Designer lignins: harnessing the plasticity of lignification

Current Opinion in Biotechnology 37, 190-200 DOI: 10.1016/j.copbio.2015.10.009

Citation Report

#	Article	IF	CITATIONS
1	Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Frontiers in Bioengineering and Biotechnology, 2016, 4, 58.	2.0	8
2	Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite. Materials, 2016, 9, 618.	1.3	126
3	Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem, 2016, 9, 1544-1558.	3.6	469
4	Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 2016, 128, 8296-8354.	1.6	159
5	Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8164-8215.	7.2	1,576
6	RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnology for Biofuels, 2016, 9, 270.	6.2	31
7	Changes In Cell Wall Polymers And Degradability In Maize Mutants Lacking 3'- And 5'- <i>O</i> -Methyltransferases Involved In Lignin Biosynthesis. Plant and Cell Physiology, 2017, 58, pcw198.	1.5	32
8	Radical Nature of C-Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 5327-5335.	3.2	52
9	Maize Tricin-Oligolignol Metabolites and their Implications for Monocot Lignification. Plant Physiology, 2016, 171, pp.02012.2016.	2.3	55
10	The Structure and Catalytic Mechanism of <i>Sorghum bicolor</i> Caffeoyl-CoA <i>O</i> -Methyltransferase. Plant Physiology, 2016, 172, 78-92.	2.3	46
11	Progress toward Lignin Valorization via Selective Catalytic Technologies and the Tailoring of Biosynthetic Pathways. ACS Sustainable Chemistry and Engineering, 2016, 4, 5123-5135.	3.2	79
12	Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World Journal of Microbiology and Biotechnology, 2016, 32, 173.	1.7	25
13	Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2016, 2, e1600393.	4.7	147
14	Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 2016, 18, 4884-4895.	4.6	64
15	A Stochastic Method to Generate Libraries of Structural Representations of Lignin. Energy & Fuels, 2016, 30, 5835-5845.	2.5	40
16	Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chemistry, 2017, 19, 1378-1389.	4.6	80
17	BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants. Cell Chemical Biology, 2017, 24, 326-338.	2.5	41
18	Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems. Plant Physiology, 2017, 174, 1028-1036.	2.3	45

#	Article	IF	Citations
19	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	15.6	503
20	Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. Plant Physiology, 2017, 174, 2072-2082.	2.3	90
21	Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnology Journal, 2017, 15, 1071-1092.	4.1	52
22	A Key Role for Apoplastic H ₂ O ₂ in Norway Spruce Phenolic Metabolism. Plant Physiology, 2017, 174, 1449-1475.	2.3	46
23	The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (<i>Sorghum bicolor</i>), SbCAD2 and SbCAD4. Plant Physiology, 2017, 174, 2128-2145.	2.3	32
24	Phenolic Compounds in Plants: Implications for Bioenergy. , 2017, , 39-52.		2
25	Towards first-principles based kinetic modeling of biomass fast pyrolysis. Biomass Conversion and Biorefinery, 2017, 7, 305-317.	2.9	25
26	Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes. Biotechnology for Biofuels, 2017, 10, 15.	6.2	26
27	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016.	2.3	84
28	Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039.	2.3	99
29	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE</i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057.	2.3	90
30	Seeing biomass recalcitrance through fluorescence. Scientific Reports, 2017, 7, 8838.	1.6	42
31	Chemical Pulping Advantages of Zipâ€lignin Hybrid Poplar. ChemSusChem, 2017, 10, 3565-3573.	3.6	45
32	Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don). BMC Plant Biology, 2017, 17, 9.	1.6	50
33	Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85.	2.5	109
34	Transgenic switchgrass (<i>Panicum virgatum</i> L.) targeted for reduced recalcitrance to bioconversion: a 2â€year comparative analysis of fieldâ€grown lines modified for target gene or genetic element expression. Plant Biotechnology Journal, 2017, 15, 688-697.	4.1	29
35	Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnology for Biofuels, 2017, 10, 224.	6.2	57
36	Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid. Frontiers in Energy Research, 2017, 5, .	1.2	40

