performance perovskite solar cells. Npj Flexible Electronics, 2018, 2, .	5.1	334
328	Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters, 2018, 113, .	1.5	27
329_	Interface Design of Hybrid Electron Extraction Layer for Relieving Hysteresis and Retarding Charge Recombination in Percyspite Solar Cells, Advanced Materials Interfaces, 2018, 5, 1800993	1.9	31

CITATION REPORT IF CITATIONS Phase-transition–induced p-n junction in single halide perovskite nanowire. Proceedings of the 3.3 48 National Academy of Sciences of the United States of America, 2018, 115, 8889-8894. How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy and Environmental Science, 2018, 11, 2404-2413. 15.6 289 Grainâ€Boundary "Patches―by In Situ Conversion to Enhance Perovskite Solar Cells Stability. Advanced 11.1 224 Degradation of Two-Dimensional CH₃NH₃Pbl₃Perovskite and CH₃NH₃NH₃Pol₃Pol₃Pol₃Pol₃Pol₃Pol₃Pol₃Pol<sub>Pol₃Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol<sub>Pol Self-Powered Photodetector Based on Electric-Field-Induced Effects in MAPbI₃ Perovskite 4.0 68 with Improved Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 21066-21072.

335	Photocarrier dynamics in perovskite-based solar cells revealed by intensity-modulated photovoltage spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 17918-17926.	1.3	16
336	Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019, 7, 10724-10742.	2.7	49
337	SnO ₂ â€C ₆₀ Pyrrolidine Trisâ€Acid (CPTA) as the Electron Transport Layer for Highly Efficient and Stable Planar Snâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1903621.	7.8	48
338	Metal Halide Perovskite and Phosphorus Doped g-C ₃ N ₄ Bulk Heterojunctions for Air-Stable Photodetectors. ACS Energy Letters, 2019, 4, 2315-2322.	8.8	36
339	Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InformaÄnÃ- Materiály, 2019, 1, 430-459.	8.5	72
340	Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473-478.	6.0	723
341	Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy, 2019, 64, 103962.	8.2	55
342	lon-migration and carrier-recombination inhibition by the cation-Ï€ interaction in planar perovskite solar cells. Organic Electronics, 2019, 75, 105387.	1.4	17
343	Efficient Passivation with Lead Pyridineâ€2â€Carboxylic for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901852.	10.2	147
344	Nanoscale Insights into Photovoltaic Hysteresis in Tripleâ€Cation Mixedâ€Halide Perovskite: Resolving the Role of Polarization and Ionic Migration. Advanced Materials, 2019, 31, e1902870.	11.1	73
345	Improving the Stability of Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Using Doped Electron Transport Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900426.	0.8	11
346	Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activation. ACS Energy Letters, 2019, 4, 1961-1969.	8.8	76
347	Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy and Environmental Science, 2019, 12, 2860-2889.	15.6	132

ARTICLE

Materials, 2018, 30, e1800544.

#

330

332

#	Article	IF	CITATIONS
348	Investigation of Electrode Electrochemical Reactions in CH ₃ NH ₃ PbBr ₃ Perovskite Singleâ€Crystal Fieldâ€Effect Transistors. Advanced Materials, 2019, 31, e1902618.	11.1	74
349	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
350	Potassium ions as a kinetic controller in ionic double layers for hysteresis-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18807-18815.	5.2	54
351	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
352	Modelling <i>J</i> – <i>V</i> hysteresis in perovskite solar cells induced by voltage poling. Physica Scripta, 2019, 94, 125809.	1.2	8
353	Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19881-19888.	5.2	28
354	From Macroscopic to Nanoscopic Current Hysteresis Suppressed by Fullerene in Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900235.	3.1	10
355	When defects become â€~dynamic': halide perovskites: a new window on materials?. Materials Horizons, 2019, 6, 1297-1305.	6.4	55
356	Effect of Halide Ion Migration on the Electrical Properties of Methylammonium Lead Tri-Iodide Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 17728-17734.	1.5	41
357	Simultaneous Cesium and Acetate Coalloying Improves Efficiency and Stability of FA _{0.85} MA _{0.15} PbI ₃ Perovskite Solar Cell with an Efficiency of 21.95%. Solar Rrl, 2019, 3, 1900220.	3.1	74
358	Ionic transport characteristics of large-size CsPbBr ₃ single crystals. Materials Research Express, 2019, 6, 115808.	0.8	20
359	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
360	Enhanced Lifetime and Photostability with Lowâ€Temperature Mesoporous ZnTiO ₃ /Compact SnO ₂ Electrodes in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 18460-18465.	7.2	33
361	Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Small, 2019, 15, e1904372.	5.2	32
362	Long-Distance Ionic Diffusion in Cesium Lead Mixed Halide Perovskite Induced by Focused Illumination. Chemistry of Materials, 2019, 31, 9049-9056.	3.2	28
363	Interfacialâ€Tunnelingâ€Effectâ€Enhanced CsPbBr ₃ Photodetectors Featuring High Detectivity and Stability. Advanced Functional Materials, 2019, 29, 1904461.	7.8	70
364	Nanostructured Perovskite Solar Cells. Nanomaterials, 2019, 9, 1481.	1.9	19
365	<i>In situ</i> investigations of interfacial degradation and ion migration at CH3NH3PbI3 perovskite/Ag interface. Chinese Journal of Chemical Physics, 2019, 32, 299-305.	0.6	14

#	Article	IF	CITATIONS
366	Origination of Anomalous Current Fluctuation in Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 8138-8144.	2.5	3
367	Interface Engineering in Tin Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901322.	1.9	32
368	Enhanced Lifetime and Photostability with Lowâ€Temperature Mesoporous ZnTiO ₃ /Compact SnO ₂ Electrodes in Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 18631-18636.	1.6	13
369	Elucidating the Impact of Charge Selective Contact in Halide Perovskite through Impedance Spectroscopy. Advanced Materials Interfaces, 2019, 6, 1901193.	1.9	30
370	Coupled Ionic-Electronic Equivalent Circuit to Describe Asymmetric Rise and Decay of Photovoltage Profile in Perovskite Solar Cells. Scientific Reports, 2019, 9, 11962.	1.6	31
371	Enabling Self-passivation by Attaching Small Grains on Surfaces of Large Grains toward High-Performance Perovskite LEDs. IScience, 2019, 19, 378-387.	1.9	26
372	The Effects of Incident Photon Energy on the Time-Dependent Voltage Response of Lead Halide Perovskites. Chemistry of Materials, 2019, 31, 8969-8976.	3.2	10
373	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & Interfaces, 2019, 11, 35914-35923.	4.0	65
374	Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CH ₃ NH ₃ PbI ₃ perovskite: a time-domain <i>ab initio</i> study. Chemical Science, 2019, 10, 10079-10088.	3.7	44
375	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. Journal of Materials Chemistry A, 2019, 7, 24661-24690.	5.2	27
376	Spatially Resolved Analysis of Defect Annihilation and Recovery Dynamics in Metal Halide Perovskite Single Crystals. ACS Applied Energy Materials, 2019, 2, 6967-6972.	2.5	15
377	The Underlying Chemical Mechanism of Selective Chemical Etching in CsPbBr ₃ Nanocrystals for Reliably Accessing Near-Unity Emitters. ACS Nano, 2019, 13, 11825-11833.	7.3	18
378	Understanding the Improvement in the Stability of a Self-Assembled Multiple-Quantum Well Perovskite Light-Emitting Diode. Journal of Physical Chemistry Letters, 2019, 10, 6857-6864.	2.1	42
379	Electrical-Field-Driven Tunable Spectral Responses in a Broadband-Absorbing Perovskite Photodiode. ACS Applied Materials & Interfaces, 2019, 11, 39018-39025.	4.0	8
380	Surface Defect Dynamics in Organic–Inorganic Hybrid Perovskites: From Mechanism to Interfacial Properties. ACS Nano, 2019, 13, 12127-12136.	7.3	56
381	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
382	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	11.1	92
383	How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy and Environmental Science, 2019, 12, 396-409.	15.6	184

#	Article	IF	CITATIONS
384	Aging-induced light-soaking effects and open-circuit voltage hysteretic behavior of inverted perovskite solar cells incorporating a hole transport metal halide layer <i>via</i> morphology-dependent inflow of iodide ions. Journal of Materials Chemistry C, 2019, 7, 1173-1181.	2.7	23
385	Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors. Journal of Materials Chemistry C, 2019, 7, 609-616.	2.7	29
386	Bifacial Passivation of Organic Hole Transport Interlayer for NiO <i>_x</i> â€Based pâ€iâ€n Perovskite Solar Cells. Advanced Science, 2019, 6, 1802163.	5.6	92
387	Comprehensive Elucidation of Ion Transport and Its Relation to Hysteresis in Methylammonium Lead Iodide Perovskite Thin Films. Journal of Physical Chemistry C, 2019, 123, 4029-4034.	1.5	16
388	B-Site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. Journal of Materials Chemistry C, 2019, 7, 2781-2808.	2.7	124
389	The hysteresis-free behavior of perovskite solar cells from the perspective of the measurement conditions. Journal of Materials Chemistry C, 2019, 7, 5267-5274.	2.7	13
390	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on a (<i>p</i> â€FC ₆ H ₄ C ₂ H ₄ NH ₃) ₂ Capping Layer. Advanced Energy Materials, 2019, 9, 1802595.	l<1600.b2>4 </td <td>su2d133]</td>	su2d133]
391	Tracking Dynamic Phase Segregation in Mixedâ€Halide Perovskite Single Crystals under Twoâ€Photon Scanning Laser Illumination. Small Methods, 2019, 3, 1900273.	4.6	44
392	First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion–Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications. Journal of Physical Chemistry Letters, 2019, 10, 3670-3675.	2.1	42
393	Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. Journal of the American Chemical Society, 2019, 141, 10812-10820.	6.6	104
394	Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability. Journal of Materials Science, 2019, 54, 12000-12011.	1.7	27
395	Revealing the Effects of Defects on Ultrafast Carrier Dynamics of CsPbI ₃ Nanocrystals in Glass. Journal of Physical Chemistry C, 2019, 123, 15851-15858.	1.5	21
396	Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. ACS Energy Letters, 2019, 4, 1521-1527.	8.8	130
397	Incorporation of two electron acceptors to improve the electron mobility and stability of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8344-8349.	2.7	14
398	Could Nanocomposites Continue the Success of Halide Perovskites?. ACS Energy Letters, 2019, 4, 1446-1454.	8.8	9
399	Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Frontiers of Physics, 2019, 14, 1.	2.4	42
400	Soft interfaces within hybrid perovskite solar cells: real-time dynamic tracking of interfacial electrical property evolution by EIS. Journal of Materials Chemistry C, 2019, 7, 8294-8302.	2.7	15
401	Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019, 48, 3842-3867.	18.7	1,257

#	Article	IF	CITATIONS
402	Shortâ€Term Stability of Perovskite Solar Cells Affected by In Situ Interface Modification. Solar Rrl, 2019, 3, 1900089.	3.1	10
403	ldentifying inverted-hysteresis behavior of CH ₃ NH ₃ PbI _{3â^³x} Cl _x planar hybrid perovskite solar cells based on external bias precondition. Journal Physics D: Applied Physics, 2019, 52, 385501.	1.3	8
404	Impact of Grain Sizes on Programmable Memory Characteristics in Two-Dimensional Organic–Inorganic Hybrid Perovskite Memory. ACS Applied Materials & Interfaces, 2019, 11, 20225-20231.	4.0	30
405	Analysis of light-induced degradation in inverted perovskite solar cells under short-circuited conditions. Organic Electronics, 2019, 71, 123-130.	1.4	22
406	Ion induced passivation of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2019, 125, .	1.1	13
407	Conductive metallic filaments dominate in hybrid perovskite-based memory devices. Science China Materials, 2019, 62, 1323-1331.	3.5	18
408	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	11.1	134
409	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	8.8	111
410	High performance and stable perovskite solar cells using vanadic oxide as a dopant for spiro-OMeTAD. Journal of Materials Chemistry A, 2019, 7, 13256-13264.	5.2	81
411	Low-temperature processing of optimally polymer-wrapped α-CsPbI ₃ for self-powered flexible photo-detector application. Journal of Materials Chemistry C, 2019, 7, 6986-6996.	2.7	38
412	The Role of Diammonium Cation on the Structural and Optoelectronic Properties in 3D Cesium–Formamidinium Mixed ation Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900140.	3.1	16
413	Effective Control of Chlorine Contents in MAPbl _{3–<i>x</i>} Cl <i>_x</i> Perovskite Solar Cells Using a Single-Source Vapor Deposition and Anion-Exchange Technique. ACS Applied Materials & Interfaces, 2019, 11, 20073-20081.	4.0	19
414	Sodium Doping-Enhanced Emission Efficiency and Stability of CsPbBr ₃ Nanocrystals for White Light-Emitting Devices. Chemistry of Materials, 2019, 31, 3917-3928.	3.2	141
415	<i>In situ</i> investigation of light soaking in organolead halide perovskite films. APL Materials, 2019, 7, .	2.2	23
416	Controllable Growth of Centimeter-Sized 2D Perovskite Heterostructures for Highly Narrow Dual-Band Photodetectors. ACS Nano, 2019, 13, 5473-5484.	7.3	110
417	Universal Oxide Shell Growth Enables in Situ Structural Studies of Perovskite Nanocrystals during the Anion Exchange Reaction. Journal of the American Chemical Society, 2019, 141, 8254-8263.	6.6	92
418	Anchored Ligands Facilitate Efficient B-Site Doping in Metal Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 8296-8305.	6.6	53
419	Evolution of Photovoltaic Performance in Fully Printable Mesoscopic Carbonâ€Based Perovskite Solar Cells. Energy Technology, 2019, 7, 1900481.	1.8	14

		CITATION REPORT		
#	ARTICLE Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability, Joule, 2019, 3, 1	452-1463.	IF 11.7	CITATIONS
421	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7	477.	23.0	640
422	Hydration of mixed halide perovskites investigated by Fourier transform infrared spectro Materials, 2019, 7, 031107.	oscopy. APL	2.2	17
423	Data mining new energy materials from structure databases. Renewable and Sustainabl Reviews, 2019, 107, 554-567.	e Energy	8.2	38
424	High-Detectivity Perovskite Light Detectors Printed in Air from Benign Solvents. CheM,	2019, 5, 868-880.	5.8	25
425	Toward Stable Deep-Blue Luminescent Colloidal Lead Halide Perovskite Nanoplatelets: S Photostability Investigation. Chemistry of Materials, 2019, 31, 2486-2496.	Systematic	3.2	55
426	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journa American Chemical Society, 2019, 141, 5972-5979.	Il of the	6.6	274
427	Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Densit Distribution of Donorâ€ï€â€Acceptor Molecules. Advanced Energy Materials, 2019, 9, 1	y 803766.	10.2	280
428	Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conductir Energy and Environmental Science, 2019, 12, 1296-1308.	ıg devices.	15.6	146
429	Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019,	10, 1066.	5.8	568
430	Chemical stability and instability of inorganic halide perovskites. Energy and Environmer 2019, 12, 1495-1511.	ntal Science,	15.6	510
431	Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of h layer. Journal of Materials Science: Materials in Electronics, 2019, 30, 6936-6946.	ole transport	1.1	12
432	Impedance Spectroscopy for Emerging Photovoltaics. Journal of Physical Chemistry C, 2 11329-11346.	019, 123,	1.5	248
433	Electroluminescence Dynamics in Perovskite Solar Cells Reveals Giant Overshoot Effect Physical Chemistry Letters, 2019, 10, 1779-1783.	Journal of	2.1	16
434	Silver Iodide Induced Resistive Switching in CsPbl ₃ Perovskiteâ€Based Mer Advanced Materials Interfaces, 2019, 6, 1802071.	nory Device.	1.9	65
435	Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. Nature Communications, 2019, 10, 169	98.	5.8	81
436	Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Materi Chemistry Frontiers, 2019, 3, 941-947.	als	3.2	54
437	CH 3 NH 3 Formed by Electron Injection at Heterojunction Inducing Peculiar Properties 3 Material. Chinese Physics Letters, 2019, 36, 026701.	of CH 3 NH 3 Pbl	1.3	0

