Machine Learning and Decision Support in Critical Care

Proceedings of the IEEE 104, 444-466 DOI: 10.1109/jproc.2015.2501978

Citation Report

#	Article	IF	CITATIONS
1	LPI Radar Waveform Recognition Based on Time-Frequency Distribution. Sensors, 2016, 16, 1682.	2.1	91
2	Predicting Complications in Critical Care Using Heterogeneous Clinical Data. IEEE Access, 2016, 4, 7988-8001.	2.6	31
3	Biomedical Signal Processing: From a Conceptual Framework to Clinical Applications [Scanning the Issue]. Proceedings of the IEEE, 2016, 104, 220-222.	16.4	12
4	Machine Learning for Critical Care: An Overview and a Sepsis Case Study. Lecture Notes in Computer Science, 2017, , 15-30.	1.0	1
5	Convolutional Neural Networks for Automatic Cognitive Radio Waveform Recognition. IEEE Access, 2017, 5, 11074-11082.	2.6	179
6	Deep Learning for Health Informatics. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 4-21.	3.9	1,290
7	Evaluating performance of early warning indices to predict physiological instabilities. Journal of Biomedical Informatics, 2017, 75, 14-21.	2.5	8
8	A Multi-view Deep Learning Method for Epileptic Seizure Detection using Short-time Fourier Transform. , 2017, , .		72
9	Machine Learning Models for Multidimensional Clinical Data. Scalable Computing and Communications, 2017, , 177-216.	0.5	9
10	Quality Assessment of Ambulatory ECG Using Wavelet Entropy of the HRV Signal. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 1216-1223.	3.9	46
11	ICU mortality prediction using modified cost-sensitive PCA and chaos PSO. , 2017, , .		0
12	Wave2Vec: Learning Deep Representations for Biosignals. , 2017, , .		21
13	Intelligent systems and inflammatory bowel disease: Exploring the potential for outpatient support. , 2017, , .		0
14	Neural Networks for Radar Waveform Recognition. Symmetry, 2017, 9, 75.	1.1	47
15	Different analytical techniques for big data analysis: A review. , 2017, , .		6
16	Supervised learning for infection risk inference using pathology data. BMC Medical Informatics and Decision Making, 2017, 17, 168.	1.5	31
17	Early Warning Systems for Hospitalized Pediatric Patients. JAMA - Journal of the American Medical Association, 2018, 319, 981.	3.8	4
18	A review of physiological and behavioral monitoring with digital sensors for neuropsychiatric illnesses. Physiological Measurement, 2018, 39, 05TR01.	1.2	86

TATION REDO

	СПАПС	N REPORT	
#	Article	IF	CITATIONS
19	First Get the Data, Then Do the Science!*. Pediatric Critical Care Medicine, 2018, 19, 382-383.	0.2	9
20	Parameter-Invariant Monitor Design for Cyber–Physical Systems. Proceedings of the IEEE, 2018, 106, 71-92.	16.4	12
21	Bayesian Optimization of Personalized Models for Patient Vital-Sign Monitoring. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 301-310.	3.9	12
22	Complementary Detection for Hardware Efficient On-Site Monitoring of Parkinsonian Progress. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 603-615.	2.7	7
23	Foreword. International Journal of Medical Informatics, 2018, 113, 96-97.	1.6	1
24	An introduction and overview of machine learning in neurosurgical care. Acta Neurochirurgica, 2018, 160, 29-38.	0.9	116
25	Dynamic Prediction of ICU Mortality Risk Using Domain Adaptation. , 2018, , .		31
26	Finding Similar Patient Subpopulations in the ICU Using Laboratory Test Ordering Patterns. , 2018, , .		3
27	An Adaptive Learning Approach To Parameter Estimation For Hybrid Petri Nets In Systems Biology. , 2018, , .		3
28	Machine learning in critical care: state-of-the-art and a sepsis case study. BioMedical Engineering OnLine, 2018, 17, 135.	1.3	33
29	A multi-context learning approach for EEG epileptic seizure detection. BMC Systems Biology, 2018, 12, 107.	3.0	21
30	Big Data for Sound Policies: Toward Evidence-Informed Hearing Health Policies. American Journal of Audiology, 2018, 27, 493-502.	0.5	14