	CITATION R	EPORT	
#	Article	IF	CITATIONS
37	Host lignin composition affects haustorium induction in the parasitic plants <i>Phtheirospermum japonicum</i> and <i>Striga hermonthica</i> . New Phytologist, 2018, 218, 710-723.	3.5	64
38	Structural Characterization of Lignin from Maize (Zea mays L.) Fibers: Evidence for Diferuloylputrescine Incorporated into the Lignin Polymer in Maize Kernels. Journal of Agricultural and Food Chemistry, 2018, 66, 4402-4413.	2.4	38
39	Visualizing Lignification Dynamics in Plants with Click Chemistry: Dual Labeling is BLISS!. Journal of Visualized Experiments, 2018, , .	0.2	5
40	Assessing the between-background stability of metabolic effects arising from lignin-related transgenic modifications, in two Populus hybrids using non-targeted metabolomics. Tree Physiology, 2018, 38, 378-396.	1.4	9
41	The cell biology of secondary cell wall biosynthesis. Annals of Botany, 2018, 121, 1107-1125.	1.4	202
42	Isolation and characterization of cinnamate 4-hydroxylase gene from cultivated ramie (<i>Boehmeria) Tj ETQq1</i>	1 0,784314 0.5	rgBT /Overl
43	Engineered Lignin in Poplar Biomass Facilitates Cu-Catalyzed Alkaline-Oxidative Pretreatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 2932-2941.	3.2	31
44	Direct analysis by timeâ€ofâ€flight secondary ion mass spectrometry reveals action of bacterial laccaseâ€mediator systems on both hardwood and softwood samples. Physiologia Plantarum, 2018, 164, 5-16.	2.6	10
45	Lignin modification in planta for valorization. Phytochemistry Reviews, 2018, 17, 1305-1327.	3.1	67
46	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	18.7	1,708
47	Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macromolecules, 2018, 115, 727-736.	3.6	47
48	Impact of hydration and temperature history on the structure and dynamics of lignin. Green Chemistry, 2018, 20, 1602-1611.	4.6	30
49	Comparative effects of L-DOPA and velvet bean seed extract on soybean lignification. Plant Signaling and Behavior, 2018, 13, e1451705.	1.2	5
50	Pelletized Composite Wood Fiber Mixed with Plastic as Advanced Solid Biofuels: Thermo-Chemical Analysis. Waste and Biomass Valorization, 2018, 9, 1629-1643.	1.8	9
51	Cell wall biomechanics: a tractable challenge in manipulating plant cell walls †fit for purpose'!. Current Opinion in Biotechnology, 2018, 49, 163-171.	3.3	42
52	Laccase GhLac1 Modulates Broad-Spectrum Biotic Stress Tolerance via Manipulating Phenylpropanoid Pathway and Jasmonic Acid Synthesis. Plant Physiology, 2018, 176, 1808-1823.	2.3	186
53	Vessel-Specific Reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed <i>ccr1</i> Mutants Restores Vessel and Xylary Fiber Integrity and Increases Biomass. Plant Physiology, 2018, 176, 611-633.	2.3	76
55	Lignin Phenol Formaldehyde Resoles Using Base-Catalysed Depolymerized Kraft Lignin. Polymers, 2018, 10, 1162.	2.0	46

		CITATION REPORT	
#	Article	IF	Citations
56	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968	3. 4.7	184
57	Complete substitution of a secondary cell wall with a primary cell wall in Arabidopsis. Nature 2018, 4, 777-783.	Plants, 4.7	63
58	Primary walls in second place. Nature Plants, 2018, 4, 748-749.	4.7	5
59	Patterned Deposition of Xylan and Lignin is Independent from that of the Secondary Wall Cel Arabidopsis Xylem Vessels. Plant Cell, 2018, 30, 2663-2676.	lulose of 3.1	34
60	Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana. Biotech for Biofuels, 2018, 11, 257.	to nology 6.2	14
61	Genetic engineering of trees: progress and new horizons. In Vitro Cellular and Developmental - Plant, 2018, 54, 341-376.	Biology 0.9	47
62	Elicitors and defense gene induction in plants with altered lignin compositions. New Phytolog 2018, 219, 1235-1251.	jist, 3.5	61
63	Fluorescence techniques can reveal cell wall organization and predict saccharification in pretr wood biomass. Industrial Crops and Products, 2018, 123, 84-92.	eated 2.5	38
64	Conventional and Oleaginous Yeasts as Platforms for Lipid Modification and Production. , 20 257-292.	18, ,	2
65	Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sci 2018, 19, 335.	ences, 1.8	757
66	Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844.	4.6	114
67	Heterogeneity and its multiscale integration in plant morphogenesis. Current Opinion in Plan Biology, 2018, 46, 18-24.	t 3.5	3
68	Reductive Catalytic Fractionation of C-Lignin. ACS Sustainable Chemistry and Engineering, 20 11211-11218.)18, 6, 3.2	89
69	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 37	76, 36. 3.0	75
70	A hard, high-carbon, lignomor with conchoidal fracture: Cunnite, from mature myrtle beech (Nothofagus cunninghamii (Hook. f.) Oerst.). Geoderma, 2019, 333, 178-187.	2.3	2
71	Water Deficit-Responsive QTLs for Cell Wall Degradability and Composition in Maize at Silage Frontiers in Plant Science, 2019, 10, 488.	e Stage. 1.7	17
72	OsCAldOMT1 is a bifunctional O-methyltransferase involved in the biosynthesis of tricin-lignin rice cell walls. Scientific Reports, 2019, 9, 11597.	ns in 1.6	35
73	Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction o high-value compounds. Biotechnology for Biofuels, 2019, 12, 192.	f 6.2	35