	CHAHON R	LPOKI	
# 438	ARTICLE Interfacial charge transport in MAPbI3 perovskite on ZnO. Results in Physics, 2019, 13, 102207.	IF 2.0	Citations 8
439	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
440	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422
441	Charge Transport in Halide Perovskite Single Crystals: Experimental and Theoretical Perspectives. ChemNanoMat, 2019, 5, 290-299.	1.5	4
442	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. ACS Nano, 2019, 13, 2812-2821.	7.3	38
443	Constructing CsPbBr ₃ Cluster Passivatedâ€Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2019, 29, 1809180.	7.8	64
444	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	2.3	86
445	Understanding the Impact of Bismuth Heterovalent Doping on the Structural and Photophysical Properties of CH ₃ NH ₃ PbBr ₃ Halide Perovskite Crystals with Nearâ€IR Photoluminescence. Chemistry - A European Journal, 2019, 25, 5480-5488.	1.7	42
446	Effect of Grain Boundaries on Charge Transport in Methylammonium Lead Iodide Perovskite Thin Films. Journal of Physical Chemistry C, 2019, 123, 5321-5325.	1.5	28
447	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404
448	Kelvin probe force microscopy for perovskite solar cells. Science China Materials, 2019, 62, 776-789.	3.5	93
449	Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4977-4987.	5.2	143
450	Negligibleâ€Pbâ€Waste and Upscalable Perovskite Deposition Technology for Highâ€Operationalâ€6tability Perovskite Solar Modules. Advanced Energy Materials, 2019, 9, 1803047.	10.2	68
451	Ion Migration Magnified Photoresponse in Perovskite Devices. , 2019, , .		0
452	Light Intensity-dependent Variation in Defect Contributions to Charge Transport and Recombination in a Planar MAPb13 Perovskite Solar Cell. Scientific Reports, 2019, 9, 19846.	1.6	45
453	Emerging alkali metal ion (Li ⁺ , Na ⁺ , K ⁺ and Rb ⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7, 24150-24163.	5.2	116
454	Comparative Study of Charge Carrier Dynamics in Bismuth-based Dimer and Double Perovskites. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 735-740.	0.1	8
455	Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr ₃ -Cluster Assisted Bottom-up Crystallization Approach. Journal of the American Chemical Society, 2019, 141, 20537-20546.	6.6	79

#	Article	IF	CITATIONS
456	Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nature Communications, 2019, 10, 4593.	5.8	214
457	Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets. Nanoscale Advances, 2019, 1, 4459-4465.	2.2	25
458	Influence of bromide content on iodide migration in inverted MAPb(I _{1â^x} Br _x) ₃ perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22604-22614.	5.2	42
459	Effect of annealing temperature on the characteristics of Pt/CH3NH3PbI3 contact. Journal of Crystal Growth, 2019, 505, 10-14.	0.7	0
460	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	11.1	189
461	Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1804595.	11.1	102
462	Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods. Journal of Solid State Chemistry, 2019, 271, 206-215.	1.4	50
463	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
464	Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering Reports, 2019, 137, 38-65.	14.8	300
465	Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size. ACS Energy Letters, 2019, 4, 54-62.	8.8	149
466	A Gradient Heterostructure Based on Tolerance Factor in Highâ€Performance Perovskite Solar Cells with 0.84 Fill Factor. Advanced Materials, 2019, 31, e1804217.	11.1	95
467	Organohalide Lead Perovskites: More Stable than Glass under Gammaâ€Ray Radiation. Advanced Materials, 2019, 31, e1805547.	11.1	92
468	Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy, 2019, 56, 373-381.	8.2	59
469	An Ultrathin Ferroelectric Perovskite Oxide Layer for Highâ€Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806506.	7.8	93
470	Transmission Electron Microscopy of Halide Perovskite Materials and Devices. Joule, 2019, 3, 641-661.	11.7	94
471	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	23.0	454
472	Recent Advances in Memory Devices with Hybrid Materials. Advanced Electronic Materials, 2019, 5, 1800519.	2.6	92
473	Effect of phase transition stress on the photoluminescence of perovskite CH3NH3PbI3 microwires. Journal of Materials Science, 2019, 54, 5331-5342.	1.7	3

#	Article	IF	CITATIONS
474	ITIC-based bulk heterojunction perovskite film boosting the power conversion efficiency and stability of the perovskite solar cell. Solar Energy, 2019, 178, 90-97.	2.9	28
475	Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 2490-2499.	4.0	29
476	Stability Enhancement in Perovskite Solar Cells with Perovskite/Silver–Graphene Composites in the Active Layer. ACS Energy Letters, 2019, 4, 235-241.	8.8	61
477	Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamineâ€Facilitated Synaptic Activity. Advanced Functional Materials, 2019, 29, 1806646.	7.8	154
478	High quality perovskite film solar cell using methanol as additive with 19.5% power conversion efficiency. Electrochimica Acta, 2019, 293, 356-363.	2.6	38
479	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	10.2	87
480	Impaired Fracture Healing in Sarcoâ€Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. Journal of Orthopaedic Research, 2020, 38, 277-287.	1.2	16
481	Ultraâ€Thin Atomic Layer Deposited–Nb ₂ O ₅ as Electron Transport Layer for Coâ€Evaporated MAPbI ₃ Planar Perovskite Solar Cells. Energy Technology, 2020, 8, 1900878.	1.8	12
482	Verringerung schÃ ë licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€Solarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	1.6	16
483	Perovskiteâ€Based Phototransistors and Hybrid Photodetectors. Advanced Functional Materials, 2020, 30, 1903907.	7.8	225
484	Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability. Solar Rrl, 2020, 4, 1900257.	3.1	119
485	Carbonâ€Electrode Based Perovskite Solar Cells: Effect of Bulk Engineering and Interface Engineering on the Power Conversion Properties. Solar Rrl, 2020, 4, 1900190.	3.1	45
486	Recent Advances in Lead Halide Perovskites for Radiation Detectors. Solar Rrl, 2020, 4, 1900210.	3.1	55
487	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	7.2	334
488	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9
489	The physics of ion migration in perovskite solar cells: Insights into hysteresis, device performance, and characterization. Progress in Photovoltaics: Research and Applications, 2020, 28, 533-537.	4.4	36
490	Improving the power conversion efficiency of perovskite solar cells by adding carbon quantum dots. Journal of Materials Science, 2020, 55, 2937-2946.	1.7	41
491	Role of the Iodide–Methylammonium Interaction in the Ferroelectricity of CH ₃ NH ₃ PbI ₃ . Angewandte Chemie - International Edition, 2020, 59, 424-428.	7.2	37

#	Article	IF	CITATIONS
492	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	10.1	24
493	Direct Growth of Perovskite Crystals on Metallic Electrodes for Highâ€Performance Electronic and Optoelectronic Devices. Small, 2020, 16, e1906185.	5.2	20
494	Microtuning of the Wide-Bandgap Perovskite Lattice Plane for Efficient and Robust High-Voltage Planar Solar Cells Exceeding 1.5 V. ACS Applied Energy Materials, 2020, 3, 2331-2341.	2.5	12
495	Improved air stability and low voltage resistive switching behaviors of NiO-buffered CH ₃ NH ₃ PbI ₃ films prepared by a solution method. Journal Physics D: Applied Physics, 2020, 53, 075101.	1.3	2
496	Flexible Quasiâ€⊋D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband Photodetection. Advanced Materials, 2020, 32, e1907527.	11.1	88
497	Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy, 2020, 68, 104289.	8.2	83
498	Single Crystal Perovskite Solar Cells: Development and Perspectives. Advanced Functional Materials, 2020, 30, 1905021.	7.8	171
499	Zur Rolle der Iodidâ€Methylammoniumâ€Interaktion in der Ferroelektrizitäin CH ₃ NH ₃ PbI ₃ . Angewandte Chemie, 2020, 132, 432-436.	1.6	2
500	How Interplay between Photo and Thermal Activation Dictates Halide Ion Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2020, 5, 56-63.	8.8	123
501	Hysteresis effects on carrier transport and photoresponse characteristics in hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 1962-1971.	2.7	13
502	Efficient Bifacial Passivation with Crosslinked Thioctic Acid for Highâ€Performance Methylammonium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905661.	11.1	127
503	Modulable hysteresis behavior controlled by water-promoted decomposition in a single CH3NH3PbI3 micro/nanowire. Applied Surface Science, 2020, 507, 145048.	3.1	6
504	Visualizing the Impact of Light Soaking on Morphological Domains in an Operational Cesium Lead Halide Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2020, 11, 136-143.	2.1	17
505	CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 114-121.	2.5	83
506	Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Science China Chemistry, 2020, 63, 107-115.	4.2	160
507	Creation and Annihilation of Nonradiative Recombination Centers in Polycrystalline Metal Halide Perovskites by Alternating Electric Field and Light. Advanced Optical Materials, 2020, 8, 1901642.	3.6	7
508	Effect of iodine doping on photoelectric properties of perovskite-based MOS devices. Materials Letters, 2020, 261, 127040.	1.3	0
509	Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs ₃ Sb ₂ Br ₉ Quantum Dots. ACS Energy Letters, 2020, 5, 385-394.	8.8	169

#	Article	IF	CITATIONS
510	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
511	Ion Migration: A "Doubleâ€Edged Sword―for Halideâ€Perovskiteâ€Based Electronic Devices. Small Methods, 2020, 4, 1900552.	4.6	127
512	Imaging Metal Halide Perovskites Material and Properties at the Nanoscale. Advanced Energy Materials, 2020, 10, 1903161.	10.2	21
513	Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability. Journal of Materials Chemistry A, 2020, 8, 2343-2348.	5.2	112
514	g-C3N4@PMo12 composite material double adjustment improves the performance of perovskite-based photovoltaic devices. Solar Energy, 2020, 209, 363-370.	2.9	13
515	Cs0.15FA0.85PbI3/CsxFA1-xPbI3 Core/Shell Heterostructure for Highly Stable and Efficient Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100224.	2.8	35
516	Suppressing the Phase Segregation with Potassium for Highly Efficient and Photostable Inverted Wide-Band Gap Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 48458-48466.	4.0	41
517	Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements. ACS Applied Materials & Interfaces, 2020, 12, 48845-48853.	4.0	37
518	Perovskite transistors clean up their act. Nature Electronics, 2020, 3, 662-663.	13.1	18
519	A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nature Electronics, 2020, 3, 694-703.	13.1	99
520	Investigating the effect of electric fields on lead halide perovskites by scanning tunneling microscopy. Journal of Applied Physics, 2020, 128, .	1.1	13
521	Revealing Electricalâ€Polingâ€Induced Polarization Potential in Hybrid Perovskite Photodetectors. Advanced Materials, 2020, 32, e2005481.	11.1	23
522	Dipolar cation accumulation at the interfaces of perovskite light-emitting solar cells. Journal of Materials Chemistry C, 2020, 8, 16992-16999.	2.7	7
523	Historical Analysis of Highâ€Efficiency, Largeâ€Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002202.	11.1	103
524	Photoinduced ion-redistribution in CH ₃ NH ₃ PbI ₃ perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 25118-25125.	1.3	13
525	Toward mixed-halide perovskites: insight into photo-induced anion phase segregation. Journal of Materials Chemistry C, 2020, 8, 14626-14644.	2.7	11
526	A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy, 2020, 78, 105246.	8.2	91
527	Boron nitride-incorporated NiOx as a hole transport material for high-performance p-i-n planar perovskite solar cells. Journal of Power Sources, 2020, 477, 228738.	4.0	27

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
528	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22	425-22451.	2.8	26
529	Understanding Charge Transport in All-Inorganic Halide Perovskite Nanocrystal Thin-Film Fiel Transistors. ACS Energy Letters, 2020, 5, 2614-2623.	d Effect	8.8	39
530	Simultaneous Improvement of the Longâ€⊺erm and Thermal Stability of the Perovskite Solar 2,3,4,5,6â€Pentafluorobenzoyl Chloride (PFBC)â€Capped ZnO Nanoparticles Buffer Layer. S 2000289.	Cells Using olar Rrl, 2020, 4,	3.1	8
531	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional № 2020, 30, 2001904.	Naterials,	7.8	78
532	Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to Iodide Io Migration. Journal of Physical Chemistry Letters, 2020, 11, 6168-6175.	n	2.1	11
533	Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Per Solar Cells: The Role of Suppressed Ion Migration. ACS Energy Letters, 2020, 5, 2560-2568.	ovskite	8.8	131
534	Perovskite Electronic Ratchets for Energy Harvesting. Advanced Electronic Materials, 2020, 0 2000831.	5,	2.6	7
535	Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Fa Mechanical Approach. Joule, 2020, 4, 2661-2674.	cile	11.7	81
536	Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors. Electronics (Switzerland), 2020, 9, 1852.		1.8	6
537	Halide perovskites: A dark horse for direct Xâ€ray imaging. EcoMat, 2020, 2, e12064.		6.8	84
538	External Field-Tunable Internal Orbit–Orbit Interaction in Flexible Perovskites. Journal of Ph Chemistry Letters, 2020, 11, 10323-10328.	ıysical	2.1	2
539	Probing the ionic defect landscape in halide perovskite solar cells. Nature Communications, 6098.	2020, 11,	5.8	75
540	Origin and Suppression of External Quantum Efficiency Roll-Off in Quasi-Two-Dimensional M Halide Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 27422-	letal 27428.	1.5	11
541	Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5 Journal of Physical Chemistry C, 2020, 124, 24608-24615.	Br1.5.	1.5	13
542	Triple-Cation Perovskite Resistive Switching Memory with Enhanced Endurance and Retentic Applied Electronic Materials, 2020, 2, 3695-3703.	on. ACS	2.0	18
543	Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide Passivation of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 526	for Surface 43-52651.	4.0	25
544	Low defects density CsPbBr ₃ single crystals grown by an additive assisted met gamma-ray detection. Journal of Materials Chemistry C, 2020, 8, 11360-11368.	nod for	2.7	63
545	Hybrid Perovskites with Larger Organic Cations Reveal Autocatalytic Degradation Kinetics ar Increased Stability under Light. Inorganic Chemistry, 2020, 59, 12176-12186.	nd	1.9	12