31	Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respiratory Medicine,the, 2018, 6, 905-914.	5.2	226
32	Evaluation of the Impact of Data Uncertainty on the Prediction of Physiological Patient Deterioration. IEEE Access, 2018, 6, 38595-38606.	2.6	7
33	The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 2018, 24, 1716-1720.	15.2	629
34	Enchanted Life Space: Adding Value to Smart Health by Integrating Human Desires. Healthcare Informatics Research, 2018, 24, 3.	1.0	13
35	Efficient In-Database Patient Similarity Analysis for Personalized Medical Decision Support Systems. Big Data Research, 2018, 13, 52-64.	2.6	32
36	Big Data and Data Science in Critical Care. Chest, 2018, 154, 1239-1248.	0.4	184

#	Article	IF	CITATIONS
37	Survey of Classification Based Prediction Techniques in Healthcare. Indian Journal of Science and Technology, 2018, 11, 1-19.	0.5	4
38	Monte Carlo GEANT4-based application for in vivo RBE study using small animals at LNS-INFN preclinical hadrontherapy facility. Physica Medica, 2018, 54, 173-178.	0.4	3
39	Incorporating High-Frequency Physiologic Data Using Computational Dictionary Learning Improves Prediction of Delayed Cerebral Ischemia Compared to Existing Methods. Frontiers in Neurology, 2018, 9, 122.	1.1	10
40	Applied Machine Learning for the Prediction of Growth of Abdominal Aortic Aneurysm in Humans. EJVES Short Reports, 2018, 39, 24-28.	0.7	46
41	Applying Machine Learning to Pediatric Critical Care Data*. Pediatric Critical Care Medicine, 2018, 19, 599-608.	0.2	37
42	Futuristic biosensors for cardiac health care: an artificial intelligence approach. 3 Biotech, 2018, 8, 358.	1.1	68
43	Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artificial Intelligence in Medicine, 2018, 89, 61-69.	3.8	187
44	Wave2Vec: Deep representation learning for clinical temporal data. Neurocomputing, 2019, 324, 31-42.	3.5	38
45	ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU. Journal of Biomedical Informatics, 2019, 98, 103269.	2.5	54
46	Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Critical Care, 2019, 23, 284.	2.5	128
47	Machine Learning in future intensive care—Classification of stochastic Petri Nets via continuous-time Markov chains. , 2019, , 259-273.		1
48	A clinically applicable approach to continuous prediction of future acute kidney injury. Nature, 2019, 572, 116-119.	13.7	652
49	SEVERITAS: An externally validated mortality prediction for critically ill patients in low and middle-income countries. International Journal of Medical Informatics, 2019, 131, 103959.	1.6	14
50	Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data. Journal of Clinical Medicine, 2019, 8, 1336.	1.0	33
51	Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. The Lancet Digital Health, 2019, 1, e78-e89.	5.9	76
52	FusionAtt: Deep Fusional Attention Networks for Multi-Channel Biomedical Signals. Sensors, 2019, 19, 2429.	2.1	27
53	Likelihood-Based Adaptive Learning in Stochastic State-Based Models. IEEE Signal Processing Letters, 2019, 26, 1031-1035.	2.1	1
54	Novel displays of patient information in critical care settings: a systematic review. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 479-489.	2.2	26

#	Article	IF	Citations
55	Nested Gaussian process modeling and imputation of high-dimensional incomplete data under uncertainty. IISE Transactions on Healthcare Systems Engineering, 2019, 9, 315-326.	1.2	15
56	Machine Learning and Artificial Intelligence in Cardiovascular Imaging. Contemporary Medical Imaging, 2019, , 893-907.	0.3	0
57	Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. BMC Medical Informatics and Decision Making, 2019, 19, 57.	1.5	32
58	Using machine learning models to predict oxygen saturation following ventilator support adjustment in critically ill children: A single center pilot study. PLoS ONE, 2019, 14, e0198921.	1.1	28