#	Article	IF	CITATIONS
74	Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Research, 2019, 241, 107572.	2.3	26
75	Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnology Advances, 2019, 37, 107418.	6.0	36
76	Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. Plant Physiology and Biochemistry, 2019, 142, 275-282.	2.8	16
77	Lignin Engineering in Forest Trees. Frontiers in Plant Science, 2019, 10, 912.	1.7	92
78	Computational Evidence for Kinetically Controlled Radical Coupling during Lignification. ACS Sustainable Chemistry and Engineering, 2019, 7, 13270-13277.	3.2	21
79	Melatonin enhances cotton immunity to <i>Verticillium</i> wilt via manipulating lignin and gossypol biosynthesis. Plant Journal, 2019, 100, 784-800.	2.8	107
80	Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics. Bioresource Technology, 2019, 291, 121885.	4.8	73
81	The lignin toolbox of the model grass Setaria viridis. Plant Molecular Biology, 2019, 101, 235-255.	2.0	28
82	Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 2019, 196, 1080-1088.	4.4	117
83	Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 2019, 142, 111840.	2.5	15
84	Biochemical Compositional Analysis and Kinetic Modeling of Hydrothermal Carbonization of Australian Saltbush. Energy & Fuels, 2019, 33, 12469-12479.	2.5	24
85	Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. Journal of Biological Chemistry, 2019, 294, 16549-16566.	1.6	27
86	Ether Hydrolysis, Ether Thiolysis, and the Catalytic Power of Etherases in the Disassembly of Lignin. Biochemistry, 2019, 58, 5381-5385.	1.2	3
87	Lignin-KMC: A Toolkit for Simulating Lignin Biosynthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18313-18322.	3.2	33
88	Passive membrane transport of lignin-related compounds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23117-23123.	3.3	94
89	Designing and Synthesizing Materials with Appropriate Lifetimes. , 2019, , 483-511.		0
90	Understanding Laccase–Ionic Liquid Interactions toward Biocatalytic Lignin Conversion in Aqueous Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 15928-15938.	3.2	45
91	Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants, 2019, 5, 225-237.	4.7	50

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Enzyme-Enzyme Interactions in Monolignol Biosynthesis. Frontiers in Plant Science, 201	.8, 9, 1942.	1.7	26
93	Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Cui in Biotechnology, 2019, 56, 202-208.	rrent Opinion	3.3	100
94	Comparative study of chemical and topological structure of macromolecules of lignins of (Betula verrucosa) and apple (Malus domestica) wood. International Journal of Biologica Macromolecules, 2019, 128, 40-48.	of birch al	3.6	17
95	Two important factors of selecting lignin as efficient lubricating additives in poly (ethyle Hydrogen bond and molecular weight. International Journal of Biological Macromolecule 564-570.	ne glycol): es, 2019, 129,	3.6	28
96	Low Lignin Mutants and Reduction of Lignin Content in Grasses for Increased Utilisatior Lignocellulose. Agronomy, 2019, 9, 256.	ı of	1.3	16
97	Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food and Energy Security, 2019, 8, e00163.		2.0	13
98	Proton Gradient-Dependent Transport of p-Glucocoumaryl Alcohol in Differentiating Xyl Plants. Scientific Reports, 2019, 9, 8900.	em of Woody	1.6	21
99	Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody B Feedstocks. Frontiers in Plant Science, 2019, 10, 775.	iomass	1.7	17
100	Genetic Modification of Biomass to Alter Lignin Content and Structure. Industrial & Chemistry Research, 2019, 58, 16190-16203.	; Engineering	1.8	23
101	Supercritical methanol depolymerization and hydrodeoxygenation of lignin and biomass copper porous metal oxides. Green Chemistry, 2019, 21, 2988-3005.	s over reduced	4.6	63
102	Enzymatic basis for Câ€lignin monomer biosynthesis in the seed coat of <i>Cleome has Journal, 2019, 99, 506-520.</i>	sleriana. Plant	2.8	31
103	Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Phy 180, 1310-1321.	siology, 2019,	2.3	43
104	Enzymatic Processing of Technical Lignins into Materials. , 2019, , 571-592.			1
105	Kinetic and mechanistic insights into hydrogenolysis of lignin to monomers in a continu reactor. Green Chemistry, 2019, 21, 3561-3572.	ous flow	4.6	56
106	Lignin structure and its engineering. Current Opinion in Biotechnology, 2019, 56, 240-2	249.	3.3	533
107	Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plan altered lignin composition. Journal of Wood Science, 2019, 65, .	ts with	0.9	19
108	Recruitment of specific flavonoid Bâ€ring hydroxylases for two independent biosynthes flavoneâ€derived metabolites in grasses. New Phytologist, 2019, 223, 204-219.	is pathways of	3.5	38
109	Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Improving Wood Fiber for Industrial Processing. Frontiers in Plant Science, 2019, 10, 17	Toward 6.	1.7	52