#	Article	IF	CITATIONS
546	Hybrid organic–inorganic halide perovskites for scaled-in neuromorphic devices. MRS Bulletin, 2020, 45, 641-648.	1.7	21
547	Molecular mechanisms of thermal instability in hybrid perovskite light absorbers for photovoltaic solar cells. Journal of Materials Chemistry A, 2020, 8, 17765-17779.	5.2	16
548	Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects. Solar Rrl, 2020, 4, 2000308.	3.1	31
549	Real-Time Dynamic Observation of a Thermal and Electrical Coeffect on the Interfacial Evolution of Hybrid Perovskite Solar Cells by Electrochemical Impedance Spectroscopy. ACS Applied Energy Materials, 2020, 3, 8017-8025.	2.5	3
550	Impact of local structure on halogen ion migration in layered methylammonium copper halide memory devices. Journal of Materials Chemistry A, 2020, 8, 17516-17526.	5.2	14
551	Revealing Stability of Inverted Planar MA-Free Perovskite Solar Cells and Electric Field-Induced Phase Instability. Journal of Physical Chemistry C, 2020, 124, 18805-18815.	1.5	11
552	A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nature Communications, 2020, 11, 3902.	5.8	204
553	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	8.8	307
554	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	91
555	Additive engineering of 4, 4â€2-Bis (N-carbazolyl)-1, 1â€2-biphenyl (CBP) molecules for defects passivation and moisture stability of hybrid perovskite layer. Solar Energy, 2020, 211, 1084-1091.	2.9	6
556	The <i>J</i> – <i>V</i> Hysteresis Behavior and Solutions in Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000586.	3.1	27
557	Hydrophobic 2D Perovskiteâ€Modified Layer with Polyfunctional Groups for Enhanced Performance and High Moisture Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000647.	3.1	16
558	Metal Halide Perovskites for Highâ€Energy Radiation Detection. Advanced Science, 2020, 7, 2002098.	5.6	126
559	An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl) Tj ETQq1 1 0.78	4314 rgBT 14.4gBT	- /gyerlock 1(
560	Sensitive and Stable 2D Perovskite Singleâ€Crystal Xâ€ray Detectors Enabled by a Supramolecular Anchor. Advanced Materials, 2020, 32, e2003790.	11.1	159
561	Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002176.	11.1	55
562	Metal Halide Perovskite Nanocrystal Solar Cells: Progress and Challenges. Small Methods, 2020, 4, 2000419.	4.6	30
563	Achieving Highâ€Performance Perovskite Photovoltaic by Morphology Engineering of Lowâ€Temperature Processed Znâ€Doped TiO 2 Electron Transport Layer. Small, 2020, 16, 2002201.	5.2	13

#	Article	IF	CITATIONS
564	Self-doping synthesis of trivalent Ni ₂ O ₃ as a hole transport layer for high fill factor and efficient inverted perovskite solar cells. Dalton Transactions, 2020, 49, 14243-14250.	1.6	20
565	The dominant role of memory-based capacitive hysteretic currents in operation of photovoltaic perovskites. Nano Energy, 2020, 78, 105398.	8.2	14
566	Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters, 2020, 20, 7144-7151.	4.5	117
567	Edge States Drive Exciton Dissociation in Ruddlesden–Popper Lead Halide Perovskite Thin Films. , 2020, 2, 1360-1367.		20
568	Growth and optimization of hybrid perovskite single crystals for optoelectronics/electronics and sensing. Journal of Materials Chemistry C, 2020, 8, 13918-13952.	2.7	17
569	Interaction of the Cation and Vacancy in Hybrid Perovskites Induced by Light Illumination. ACS Applied Materials &	4.0	9
570	Perovskite Quantum Dots with Atomic Crystal Shells for Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Energy Letters, 2020, 5, 2927-2934.	8.8	55
571	Unraveling the origin of resistive switching behavior in organolead halide perovskite based memory devices. AIP Advances, 2020, 10, .	0.6	16
572	Enhanced Efficiency and Stability of Planar Perovskite Solar Cells Using a Dual Electron Transport Layer of Gold Nanoparticles Embedded in Anatase TiO ₂ Films. ACS Applied Energy Materials, 2020, 3, 9568-9575.	2.5	28
573	3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance. Materials, 2020, 13, 3868.	1.3	25
574	Extraction technique of trap states based on transient photo-voltage measurement. Scientific Reports, 2020, 10, 12888.	1.6	13
575	Thermal-induced interface degradation in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 15079-15085.	2.7	30
576	Lateral Artificial Synapses on Hybrid Perovskite Platelets with Modulated Neuroplasticity. Advanced Functional Materials, 2020, 30, 2005413.	7.8	71
577	New Extraction Technique of In-Gap Electronic-State Spectrum Based on Time-Resolved Charge Extraction. ACS Omega, 2020, 5, 21762-21767.	1.6	8
578	Dualâ€lonâ€Diffusion Induced Degradation in Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002342.	7.8	86
579	Impacts of carrier trapping and ion migration on charge transport of perovskite solar cells with TiO _x electron transport layer. RSC Advances, 2020, 10, 28083-28089.	1.7	4
580	Operando Imaging of Ion Migration in Metal Halide Perovskites. Microscopy and Microanalysis, 2020, 26, 2046-2048.	0.2	0
581	Controlling Performance of Organic–Inorganic Hybrid Perovskite Triboelectric Nanogenerators via Chemical Composition Modulation and Electric Fieldâ€Induced Ion Migration. Advanced Energy Materials, 2020, 10, 2002470.	10.2	19

#	Article	IF	CITATIONS
582	Mapping temperature-dependent energy–structure–property relationships for solid solutions of inorganic halide perovskites. Journal of Materials Chemistry C, 2020, 8, 16815-16825.	2.7	10
583	Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. Nano Letters, 2020, 20, 8880-8889.	4.5	114
584	Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402.	5.8	71
585	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	3.6	28
586	Photoemission Spectroscopy Characterization of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1904007.	10.2	66
587	Mechanisms of exceptional grain growth and stability in formamidinium lead triiodide thin films for perovskite solar cells. Acta Materialia, 2020, 193, 10-18.	3.8	27
588	Potassiumâ€Induced Phase Stability Enables Stable and Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000098.	3.1	37
589	Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nature Communications, 2020, 11, 2304.	5.8	286
590	Solution-Processed Halide Perovskite Single Crystals with Intrinsic Compositional Gradients for X-ray Detection. Chemistry of Materials, 2020, 32, 4973-4983.	3.2	59
591	lodine (I) Expulsion at Photoirradiated Mixed Halide Perovskite Interface. <i>Should I Stay or Should I Go?</i> . ACS Energy Letters, 2020, 5, 1872-1880.	8.8	55
592	Solvent vapour annealing of methylammonium lead halide perovskite: what's the catch?. Journal of Materials Chemistry A, 2020, 8, 10943-10956.	5.2	11
593	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
594	Electron Transport Materials: Evolution and Case Study for High‣fficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000136.	3.1	32
595	Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects. Joule, 2020, 4, 1160-1185.	11.7	211
596	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	8.2	99
597	Inch-Size OD-Structured Lead-Free Perovskite Single Crystals for Highly Sensitive Stable X-Ray Imaging. Matter, 2020, 3, 180-196.	5.0	202
598	Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Advanced Energy Materials, 2020, 10, 2000454.	10.2	86
599	Relationship of Giant Dielectric Constant and Ion Migration in CH ₃ NH ₃ PbI ₃ Single Crystal Using Dielectric Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 13348-13355.	1.5	17

#	Article	IF	CITATIONS
600	Ion Migration-Induced Degradation and Efficiency Roll-off in Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 33004-33013.	4.0	68
601	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	1.3	23
602	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	6.4	35
603	Perceiving of Defect Tolerance in Perovskite Absorber Layer for Efficient Perovskite Solar Cell. IEEE Access, 2020, 8, 106346-106353.	2.6	38
604	Enhancing the interfacial carrier dynamic in perovskite solar cells with an ultra-thin single-crystalline nanograss-like TiO ₂ electron transport layer. Journal of Materials Chemistry A, 2020, 8, 13820-13831.	5.2	12
605	lon migration of MAPbBr3 single crystal devices with coplanar and sandwich electrode structures. Physica B: Condensed Matter, 2020, 593, 412310.	1.3	5
606	Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 29344-29356.	4.0	16
607	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coordination Chemistry Reviews, 2020, 420, 213408.	9.5	51
608	lon migration in Br-doped MAPbI3 and its inhibition mechanisms investigated via quantum dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 7778-7786.	1.3	10
609	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	7.8	101
610	Correlation of Spatiotemporal Dynamics of Polarization and Charge Transport in Blended Hybrid Organic–Inorganic Perovskites on Macro- and Nanoscales. ACS Applied Materials & Interfaces, 2020, 12, 15380-15388.	4.0	5
611	Stabilizing Perovskite Lightâ€Emitting Diodes by Incorporation of Binary Alkali Cations. Advanced Materials, 2020, 32, e1907786.	11.1	64
612	Photoinduced Anion Segregation in Mixed Halide Perovskites. Trends in Chemistry, 2020, 2, 282-301.	4.4	141
613	Improved Chemical Stability of Organometal Halide Perovskite Solar Cells Against Moisture and Heat by Ag Doping. ChemSusChem, 2020, 13, 3261-3268.	3.6	11
614	Lead-Free Perovskite/Organic Semiconductor Vertical Heterojunction for Highly Sensitive Photodetectors. ACS Applied Materials & amp; Interfaces, 2020, 12, 18769-18776.	4.0	29
615	Reviewing and understanding the stability mechanism of halide perovskite solar cells. InformaÄnÃ- Materiály, 2020, 2, 1034-1056.	8.5	55
616	Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3186-3192.	2.5	37
617	Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Journal of Materials Chemistry A, 2020, 8, 7309-7316.	5.2	28

# 618	ARTICLE Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles. Electrochimica Acta, 2020, 354, 136660	IF 2.6	CITATIONS
619	Roll-to-roll printing of polymer and perovskite solar cells: compatible materials and processes. Journal of Materials Science, 2020, 55, 13490-13542.	1.7	23
620	Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by tomographic atomic force microscopy. Nature Communications, 2020, 11, 3308.	5.8	53
621	Interface Matters: Enhanced Photoluminescence and Long-Term Stability of Zero-Dimensional Cesium Lead Bromide Nanocrystals <i>via</i> Gas-Phase Aluminum Oxide Encapsulation. ACS Applied Materials & Interfaces, 2020, 12, 35598-35605.	4.0	14
622	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	5.8	108
623	Defect Passivation in Perovskite Solar Cells by Cyanoâ€Based Ï€â€Conjugated Molecules for Improved Performance and Stability. Advanced Functional Materials, 2020, 30, 2002861.	7.8	87
624	Light-induced degradation and self-healing inside CH3NH3PbI3-based solar cells. Applied Physics Letters, 2020, 116, .	1.5	12
625	An unusual frequency dispersion of the dielectric permittivity maxima at temperatures around the tetragonal–cubic phase transition of methylammonium lead iodide. Journal of Applied Physics, 2020, 127, 244103.	1.1	6
626	Challenges, myths, and opportunities of electron microscopy on halide perovskites. Journal of Applied Physics, 2020, 128, .	1.1	35
627	A study of structural and dielectric properties of Ba2+ doped CH3NH3PbI3 crystals. SN Applied Sciences, 2020, 2, 1.	1.5	4
628	Enhancing photoluminescence quantum efficiency of metal halide perovskites by examining luminescence-limiting factors. APL Materials, 2020, 8, .	2.2	22
629	Electrically driven lasing in metal halide perovskites: Challenges and outlook. APL Materials, 2020, 8, .	2.2	46
630	Intrinsic and environmental stability issues of perovskite photovoltaics. Progress in Energy, 2020, 2, 022002.	4.6	33
631	Low-Temperature Solution Growth and Characterization of Halogen (Cl, I)-Doped CsPbBr ₃ Crystals. Crystal Growth and Design, 2020, 20, 1638-1645.	1.4	25
632	TiO ₂ -Assisted Halide Ion Segregation in Mixed Halide Perovskite Films. Journal of the American Chemical Society, 2020, 142, 5362-5370.	6.6	72
633	Correlating the Composition-Dependent Structural and Electronic Dynamics of Inorganic Mixed Halide Perovskites. Chemistry of Materials, 2020, 32, 2470-2481.	3.2	20
634	The engineering of stilbazolium/iodocuprate hybrids with optical/electrical performances by modulating inter-molecular charge transfer among H-aggregated chromophores. Inorganic Chemistry Frontiers, 2020, 7, 1451-1466.	3.0	17
635	Enhancing Device Performance in Quasi-2D Perovskite ((BA) ₂ (MA) ₃ Pb ₄ I ₁₃) Solar Cells Using PbCl ₂ Additives. ACS Applied Materials & Interfaces, 2020, 12, 11190-11196.	4.0	35

#	Article	IF	CITATIONS
636	Ion Migrations in Lead Halide Perovskite Single Crystals with Different Halide Components. Physica Status Solidi (B): Basic Research, 2020, 257, 1900784.	0.7	8
637	Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials, 2020, 32, 1854-1863.	3.2	46
638	Defect proliferation in CsPbBr3 crystal induced by ion migration. Applied Physics Letters, 2020, 116, .	1.5	60
639	Microstructural and Nanostructural Evolution of Light Harvester Perovskite Thin Film under the Influence of Ultrasonic Vibrations. ACS Omega, 2020, 5, 808-821.	1.6	5
640	Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. Journal of the American Chemical Society, 2020, 142, 3060-3068.	6.6	91
641	Halide perovskites: current issues and new strategies to push material and device stability. JPhys Energy, 2020, 2, 021005.	2.3	40
642	Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Materialia, 2020, 187, 112-121.	3.8	51
643	Novel fluorinated long linear segment hyperbranched polyimides bearing various pendant substituents for applications as optical materials. Polymer, 2020, 190, 122216.	1.8	18
644	Effective Management of Nucleation and Crystallization Processes in Perovskite Formation via Facile Control of Antisolvent Temperature. ACS Applied Energy Materials, 2020, 3, 1506-1514.	2.5	34
645	Insights into Recombination Processes from Light Intensity–Dependent Open ircuit Voltages and Ideality Factors in Planar Perovskite Solar Cells. Energy Technology, 2020, 8, 1901196.	1.8	21
646	Detection range extended 2D Ruddlesden–Popper perovskite photodetectors. Journal of Materials Chemistry C, 2020, 8, 3359-3366.	2.7	21
647	Recent advances in defect passivation of perovskite active layer via additive engineering: a review. Journal Physics D: Applied Physics, 2020, 53, 183002.	1.3	15
648	Super-coercive electric field hysteresis in ferroelectric plastic crystal tetramethylammonium bromotrichloroferrate(<scp>iii</scp>). Journal of Materials Chemistry C, 2020, 8, 3206-3216.	2.7	11
649	Temperature and Gate Dependence of Carrier Diffusion in Single Crystal Methylammonium Lead Iodide Perovskite Microstructures. Journal of Physical Chemistry Letters, 2020, 11, 1000-1006.	2.1	12
650	Alkali Cation Doping for Improving the Structural Stability of 2D Perovskite in 3D/2D PSCs. Nano Letters, 2020, 20, 1240-1251.	4.5	68
651	Mixed-Dimensional Naphthylmethylammonium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stability. Scientific Reports, 2020, 10, 429.	1.6	39
652	Highly luminescent CsPbI3 quantum dots and their fast anion exchange at oil/water interface. Chemical Physics Letters, 2020, 741, 137096.	1.2	4
653	Effect of Grain Size on the Fracture Behavior of Organic-Inorganic Halide Perovskite Thin Films for Solar Cells. Scripta Materialia, 2020, 185, 47-50.	2.6	32