59	From IEEE 11073 SDC Device Specializations to Assistive Systems: Rule-based Data Analysis for Minimal Invasive Surgery. , 2019, , .		2
60	IT-driven Clinical Improvement Processes: The SkunkwORks. International Anesthesiology Clinics, 2019, 57, 45-62.	0.3	1
61	Linking Big Data and Prediction Strategies: Tools, Pitfalls, and Lessons Learned. Critical Care Medicine, 2019, 47, 840-848.	0.4	16
62	Universal Risk Scores and Local Relevance. Pediatric Critical Care Medicine, 2019, 20, 790-792.	0.2	0
63	Using the Shapes of Clinical Data Trajectories to Predict Mortality in ICUs. , 2019, 1, e0010.		11
64	Nurses "Seeing Forest for the Trees―in the Age of Machine Learning. CIN - Computers Informatics Nursing, 2019, 37, 203-212.	0.3	22
65	Decision Tree Analysis: A Retrospective Analysis of Postoperative Recurrence of Adhesions in Patients with Moderate-to-Severe Intrauterine. BioMed Research International, 2019, 2019, 1-8.	0.9	11
66	Paving the way for precision medicine v2.0 in intensive care by profiling necroinflammation in biofluids. Cell Death and Differentiation, 2019, 26, 83-98.	5.0	10
67	Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study. Journal of Antimicrobial Chemotherapy, 2019, 74, 1108-1115.	1.3	26
68	Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data. Journal of Clinical Monitoring and Computing, 2019, 33, 95-105.	0.7	22
69	Heart Rate Variability as a Biomarker of Neurocardiogenic Injury After Subarachnoid Hemorrhage. Neurocritical Care, 2020, 32, 162-171.	1.2	21
70	Enabling individualised health in learning healthcare systems. BMJ Evidence-Based Medicine, 2020, 25, 125-129.	1.7	12
71	Artificial Intelligence in Subspecialties. , 2020, , 267-396.		1
72	Sampling methods and feature selection for mortality prediction with neural networks. Journal of Biomedical Informatics, 2020, 111, 103580.	2.5	4

#	Article	IF	CITATIONS
73	Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. BMC Medical Informatics and Decision Making, 2020, 20, 124.	1.5	17
74	Precision medicine in anesthesiology. International Anesthesiology Clinics, 2020, 58, 17-22.	0.3	4
75	Reporting and Implementing Interventions Involving Machine Learning and Artificial Intelligence. Annals of Internal Medicine, 2020, 172, S137-S144.	2.0	64
76	Machine Learning Predicts Prolonged Acute Hypoxemic Respiratory Failure in Pediatric Severe Influenza. , 2020, 2, e0175.		14
77	Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. Npj Digital Medicine, 2020, 3, 139.	5.7	65
78	From Clinic to Computer and Back Again: Practical Considerations When Designing and Implementing Machine Learning Solutions for Pediatrics. Current Treatment Options in Pediatrics, 2020, 6, 336-349.	0.2	2
79	Organizational readiness for artificial intelligence in health care: insights for decision-making and practice. Journal of Health Organization and Management, 2020, 35, 106-114.	0.6	34
80	Artificial Intelligence based Comparative Study of Mortality Prediction. , 2020, , .		1
81	DMAKit: A user-friendly web platform for bringing state-of-the-art data analysis techniques to non-specific users. Information Systems, 2020, 93, 101557.	2.4	9
82	Comparison of the Automated Pediatric Logistic Organ Dysfunction-2 Versus Manual Pediatric Logistic Organ Dysfunction-2 Score for Critically III Children*. Pediatric Critical Care Medicine, 2020, 21, e160-e169.	0.2	12
83	In-hospital Mortality Prediction for ICU Patients on Large Healthcare MIMIC Datasets Using Class Imbalance Learning. , 2020, , .		4
84	A Framework for Adapting Deep Brain Stimulation Using Parkinsonian State Estimates. Frontiers in Neuroscience, 2020, 14, 499.	1.4	13
85	Imagine… (a common language for ICU data inquiry and analysis). Intensive Care Medicine, 2020, 46, 531-533.	3.9	4
86	Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. The Lancet Digital Health, 2020, 2, e179-e191.	5.9	187