#	Article	IF	CITATIONS
110	Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Science, 2019, 287, 110070.	1.7	14
111	Lignin for Nano―and Microscaled Carrier Systems: Applications, Trends, and Challenges. ChemSusChem, 2019, 12, 2039-2054.	3.6	200
112	Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. Planta, 2019, 250, 163-171.	1.6	18
113	Os <scp>MYB</scp> 108 lossâ€ofâ€function enriches <i>p</i> â€coumaroylated and tricin lignin units in rice cell walls. Plant Journal, 2019, 98, 975-987.	2.8	57
114	Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Scientific Reports, 2019, 9, 17153.	1.6	25
115	Tailor-made trees: engineering lignin for ease of processing and tomorrow's bioeconomy. Current Opinion in Biotechnology, 2019, 56, 147-155.	3.3	44
116	Bioactivity: phenylpropanoids' best kept secret. Current Opinion in Biotechnology, 2019, 56, 156-162.	3.3	49
117	Structure, chemical reactivity and solubility of lignin: a fresh look. Wood Science and Technology, 2019, 53, 7-47.	1.4	57
118	Lignin-based polymers and nanomaterials. Current Opinion in Biotechnology, 2019, 56, 112-120.	3.3	151
119	Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Current Opinion in Biotechnology, 2019, 56, 97-104.	3.3	208
120	Carbohydrates of the Kernel. , 2019, , 305-318.		16
121	Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Current Opinion in Biotechnology, 2019, 56, 193-201.	3.3	264
122	The transport of monomers during lignification in plants: anything goes but how?. Current Opinion in Biotechnology, 2019, 56, 69-74.	3.3	66
123	Lignin polymerization: how do plants manage the chemistry so well?. Current Opinion in Biotechnology, 2019, 56, 75-81.	3.3	212
124	Lignin characterization of rice <i>CONIFERALDEHYDE 5â€HYDROXYLASE</i> lossâ€ofâ€function mutants generated with the <scp>CRISPR</scp> /Cas9 system. Plant Journal, 2019, 97, 543-554.	2.8	40
125	Secondary cell wall biosynthesis. New Phytologist, 2019, 221, 1703-1723.	3.5	185
126	Phytoremediation with trees. Advances in Botanical Research, 2019, 89, 281-321.	0.5	15
127	Polyploidy Affects Plant Growth and Alters Cell Wall Composition. Plant Physiology, 2019, 179, 74-87.	2.3	134

#	Article	IF	CITATIONS
128	The cotton laccase gene <i>GhLAC15 </i> enhances Verticillium wilt resistance via an increase in defenceâ€induced lignification and lignin components in the cell walls of plants. Molecular Plant Pathology, 2019, 20, 309-322.	2.0	111
129	Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 2020, 12, 469-497.	5.1	50
130	Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem, 2020, 12, 401-425.	1.8	62
133	High valueâ€added monomer chemicals and functional bioâ€based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels, Bioproducts and Biorefining, 2020, 14, 371-401.	1.9	63
134	Atypical lignification in eastern leatherwood (<i>Dirca palustris</i>). New Phytologist, 2020, 226, 704-713.	3.5	15
135	Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials. Green Chemistry, 2020, 22, 7435-7447.	4.6	48
136	Dwarfism of highâ€monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpression. Plant Direct, 2020, 4, e00265.	0.8	17
137	Coupling and Reactions of Lignols and New Lignin Monomers: A Density Functional Theory Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 11033-11045.	3.2	12
138	Cell-Specific Suppression of 4-Coumarate-CoA Ligase Gene Reveals Differential Effect of Lignin on Cell Physiological Function in Populus. Frontiers in Plant Science, 2020, 11, 589729.	1.7	21
139	Characterization and Enzyme Engineering of a Hyperthermophilic Laccase Toward Improving Its Activity in Ionic Liquid. Frontiers in Energy Research, 2020, 8, .	1.2	12
140	Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. Frontiers in Plant Science, 2020, 11, 559070.	1.7	16
141	MYB-mediated regulation of lignin biosynthesis in grasses. Current Plant Biology, 2020, 24, 100174.	2.3	21
142	Proanthocyanidin Biosynthesis—a Matter of Protection. Plant Physiology, 2020, 184, 579-591.	2.3	59
143	Sustainable Li″on Batteries: Chemistry and Recycling. Advanced Energy Materials, 2021, 11, 2003456.	10.2	157
144	Improved analysis of arabinoxylan-bound hydroxycinnamate conjugates in grass cell walls. Biotechnology for Biofuels, 2020, 13, 202.	6.2	14
145	Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an in silico and in vitro approach. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 484-493.	0.9	4
146	Harnessing the Power of Enzymes for Tailoring and Valorizing Lignin. Trends in Biotechnology, 2020, 38, 1215-1231.	4.9	36
147	Productâ€oriented Direct Cleavage of Chemical Linkages in Lignin. ChemSusChem, 2020, 13, 4367-4381.	3.6	66