#	Article	IF	CITATIONS
654	Role of PCBM in the Suppression of Hysteresis in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908920.	7.8	110
655	NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Science, 2020, 7, 1903044.	5.6	146
656	Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Organic Electronics, 2020, 83, 105736.	1.4	18
657	High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212, 110555.	3.0	36
658	An Environmentally Stable and Leadâ€Free Chalcogenide Perovskite. Advanced Functional Materials, 2020, 30, 2001387.	7.8	52
659	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	1.9	34
660	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
661	Spontaneous Passivation of Perovskite Solar Cells by Titanium Tetrafluoride. ACS Applied Energy Materials, 2020, 3, 4121-4126.	2.5	4
662	Suppressed Halide Ion Migration in 2D Lead Halide Perovskites. , 2020, 2, 565-570.		99
663	Broadband emission from zero-dimensional Cs ₄ PbI ₆ perovskite nanocrystals. RSC Advances, 2020, 10, 13431-13436.	1.7	31
664	Elucidation of the role of guanidinium incorporation in single-crystalline MAPbI ₃ perovskite on ion migration and activation energy. Physical Chemistry Chemical Physics, 2020, 22, 11467-11473.	1.3	36
665	Moisture-tolerant and high-quality α-CsPbI ₃ films for efficient and stable perovskite solar modules. Journal of Materials Chemistry A, 2020, 8, 9597-9606.	5.2	62
666	Controllable crystallization by way of solvent engineering for perovskite solar cells. Surface Innovations, 2021, 9, 57-64.	1.4	4
667	Pseudohalide Additives Enhanced Perovskite Photodetectors. Advanced Optical Materials, 2021, 9, 2001587.	3.6	15
668	Impact of Li doping on the photophysical properties of perovskite absorber layer FAPbI3. Journal of Alloys and Compounds, 2021, 850, 156696.	2.8	6
669	Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Timeâ€Resolved Microspectroscopy. Small Methods, 2021, 5, e2000731.	4.6	18
670	Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy and Environmental Science, 2021, 14, 224-261.	15.6	94
671	Donor–π–Acceptor Type Porphyrin Derivatives Assisted Defect Passivation for Efficient Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2007762.	7.8	106

#	Article	IF	CITATIONS
672	Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Science Bulletin, 2021, 66, 536-544.	4.3	10
673	Halide Perovskite Nanocrystal Emitters. Advanced Photonics Research, 2021, 2, 2000118.	1.7	17
674	Dynamic Redistribution of Mobile Ions in Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2007596.	7.8	23
675	Highly Uniform Allâ€Vacuumâ€Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing. Advanced Intelligent Systems, 2021, 3, 2000196.	3.3	18
676	Role of cation-mediated recombination in perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110912.	3.0	16
677	Scanning Kelvin Probe Microscopy Reveals That Ion Motion Varies with Dimensionality in 2D Halide Perovskites. ACS Energy Letters, 2021, 6, 100-108.	8.8	23
678	Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Research, 2021, 14, 1012-1017.	5.8	3
679	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices. Advanced Optical Materials, 2021, 9, 2001715.	3.6	33
680	A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells. Chemical Engineering Journal, 2021, 413, 127387.	6.6	40
681	Improved Radiation Sensing with Methylammonium Lead Tribromide Perovskite Semiconductors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986, 164710.	0.7	10
682	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	13.3	800
683	Memory Devices for Flexible and Neuromorphic Device Applications. Advanced Intelligent Systems, 2021, 3, 2000206.	3.3	14
684	SMART Perovskite Growth: Enabling a Larger Range of Process Conditions. ACS Energy Letters, 2021, 6, 650-658.	8.8	14
685	Simple Fabrication of Green Emission and Water-Resistant CsPbBr ₃ Encapsulation Using Commercial Glass Frits. Korean Journal of Materials Research, 2021, 31, 54-59.	0.1	0
686	Perovskite solar cells with PCE over 19% fabricated under air environment by using a dye molecule additive. Sustainable Energy and Fuels, 2021, 5, 2266-2272.	2.5	7
687	Ion Migration Accelerated Reaction between Oxygen and Metal Halide Perovskites in Light and Its Suppression by Cesium Incorporation. Advanced Energy Materials, 2021, 11, 2002552.	10.2	64
688	Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy and Environmental Science, 2021, 14, 1563-1572.	15.6	55
689	Microsteganography on all inorganic perovskite micro-platelets by direct laser writing. Nanoscale, 2021, 13, 14450-14459.	2.8	18

#	Article	IF	CITATIONS
690	Metal Halide Perovskites for X-Ray Detection and Imaging. Matter, 2021, 4, 144-163.	5.0	222
691	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
692	Numerical study of high performance, low hysteresis, and stable perovskite solar cells with examining the optimized parameters. European Physical Journal Plus, 2021, 136, 1.	1.2	5
693	Microstructure and lattice strain control towards high-performance ambient green-printed perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13297-13305.	5.2	29
694	Real-Time Blinking Suppression of Perovskite Quantum Dots by Halide Vacancy Filling. ACS Nano, 2021, 15, 2831-2838.	7.3	41
695	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
696	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
698	Spectroscopic Insight into Efficient and Stable Hole Transfer at the Perovskite/Spiro-OMeTAD Interface with Alternative Additives. ACS Applied Materials & Interfaces, 2021, 13, 5752-5761.	4.0	17
699	Methylamine-assisted secondary grain growth for CH ₃ NH ₃ PbI ₃ perovskite films with large grains and a highly preferred orientation. Journal of Materials Chemistry A, 2021, 9, 7625-7630.	5.2	12
700	Scalable Fabrication of >90 cm ² Perovskite Solar Modules with >1000 h Operational Stability Based on the Intermediate Phase Strategy. Advanced Energy Materials, 2021, 11, 2003712.	10.2	76
701	Research progress on two-dimensional (2D) halide organic–inorganic hybrid perovskites. Sustainable Energy and Fuels, 2021, 5, 3950-3978.	2.5	12
702	Bandgap adjustment assisted preparation of >18% Cs _y FA _{1â^'y} Pbl _x Br _{3â^'x} -based perovskite solar cells using a hybrid spraying process. RSC Advances, 2021, 11, 17595-17602.	1.7	4
703	Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy and Environmental Science, 2021, 14, 3233-3255.	15.6	166
704	Research progress of light irradiation stability of functional layers in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 098402.	0.2	2
705	Perovskite solar cells. , 2021, , 249-281.		5
706	Deactivation/Activation of Quenching Defects in CH3NH3PbI3 Perovskite by Direct Electron Injection/Extraction. Journal of Physical Chemistry Letters, 2021, 12, 773-780.	2.1	2
707	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	2.8	47
708	Efficient defect passivation with niacin for high-performance and stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	10

#	Article	IF	CITATIONS
709	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	5.2	28
710	Nanoscale light- and voltage-induced lattice strain in perovskite thin films. Nanoscale, 2021, 13, 746-752.	2.8	12
711	Chemical passivation of the under coordinated Pb2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives. Photochemical and Photobiological Sciences, 2021, 20, 357-367.	1.6	6
712	Ultrasensitive 3D Aerosol-Jet-Printed Perovskite X-ray Photodetector. ACS Nano, 2021, 15, 4077-4084.	7.3	71
713	Ion Migration Controlled Stability in α-Particle Response of CsPbBr _{2.4} Cl _{0.6} Detectors. Journal of Physical Chemistry C, 2021, 125, 4235-4242.	1.5	12
714	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .	4.7	81
715	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
716	Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nature Nanotechnology, 2021, 16, 584-591.	15.6	88
717	Recent Progress in the Semiconducting Oxide Overlayer for Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003119.	10.2	9
718	Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden–Popper perovskite photodetectors. Nanotechnology, 2021, 32, 185203.	1.3	10
719	Advances in Metal Halide Perovskite Film Preparation: The Role of Antiâ€ S olvent Treatment. Small Methods, 2021, 5, e2100046.	4.6	39
720	Zero-Dimensional Lead-Free FA ₃ Bi ₂ I ₉ Single Crystals for High-Performance X-ray Detection. Journal of Physical Chemistry Letters, 2021, 12, 1778-1785.	2.1	57
721	Recent progress in two-dimensional Ruddlesden–Popper perovskite based heterostructures. 2D Materials, 2021, 8, 022006.	2.0	19
722	Factors influencing the nucleation and crystal growth of solution-processed organic lead halide perovskites: a review. Journal Physics D: Applied Physics, 2021, 54, 163001.	1.3	35
723	High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61.	7.7	235
724	Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 5525-5533.	1.5	7
725	Suppression of hysteresis in all-inorganic perovskite solar cells by the incorporation of PCBM. Applied Physics Letters, 2021, 118, .	1.5	18
726	A Multi-Dimensional Perspective on Electronic Doping in Metal Halide Perovskites. ACS Energy Letters, 2021, 6, 1104-1123.	8.8	38

#	ARTICLE	IF	CITATIONS
727	Post-Treating the Precursor Intermediate Film by a Cooling Stage for Fabricating Efficient Formamidinium-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 11783-11792.	4.0	5
728	The Complex Interplay of Lead Halide Perovskites with Their Surroundings. Advanced Optical Materials, 2021, 9, 2100133.	3.6	7
729	Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells. Solar Energy, 2021, 217, 105-112.	2.9	10
730	Elucidating the Role of Ion Migration and Band Bending in Perovskite Solar Cell Function at Grain Boundaries via Multimodal Nanoscale Mapping. Advanced Materials Interfaces, 2021, 8, 2001992.	1.9	13
731	Solventâ€Assisted Kinetic Trapping in Quaternary Perovskites. Advanced Materials, 2021, 33, e2008690.	11.1	6
732	Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today, 2021, 22, 100946.	2.3	11
733	In Situ Spectroelectrochemical Investigation of Perovskite Quantum Dots for Tracking Their Transformation. Frontiers in Energy Research, 2021, 8, .	1.2	7
734	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	5.2	61
735	Monolithic all-perovskite tandem solar cells: recent progress and challenges. Journal of the Korean Ceramic Society, 2021, 58, 399-413.	1.1	14
736	Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances, 2021, 7, .	4.7	41
737	Mechanically Robust and Flexible Perovskite Solar Cells via a Printable and Gelatinous Interface. ACS Applied Materials & Interfaces, 2021, 13, 19959-19969.	4.0	39
738	Trap State Passivation by Rational Ligand Molecule Engineering toward Efficient and Stable Perovskite Solar Cells Exceeding 23% Efficiency. Advanced Energy Materials, 2021, 11, 2100529.	10.2	201
739	Simultaneous ambient pressure x-ray photoelectron spectroscopy and grazing incidence x-ray scattering in gas environments. Review of Scientific Instruments, 2021, 92, 044102.	0.6	16
740	Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society, 2021, 143, 5855-5866.	6.6	59
741	Poling effect on the electrostrictive and piezoelectric response in CH3NH3PbI3 single crystals. Applied Physics Letters, 2021, 118, .	1.5	4
742	Dielectric screening in perovskite photovoltaics. Nature Communications, 2021, 12, 2479.	5.8	88
743	Emerging Organic/Hybrid Photovoltaic Cells for Indoor Applications: Recent Advances and Perspectives. Solar Rrl, 2021, 5, 2100042.	3.1	20
744	Green Perovskite Lightâ€Emitting Diodes with 200ÂHours Stability and 16% Efficiency: Crossâ€Linking Strategy and Mechanism. Advanced Functional Materials, 2021, 31, 2011003.	7.8	67

#	Article	IF	CITATIONS
745	Low Roll-Off and High Stable Electroluminescence in Three-Dimensional FAPbI ₃ Perovskites with Bifunctional-Molecule Additives. Nano Letters, 2021, 21, 3738-3744.	4.5	33
746	Polarization-Controlled Surface Defect Formation in a Hybrid Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 3898-3906.	2.1	6
747	Perovskite Solar Cells for Space Applications: Progress and Challenges. Advanced Materials, 2021, 33, e2006545.	11.1	184
748	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	8.1	52
749	In Situ and Quantitative Vapor/Solid Anion Exchange for Composition Regulation and Optical Properties of Perovskites. Advanced Optical Materials, 2021, 9, 2002186.	3.6	7
750	Laser-Scribing Optimization for Sprayed SnO ₂ -Based Perovskite Solar Modules on Flexible Plastic Substrates. ACS Applied Energy Materials, 2021, 4, 4507-4518.	2.5	31
751	Organic cation rotation in HC(NH2)2PbI3 perovskite solar cells: DFT & DOE approach. Solar Energy, 2021, 220, 70-79.	2.9	9
752	3D-to-2D Transition of Anion Vacancy Mobility in CsPbBr ₃ under Hydrostatic Pressure. Journal of Physical Chemistry Letters, 2021, 12, 5169-5177.	2.1	7
753	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
754	Research Progress on Structure and Property of Hybrid Organic-Inorganic Perovskite. IOP Conference Series: Earth and Environmental Science, 2021, 781, 022069.	0.2	2
755	Modified P3HT materials as hole transport layers for flexible perovskite solar cells. Journal of Power Sources, 2021, 494, 229735.	4.0	23
756	Exploring Responses of Contact Kelvin Probe Force Microscopy in Triple-Cation Double-Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 12355-12365.	1.5	3
757	Efficiency of bulk perovskite-sensitized upconversion: Illuminating matters. Applied Physics Letters, 2021, 118, .	1.5	12
758	Reducing Defects in Organic-Lead Halide Perovskite Film by Delayed Thermal Annealing Combined with KI/I2 for Efficient Perovskite Solar Cells. Nanomaterials, 2021, 11, 1607.	1.9	6
759	Variational hysteresis and photoresponse behavior of MAPbX ₃ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	0.7	7
760	Toward high-performance p-type, tin-based perovskite thin film transistors. Applied Physics Letters, 2021, 118, .	1.5	3
761	A holistic framework towards understanding the optical and dielectric behaviors of CH3NH3PbCl3 perovskites/graphene oxide hybrid films for light absorbing active layer. Journal of Solid State Chemistry, 2021, 298, 122137.	1.4	8
762	Asymmetric Bipolar Resistive Switching of Halide Perovskite Film in Contact with TiO ₂ Layer. ACS Applied Materials & Interfaces, 2021, 13, 27209-27216.	4.0	13