87	A practical approach to storage and retrieval of high-frequency physiological signals. Physiological Measurement, 2020, 41, 035008.	1.2	23
88	A Bayesian Deep Learning Framework for End-To-End Prediction of Emotion From Heartbeat. IEEE Transactions on Affective Computing, 2022, 13, 985-991.	5.7	37
89	Development of Supervised Learning Predictive Models for Highly Non-linear Biological, Biomedical, and General Datasets. Frontiers in Molecular Biosciences, 2020, 7, 13.	1.6	10
90	Understanding the roles of three academic communities in a prospective learning health ecosystem for diagnostic excellence. Learning Health Systems, 2020, 4, e210204.	1.1	6

#	Article	IF	CITATIONS
91	Stateâ€ofâ€theâ€Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System. Journal of the American Heart Association, 2020, 9, e013924.	1.6	76
92	Imagine… (A Common Language for ICU Data Inquiry and Analysis). Critical Care Medicine, 2020, 48, 273-275.	0.4	1
93	Is there a better way to deliver optimal critical care services?. , 2020, , 605-611.e1.		0
94	IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2389-2397.	3.9	7
95	Artificial intelligence for management of patients with intracranial neoplasms. , 2020, , 203-230.		0
96	Fuzzy support vector machine-based personalizing method to address the inter-subject variance problem of physiological signals in a driver monitoring system. Artificial Intelligence in Medicine, 2020, 105, 101843.	3.8	7
97	Exploration of critical care data by using unsupervised machine learning. Computer Methods and Programs in Biomedicine, 2020, 194, 105507.	2.6	13
98	Harnessing Big Data in Neurocritical Care in the Era of Precision Medicine. Current Treatment Options in Neurology, 2020, 22, 1.	0.7	16
99	Artificial intelligence as applied to clinical neurological conditions. , 2021, , 395-413.		0
100	Role of Big Data Analytics in supply chain management: current trends and future perspectives. International Journal of Production Research, 2021, 59, 1875-1900.	4.9	101
102	State of the Art in Artificial Intelligence and Machine Learning Techniques for Improving Patient Outcomes Pertaining to the Cardiovascular and Respiratory Systems. , 2021, , 335-352.		2
103	Intensive care digital health response to emerging infectious disease outbreaks such as COVID-19. Anaesthesia and Intensive Care, 2021, 49, 105-111.	0.2	0
105	PREDICTING LAND PRICES AND MEASURING UNCERTAINTY BY COMBINING SUPERVISED AND UNSUPERVISED LEARNING. International Journal of Strategic Property Management, 2021, 25, 169-178.	0.8	6
106	Machine learningâ€based patient classification system for adult patients in intensive care units: A crossâ€sectional study. Journal of Nursing Management, 2021, 29, 1752-1762.	1.4	4
107	Applicability of Clinical Decision Support in Management among Patients Undergoing Cardiac Surgery in Intensive Care Unit: A Systematic Review. Applied Sciences (Switzerland), 2021, 11, 2880.	1.3	4
108	Prediction of Mortality in Surgical Intensive Care Unit Patients Using Machine Learning Algorithms. Frontiers in Medicine, 2021, 8, 621861.	1.2	8
109	Dynamic Detection of Delayed Cerebral Ischemia. Stroke, 2021, 52, 1370-1379.	1.0	21
110	Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873.	1.3	35

#	Article	IF	CITATIONS
111	Incorporating real-world evidence into the development of patient blood glucose prediction algorithms for the ICU. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1642-1650.	2.2	14
112	Predicting the 9-year course of mood and anxiety disorders with automated machine learning: A comparison between auto-sklearn, naÃīve Bayes classifier, and traditional logistic regression. Psychiatry Research, 2021, 299, 113823.	1.7	16
113	Outcomes prediction in longitudinal data: Study designs evaluation, use case in ICU acquired sepsis. Journal of Biomedical Informatics, 2021, 117, 103734.	2.5	11