ARTICLE IF CITATIONS Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for 148 3.6 123 Renewable Chemicals and Fuels Production. ChemSusChem, 2020, 13, 4214-4237. Polymer principles behind solubilizing lignin with organic cosolvents for bioenergy. Green Chemistry, 149 4.6 2020, 22, 4331-4340. Entacapone improves saccharification without affecting lignin and maize growth: An in silico, in 150 2.8 5 vitro, and in vivo approach. Plant Physiology and Biochemistry, 2020, 151, 421-428. Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnology for Biofuels, 2020, 13, 97. A flavonoid monomer tricin in Gramineous plants: Metabolism, bio/chemosynthesis, biological 152 4.2 35 properties, and toxicology. Food Chemistry, 2020, 320, 126617. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters, 2020, 9, 476-493. 2.3 154 Lignin Chemistry. Topics in Current Chemistry Collections, 2020, , . 0.2 7 Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the 3.2 184 Wall. ACS Sustainable Chémistry and Engineering, 2020, 8, 4997-5012. Role of laccase gene in wheat NILs differing at QTL-Fhb1 for resistance against Fusarium head blight. 156 1.7 25 Plant Science, 2020, 298, 110574. Transcriptional analysis of arogenate dehydratase genes identifies a link between phenylalanine 2.4 biosynthesis and lignin biosynthesis. Journal of Experimental Botany, 2020, 71, 3080-3093. The relation between lignin sequence and its 3D structure. Biochimica Et Biophysica Acta - General 158 17 1.1 Subjects, 2020, 1864, 129547. Phenolic cross-links: building and de-constructing the plant cell wall. Natural Product Reports, 2020, 5.2 111 37, 919-961. Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification. 160 1.4 4 Applied Biochemistry and Biotechnology, 2020, 191, 981-995. Mesoscale Reaction–Diffusion Phenomena Governing Ligninâ€First Biomass Fractionation. ChemSusChem, 2020, 13, 4495-4509. 3.6 Research Progress in Ligninâ€Based Slow/Controlled Release Fertilizer. ChemSusChem, 2020, 13, 162 140 3.6 4356-4366. Atmospheric pressure ionization mass spectrometry as a tool for structural characterization of lignin. Rapid Communications in Mass Spectrometry, 2020, 34, e8813. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 164 8.2 141 2021, 81, 105637. The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology, 4.1 2021, 63, 251-272.

#	Article	IF	CITATIONS
166	Inhibition of Maize Caffeate 3-O-Methyltransferase by Nitecapone as a Possible Approach to Reduce Lignocellulosic Biomass Recalcitrance. Plant Molecular Biology Reporter, 2021, 39, 179-191.	1.0	5
169	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	2.9	8
170	Coupling of Flavonoid Initiation Sites with Monolignols Studied by Density Functional Theory. ACS Sustainable Chemistry and Engineering, 2021, 9, 1518-1528.	3.2	6
171	Reductive Catalytic Fractionation: From Waste Wood to Functional Phenolic Oligomers for Attractive, Value-Added Applications. ACS Symposium Series, 2021, , 37-60.	0.5	5
172	Lignin: an innovative, complex, and highly flexible plant material/component. , 2021, , 35-60.		1
174	Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth. Plant Physiology and Biochemistry, 2021, 159, 335-346.	2.8	14
175	Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Conversion and Biorefinery, 2023, 13, 2029-2043.	2.9	17
177	Recent advances in the valorization of plant biomass. Biotechnology for Biofuels, 2021, 14, 102.	6.2	122
178	Improved chemical pulping and saccharification of a natural mulberry mutant deficient in cinnamyl alcohol dehydrogenase. Holzforschung, 2021, .	0.9	3
179	Growth–defense tradeâ€offs and yield loss in plants with engineered cell walls. New Phytologist, 2021, 231, 60-74.	3.5	41
180	Identifying the Interunit Linkages Connecting Free Phenolic Terminal Units in Lignin. ChemSusChem, 2021, 14, 2554-2563.	3.6	2
181	Variations in cell wall traits impact saccharification potential of Salix famelica and Salix eriocephala. Biomass and Bioenergy, 2021, 148, 106051.	2.9	7
182	Stacking AsFMT overexpression with BdPMT loss of function enhances monolignol ferulate production in BrachypodiumÂdistachyon. Plant Biotechnology Journal, 2021, 19, 1878-1886.	4.1	5
183	Elucidating the degradation reaction pathways for the hydrothermal carbonisation of hemp via biochemical compositional analysis. Fuel, 2021, 294, 120450.	3.4	11
184	Pithâ€specific lignification in <i>Nicotiana attenuata</i> as a defense against a stemâ€boring herbivore. New Phytologist, 2021, 232, 332-344.	3.5	23
185	Genetic Engineering of Lignin Biosynthesis in Trees: Compromise between Wood Properties and Plant Viability. Russian Journal of Plant Physiology, 2021, 68, 596-612.	0.5	10
186	The Complexity of Lignin Thermal Degradation in the Isothermal Context. Processes, 2021, 9, 1154.	1.3	14
187	Cotton Bsr-k1 modulates lignin deposition participating in plant resistance against Verticillium dahliae and Fusarium oxysporum. Plant Growth Regulation, 2021, 95, 283-292	1.8	6

