Effect of soil washing with only chelators or combining heavy metal removal and phytoavailability: Field exper-

Chemosphere 147, 412-419 DOI: 10.1016/j.chemosphere.2015.12.087

Citation Report

#	Article	IF	CITATIONS
1	Removal of mercury from marine sediments by the combined application of a biodegradable non-ionic surfactant and complexing agent in enhanced-electrokinetic treatment. Electrochimica Acta, 2016, 222, 1569-1577.	2.6	40
2	Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil. Environmental Science and Pollution Research, 2016, 23, 23271-23280.	2.7	18
3	Bioremediation of agricultural solid waste leachates with diverse species of Cu (II) and Cd (II) by periphyton. Bioresource Technology, 2016, 221, 214-221.	4.8	32
4	Removal of Cadmium from Contaminated Soils by Multiple Washing with Iron (III) Chloride. Soil and Sediment Contamination, 2016, 25, 624-636.	1.1	2
5	Humic substances as a washing agent for Cd-contaminated soils. Chemosphere, 2017, 181, 461-467.	4.2	79
6	A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 2017, 182, 247-268.	1.5	877
7	Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents. Journal of Hazardous Materials, 2017, 339, 33-42.	6.5	51
8	Remediation of Hg-contaminated marine sediments by simultaneous application of enhancing agents and microwave heating (MWH). Chemical Engineering Journal, 2017, 321, 1-10.	6.6	24
9	A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil. Journal of Environmental Sciences, 2017, 57, 104-109.	3.2	19
10	Electrochemical oxidation of thallium (I) in groundwater by employing single-chamber microbial fuel cells as renewable power sources. International Journal of Hydrogen Energy, 2017, 42, 29454-29462.	3.8	21
11	Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO. Scientific Reports, 2017, 7, 18040.	1.6	82
12	Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the Total Environment, 2018, 635, 92-99.	3.9	198
13	Advances in Remediation of Acid Agricultural Soils Contaminated by Heavy Metals in South China. , 2018, , 389-397.		1
14	Compound washing remediation and response surface analysis of lead-contaminated soil in mining area by fermentation broth and saponin. Environmental Science and Pollution Research, 2018, 25, 6899-6908.	2.7	4
15	Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Science of the Total Environment, 2018, 625, 1021-1029.	3.9	99
16	Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste. Journal of Environmental Management, 2018, 209, 23-36.	3.8	5
17	Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environmental Science and Pollution Research, 2018, 25, 5231-5242.	2.7	39
18	An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 2018, 147, 440-460.	5.3	323

#	Article	IF	CITATIONS
19	Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metalsâ^'contaminated soil after washing with biodegradable chelators. Journal of Cleaner Production, 2018, 197, 479-490.	4.6	44
20	Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere, 2018, 209, 776-782.	4.2	116
21	Two-stage multi-fraction first-order kinetic modeling for soil Cd extraction by EDTA. Chemosphere, 2018, 211, 1035-1042.	4.2	11
22	Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicology and Environmental Safety, 2018, 162, 464-473.	2.9	46
23	Removal of cadmium from a citrate-bearing solution by floatable microsized garlic peel. RSC Advances, 2018, 8, 28284-28292.	1.7	19
24	Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotoxicology and Environmental Safety, 2019, 182, 109399.	2.9	42
25	Enhanced Phytoextraction for Co-contaminated Soil with Cd and Pb by Ryegrass (Lolium perenne L.). Bulletin of Environmental Contamination and Toxicology, 2019, 103, 147-154.	1.3	14
26	Assessment of phytoextraction using Sedum plumbizincicola and rice production in Cd-polluted acid paddy soils of south China: A field study. Agriculture, Ecosystems and Environment, 2019, 286, 106651.	2.5	38
27	Revitalization of Mixed Chelator–Washed Soil by Adding of Inorganic and Organic Amendments. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	9
28	Comparing chemical extraction and a piecewise function with diffusive gradients in thin films for accurate estimation of soil zinc bioavailability to <i>Sedum plumbizincicola</i> . European Journal of Soil Science, 2019, 70, 1141-1152.	1.8	6
29	Combining potassium chloride leaching with vertical electrokinetics to remediate cadmium-contaminated soils. Environmental Geochemistry and Health, 2019, 41, 2081-2091.	1.8	11
30	A Soluble Humic Substance for the Simultaneous Removal of Cadmium and Arsenic from Contaminated Soils. International Journal of Environmental Research and Public Health, 2019, 16, 4999.	1.2	19
31	Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. Journal of Central South University, 2019, 26, 2987-2997.	1.2	13
32	Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils. Science of the Total Environment, 2019, 658, 836-842.	3.9	45
33	Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. Journal of Hazardous Materials, 2019, 366, 177-183.	6.5	46
34	Aluminum toxicity decreases the phytoextraction capability by cadmium/zinc hyperaccumulator Sedum plumbizincicola in acid soils. Science of the Total Environment, 2020, 711, 134591.	3.9	22
35	Recycling of Chemical Eluent and Soil Improvement After Leaching. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 128-133.	1.3	3
36	Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability, 2020, 12, 8209.	1.6	59