#	Article	IF	CITATIONS
763	Gravity-Guided Growth of Large-Area High-Quality Two-Dimensional Ruddlesden–Popper Perovskite Thin Films for Stable Ultraviolet Photodetectors. Journal of Physical Chemistry C, 2021, 125, 13909-13916.	1.5	5
764	Multiple-Defect Management for Efficient Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 2404-2412.	8.8	74
765	Ferroic Halide Perovskite Optoelectronics. Advanced Functional Materials, 2021, 31, 2102793.	7.8	23
766	Octylammonium Sulfate Decoration Enhancing the Moisture Durability of Quasiâ€2D Perovskite Film for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100442.	1.9	9
767	Orientational Dependence of Electron Beam Irradiation Damage in Lead-Free Halide Double Perovskite Cs ₂ AgBiBr ₆ . Journal of Physical Chemistry C, 2021, 125, 13033-13040.	1.5	5
768	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature Communications, 2021, 12, 3472. Guanidinium cation doped (Gua) <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>5.8</td><td>89</td></mml:math>	5.8	89
769	display="inline" id="d1e565" altimg="si46.svg"> <mml:msub> <mml:mrow /> <mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> </mml:mrow </mml:msub> (MA) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e573" altimg="si47.svg"> <mml:msub> <mml:mrow< td=""><td>0.7</td><td>5</td></mml:mrow<></mml:msub></mml:math 	0.7	5
770	/> <mml:mrow><mml:mn>1</mml:mn><mml:mo>a^'</mml:mo><mml:mi>x</mml:mi>x</mml:mrow> Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmentalâ€Dependent Impedance Spectroscopy. Advanced Science, 2021, 8, e2002510.	5.6	th>PbI3 23
771	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	5.8	59
772	Artificial Synapse Based on Organic–Inorganic Hybrid Perovskite with Electric and Optical Modulation. Advanced Electronic Materials, 2021, 7, 2100291.	2.6	34
773	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
774	Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices. Advanced Materials, 2021, 33, e2006004.	11.1	86
775	Mitigating ion migration in perovskite solar cells. Trends in Chemistry, 2021, 3, 575-588.	4.4	81
776	How the Copper Dopant Alters the Geometric and Photoelectronic Properties of the Leadâ€Free Cs 2 AgSbCl 6 Double Perovskite. Advanced Theory and Simulations, 2021, 4, 2100142.	1.3	6
777	Understanding the Influence of Cation and Anion Migration on Mixedâ€Composition Perovskite Solar Cells via Transient Ion Drift. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100225.	1.2	8
778	Tetragonal–Cubic Phase Transition and Low-Field Dielectric Properties of CH3NH3PbI3 Crystals. Materials, 2021, 14, 4215.	1.3	6
779	Ion Migration in Metal Halide Perovskites. Journal of Electrochemical Science and Technology, 0, , .	0.9	2
780	Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection. Matter, 2021, 4, 2490-2507.	5.0	47

#	Article	IF	CITATIONS
781	Electrical Conductivity of Halide Perovskites Follows Expectations from Classical Defect Chemistry. European Journal of Inorganic Chemistry, 2021, 2021, 2882-2889.	1.0	14
782	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	14.4	250
783	Zwitterionic Ionic Liquid Confer Defect Tolerance, High Conductivity, and Hydrophobicity toward Efficient Perovskite Solar Cells Exceeding 22% Efficiency. Solar Rrl, 2021, 5, 2100352.	3.1	35
784	Revealing the Mechanism of π Aromatic Molecule as an Effective Passivator and Stabilizer in Highly Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100249.	3.1	11
785	Ion mobility independent large signal switching of perovskite devices. Applied Physics Letters, 2021, 119,	1.5	5
786	Halogen vacancy migration at surfaces of CsPbBr ₃ perovskites: insights from density functional theory. JPhys Energy, 2021, 3, 034017.	2.3	7
787	Probing the Origin of Light-Enhanced Ion Diffusion in Halide Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 33609-33617.	4.0	8
788	Synthetic and Post-Synthetic Strategies to Improve Photoluminescence Quantum Yields in Perovskite Quantum Dots. Catalysts, 2021, 11, 957.	1.6	1
789	Lead-free perovskites: growth, properties, and applications. Science China Materials, 2021, 64, 2889-2914.	3.5	12
790	Polymer Network Modified Mesoporous SnO ₂ for Enhanced Fill Factor in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7481-7486.	2.5	10
791	Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 2021, 63, 528-549.	7.1	76
792	Investigating the effect of applied bias on methylammonium lead iodide perovskite by electrical and positron annihilation spectroscopic studies. Journal Physics D: Applied Physics, 2021, 54, 465502.	1.3	3
793	Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration. ACS Energy Letters, 2021, 6, 3044-3052.	8.8	65
794	Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chemical Engineering Journal, 2021, 418, 129375.	6.6	157
795	In Operando, Photovoltaic, and Microscopic Evaluation of Recombination Centers in Halide Perovskite-Based Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34171-34179.	4.0	4
796	Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 3114-3131.	8.8	46
798	Stimuli-responsive switchable halide perovskites: Taking advantage of instability. Joule, 2021, 5, 2027-2046.	11.7	56
799	Material, Phase, and Interface Stability of Photovoltaic Perovskite: A Perspective. Journal of Physical Chemistry C, 2021, 125, 19088-19096.	1.5	7

	CITATION R	EPORT	
#	Article	IF	CITATIONS
800	Elastic Lattice and Excess Charge Carrier Manipulation in 1D–3D Perovskite Solar Cells for Exceptionally Longâ€Term Operational Stability. Advanced Materials, 2021, 33, e2105170.	11.1	78
801	X-Ray imager of 26-µm resolution achieved by perovskite assembly. Nano Research, 2022, 15, 2399-2404.	5.8	30
802	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11
803	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
804	NH3+-Functionalized PAMAM Dendrimers Enhancing Power Conversion Efficiency and Stability of Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6414-6425.	1.0	2
805	Anisotropic Optoelectronic Properties of MAPbI3 on (100), (112) and (001) Facets. Journal of Electronic Materials, 2021, 50, 6881-6887.	1.0	4
806	Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals. Nano Letters, 2021, 21, 7831-7838.	4.5	10
807	Protonâ€Radiation Tolerant Allâ€Perovskite Multijunction Solar Cells. Advanced Energy Materials, 2021, 11, 2102246.	10.2	25
808	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Employing a Cationic Ï€â€Conjugated Polymer. Advanced Materials, 2021, 33, e2103640.	11.1	77
809	Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites. Applied Physics Reviews, 2021, 8, .	5.5	36
810	Radiation stability of mixed tin–lead halide perovskites: Implications for space applications. Solar Energy Materials and Solar Cells, 2021, 230, 111232.	3.0	15
811	Imaging Real-Time Amorphization of Hybrid Perovskite Solar Cells under Electrical Biasing. ACS Energy Letters, 2021, 6, 3530-3537.	8.8	12
812	Influence of charge transporting layers on ion migration and interfacial carrier recombination in CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2021, 784, 139094.	1.2	3
813	Effect of PbSO4-Oleate Coverage on Cesium Lead Halide Perovskite Quantum Dots to Control Halide Exchange Kinetics. Nanomaterials, 2021, 11, 2515.	1.9	2
814	Enhanced Performance of Perovskite Solar Cells via Reactive Postâ€treatment Process Utilizing Guanidine Acetate as Interface Modifier. Solar Rrl, 2021, 5, 2100547.	3.1	16
815	3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard Xâ€Ray Detection. Advanced Functional Materials, 2021, 31, 2104880.	7.8	47
816	Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37, 1055-1066.	1.3	3
817	Understanding degradation mechanisms of perovskite solar cells due to electrochemical metallization effect. Solar Energy Materials and Solar Cells, 2021, 230, 111278.	3.0	20

#	Article	IF	CITATIONS
818	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	8.2	28
819	Leadâ€Free Double Perovskite Cs ₂ AgBiBr ₆ : Fundamentals, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2105898.	7.8	166
820	Resistive Switching by Percolative Conducting Filaments in Organometal Perovskite Unipolar Memory Devices Analyzed Using Current Noise Spectra. Advanced Functional Materials, 2022, 32, 2107727.	7.8	8
821	Surface Passivation with a Fluorocarbon-Based Pyridine Derivative for High-Crystallinity Perovskite Solar Cells with Efficiency Over 20% and Good Humidity Stability. ACS Applied Energy Materials, 2021, 4, 10484-10492.	2.5	14
822	Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors. Science Advances, 2021, 7, eabg6716.	4.7	77
823	Enhanced performance of p-i-n perovskite solar cell via defect passivation of nickel oxide/perovskite interface with self-assembled monolayer. Applied Surface Science, 2021, 560, 149973.	3.1	36
824	Degradation and self-repairing in perovskite light-emitting diodes. Matter, 2021, 4, 3710-3724.	5.0	51
825	Highâ€Performance Xâ€Ray Detector Based on Liquid Diffused Separation Induced Cs ₃ Bi ₂ I ₉ Single Crystal. Advanced Optical Materials, 2021, 9, 2101351.	3.6	32
826	Mixedâ€Halide Double Perovskite Cs ₂ AgBiX ₆ (X=Br, I) with Tunable Optical Properties via Anion Exchange. ChemSusChem, 2021, 14, 4507-4515.	3.6	24
827	In Situ Management of Ions Migration to Control Hysteresis Effect for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2108417.	7.8	28
828	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	2.9	17
829	Surface electrical properties modulation by multimode polarizations inside hybrid perovskite films investigated through contact electrification effect. Nano Energy, 2021, 89, 106318.	8.2	4
830	Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. Science Bulletin, 2021, 66, 2189-2198.	4.3	48
831	Lead-free molecular one-dimensional perovskite for efficient X-ray detection. Journal of Energy Chemistry, 2022, 64, 209-213.	7.1	15
832	Dynamic temperature effects in perovskite solar cells and energy yield. Sustainable Energy and Fuels, 0, , .	2.5	5
833	lon migration drives self-passivation in perovskite solar cells and is enhanced by light soaking. RSC Advances, 2021, 11, 12095-12101.	1.7	15
834	Reversible Ionic Polarization in Metal Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 283-289.	1.5	2
835	Modulation of Metal Halide Structural Units for Light Emission. Accounts of Chemical Research, 2021, 54, 441-451.	7.6	61

#	Article	IF	CITATIONS
836	Hydrazine dihydrochloride as a new additive to promote the performance of tin-based mixed organic cation perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 2660-2667.	2.5	14
837	Influence of hidden halogen mobility on local structure of CsSn(Cl _{1â^'<i>x</i>} Br _{<i>x</i>}) ₃ mixed-halide perovskites by solid-state NMR. Chemical Science, 2021, 12, 3253-3263.	3.7	31
838	Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2021, 9, 19206-19244.	5.2	28
839	Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy and Environmental Science, 2021, 14, 5723-5759.	15.6	114
840	Halide Ion Migration in Perovskite Nanocrystals and Nanostructures. Accounts of Chemical Research, 2021, 54, 520-531.	7.6	98
841	Composition and dimension dependent static and dynamic stabilities of inorganic mixed halide antimony perovskites. Journal of Materials Chemistry C, 0, , .	2.7	3
842	Photoelectrical Dynamics Uplift in Perovskite Solar Cells by Atoms Thick 2D TiS ₂ Layer Passivation of TiO ₂ Nanograss Electron Transport Layer. ACS Applied Materials & Interfaces, 2021, 13, 3051-3061.	4.0	21
843	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
844	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
845	Electronâ€Beamâ€Related Studies of Halide Perovskites: Challenges and Opportunities. Advanced Energy Materials, 2020, 10, 1903191.	10.2	53
846	Selfâ€Aggregation ontrolled Rapid Chemical Bath Deposition of SnO ₂ Layers and Stable Dark Depolarization Process for Highly Efficient Planar Perovskite Solar Cells. ChemSusChem, 2020, 13, 4051-4063.	3.6	17
847	First evidence of macroscale single crystal ion exchange found in lead halide perovskites. EcoMat, 2020, 2, e12016.	6.8	12
848	Recent Development of Organic-Inorganic Perovskite-Based Tandem Solar Cells. Solar Rrl, 2017, 1, 1700045.	3.1	32
849	A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells. Science China Chemistry, 2021, 64, 281-292.	4.2	12
850	Chlorine Incorporation in Perovskite Solar Cells for Indoor Light Applications. Cell Reports Physical Science, 2020, 1, 100273.	2.8	21
851	Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of Oxygen. Journal of Physical Chemistry Letters, 2018, 9, 3891-3896.	2.1	109
852	Enhanced Perovskite Solar Cell Efficiency Via the Electric-Field-Induced Approach. ACS Applied Materials & Interfaces, 2020, 12, 27258-27267.	4.0	19
853	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RSC Smart Materials, 2020, , 41-82.	0.1	2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
854	Roadmap on organicâ \in "inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
855	Origin of Hysteresis in Perovskite Solar Cells. , 2020, , 1-1-1-42.		19
856	The compatibility of methylammonium and formamidinium in mixed cation perovskite: the optoelectronic and stability properties. Nanotechnology, 2021, 32, 075406.	1.3	14
857	Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites. Journal of Semiconductors, 2020, 41, 122501.	2.0	5
858	The Path to Perovskite on Silicon PV. , 2018, 1, 1-8.		16
859	Atomistic Surface Passivation of CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals for Highly Sensitive Coplanar-Structure X-Ray Detectors. Research, 2020, 2020, 5958243.	2.8	60
860	Applications of organic additives in metal halide perovskite light-emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158505.	0.2	5
861	Grain and stoichiometry engineering for ultra-sensitive perovskite X-ray detectors. Journal of Materials Chemistry A, 2021, 9, 25603-25610.	5.2	18
862	Decoding the charge carrier dynamics in triple cation-based perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 6352-6360.	2.5	10
863	Construction of an Iodine Diffusion Barrier Using Network Structure Silicone Resin for Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 8138-8146.	4.0	11
865	The Impact of Ion Migration on the Electroâ€Optic Effect in Hybrid Organic–Inorganic Perovskites. Advanced Functional Materials, 2022, 32, 2107939.	7.8	7
866	Evolution of optical properties and molecular structure of PCBM films under proton irradiation. Chinese Physics B, O, , .	0.7	0
867	Photoinduced Halide Segregation in Ruddlesden–Popper 2D Mixed Halide Perovskite Films. Advanced Materials, 2021, 33, e2105585.	11.1	49
868	0D Perovskites: Unique Properties, Synthesis, and Their Applications. Advanced Science, 2021, 8, e2102689.	5.6	142
869	It is an Allâ€Rounder! On the Development of Metal Halide Perovskiteâ€Based Fluorescent Sensors and Radiation Detectors. Advanced Optical Materials, 2021, 9, 2101276.	3.6	18
870	Quantifying Anionic Diffusion in 2D Halide Perovskite Lateral Heterostructures. Advanced Materials, 2021, 33, .	11.1	31
871	Mitigating Ion Migration by Polyethylene Glycol-Modified Fullerene for Perovskite Solar Cells with Enhanced Stability. ACS Energy Letters, 2021, 6, 3864-3872.	8.8	36
872	In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. EScience, 2021, 1, 91-97.	25.0	79