#	Article	IF	CITATIONS
188	Mechanism of growth amelioration of triclosan-stressed tobacco (Nicotiana tabacum) by endogenous salicylic acid. Environmental Pollution, 2021, 282, 117032.	3.7	0
189	CRISPR as9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in <i>Populus tremula</i> × <i>P. alba</i> . Plant Biotechnology Journal, 2021, 19, 2221-2234.	4.1	29
190	Vessel―and rayâ€specific monolignol biosynthesis as an approach to engineer fiberâ€hypolignification and enhanced saccharification in poplar. Plant Journal, 2021, 108, 752-765.	2.8	11
191	Tailoring renewable materials via plant biotechnology. Biotechnology for Biofuels, 2021, 14, 167.	6.2	25
192	<i>p</i> -Coumaroylation of poplar lignins impacts lignin structure and improves wood saccharification. Plant Physiology, 2021, 187, 1374-1386.	2.3	15
193	Bitkilerde Hücre Duvarı Mekanizmasında Strese Bağlı Meydana Gelen Savunma Cevapları. Sinop Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.4	Ο
194	A gene-editing/complementation strategy for tissue-specific lignin reduction while preserving biomass yield. Biotechnology for Biofuels, 2021, 14, 175.	6.2	12
195	Laccase as a Tool in Building Advanced Ligninâ€Based Materials. ChemSusChem, 2021, 14, 4615-4635.	3.6	59
196	CRISPR-Knockout of CSE Gene Improves Saccharification Efficiency by Reducing Lignin Content in Hybrid Poplar. International Journal of Molecular Sciences, 2021, 22, 9750.	1.8	26
197	Re-engineering Plant Phenylpropanoid Metabolism With the Aid of Synthetic Biosensors. Frontiers in Plant Science, 2021, 12, 701385.	1.7	10
198	Disassembling catechyl and guaiacyl/syringyl lignins coexisting in Euphorbiaceae seed coats. Green Chemistry, 2021, 23, 7235-7242.	4.6	25
199	Lignin Synthesis Related Genes with Potential Significance in the Response of Upland Cotton to Fusarium Wilt Identified by Transcriptome Profiling. Tropical Plant Biology, 2021, 14, 106-119.	1.0	5
200	Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants. , 2021, , 245-288.		0
202	Review on impregnation issues in laminates manufacture: opportunities and risks of phenol substitution by lignins or other natural phenols in resins. European Journal of Wood and Wood Products, 2017, 75, 853-876.	1.3	16
203	Mechanistic Insight into Lignin Slow Pyrolysis by Linking Pyrolysis Chemistry and Carbon Material Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 15843-15854.	3.2	22
205	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	2.8	79
206	Pulp lignification in Korla fragrant pear. European Journal of Horticultural Science, 2019, , 263-273.	0.3	8
207	The Cotton BEL1-Like Transcription Factor GhBLH7-D06 Negatively Regulates the Defense Response against Verticillium dahliae. International Journal of Molecular Sciences, 2020, 21, 7126.	1.8	18

#	Article	IF	CITATIONS
208	Exogenous chalcone synthase expression in developing poplar xylem incorporates naringenin into lignins. Plant Physiology, 2022, 188, 984-996.	2.3	14
209	Incorporation of catechyl monomers into lignins: lignification from the non-phenolic end <i>via</i> Diels–Alder cycloaddition?. Green Chemistry, 2021, 23, 8995-9013.	4.6	6
210	Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa. Frontiers in Plant Science, 2021, 12, 727932.	1.7	5
211	Exploring the potential of ligninolytic armory for lignin valorization – A way forward for sustainable and cleaner production. Journal of Cleaner Production, 2021, 326, 129420.	4.6	20
212	Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 2022, 73, 646-664.	2.4	21
213	Designing and Synthesizing Materials with Appropriate Lifetimes. , 2018, , 1-29.		0
215	ToF-SIMS imaging reveals that <i>p</i> -hydroxybenzoate groups specifically decorate the lignin of fibres in the xylem of poplar and willow. Holzforschung, 2021, 75, 452-462.	0.9	21
216	Energy plants (crops): potential natural and future designer plants. , 2022, , 73-114.		1
217	Distinct and Overlapping Functions of Miscanthus sinensis MYB Transcription Factors SCM1 and MYB103 in Lignin Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 12395.	1.8	5
218	A Cotton Lignin Biosynthesis Gene, GhLAC4, Fine-Tuned by ghr-miR397 Modulates Plant Resistance Against Verticillium dahliae. Frontiers in Plant Science, 2021, 12, 743795.	1.7	28
219	Wood transcriptome analysis and expression variation of lignin biosynthetic pathway transcripts in Ailanthus excelsa Roxb., a multi-purpose tropical tree species. Journal of Biosciences, 2021, 46, 1.	0.5	1
220	Homo- and Hetero-Dimers of CAD Enzymes Regulate Lignification and Abiotic Stress Response in Moso Bamboo. International Journal of Molecular Sciences, 2021, 22, 12917.	1.8	7
221	Ultrafast fractionation of wild-type and CSE down-regulated poplars by microwave-assisted deep eutectic solvents (DES) for cellulose bioconversion enhancement and lignin nanoparticles fabrication. Industrial Crops and Products, 2022, 176, 114275.	2.5	19
222	A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. Bioresource Technology, 2022, 345, 126458.	4.8	34
223	Exploration and structure-based engineering of alkenal double bond reductases catalyzing the Cα Cβ double bond reduction of coniferaldehyde. New Biotechnology, 2022, 68, 57-67.	2.4	1
225	Crystal structure of the plant feruloyl–coenzyme A monolignol transferase provides insights into the formation of monolignol ferulate conjugates. Biochemical and Biophysical Research Communications, 2022, 594, 8-14.	1.0	4
226	Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. ChemSusChem, 2022, 15, .	3.6	15
227	GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. International Journal of Biological Macromolecules, 2022, 201, 580-591	3.6	31