CITATION REPORT

#	Article	IF	CITATIONS
37	Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicology and Environmental Safety, 2020, 203, 110981.	2.9	53
38	Remediation of a metal-contaminated soil by chemical washing and repeated phytoextraction: a field experiment. International Journal of Phytoremediation, 2021, 23, 1-8.	1.7	6
39	The Improvement Effects of Different Treatment Methods of Soil Wastewater Washing on Environmental Pollution. Water (Switzerland), 2020, 12, 2329.	1.2	6
40	Optimization of Cadmium and Zinc Removal from Contaminated Soil by Surfactants Using Mixture Design and Central Composite Rotatable Design. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
41	Study of Catalysts' Influence on Photocatalysis/Photodegradation of Olive Oil Mill Wastewater. Determination of the Optimum Working Conditions. Catalysts, 2020, 10, 554.	1.6	4
42	The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arabian Journal of Chemistry, 2020, 13, 5160-5170.	2.3	59
43	Effect of inorganic and organic amendments on maize biomass, heavy metals uptake and their availability in calcareous and acidic washed soil. Environmental Technology and Innovation, 2020, 19, 101038.	3.0	13
44	Response Surface Method Analysis on Electro-Enhanced Technique for Remediation of Cadmium Contaminated Soil. Materials Science Forum, 2020, 980, 502-511.	0.3	1
45	Characteristics and in situ remediation effects of heavy metal immobilizing bacteria on cadmium and nickel co-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 192, 110294.	2.9	55
46	Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Advances, 2020, 10, 7432-7442.	1.7	25
47	Amendment additions and their potential effect on soil geotechnical properties: A perspective review. Critical Reviews in Environmental Science and Technology, 2021, 51, 535-576.	6.6	2
48	Phytoremediation of abandoned mining areas for land restoration: Approaches and technology. , 2021, , 33-56.		2
49	Role of Biosurfactants in Agriculture and Soil Reclamation. , 2021, , 145-174.		0
50	Morphological transformation of heavy metals and their distribution in soil aggregates during biotransformation of livestock manure. Biocatalysis and Agricultural Biotechnology, 2021, 32, 101963.	1.5	8
51	Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Applied Sciences (Switzerland), 2021, 11, 4134.	1.3	65
52	In situ cadmium removal from paddy soils by a reusable remediation device and its health risk assessment in rice. Environmental Technology and Innovation, 2021, 23, 101713.	3.0	6
53	Microbial investigations of new hydrogel-biochar composites as soil amendments for simultaneous nitrogen-use improvement and heavy metal immobilization. Journal of Hazardous Materials, 2022, 424, 127154.	6.5	11
54	Metabolism-mediated induction of zinc tolerance in Brassica rapa by Burkholderia cepacia CS2-1. Journal of Microbiology, 2017, 55, 955-965.	1.3	11