114	Systematic review of machine learning models for personalised dosing of heparin. British Journal of Clinical Pharmacology, 2021, 87, 4124-4139.	1.1	10
115	Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Medicine, 2021, 47, 750-760.	3.9	101
116	Machine Learning Analysis to Identify Digital Behavioral Phenotypes for Engagement and Health Outcome Efficacy of an mHealth Intervention for Obesity: Randomized Controlled Trial. Journal of Medical Internet Research, 2021, 23, e27218.	2.1	20
118	Predictors of death and new disability after critical illness: a multicentre prospective cohort study. Intensive Care Medicine, 2021, 47, 772-781.	3.9	29
120	Non-occlusive mesenteric ischemia: Diagnostic challenges and perspectives in the era of artificial intelligence. World Journal of Gastroenterology, 2021, 27, 4088-4103.	1.4	19
121	An Artificial Neural Network–Based Pediatric Mortality Risk Score: Development and Performance Evaluation Using Data From a Large North American Registry. JMIR Medical Informatics, 2021, 9, e24079.	1.3	1
122	A Novel Switching State-Space Model for Post-ICU Mortality Prediction and Survival Analysis. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3587-3595.	3.9	3
123	Estimated Pao 2: A Continuous and Noninvasive Method to Estimate Pao 2 and Oxygenation Index. , 2021, 3, e0546.		10
124	Predicting need for hospital-specific interventional care after surgery using electronic health record data. Surgery, 2021, 170, 790-796.	1.0	5
126	Length of Stay Prediction for Northern Italy COVID-19 Patients Based on Lab Tests and X-Ray Data. Lecture Notes in Computer Science, 2021, , 212-226.	1.0	1
127	An artificial intelligence–based decision support and resource management system for COVID-19 pandemic. , 2021, , 25-49.		1
128	Teaching Analytics Medical-Data Common Sense. Lecture Notes in Computer Science, 2021, , 171-187.	1.0	0
129	An Approach to Extract Meaningful Data from Unstructured Clinical Notes. Lecture Notes in Networks and Systems, 2021, , 581-590.	0.5	2
130	Reducing False Alarm Rates in Neonatal Intensive Care: A New Machine Learning Approach. Advances in Experimental Medicine and Biology, 2020, 1232, 285-290.	0.8	16
131	Hybrid Deep Learning Approach for Classifying Alzheimer Disease Based on Multimodal Data. Advances in Intelligent Systems and Computing, 2020, , 511-520.	0.5	10

#	Article	IF	CITATIONS
132	The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Scientific Data, 2018, 5, 180178.	2.4	677
133	Augmented intelligence in pediatric anesthesia and pediatric critical care. Current Opinion in Anaesthesiology, 2020, 33, 404-410.	0.9	10
135	Understanding Physician's Experience With Conversational Interfaces During Occupational Health Consultation. IEEE Access, 2020, 8, 119158-119169.	2.6	5
136	Representing Uncertainty in Property Valuation Through a Bayesian Deep Learning Approach. Real Estate Management and Valuation, 2020, 28, 15-23.	0.2	4
137	Predicting thromboembolic complications in COVID-19 ICU patients using machine learning. Journal of Clinical and Translational Research, 0, , .	0.3	3
138	Using Machine Learning to Predict Early Onset Acute Organ Failure in Critically III Intensive Care Unit Patients With Sickle Cell Disease: Retrospective Study. Journal of Medical Internet Research, 2020, 22, e14693.	2.1	9
139	Prediction of Cardiac Arrest in the Emergency Department Based on Machine Learning and Sequential Characteristics: Model Development and Retrospective Clinical Validation Study. JMIR Medical Informatics, 2020, 8, e15932.	1.3	22
140	Candidemia Risk Prediction (CanDETEC) Model for Patients With Malignancy: Model Development and Validation in a Single-Center Retrospective Study. JMIR Medical Informatics, 2021, 9, e24651.	1.3	7