#	Article	IF	CITATIONS
873	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH ₃ NH ₃ PbI ₃ â€Based Perovskite Solar Cell with Efficiency Beyond 21%. Small, 2021, 17, e2102186.	5.2	28
874	Efficient Skyâ€Blue Lightâ€Emitting Diodes Based on Oriented Perovskite Nanoplates. Advanced Optical Materials, 2022, 10, 2101525.	3.6	12
875	Oxide perovskite Ba2AglO6 wafers for X-ray detection. Frontiers of Optoelectronics, 2021, 14, 473-481.	1.9	7
876	A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064.	1.7	19
877	Optimal Interfacial Band Bending Achieved by Fine Energy Level Tuning in Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3970-3981.	8.8	18
878	Effect of Ion Vacancy Migration on Open ircuit Voltage of Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100472.	0.8	6
879	Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Advanced Materials, 2022, 34, e2105849.	11.1	104
880	Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy, 2021, 90, 106608.	8.2	71
881	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	1
882	Recent progress of ion migration in organometal halide perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158801.	0.2	11
883	Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells. , 2019, , 165-225.		2
884	Dual-functional passivators for highly efficient and hydrophobic FA-based perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133227.	6.6	11
885	Nearâ€Unity Quantum Yield and Superior Stable Indiumâ€Doped CsPbBr <i>_x</i> I _{3â^'} <i>_x</i> Perovskite Quantum Dots for Pure Red Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101517.	3.6	27
886	Effects of polymer grain boundary passivation on organic–inorganic hybrid perovskite field-effect transistors. Applied Physics Letters, 2021, 119, 183303.	1.5	4
887	Single Crystal Hybrid Perovskite Optoelectronics: Progress and Perspectives. , 0, , .		0
888	Approach To Enhance the Stability and Efficiency of Triple-Cation Perovskite Solar Cells by Reactive Antisolvents. ACS Applied Energy Materials, 2021, 4, 47-60.	2.5	4
889	Influence of activation energy on charge conduction mechanism and giant dielectric relaxation of sol-gel derived C3H7NH3PbBr3 perovskite; Act as high performing UV photodetector. Journal of Alloys and Compounds, 2022, 892, 162216.	2.8	6
890	Crystal growth, defect passivation and strain release via In-situ Self-polymerization strategy enables efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 430, 132869.	6.6	25

#	Article	IF	CITATIONS
891	Charge Carrier and Mobile ion Dynamic Processes in Perovskite Solar Cells: Progress and Prospect. , 2020, , 1-34.		0
892	Ion Migration in Metal Halide Perovskites Solar Cells. , 2020, , 1-32.		2
896	Rear Interface Engineering to Suppress Migration of Iodide Ions for Efficient Perovskite Solar Cells with Minimized Hysteresis. Advanced Functional Materials, 2022, 32, 2107823.	7.8	57
897	Interface charge accumulation dynamics in 3D and quasi-2D perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 014004.	1.3	1
898	Relationship between ion vacancy mobility and hysteresis of perovskite solar cells. Chemical Physics, 2022, 554, 111422.	0.9	8
899	Improved Performance and Stability of Perovskite Solar Modules by Regulating Interfacial Ion Diffusion with Nonionic Crossâ€Linked 1D Leadâ€lodide. Advanced Energy Materials, 2022, 12, .	10.2	24
900	Minimizing the Voltage Loss in Hole onductorâ€Free Printable Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	41
901	Selfâ€Powered FA _{0.55} MA _{0.45} PbI ₃ Singleâ€Crystal Perovskite Xâ€Ray Detectors with High Sensitivity. Advanced Functional Materials, 2022, 32, 2109149.	7.8	62
902	Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites. ACS Nano, 2021, 15, 20391-20402.	7.3	8
903	28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 3169-3186.	11.7	99
904	Thermodynamics-Induced Injection Enhanced Deep-Blue Perovskite Quantum Dot LEDs. ACS Applied Materials & Interfaces, 2021, 13, 57560-57566.	4.0	14
905	Gammaâ€Ray Radiation Stability of Mixedâ€Cation Lead Mixedâ€Halide Perovskite Single Crystals. Advanced Optical Materials, 2022, 10, 2102069.	3.6	15
906	Perspective on perovskite materials as X-ray detectors. Science China Technological Sciences, 0, , 1.	2.0	1
907	Halogen Bond Involved Postâ€Treatment for Improved Performance of Printable Holeâ€Conductorâ€Free Mesoscopic Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100851.	3.1	14
908	High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chemical Engineering Journal, 2022, 431, 133713.	6.6	19
910	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, .	3.1	8
911	Inkjet printed organic light-emitting diodes employing organometal-halide perovskite as hole transport layer. Journal Physics D: Applied Physics, 2022, 55, 105101.	1.3	1
912	Hole transporting materials in inorganic CsPbI3â^'Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268.	8.3	20

#	Article	IF	CITATIONS
913	Reveal the Humidity Effect on the Phase Pure CsPbBr ₃ Single Crystals Formation at Room Temperature and Its Application for Ultrahigh Sensitive Xâ€Ray Detector. Advanced Science, 2022, 9, e2103482.	5.6	41
914	Precursor solution-dependent secondary phase defects in CsPbBr ₃ single crystal grown by inverse temperature crystallization. Journal of Materials Chemistry A, 2021, 9, 27718-27726.	5.2	6
915	Photoinduced quasi-2D to 3D phase transformation in hybrid halide perovskite nanoplatelets. Physical Chemistry Chemical Physics, 2021, 23, 27355-27364.	1.3	7
916	Backward Learning for the Origin and Influence of Metallic Lead in Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
917	Enhancing the Efficiency and Stability of CsPbI ₃ Nanocrystal-Based Light-Emitting Diodes through Ligand Engineering with Octylamine. Journal of Physical Chemistry C, 2022, 126, 1085-1093.	1.5	12
918	Nucleation Engineering in Sprayed MA ₃ Bi ₂ I ₉ Films for Direct-Conversion X-ray Detectors. Journal of Physical Chemistry Letters, 2022, 13, 371-377.	2.1	15
919	Regulating synthesis and photochromic behavior via interfacial Eu3+/Eu2+-Pb0/Pb2+ redox of the CsPbCl1.5Br1.5@ Ca0.9Eu0.1MoO4 porous composites. Materials Today Chemistry, 2022, 23, 100721.	1.7	6
920	Impedance spectroscopy study of defect/ion mediated electric field and its effect on the photovoltaic performance of perovskite solar cells based on different active layers. Solar Energy Materials and Solar Cells, 2022, 237, 111548.	3.0	13
921	Interpretation of the giant dielectric constant in the single crystal of the CH3NH3PbBr3 perovskite. Materials Research Bulletin, 2022, 149, 111723.	2.7	4
923	Switching characteristics and simulated iodine vacancies distribution of halide perovskite RRAM. , 2020, , .		0
924	Role of electrochemical reactions in the degradation of formamidinium lead halide hybrid perovskite quantum dots. Analyst, The, 2022, 147, 841-850.	1.7	2
925	Controlling the Grain Size of Dion–Jacobson-Phase Two-Dimensional Layered Perovskite for Memory Application. ACS Applied Materials & Interfaces, 2022, 14, 4371-4377.	4.0	15
926	Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr ₃ quantum dots. Energy and Environmental Science, 2022, 15, 244-253.	15.6	33
927	Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 243-266.	2.5	59
928	Research progress of atomic layer deposition technology to improve the long-term stability of perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 819-839.	2.7	13
929	Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Accounts of Chemical Research, 2022, 55, 262-274.	7.6	49
930	Unraveling the Mechanism of Ion-Migration Suppression by Interstitial Doping for Operationally Stable CsPbI ₂ Br Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 1010-1019.	3.2	11
931	Ion Migration in Organic–Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives. Small, 2022, 18, e2105783.	5.2	53

#	Article	IF	CITATIONS
932	Antisolvents Treatment of Cs _{0.15} FA _{0.85} PbI ₃ Boosting Efficiency for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 322-326.	1.5	1
933	Monolithic Perovskite‧ilicon Tandem Solar Cells: From the Lab to Fab?. Advanced Materials, 2022, 34, e2106540.	11.1	92
934	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances. Journal of the American Chemical Society, 2022, 144, 1700-1708.	6.6	88
935	Halide Ions Distribution and Charge Dynamics in Mixedâ€Halide Perovskites. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	3
936	Omnibearing Interpretation of External Ions Passivated Ion Migration in Mixed Halide Perovskites. Nano Letters, 2022, 22, 1467-1474.	4.5	17
937	Emerging New eneration Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	2.6	17
938	Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes. CheM, 2022, 8, 351-383.	5.8	35
939	Non-selective adsorption of organic cations enables conformal surface capping of perovskite grains for stabilized photovoltaic operation. Cell Reports Physical Science, 2022, 3, 100760.	2.8	4
940	Light-activated Multilevel Resistive Switching Storage in Pt/Cs2AgBiBr6/ITO/Glass Devices. Nanoscale Research Letters, 2021, 16, 178.	3.1	15
941	Inch-size Cs ₃ Bi ₂ I ₉ polycrystalline wafers with near-intrinsic properties for ultralow-detection-limit X-ray detection. Journal of Materials Chemistry C, 2022, 10, 6665-6672.	2.7	18
942	First-principles study of the defect-activity and optical properties of FAPbCl ₃ . Materials Advances, 0, , .	2.6	4
943	Atomic Structure and Electrical/Ionic Activity of Antiphase Boundary in CH ₃ NH ₃ PbI ₃ . SSRN Electronic Journal, 0, , .	0.4	0
944	Evolution of the Electronic Traps in Perovskite Photovoltaics During 1000 H at 85 °C. SSRN Electronic Journal, 0, , .	0.4	0
945	Ionic migration induced loss analysis of perovskite solar cells: a poling study. Physical Chemistry Chemical Physics, 2022, 24, 7805-7814.	1.3	3
946	Enhancing operational stability in perovskite solar cells by solvent-free encapsulation method. Sustainable Energy and Fuels, 2022, 6, 2264-2275.	2.5	5
947	Halide Segregation in Mixed Halide Perovskites: Visualization and Mechanisms. Electronics (Switzerland), 2022, 11, 700.	1.8	7
948	Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Letters, 2022, 7, 1066-1085.	8.8	47
949	Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	20

#	Article	IF	CITATIONS
950	Uncovering the Mechanism of Poly(ionicâ€liquid)s Multiple Inhibition of Ion Migration for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	36
951	Deconvolution of Lightâ€Induced Ion Migration Phenomena by Statistical Analysis of Cathodoluminescence in Lead Halideâ€Based Perovskites. Advanced Science, 2022, 9, e2103729.	5.6	13
952	Mechanism of Photoinduced Phase Segregation in Mixed-Halide Perovskite Microplatelets and Its Application in Micropatterning. ACS Applied Materials & Interfaces, 2022, 14, 12412-12422.	4.0	13
953	Physically Detachable and Operationally Stable Cs ₂ SnI ₆ Photodetector Arrays Integrated with µâ€LEDs for Broadband Flexible Optical Systems. Advanced Materials, 2022, 34, e2109673.	11.1	19
954	Pinning Bromide Ion with Ionic Liquid in Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	37
955	FAPbI ₃ Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization. Solar Rrl, 2022, 6, .	3.1	19
956	Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Singleâ€Junction and Tandem Solar Cells. Advanced Materials, 2022, 34, e2110351.	11.1	62
957	Revealing the Correlation of Light Soaking Effect with Ion Migration in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
958	Controlling the Decomposition of Hybrid Perovskite by a Dithienopyrrole-Based Hole Transport Layer toward Thermostable Solar Cells. , 2022, 4, 600-608.		1
959	Unraveling the Electronic Heterogeneity and Inhomogeneity in Individual Perovskite CsPbBr ₃ Nanowires. ACS Applied Energy Materials, 2022, 5, 4431-4438.	2.5	0
960	Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449.	6.2	53
961	Influence of the A-site cation on hysteresis and ion migration in lead-free perovskite single crystals. Physical Review Materials, 2022, 6, .	0.9	13
962	Multi-functional cyclic ammonium chloride additive for efficient and stable air-processed perovskite solar cells. Journal of Power Sources, 2022, 531, 231243.	4.0	10
963	Halide perovskite based synaptic devices for neuromorphic systems. Materials Today Physics, 2022, 24, 100667.	2.9	7
964	Directly purifiable Pre-oxidation of Spiro-OMeTAD for stability enhanced perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 437, 135457.	6.6	14
965	Sequential surface passivation for enhanced stability of vapor-deposited methylammonium lead iodide thin films. Chemical Engineering Journal, 2022, 439, 135715.	6.6	4
966	Selfâ€Formed Multifunctional Grain Boundary Passivation Layer Achieving 22.4% Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	13
967	Firstâ€Principles Calculation Design for 2D Perovskite to Suppress Ion Migration for Highâ€Performance Xâ€ray Detection. Advanced Functional Materials, 2022, 32, .	7.8	36

ARTICLE IF CITATIONS Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: 6.8 35 968 Experimental and theoretical evidence. EcoMat, 2022, 4, . 3-Ammonium Propionic Acid: A Cation Tailoring Crystal Structure of Hybrid Perovskite for Improving Photovoltaic Performance. ACS Applied Energy Materials, 2021, 4, 14662-14670. 2.5 Twist-to-Untwist Evolution and Cation Polarization Behavior of Hybrid Halide Perovskite 970 Nanoplatelets Revealed by Cryogenic Transmission Electron Microscopy. Journal of Physical 2.1 4 Chemistry Letters, 2021, 12, 12187-12195. Liq interlayer as electron extraction layer for highly efficient and stable perovskite solar cells. 971 International Journal of Energy Research, 2022, 46, 5745-5755. Characterize and Retard the Impact of the Biasâ€Induced Mobile Ions in CH₃NH₃PbBr₃ Perovskite Lightâ€Emitting Diodes. Advanced Optical 972 3.6 5 Materials, 2022, 10, . Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy and Environmental Science, 2022, 15, 2096-2107. 974 15.6 975 Origins and influences of metallic lead in perovskite solar cells. Joule, 2022, 6, 816-833. 11.7 163 Enhancement of All-Inorganic Perovskite Solar Cells by Lead–Cerium Bimetal Strategy. ACS Applied Materials & amp; Interfaces, 2022, 14, 20230-20236. CH₃NH₃Also Binding 978 by Organic Molecule Doping for Homogeneous Organometal Halide Perovskite Films. Journal of 5.2 1 Materials Chemistry A, O, , . Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics. 979 Chinese Physics B, 2022, 31, 117803. Airâ€Stable, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for 980 7.311 Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, . Enhancing the Intrinsic and Extrinsic Stability of Halide Perovskite Nanocrystals for Efficient and 4.0 34 Durable Optoelectronics. ACS Applied Materials & amp; Interfaces, 2022, 14, 34291-34302. Defect Passivation through (α-Methylguanido)acetic Acid in Perovskite Solar Cell for High Operational 982 4.0 8 Stability. ACS Applied Materials & amp; Interfaces, 2022, 14, 20848-20855. One-dimensional perovskite-based Li-ion battery anodes with high capacity and cycling stability. 7.1 Journal of Energy Chemistry, 2022, 72, 73-80. Anion diffusion in two-dimensional halide perovskites. APL Materials, 2022, 10, . 984 2.2 7 Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D 29 Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1842-1849. Pulsatile therapy for perovskite solar cells. Joule, 2022, 6, 1087-1102. 986 11.7 12 Ambient air processed highly oriented perovskite solar cells with efficiency exceeding 23% via 6.6 amorphous intermediate. Chemical Engineering Journal, 2022, 446, 136968.