#	Article	IF	CITATIONS
228	Monolignol export by diffusion down a polymerization-induced concentration gradient. Plant Cell, 2022, 34, 2080-2095.	3.1	30
229	Lignin synthesis and bioengineering approaches toward lignin modification. Advances in Botanical Research, 2022, , 41-96.	0.5	2
230	Oxidative enzymes in lignification. Advances in Botanical Research, 2022, , 133-167.	0.5	2
231	Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers, 2022, 14, 961.	2.0	21
233	Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Plant and Cell Physiology, 2022, 63, 744-754.	1.5	12
234	A new approach to zipâ€lignin: 3,4â€dihydroxybenzoate is compatible with lignification. New Phytologist, 2022, 235, 234-246.	3.5	12
235	Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178, 12-19.	2.8	2
236	Comparative transcriptomic and proteomic analyses to determine the lignin synthesis pathway involved in the fungal stress response in Panax notoginseng. Physiological and Molecular Plant Pathology, 2022, 119, 101814.	1.3	10
237	Valorization of lignin into phenolic compounds via fast pyrolysis: Impact of lignin structure. Fuel, 2022, 319, 123758.	3.4	42
238	<i>p</i> HBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology, 2022, 188, 1014-1027.	2.3	18
239	Synthesis of hydroxycinnamoyl shikimates and their role in monolignol biosynthesis. Holzforschung, 2022, 76, 133-144.	0.9	3
240	The Inducible Accumulation of Cell Wall-Bound p-Hydroxybenzoates Is Involved in the Regulation of Gravitropic Response of Poplar. Frontiers in Plant Science, 2021, 12, 755576.	1.7	3
241	Graphitized Biocarbon Derived from Hydrothermally Liquefied Low-Ash Corn Stover. Industrial & Engineering Chemistry Research, 2022, 61, 392-402.	1.8	6
242	Spatio-temporal regulation of lignification. Advances in Botanical Research, 2022, , 271-316.	0.5	6
255	H-lignin can be deposited independently of CINNAMYL ALCOHOL DEHYDROGENASE C and D in Arabidopsis. Plant Physiology, 2022, 189, 2015-2028.	2.3	4
256	Identification and Characterization of Cinnamyl Alcohol Dehydrogenase Encoding Genes Involved in Lignin Biosynthesis and Resistance to Verticillium dahliae in Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2022, 13, 840397.	1.7	5
257	Yet another twist in lignin biosynthesis: Is there a specific alcohol dehydrogenase for H-lignin production?. Plant Physiology, 2022, 189, 1884-1886.	2.3	1
258	The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. International Journal of Molecular Sciences, 2022, 23, 6170.	1.8	14