141	Predicting Unplanned Transfers to the Intensive Care Unit: A Machine Learning Approach Leveraging Diverse Clinical Elements. JMIR Medical Informatics, 2017, 5, e45.	1.3	66
142	Automated Modular Magnetic Resonance Imaging Clinical Decision Support System (MIROR): An Application in Pediatric Cancer Diagnosis. JMIR Medical Informatics, 2018, 6, e30.	1.3	6
143	Machine learning–based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming?. Neurosurgical Focus, 2020, 48, E5.	1.0	21
144	Transforming big data into computational models for personalized medicine and health care. Dialogues in Clinical Neuroscience, 2016, 18, 339-343.	1.8	20
145	Algorithm-based arterial blood sampling recognition increasing safety in point-of-care diagnostics. World Journal of Critical Care Medicine, 2017, 6, 172.	0.8	1
146	Towards machine learning discovery of dual antibacterial drug–nanoparticle systems. Nanoscale, 2021, 13, 17854-17870.	2.8	11
147	Artificial Intelligence in Brain Tumour Surgery—An Emerging Paradigm. Cancers, 2021, 13, 5010.	1.7	24
150	A Clustering Approach for Customer Billing Prediction in Mall: A Machine Learning Mechanism. Journal of Computer and Communications, 2019, 07, 55-66.	0.6	1
151	Deep Learning Approach for Customer Records Prediction for Future Products Issues. Journal of Computer and Communications, 2019, 07, 44-54.	0.6	0
156	Understanding and Implementing Machine Learning Models with Dummy Variables with Low Variance. Advances in Intelligent Systems and Computing, 2021, , 477-487.	0.5	1

#	Article	IF	CITATIONS
157	Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis. Journal of Clinical Medicine, 2021, 10, 5021.	1.0	8
158	Analysis of Machine Learning for Processing Big Data in High Performance Computing: A Review. EAI Endorsed Transactions on Cloud Systems, 2020, 6, 166353.	0.2	0
159	Assessment of Heart Rate Variability derived from Blood Pressure Pulse Recordings in Intensive Care Unit Patients. , 0, , .		1
160	Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation. Scientific Reports, 2020, 10, 22129.	1.6	16
161	Development and Application of an Intensive Care Medical Data Set for Deep Learning. , 2020, , .		1
162	Learning Inter-Modal Correspondence and Phenotypes From Multi-Modal Electronic Health Records. IEEE Transactions on Knowledge and Data Engineering, 2022, 34, 4328-4341.	4.0	3
164	Estimation of renal scarring in children with lower urinary tract dysfunction by utilizing resampling technique and machine learning algorithms. Journal of Surgery and Medicine, 2020, 4, 573-577.	0.0	2
165	Predicting thromboembolic complications in COVID-19 ICU patients using machine learning. Journal of Clinical and Translational Research, 2020, 6, 179-186.	0.3	1
166	A Decision Support System for the Prediction of Drug Predisposition Through Personality Traits. Advances in Experimental Medicine and Biology, 2021, 1338, 39-46.	0.8	0
169	How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment. , 2020, , .		2
171	Precision Medicine for Hypertension Patients with Type 2 Diabetes via Reinforcement Learning. Journal of Personalized Medicine, 2022, 12, 87.	1.1	9
172	Prediction model of acute kidney injury induced by cisplatin in older adults using a machine learning algorithm. PLoS ONE, 2022, 17, e0262021.	1.1	8
173	Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780389.	2.0	31
174	Optimising Energy Management in Hybrid Microgrids. Mathematics, 2022, 10, 214.	1.1	3
175	Decision tree model predicts live birth after surgery for moderate-to-severe intrauterine adhesions. BMC Pregnancy and Childbirth, 2022, 22, 78.	0.9	3
176	Reinforcement Learning in Healthcare: A Survey. ACM Computing Surveys, 2023, 55, 1-36.	16.1	125
177	Developing, implementing and governing artificial intelligence in medicine: a step-by-step approach to prevent an artificial intelligence winter. BMJ Health and Care Informatics, 2022, 29, e100495.	1.4	41