#	Article	IF	CITATIONS
988	Intrinsic defects in primary halide perovskites: A first-principles study of the thermodynamic trends. Physical Review Materials, 2022, 6, .	0.9	15
989	Unveiling the Valence State of Interstitial Bromine on Charge Carrier Lifetime in CH ₃ NH ₃ PbBr ₃ by Quantum Dynamics Simulation. Journal of Physical Chemistry Letters, 2022, 13, 4193-4199.	2.1	2
990	Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3. Acta Materialia, 2022, 234, 118010.	3.8	6
991	Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Reports, 2022, 8, 5820-5851.	2.5	24
992	Efficient perovskite solar cells with low J-V hysteretic behavior based on mesoporous Sn-doped TiO2 electron extraction layer. Chemical Engineering Journal, 2022, 445, 136761.	6.6	15
993	Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. Fundamental Research, 2022, , .	1.6	4
994	Influences of dielectric constant and scan rate on hysteresis effect in perovskite solar cell with simulation and experimental analyses. Scientific Reports, 2022, 12, 7927.	1.6	12
995	Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nature Nanotechnology, 2022, 17, 590-597.	15.6	81
996	Analysis of electrical parameters of p-i-n perovskites solar cells during passivation via N-doped graphene quantum dots. Surfaces and Interfaces, 2022, 31, 102066.	1.5	5
997	Ion migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 2022, 44, 101503.	6.2	41
998	All-Inorganic Perovskite Single Crystals for Optoelectronic Detection. Crystals, 2022, 12, 792.	1.0	6
999	Surface-capping engineering for electrically neutral surface of perovskite films and stable solar cells. Nanotechnology, 2022, 33, 405405.	1.3	2
1000	Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation. Nano Energy, 2022, 99, 107401.	8.2	14
1001	Bandgap and dimension regulation of CsPbI ₃ perovskite through a bromine-terminated ligand for efficient pure red electroluminescence. Journal of Materials Chemistry C, 2022, 10, 9707-9713.	2.7	3
1002	Perovskite nanocrystals stabilized in metal–organic frameworks for light emission devices. Journal of Materials Chemistry A, 2022, 10, 19518-19533.	5.2	15
1003	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
1004	Evolution of the Electronic Traps in Perovskite Photovoltaics during 1000 h at 85 °C. ACS Applied Energy Materials, 2022, 5, 7192-7198.	2.5	13
1005	High Spectralâ€Rejectionâ€Ratio Narrowband Photodetectors Based on Perovskite Heterojunctions. Advanced Electronic Materials, 2022, 8, .	2.6	9

#	Article	IF	CITATIONS
1007	Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field. Communications Materials, 2022, 3, .	2.9	15
1008	Trade-off between the Performance and Stability of Perovskite Light-Emitting Diodes with Excess Halides. Journal of Physical Chemistry Letters, 2022, 13, 5179-5185.	2.1	2
1009	lon migration suppression mechanism via 4-sulfobenzoic acid monopotassium salt for 22.7% stable perovskite solar cells. Science China Materials, 2022, 65, 3368-3381.	3.5	19
1011	Influence of Ion Vacancy Migration on Shortâ€Circuit Current of Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	4
1012	Dimensionalityâ€Dependent Resistive Switching in 0D and 2D Cs ₃ Sb ₂ I ₉ : Energyâ€Efficient Synaptic Functions with the Layeredâ€Phase. Advanced Electronic Materials, 2022, 8, .	2.6	6
1014	Metal Halide Perovskite-Based Memristors for Emerging Memory Applications. Journal of Physical Chemistry Letters, 2022, 13, 5638-5647.	2.1	38
1016	A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy, 2022, 100, 107486.	8.2	17
1017	Thick-junction perovskite X-ray detectors: processing and optoelectronic considerations. Nanoscale, 2022, 14, 9636-9647.	2.8	12
1018	Coordination Modulated Passivation for Stable Organic-Inorganic Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1019	Effective Passivation of Perovkiste Grain Boundaries by a Carboxylated Polythoiphene for Bright and Stable Pure-Red Perovskite Light Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	1
1020	SnO2 modified mesoporous ZrO2 as efficient electron-transport layer for carbon-electrode based, low-temperature mesoscopic perovskite solar cells. Applied Physics Letters, 2022, 120, .	1.5	6
1021	Physics of defects in metal halide perovskites. Reports on Progress in Physics, 2022, 85, 096501.	8.1	13
1022	The Rise of Colloidal Lead Halide Perovskite Quantum Dot Solar Cells. Accounts of Materials Research, 2022, 3, 866-878.	5.9	19
1023	Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 31911-31919.	4.0	6
1024	Unraveling the effect of mixed charge carrier on the electrical conductivity in MAPbBr3 perovskite due to ions incorporation. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0
1025	Efficient Eco-Friendly Flexible X-ray Detectors Based on Molecular Perovskite. Nano Letters, 2022, 22, 5973-5981.	4.5	19
1026	Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy, 2022, 101, 107579.	8.2	46
1027	Organic–Inorganic Hybrid Perovskite Materials for Ultrasonic Transducer in Medical Diagnosis. Crystals, 2022, 12, 1043.	1.0	2

#	Article	IF	CITATIONS
1028	Small Molecule-Induced Modulation of Grain Crystallization and Ion Migration Leads to High-Performance MAPbI ₃ Mini-Modules. ACS Applied Energy Materials, 2022, 5, 9471-9478.	2.5	3
1029	Phaseâ€Stable Wideâ€Bandgap Perovskites for Fourâ€Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency. Small, 2022, 18, .	5.2	18
1030	Impact of non-stoichiometry on ion migration and photovoltaic performance of formamidinium-based perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 18782-18791.	5.2	7
1031	"Forbidden―Polarisation and Extraordinary Piezoelectric Effect in Organometallic Lead Halide Perovskites. Advanced Functional Materials, 0, , 2204898.	7.8	2
1032	Avoid Pitfalls in Identifying Perovskite Grain Size. Journal of Physical Chemistry Letters, 2022, 13, 7236-7242.	2.1	7
1033	Phenethylammonium Iodide Passivation Layers for Flexible Planar Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	5
1034	Factors influencing halide vacancy transport in perovskite solar cells. Discover Materials, 2022, 2, .	1.0	7
1035	Discovery of a 2D Hybrid Silver/Antimonyâ€Based Iodide Double Perovskite Photoferroelectric with Photostrictive Effect and Efficient Xâ€Ray Response. Advanced Functional Materials, 2022, 32, .	7.8	34
1036	Electronic-Ionic Transport in MAPbBr ₃ Single Crystal: The Evidence of Super-Linear Power Law in AC Conductivity. Journal of Physical Chemistry C, 2022, 126, 14305-14311.	1.5	6
1037	Anchoring Grain Boundary via Aminated Carbon Nanotubes to Achieve Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
1038	Amine Salts Vapor Healing Perfected Perovskite Layers for NiO _x Based pâ€iâ€n Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	11
1039	Coordination modulated passivation for stable organic-inorganic perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138740.	6.6	12
1040	Influence of Formamidine Formate Doping on Performance and Stability of FAPbI3-Based Perovskite Solar Cells. Crystals, 2022, 12, 1194.	1.0	1
1041	Intensity modulated photocurrent spectroscopy to investigate hidden kinetics at hybrid perovskite–electrolyte interface. Scientific Reports, 2022, 12, .	1.6	4
1042	Quantum dots enhanced stability of in-situ fabricated perovskite nanocrystals based light-emitting diodes: Electrical field distribution effects. Fundamental Research, 2022, , .	1.6	3
1043	Stability of Perovskite Lightâ€Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. Advanced Materials, 2022, 34, .	11.1	65
1044	The influence of A-site dipole moment on iodine migration in perovskite films revealed by transient ion drift. Applied Physics Letters, 2022, 121, .	1.5	1
1045	All Solutionâ€Processed High Performance Pureâ€Blue Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32,	7.8	42

		CITATION REPORT		
# 1046	ARTICLE Constructing 2D passivation layer on perovskites based on 3-chlorobenzylamine enable stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166891.	es efficient and	IF 2.8	Citations
1047	Structural, optoelectronic and thermoelectric properties of Cs-based fluoroperovskites	CsMF3 (M=) Tj ETQq1 1 0	.784314 rg 1.9	gBT /Overlo
1048	Tunable Multicolor Fluorescence of Perovskite-Based Composites for Optical Steganog Light-Emitting Devices. Research, 2022, 2022, .	raphy and	2.8	3
1049	Optoelectronic properties and ion diffusion mechanism in 2D perovskites Cs3BX5 (BÂ	=ÂGe, Sn, and Pb; X) Tj ETC	2q110.78 1.2	4314 rgBT
1050	Inverted planar heterojunction perovskite solar cells with high ultraviolet stability. Nano 2022, 103, 107849.	o Energy,	8.2	26
1051	Photoelectron spectroscopic studies on metal halide perovskite materials. Journal of Va and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	acuum Science	0.9	1
1052	Effective passivation of perovkiste grain boundaries by a carboxylated polythoiphene for stable Pure-Red perovskite light emitting diodes. Chemical Engineering Journal, 2023, 4	or bright and 151, 138892.	6.6	5
1053	Inverted Planar Heterojunction Perovskite Solar Cells with High Ultraviolet Stability. SS Electronic Journal, 0, , .	RN	0.4	0
1054	Interface-engineering studies on the photoelectric properties and stability of the CsSnl ₃ –SnS heterostructure. Physical Chemistry Chemical Physics, 202	2, 24, 24123-24129.	1.3	1
1055	Photo-enhanced growth of lead halide perovskite crystals and their electro-optical prop Advances, 2022, 12, 27775-27780.	perties. RSC	1.7	1
1056	[PbX ₆] ^{4â^'} modulation and organic spacer construction for s solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	table perovskite	15.6	16
1057	Recent progress of single-halide perovskite nanocrystals for advanced displays. Nanosc 13990-14007.	ale, 2022, 14,	2.8	5
1058	Introduction of a Reset MOSFET to Mitigate the Influence of Ionic Movement in Perovs Photodetector Measurements. , 2022, , .	kite MOSFET		0
1059	Degradation pathways in perovskite solar cells and how to meet international standard Communications Materials, 2022, 3, .	s.	2.9	64
1060	Low-frequency noise and impedance spectroscopy of device structures based on perov oxide composite films. Journal of Materials Science: Materials in Electronics, 2022, 33, 2	skite-graphene 21666-21676.	1.1	2
1061	Optical Simulations in Perovskite Devices: A Critical Analysis. ACS Photonics, 2022, 9, 3	8196-3214.	3.2	3
1062	Growth, characterization and photoelectrical properties of orthorhombic and cubic CsF crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 24895-24905.	ÞBr3 single	1.1	4
1063	Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites. ACS 2022, 7, 3401-3414.	Energy Letters,	8.8	46

#	Article	IF	CITATIONS
1064	Optical Memory, Switching, and Neuromorphic Functionality in Metal Halide Perovskite Materials and Devices. Advanced Materials, 2023, 35, .	11.1	12
1065	Role of Halide Substitution in Perovskiteâ€Based Asymmetric Hybrid Supercapacitor. Energy Technology, 2022, 10, .	1.8	7
1066	Great Influence of Organic Cation Motion on Charge Carrier Dynamics in Metal Halide Perovskite Unraveled by Unsupervised Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 8537-8545.	2.1	10
1067	Interfaced Structures between Halide Perovskites: From Basics to Construction to Optoelectronic Applications. Advanced Energy Materials, 2023, 13, .	10.2	6
1068	High scintillation yield and fast response to alpha particles from thin perovskite films deposited by pulsed laser deposition. Frontiers in Physics, 0, 10, .	1.0	2
1069	Passivation and energy-level change of the SnO2 electron transport layer by reactive titania for perovskite solar cells. Journal of Alloys and Compounds, 2022, 929, 167349.	2.8	9
1070	Mechanical polishing with chemical passivation of perovskite single crystals for high-performance X-ray detectors. Journal of Materials Chemistry C, 2022, 10, 17353-17363.	2.7	6
1071	The role of atmospheric conditions in the nonradiative recombination in individual CH ₃ NH ₃ PbI ₃ perovskite crystals. Nanoscale Advances, 0, , .	2.2	0
1072	Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. Micromachines, 2022, 13, 1647.	1.4	1
1073	Multiple Interpenetrating Metal–Organic Frameworks with Channel-Size-Dependent Behavior for Selective Gossypol Detection and Perovskite Quantum Dot Encapsulation. ACS Applied Materials & Interfaces, 2022, 14, 49945-49956.	4.0	13
1074	Quantifying the Energy Losses in CsPbl ₂ Br Perovskite Solar Cells with an Open-Circuit Voltage of up to 1.45 V. ACS Energy Letters, 2022, 7, 4071-4080.	8.8	31
1075	Intrinsic Ion Migration Dynamics in a One-Dimensional Organic Metal Halide Hybrid. ACS Energy Letters, 2022, 7, 3753-3760.	8.8	3
1076	Dual Metalâ€Assisted Defect Engineering towards Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	16
1077	Dynamics of Internal Electric Field Screening in Hybrid Perovskite Solar Cells Probed Using Electroabsorption. Physical Review Applied, 2022, 18, .	1.5	5
1078	Passivating {100} Facets of PbS Colloidal Quantum Dots via Perovskite Bridges for Sensitive and Stable Infrared Photodiodes. Advanced Functional Materials, 2023, 33, .	7.8	15
1079	Grain Boundary and Buried Interface Suturing Enabled by Fullerene Derivatives for High-Performance Perovskite Solar Module. ACS Energy Letters, 2022, 7, 3958-3966.	8.8	19
1080	Surface Characterization of the Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Thin Films. Small, 0, , 2204271.	5.2	1
1081	Liquid-Phase Epitaxial Growth of Large-Area MAPbBr _{3â€"<i>n</i>} Cl _{<i>n</i>} /CsPbBr ₃ Perovskite Single-Crystal Heterojunction for Enhancing Sensitivity and Stability of X-ray Detector. Chemistry of Materials, 2022, 34, 9601-9612	3.2	14