#	Article		CITATIONS
55	Amelioration of heavy metal stress by endophytic <i>Bacillus amyloliquefaciens</i> RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochemical Journal, 2019, 476, 3385-3400.	1.7	33
56	Remediation of heavy metal contamination of sediments and soils using ligand-coated dense nanoparticles. PLoS ONE, 2020, 15, e0239137.	1.1	6
57	Evaluation of the addition of immobilizing agents on selected physicochemical properties of soil contaminated with heavy metals. Polish Journal of Soil Science, 2018, 51, 59.	0.3	4
58	Recent advances in chemical methods for remediation of heavy metals contaminated soils: A Review. Emergent Life Sciences Research, 2018, 4, 45-50.	0.0	2
59	Dolomite and Compost Amendments Enhance Cu Phytostabilization and Increase Microbiota of the Leachates from a Cu-Contaminated Soil. Agronomy, 2020, 10, 719.	1.3	6
60	REMOVAL OF CADMIUM FROM CONTAMINATED SOIL USING IRON (III) OXIDE NANOPARTICLES STABILIZED WITH POLYACRYLIC ACID. Journal of Environmental Engineering and Landscape Management, 2018, 26, 98-106.	0.4	16
61	OPTIMIZATION OF EDTA ENHANCED SOIL WASHING ON MULTIPLE HEAVY METALS REMOVAL USING RESPONSE SURFACE METHODOLOGY. Journal of Environmental Engineering and Landscape Management, 2018, 26, 241-250.	0.4	4
62	Remediation Technology for Copper Contaminated Soil: A Review. Asian Soil Research Journal, 0, , 1-7.	0.0	16
63	New Approaches Regarding Remediation Techniques of Heavy Metal Contaminated Soils from Mining Areas. Studia Universitatis BabeÈ™-Bolyai Ambientum, 2018, 63, 15-31.	0.0	0
64	Comparative study on washing effects of different washing agents and conditions on heavy metal contaminated soil. Surfaces and Interfaces, 2021, 27, 101563.	1.5	8
65	Remediation of iron oxide bound Pb and Pb-contaminated soils using a combination of acid washing agents and l-ascorbic acid. RSC Advances, 2020, 10, 37808-37817.	1.7	1
66	Bioremediation of Heavy Metal Contaminated Soils Originated from Iron Ore Mine by Bio-augmentation with Native Cyanobacteria. Iranica Journal of Energy & Environment, 2020, 11, .	0.2	5
67	Application of Soil Washing and Thermal Desorption for Sustainable Remediation and Reuse of Remediated Soil. Sustainability, 2021, 13, 12523.	1.6	10
68	Effect of Soil Washing with Ferric Chloride on Cadmium Removal and Soil Structure. Applied Sciences (Switzerland), 2021, 11, 10956.	1.3	3
69	Removal and magnetic recovery of heavy metals and pesticides from soil by layered double hydroxides modified biotite. Chemical Engineering Journal, 2022, 431, 134113.	6.6	26
70	Remediation of chromium contaminated soil by soil washing using EDTA and N-acetyl-L-cysteine as the chelating agents. Progress in Organic Coatings, 2022, 165, 106704.	1.9	15
71	The Phytoextraction by Zea mays of Residual Metals in Ethylenediaminetetraacetic Acid-Washed Soils. Chemistry Africa, 2022, 5, 395.	1.2	0
72	Combination of High-Efficiency Biodegradable Washing Agents for Simultaneous Removal of Cd, Pb and as from Smelting Soil with Complex Contamination and Risk Assessment. SSRN Electronic Journal, 0,	0.4	0