178	Identification of data elements for blood gas analysis dataset: a base for developing registries and artificial intelligence-based systems. BMC Health Services Research, 2022, 22, 317.	0.9	2

#	Article	IF	CITATIONS
179	Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed Cerebral Ischemia. Neurocritical Care, 2022, 37, 230-236.	1.2	5
180	A Machine Learning Model for Predicting Unscheduled 72 h Return Visits to the Emergency Department by Patients with Abdominal Pain. Diagnostics, 2022, 12, 82.	1.3	6
181	On Missingness Features in Machine Learning Models for Critical Care: Observational Study. JMIR Medical Informatics, 2021, 9, e25022.	1.3	1
183	Association between basal platelet count and all-cause mortality in critically ill patients with acute respiratory failure: a secondary analysis from the eICU collaborative research database American Journal of Translational Research (discontinued), 2022, 14, 1685-1694.	0.0	0
184	Wearable multimodal sensors for the detection of behavioral and psychological symptoms of dementia using personalized machine learning models. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2022, 14, e12305.	1.2	12
185	Research on Digital Technology Use in Cardiology: Bibliometric Analysis. Journal of Medical Internet Research, 2022, 24, e36086.	2.1	21
186	A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. International Journal of Medical Informatics, 2022, 163, 104776.	1.6	8
188	Towards Secure and Intelligent Internet of Health Things: A Survey of Enabling Technologies and Applications. Electronics (Switzerland), 2022, 11, 1893.	1.8	26
189	Tell me something interesting: Clinical utility of machine learning prediction models in the ICU. Journal of Biomedical Informatics, 2022, 132, 104107.	2.5	2
190	Visual Presentation and Trend Derivation of the Medical Big Data Research based on a Multi-level Bibliometric Analysis. , 2022, , .		0
191	The Artificial Intelligence Based Diagnostic Assistant $\hat{a} \in AIDA$. , 2022, , .		0
192	Machine Learning–Based Prediction Models for Delirium: AÂSystematic Review and Meta-Analysis. Journal of the American Medical Directors Association, 2022, 23, 1655-1668.e6.	1.2	4
193	Human acute inflammatory recovery is defined by co-regulatory dynamics of white blood cell and platelet populations. Nature Communications, 2022, 13, .	5.8	23
194	Review on Machine Learning Techniques for Medical Data Classification and Disease Diagnosis. Regenerative Engineering and Translational Medicine, 0, , .	1.6	0
195	Extraction of Meaningful Information from Unstructured Clinical Notes using Web Scraping. Journal of Circuits, Systems and Computers, 0, , .	1.0	0
196	Data-driven methodology to predict the ICU length of stay: A multicentre study of 99,492 admissions in 109 Brazilian units. Anaesthesia, Critical Care & Pain Medicine, 2022, 41, 101142.	0.6	7
197	Designing predictive models for appraisal of outcome of neurosurgery patients using machine learning-based techniques. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2023, 31, 101658.	0.2	1
198	Institution-Specific Machine Learning Models Improve Mortality Risk Prediction for Cardiac Surgery Patients. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
199	Detecting of a Patient's Condition From Clinical Narratives Using Natural Language Representation. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 142-149.	1.7	6
200	Randomized Clinical Trials of Machine Learning Interventions in Health Care. JAMA Network Open, 2022, 5, e2233946.	2.8	57
201	Machine Learning Models for Predicting Short-Long Length of Stay of COVID-19 Patients. Procedia Computer Science, 2022, 207, 1232-1241.	1.2	5
202	Lifting Hospital Electronic Health Record Data Treasures: Challenges and Opportunities. JMIR Medical Informatics, 2022, 10, e38557.	1.3	4