#	Article	IF	CITATIONS
1082	Addressing the Voltage Induced Instability Problem of Perovskite Semiconductor Detectors. ACS Energy Letters, 2022, 7, 3871-3879.	8.8	14
1083	Defect Pair Formation in FAPbI ₃ Perovskite Solar Cell Absorbers. Journal of Physical Chemistry Letters, 2022, 13, 9718-9724.	2.1	1
1084	Photovoltaic performance of mixed cation K _{0.005} MA _{0.995} PbI ₃ â€based perovskite solar module. , 2023, 2, .		4
1085	Enhanced Performance of Perovskite Light-emitting Diodes via Phenylmethylamine Passivation. Micromachines, 2022, 13, 1857.	1.4	0
1086	Photovoltaically top-performing perovskite crystal facets. Joule, 2022, 6, 2626-2643.	11.7	52
1087	Metal Halide Perovskite/Electrode Contacts in Chargeâ€Transportingâ€Layerâ€Free Devices. Advanced Science, 2022, 9, .	5.6	11
1088	Ion Migration and Accumulation in Halide Perovskite Solar Cells ^{â€} . Chinese Journal of Chemistry, 2023, 41, 861-876.	2.6	5
1089	Negligible Ion Migration in Tinâ€Based and Tinâ€Doped Perovskites. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
1090	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	4.2	53
1091	Degradation mechanisms of perovskite light-emitting diodes under electrical bias. Nanophotonics, 2023, 12, 451-476.	2.9	3
1092	Stable and broadband photodetectors based on 3D/2D perovskite heterostructures with surface passivation. Applied Physics Letters, 2022, 121, .	1.5	8
1093	Negligible Ion Migration in Tinâ€Based and Tinâ€Doped Perovskites. Angewandte Chemie, 2023, 135, .	1.6	6
1094	Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 2022, 21, 1396-1402.	13.3	74
1095	Generating spin-triplet states at the bulk perovskite/organic interface for photon upconversion. Nanoscale, 2023, 15, 998-1013.	2.8	8
1096	Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications. Journal of Renewable Materials, 2023, 11, 1533-1554.	1.1	2
1097	The race between complicated multiple cation/anion compositions and stabilization of FAPbI ₃ for halide perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 2449-2468.	2.7	3
1098	Distinction of mechanisms causing experimental degradation of perovskite solar cells by simulating associated pathways. Energy and Environmental Science, 2023, 16, 190-200.	15.6	2
1099	Organic iodides in efficient and stable perovskite solar cells: strong surface passivation and interaction. Energy and Environmental Science, 2023, 16, 565-573.	15.6	16

#	Article	IF	CITATIONS
1100	Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of Solids, 2023, 174, 111157.	1.9	8
1101	Voltage Bias Stress Effects and Electronic Stability of ï€-Conjugated Crosslinked Tin Halide Perovskites. ACS Applied Energy Materials, 2022, 5, 14720-14731.	2.5	2
1102	Transient Response Mismatch: A Limiting Factor of Perovskite Photodetectors. Advanced Optical Materials, 0, , 2202381.	3.6	1
1103	Improving intrinsic stability for perovskite/silicon tandem solar cells. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	7
1104	Highly Sensitive Broadband Phototransistors Based on Gradient Tin/Lead Mixed Perovskites. Small, 2023, 19, .	5.2	3
1105	Role of Heterocyclic Organic Compounds on the Optoelectronic Properties of Halide Perovskite Single Crystals. ACS Applied Energy Materials, 2022, 5, 14732-14738.	2.5	4
1106	Bulk Heterostructure BA ₂ PbI ₄ /MAPbI ₃ Perovskites for Suppressed Ion Migration To Achieve Sensitive X-ray Detection Performance. ACS Applied Materials & Interfaces, 2022, 14, 54867-54875.	4.0	5
1107	High-pressure investigations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>CH </mml:mi> <mml:n (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>X </mml:mi> </mml:math>) Tj ETQc</mml:n </mml:msub></mml:mrow></mml:math 	n>311110.784ן	l:mn> 344 rgBT /O
1108	Strain Relaxation for Perovskite Lattice Reconfiguration. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	7
1109	Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	22
1110	Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64.	4.2	53
1111	Ion migration in metal halide perovskite QLEDs and its inhibition. Chinese Physics B, 2023, 32, 018507.	0.7	2
1112	Butanediammonium Salt Additives for Increasing Functional and Operando Stability of Light-Harvesting Materials in Perovskite Solar Cells. Nanomaterials, 2022, 12, 4357.	1.9	2
1113	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25
1114	Circular polarized light-dependent anomalous photovoltaic effect from achiral hybrid perovskites. Nature Communications, 2022, 13, .	5.8	9
1115	Halide Perovskite: A Promising Candidate for Nextâ€Generation Xâ€Ray Detectors. Advanced Science, 2023, 10, .	5.6	37
1116	Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon. Advanced Materials, 2023, 35, .	11.1	38
1117	Compound Defects in Halide Perovskites: A First-Principles Study of CsPbl ₃ . Journal of Physical Chemistry C, 2023, 127, 1189-1197.	1.5	5

#	Article	IF	CITATIONS
1118	Effective Inhibition of Phase Segregation in Wideâ€Bandgap Perovskites with Alkali Halides Additives to Improve the Stability of Solar Cells. Solar Rrl, 2023, 7, .	3.1	10
1119	A Facile Approach for the Encapsulation of Perovskite Solar Cells. Energies, 2023, 16, 598.	1.6	2
1120	lon Migration Induced Unusual Charge Transport in Tin Halide Perovskites. ACS Energy Letters, 2023, 8, 957-962.	8.8	12
1121	All-Inorganic CsPb ₂ 1 ₄ Br/CsPb1 ₂ Br 2D/3D Bulk Heterojunction Boosting Carbon-Based CsPb1 ₂ Br Perovskite Solar Cells with an Efficiency of Over 15%. ACS Energy Letters, 2023, 8, 909-916.	8.8	20
1122	Understanding the Degradation Factors, Mechanism and Initiatives for Highly Efficient Perovskite Solar Cells. ChemNanoMat, 2023, 9, .	1.5	5
1123	Dual Resistive Switching Performance Derived from Ionic Migration in Halide Perovskite Based Memory. Journal of Physical Chemistry Letters, 2023, 14, 347-353.	2.1	6
1124	Probing the stability of perovskite solar cell under working condition through an ultra-thin silver electrode: Beyond the halide ion diffusion and metal diffusion. Chemical Engineering Journal, 2023, 458, 141405.	6.6	4
1125	Organic fluorine-based trifluoroethyl methacrylate as effective defect passivators enabling high-efficiency and stable perovskite solar cells. Materials Today Chemistry, 2023, 28, 101362.	1.7	1
1126	A Comprehensive Analysis of Ecoâ€Friendly Cs ₂ SnI ₆ Based Tin Halide Perovskite Solar Cell through Device Modeling. Advanced Theory and Simulations, 2023, 6, .	1.3	11
1127	2D Organic Materials: Status and Challenges. Advanced Science, 2023, 10, .	5.6	13
1128	The Influence of Different Recombination Pathways on Hysteresis in Perovskite Solar Cells with Ion Migration. Inorganics, 2023, 11, 52.	1.2	0
1129	Tailoring Multifunctional Selfâ€Assembled Hole Transporting Molecules for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	17
1130	Multifunctional Regulation of Highly Orientated Tin–Lead Alloyed Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 1068-1075.	8.8	17
1131	Perovskite solar cells on the horizon for space power systems. , 2023, , 175-195.		0
1132	Disorder to order: how halide mixing in MAPbI _{3â^'<i>x</i>} Br _{<i>x</i>} perovskites restricts MA dynamics. Journal of Materials Chemistry A, 2023, 11, 4587-4597.	5.2	2
1133	Thermal degradation of the bulk and interfacial traps at 85 °C in perovskite photovoltaics. Nanoscale, 2023, 15, 4334-4343.	2.8	5
1134	Acquiring Bulk Anomalous Photovoltaic Effect in Single Crystals of a Leadâ€Free Double Perovskite with Aromatic and Alkali Mixed ations. Small, 2023, 19, .	5.2	10
1135	Enhancing Photoluminescence of CsPb(ClxBr1â^x)3 Perovskite Nanocrystals by Fe2+ Doping. Nanomaterials, 2023, 13, 533.	1.9	3

#	Article	IF	CITATIONS
1136	Challenges in the development of metal-halide perovskite single crystal solar cells. Journal of Materials Chemistry A, 2023, 11, 3822-3848.	5.2	3
1137	A New Descriptor for Complicated Effects of Electronic Density of States on Ion Migration. Advanced Functional Materials, 2023, 33, .	7.8	6
1138	Removing residual PbI2 on the perovskite surface for efficient solar cells. Chemical Engineering Journal, 2023, 464, 142720.	6.6	6
1139	Improving the stability and performance of hybrid perovskite solar cells based on 1D/3D mixed-dimensional structure by multiple cation doping. Optical Materials, 2023, 139, 113781.	1.7	1
1140	Insight into structure defects in high-performance perovskite solar cells. Journal of Power Sources, 2023, 570, 233011.	4.0	4
1141	Low dark current and high stability X-ray detector based on FAPbI3/Ga2O3 heterojunction. Journal of Alloys and Compounds, 2023, 941, 168989.	2.8	2
1142	Perovskite CsPbBr ₃ Singleâ€Crystal Detector Operating at 10 ¹⁰ Photons s ^{â^'1} mm ^{â^'2} for Ultraâ€High Flux Xâ€ray Detection. Advanced Optical Materials, 2023, 11, .	3.6	6
1143	Recent Progress in Blue Perovskite LEDs. Korean Journal of Materials Research, 2022, 32, 449-457.	0.1	Ο
1144	Navigating the Site-Distinct Energy Conversion Properties of Perovskite Quantum Wells. ACS Energy Letters, 2023, 8, 1236-1265.	8.8	7
1145	Instability of solution-processed perovskite films: origin and mitigation strategies. Materials Futures, 2023, 2, 012102.	3.1	11
1146	Inhibited Crack Development by Compressive Strain in Perovskite Solar Cells with Improved Mechanical Stability. Advanced Materials, 2023, 35, .	11,1	18
1147	Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nature Energy, 2023, 8, 294-303.	19.8	47
1148	Preserving Bond Ionicity under Illumination to Achieve Photostable Halide Perovskites. Journal of Physical Chemistry C, 2023, 127, 3750-3759.	1.5	2
1149	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
1150	Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule, 2023, 7, 272-308.	11.7	32
1151	Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 2023, 379, 690-694.	6.0	147
1153	A perspective on the device physics of lead halide perovskite semiconducting detector for gamma and x-ray sensing. Applied Physics Letters, 2023, 122, .	1.5	3
1154	2D-3D perovskite memristor with low energy consumption and high stability for neural morphology calculation. Science China Materials, 2023, 66, 2013-2022.	3.5	4

#	Article	IF	CITATIONS
1155	Perovskite-Sensitized Upconversion under Operando Conditions. Journal of Physical Chemistry C, 2023, 127, 4773-4783.	1.5	5
1156	Analysis of Iodide Transport on Methyl Ammonium Lead Iodide Perovskite Solar Cell Structure Through Operando Hard X-ray Photoelectron Spectroscopy. Chemistry of Materials, 2023, 35, 1948-1960.	3.2	4
1157	A multifunctional additive strategy to stabilize the precursor solution and passivate film defects for MA-free perovskite solar cells with an efficiency of 22.75%. Materials Today Energy, 2023, 33, 101269.	2.5	3
1158	Chemical vapor deposition growth and photodetector performance of lead-free all-inorganic crystalline Cs ₃ Sb ₂ X ₉ (X = I, Br) perovskite thin films. Journal of Materials Chemistry C, 2023, 11, 4603-4613.	2.7	2
1159	Facile Fabrication of Mixed–Cation FA1â^'XCsXPbI3 Perovskites Thin Films for Photodetector Applications. Photonics, 2023, 10, 312.	0.9	2
1160	Inverted Perovskite Solar Cells with >85% Fill Factor via Sequential Interfacial Engineering. Solar Rrl, 2023, 7, .	3.1	3
1161	Improved Thermal Stability and Film Uniformity of Halide Perovskite by Confinement Effect brought by Polymer Chains of Polyvinyl Pyrrolidone. Small, 2023, 19, .	5.2	6
1162	The Effect of Redox Reactions on the Stability of Perovskite Solar Cells. ChemPhotoChem, 2023, 7, .	1.5	1
1163	3,5-dichlorobenzylamine lead high-performance and stable 2D/3D perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
1164	Ultrahighâ€Flux Xâ€ray Detection by a Solutionâ€Grown Perovskite CsPbBr ₃ Singleâ€Crystal Semiconductor Detector. Advanced Materials, 2023, 35, .	11.1	13
1165	Advances in the Synthesis of Halide Perovskite Single Crystals for Optoelectronic Applications. Chemistry of Materials, 2023, 35, 2683-2712.	3.2	13
1166	èfåŸºææ–™é'化钙钛çŸį头³èf½ç"µæ±çš"ç"ç©¶èį›å±•. Scientia Sinica: Physica, Mechanica Et Astronomica	, @ @23,,.	Ο
1167	Suppressed phase segregation for triple-junction perovskite solar cells. Nature, 2023, 618, 74-79.	13.7	55
1168	Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nature Communications, 2023, 14, .	5.8	15
1169	Halideâ€InitiatedÂStructural Regulation in Amidinoâ€Based Lowâ€Dimensional Perovskite/Perovskitoid and Their Application for Crystal Xâ€Ray Detectors. Advanced Optical Materials, 2023, 11, .	3.6	1
1170	A Universal Microscopic Patterned Doping Method for Perovskite Enables Ultrafast, Selfâ€Powered, Ultrasmall Perovskite Photodiodes. Advanced Materials, 2023, 35, .	11.1	2
1171	Ammonium Salt Assisted Crystallization for High Performance Two-Dimensional Lead-Free Perovskite Photodetector. ACS Applied Electronic Materials, 2023, 5, 2169-2177.	2.0	1
1172	Low Dimensional, Metalâ€Free, Hydrazinium Halide Perovskiteâ€Related Single Crystals and Their Use as Xâ€Ray Detectors. Small, 2023, 19,	5.2	5

ARTICLE IF CITATIONS Spontaneous Internal Encapsulation via Dual Interfacial Perovskite Heterojunction Enables Highly 1173 4.5 8 Efficient and Stable Perovskite Solar Cells. Nano Letters, 2023, 23, 3484-3492. The nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3. Joule, 2023, 7, 1051-1066. 1174 11.7 Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 1175 11.1 8 2023, 35, . Identification and Mitigation of Transient Phenomena That Complicate the Characterization of Halide Perovskite Photodetectors. ACS Applied Energy Materials, 2023, 6, 10233-10242. Operando Characterizations of Light-Induced Junction Evolution in Perovskite Solar Cells. ACS 1177 4.0 1 Applied Materials & amp; Interfaces, 2023, 15, 20909-20916. Surface Reconstruction for Efficient and Stable Monolithic Perovskite/Silicon Tandem Solar Cells with Greatly Suppressed Residual Strain. Advanced Materials, 2023, 35, . 11.1 Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and 1179 11.7 13 efficient solar cells. Joule, 2023, 7, 1033-1050. Perovskite Nanostructure Films for Optoelectronics and Photovoltaics. Journal of Physical 1.5 Chemistry C, 2023, 127, 11767-11779. Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. 1211 2.9 9 Communications Materials, 2023, 4, . Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 13.8 2023, 7, 632-652. Perovskite material-based memristors for applications in information processing and artificial 1235 2.7 4 intelligence. Journal of Materials Chemistry C, 2023, 11, 13167-13188. A systematic discrepancy between the short circuit current and the integrated quantum efficiency in 1240 5.8 perovskite solar cells. Nature Communications, 2023, 14, . Trends in defect passivation technologies for perovskite-based photosensor. Journal of the Korean 1279 1.1 1 Ceramic Society, 2024, 61, 15-33. The impact of moisture on the stability and degradation of perovskites in solar cells. Materials 1309 2.6 Advances, 2024, 5, 2200-2217