#	Article	IF	CITATIONS
260	Intrinsic Ability of the βâ€Oxidation Pathway To Produce Bioactive Styrylpyrones. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
261	Intrinsic Ability of the ßâ€Oxidation Pathway ToÂProduce Bioactive Styrylpyrones. Angewandte Chemie, 0, , .	1.6	1
262	Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
263	Transcriptome of the coralline alga Calliarthron tuberculosum (Corallinales, Rhodophyta) reveals convergent evolution of a partial lignin biosynthesis pathway. PLoS ONE, 2022, 17, e0266892.	1.1	4
264	Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. Frontiers in Plant Science, 0, 13, .	1.7	8
265	Recent developments in lignin modification and its application in ligninâ€based green composites: A review. Polymer Composites, 2022, 43, 4848-4865.	2.3	50
266	Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Science Advances, 2022, 8, .	4.7	13
267	Field and saccharification performances of poplars severely downregulated in <i>CAD1</i> . New Phytologist, 2022, 236, 2075-2090.	3.5	9
268	Lignin p-Hydroxybenzoylation Is Negatively Correlated With Syringyl Units in Poplar. Frontiers in Plant Science, 0, 13, .	1.7	7
269	Eutrophication decreases Halophila beccarii plant organic carbon contribution to sequestration potential. Frontiers in Marine Science, 0, 9, .	1.2	2
270	One-pot conversion of engineered poplar into biochemicals and biofuels using biocompatible deep eutectic solvents. Green Chemistry, 2022, 24, 9055-9068.	4.6	2
271	Recent Advancements and Challenges in Lignin Valorization: Green Routes towards Sustainable Bioproducts. Molecules, 2022, 27, 6055.	1.7	10
273	High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Frontiers in Genetics, 0, 13, .	1.1	6
274	Metabolic engineering of <i>p</i> â€hydroxybenzoate in poplar lignin. Plant Biotechnology Journal, 2023, 21, 176-188.	4.1	9
275	Lignocellulose molecular assembly and deconstruction properties of lignin-altered rice mutants. Plant Physiology, 2023, 191, 70-86.	2.3	3
276	Evolution of <i>p</i> â€coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytologist, 2023, 237, 251-264.	3.5	10
277	Lignin-based nanomaterials as drug delivery vehicles: A review. Critical Reviews in Therapeutic Drug Carrier Systems, 2022, , .	1.2	0
278	Lignin for energy applications – state of the art, life cycle, technoeconomic analysis and future trends. Green Chemistry, 2022, 24, 8193-8226.	4.6	85

#	Article	IF	CITATIONS
279	From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. Chemie-Ingenieur-Technik, 2022, 94, 1611-1627.	0.4	4
280	Lignin engineering in forest trees: From gene discovery to field trials. Plant Communications, 2022, 3, 100465.	3.6	18
281	Transcriptome and metabolome analyses of lignin biosynthesis mechanism of <i> Platycladus orientalis</i> . PeerJ, 0, 10, e14172.	0.9	1
282	Natural rubber-lignin composites modified with natural rubber-graft-polyacrylamide as an effective coating for slow-release fertilizers. Industrial Crops and Products, 2023, 191, 116018.	2.5	7
283	Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis. Journal of Plant Physiology, 2023, 280, 153900.	1.6	3
284	High value valorization of lignin as environmental benign antimicrobial. Materials Today Bio, 2023, 18, 100520.	2.6	13
285	Evaluation of engineered low-lignin poplar for conversion into advanced bioproducts. , 2022, 15, .		0
286	An <scp>R2R3â€MYB</scp> network modulates stem strength by regulating lignin biosynthesis and secondary cell wall thickening in herbaceous peony. Plant Journal, 2023, 113, 1237-1258.	2.8	11
287	Molecular breeding of barley for quality traits and resilience to climate change. Frontiers in Genetics, 0, 13, .	1.1	5
288	A Joint Transcriptomic and Metabolomic Analysis Reveals the Regulation of Shading on Lignin Biosynthesis in Asparagus. International Journal of Molecular Sciences, 2023, 24, 1539.	1.8	6
289	Evolution of wound-activated regeneration pathways in the plant kingdom. European Journal of Cell Biology, 2023, 102, 151291.	1.6	4
290	Lignin: the Building Block of Defense Responses to Stress in Plants. Journal of Plant Growth Regulation, 2023, 42, 6652-6666.	2.8	11
291	Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. International Journal of Biological Macromolecules, 2023, 237, 124222.	3.6	4
293	Lignin as Feedstock for Nanoparticles Production. , 0, , .		2
294	Atomistic origins of biomass recalcitrance in organosolv pretreatment. Chemical Engineering Science, 2023, 272, 118587.	1.9	2
295	A large-scale forward genetic screen for maize mutants with altered lignocellulosic properties. Frontiers in Plant Science, 0, 14, .	1.7	0
297	Integrating metabolomics and metatranscriptomics to explore the formation pathway of aroma-active volatile phenolics and metabolic profile during industrial radish paocai fermentation. Food Research International, 2023, 167, 112719.	2.9	6
298	Wood Chemistry. Springer Handbooks, 2023, , 179-279.	0.3	0

#	Article	IF	CITATIONS
299	Identification of candidate genes for aphid resistance in upland cotton by QTL mapping and expression analysis. Crop Journal, 2023, 11, 1600-1604.	2.3	1
300	Role of Lignin in Wheat Plant for the Enhancement of Resistance against Lodging and Biotic and Abiotic Abiotic Stresses. Stresses, 2023, 3, 434-453.	1.8	4
333	Biotechnology for bioenergy production: current status, challenges, and prospects. , 2024, , 277-296.		0