203	Comparison of Machine Learning Models Including Preoperative, Intraoperative, and Postoperative Data and Mortality After Cardiac Surgery. JAMA Network Open, 2022, 5, e2237970.	2.8	11
204	Explainable Preoperative Automated Machine Learning Prediction Model for Cardiac Surgery-Associated Acute Kidney Injury. Journal of Clinical Medicine, 2022, 11, 6264.	1.0	7
205	Improving Sepsis Prediction Performance Using Conditional Recurrent Adversarial Networks. IEEE Access, 2022, 10, 134466-134476.	2.6	5
206	Beyond Conventional Hemodynamic Monitoring—Monitoring to Improve Our Understanding of Disease Process and Interventions. Critical Care Clinics, 2022, , .	1.0	0
207	Feasibility of intelligent drug control in the maintenance phase of general anesthesia based on convolutional neural network. Heliyon, 2023, 9, e12481.	1.4	1
208	Development and Validation of a Prediction Model for Need for Massive Transfusion During Surgery Using Intraoperative Hemodynamic Monitoring Data. JAMA Network Open, 2022, 5, e2246637.	2.8	8
209	Leveraging Clinical Informatics and Data Science to Improve Care and Facilitate Research in Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatric Critical Care Medicine, 2023, 24, S1-S11.	0.2	3
210	Healthcare Professionals' Expectations of Medical Artificial Intelligence and Strategies for its Clinical Implementation: A Qualitative Study. Healthcare Informatics Research, 2023, 29, 64-74.	1.0	4
211	Robots and Intelligent Medical Devices in the Intensive Care Unit: Vision, State of the Art, and Economic Analysis. IEEE Transactions on Medical Robotics and Bionics, 2023, 5, 2-17.	2.1	3
212	AlOps Essential to Unified Resiliency Management in Data Lakehouses. , 2022, , .		1
213	Use of artificial intelligence in paediatric anaesthesia: a systematic review. , 2023, 5, 100125.		2
214	Using machine learning on clinical data to identify unexpected patterns in groups of COVID-19 patients. Scientific Reports, 2023, 13, .	1.6	0
215	Clinical utility of automatic phenotype annotation in unstructured clinical notes: intensive care unit use. BMJ Health and Care Informatics, 2022, 29, e100519.	1.4	1
216	Regression Trees and Ensemble for Multivariate Outcomes. Sankhya B, 2023, 85, 77-109.	0.4	0

#	Article	IF	CITATIONS
217	Mortality Prediction in Severe Traumatic Brain Injury Using Traditional and Machine Learning Algorithms. Journal of Neurotrauma, 2023, 40, 1366-1375.	1.7	9
218	Tendency of dynamic vasoactive and inotropic medications data as a robust predictor of mortality in patients with septic shock: An analysis of the MIMIC-IV database. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	4
220	Prediction of Acid-Base and Potassium Imbalances in Intensive Care Patients Using Machine Learning Techniques. Diagnostics, 2023, 13, 1171.	1.3	1
221	Dynamic and explainable fish mortality prediction under low-concentration ammonia nitrogen stress. Biosystems Engineering, 2023, 228, 178-192.	1.9	5
222	Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy, 0, , .	1.2	3
223	Machine learning using institution-specific multi-modal electronic health records improves mortality risk prediction for cardiac surgery patients. JTCVS Open, 2023, , .	0.2	0
230	Artificial Intelligence Based Early Diagnosis of Sepsis. , 2023, , .		0
232	A Review on Application of Reinforcement Learning in Healthcare. Advances in Information Security, Privacy, and Ethics Book Series, 2023, , 105-119.	0.4	0
242	Application of Machine Learning Methods in NPH. , 2023, , 359-386.		0
245	Managing the Future of Healthcare: The Importance of Health Information Management. , 2023, , 91-106.		0
247	Development of an Ensemble Machine Learning-Based Decision Support System for Patient Admission in Healthcare Unit. , 2023, , .		0
249	Deep Time-Series Prediction of Complications and Deterioration in ICU Patients Based on the MSIPA Model. , 2023, , .		0