#	Article	IF	CITATIONS
73	Ferric Chloride Amendment Reduces Phosphorus Losses from Flooded Soil Monoliths to Overlying Floodwater. Canadian Journal of Soil Science, 0, , .	0.5	1
74	Effect of different washing solutions on soil enzyme activity and microbial community in agricultural soil severely contaminated with cadmium. Environmental Science and Pollution Research, 2022, 29, 54641-54651.	2.7	13
75	Revitalization of Total Petroleum Hydrocarbon Contaminated Soil Remediated by Landfarming. Toxics, 2022, 10, 147.	1.6	2
76	Destabilization and exchange removal of arsenic in contaminated soils by washing: A new remediation strategy with high efficiency and low mineral loss. Surfaces and Interfaces, 2022, 29, 101805.	1.5	4
77	A critical review on EDTA washing in soil remediation for potentially toxic elements (PTEs) pollutants. Reviews in Environmental Science and Biotechnology, 2022, 21, 399-423.	3.9	12
78	Co-high-efficiency washing agents for simultaneous removal of Cd, Pb and As from smelting soil with risk assessment. Chemosphere, 2022, 300, 134581.	4.2	13
80	Washing Reagents for Remediating Heavy-Metal-Contaminated Soil: A Review. Frontiers in Earth Science, 2022, 10, .	0.8	7
81	A review for recent advances on soil washing remediation technologies. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 651-658.	1.3	10
82	Reduction of cadmium bioavailability in paddy soil and its accumulation in brown rice by FeCl3 washing combined with biochar: A field study. Science of the Total Environment, 2022, 851, 158186.	3.9	5
83	Leaching and characterization studies of heavy metals in contaminated soil using sequenced reagents of oxalic acid, citric acid, and a copolymer of maleic and acrylic acid instead of ethylenediaminetetraacetic acid. Environmental Science and Pollution Research, 2023, 30, 6919-6934.	2.7	1
84	Immobilization of Cr(â¥) in polluted soil using activated carbon fiber supported FeAl-LDH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129884.	2.3	9
85	Background level, occurrence, speciation, bioavailability, uptake detoxification mechanisms and management of Zn-polluted soils. , 2022, , 165-220.		0
86	A review on heavy metal and metalloid contamination of vegetables: addressing the global safe food security concern. International Journal of Environmental Analytical Chemistry, 0, , 1-22.	1.8	3
87	Potential mechanisms contributing to the high cadmium removal efficiency from contaminated soil by using effective microorganisms as novel electrolyte in electrokinetic remediation applications. Environmental Research, 2022, 215, 114239.	3.7	7
88	Remediation of Heavy Metal-Contaminated Soils with Soil Washing: A Review. Sustainability, 2022, 14, 13058.	1.6	18
89	Adsorption performance of layered double hydroxides for heavy metals removal in soil with the presence of microplastics. Journal of Environmental Chemical Engineering, 2022, 10, 108733.	3.3	11
90	Effective soil washing for Cu removal in industrial soil remediation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 10270-10284.	1.2	2
91	Study on the Remediation of Cadmium/Mercury Contaminated Soil by Leaching: Effectiveness, Conditions, and Ecological Risks. Water, Air, and Soil Pollution, 2023, 234, .	1.1	1

		CITATION	tation Report		
#	Article		IF	CITATIONS	
92	Recycled biochar adsorption combined with CaCl2 washing to increase rice yields and decrea levels in grains and paddy soils: A field study. Science of the Total Environment, 2023, 865, 1		3.9	0	
93	Field experiments to assess the remediation efficiency of metal-contaminated soil by flushing ferric chloride followed by applying amendments. Science of the Total Environment, 2023, 8	g with 68, 161592.	3.9	1	
94	Innovative Resource Recovery from Industrial Sites: A Critical Review. Sustainability, 2023, 1	5, 489.	1.6	1	
95	Aqueous Recovery of Zinc and Lead from Coal Fly Ashes of a Colombian Thermoelectric Plan Ingenieria E Investigacion, 2022, 43, e95364.		0.2	2	
96	Remediation of Sb-Contaminated Soil by Low Molecular Weight Organic Acids Washing: Effi and Mechanisms. Sustainability, 2023, 15, 4147.	ciencies	1.6	3	
97	Environmental remediation of Pb–Cd contaminated soil with organic phosphonic acids-saµ Conditions, effectiveness, ecological risk and recovery. Chemosphere, 2023, 322, 138122.	oonin:	4.2	3	
103	Remediation Strategies of Cd Contaminated Soil in Mining Areas. Environmental Science and Engineering, 2023, , 257-272.	1	0.1	0	
107	Current technologies for heavy metal removal from food and environmental resources. Food and Biotechnology. O	Science	1.2	0	