Biomimetic 4D printing

Nature Materials 15, 413-418

DOI: 10.1038/nmat4544

Citation Report

#	Article	IF	CITATIONS
1	Modeling Defects, Shape Evolution, and Programmed Auto-Origami in Liquid Crystal Elastomers. Frontiers in Materials, 2016, 3, .	1,2	24
2	Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual and Physical Prototyping, 2016, 11, 249-262.	5.3	144
3	Optimal Design and Manufacture of Active Rod Structures with Spatially Variable Materials. 3D Printing and Additive Manufacturing, 2016, 3, 204-215.	1.4	27
4	3D printed hydrogel soft actuators. , 2016, , .		15
5	Printed shape-shifting materials mimic biological structures. Physics Today, 2016, 69, 19-21.	0.3	0
6	Polymers with autonomous life-cycle control. Nature, 2016, 540, 363-370.	13.7	322
7	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378.	13.7	1,134
8	The extracellular microscape governs mesenchymal stem cell fate. Journal of Biological Engineering, 2016, 10, 16.	2.0	14
9	Design and fabrication of bio-hybrid materials using inkjet printing. Biointerphases, 2016, 11, .	0.6	9
10	Anisotropic Swelling in Fiber-Reinforced Hydrogels: An Incremental Finite Element Method and Its Applications in Design of Bilayer Structures. International Journal of Applied Mechanics, 2016, 08, 1640003.	1.3	22
11	3D printed bionic nanodevices. Nano Today, 2016, 11, 330-350.	6.2	116
12	Rising beyond elastocapillarity. Soft Matter, 2016, 12, 4886-4890.	1.2	18
13	Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates. Soft Matter, 2016, 12, 4985-4990.	1.2	72
14	Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. Journal of Materials Science, 2016, 51, 10663-10689.	1.7	109
15	Embedding flexible fibers into responsive gels to create composites with controllable dexterity. Soft Matter, 2016, 12, 9170-9184.	1.2	6
16	Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamicâ€Crosslinkingâ€Spinning. Macromolecular Rapid Communications, 2016, 37, 1795-1801.	2.0	33
17	Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 2016, 25, 105034.	1.8	147
18	Bioink properties before, during and after 3D bioprinting. Biofabrication, 2016, 8, 032002.	3.7	783

#	ARTICLE	IF	CITATIONS
19	Poly(p-phenylenebenzobisoxazole) nanofiber layered composite films with high thermomechanical performance. European Polymer Journal, 2016, 84, 622-630.	2.6	15
20	<i>In situ</i> UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait. Smart Materials and Structures, 2016, 25, 115009.	1.8	42
21	Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structures. Journal of Materials Chemistry B, 2016, 4, 7075-7079.	2.9	74
22	Using intra-microgel crosslinking to control the mechanical properties of doubly crosslinked microgels. Soft Matter, 2016, 12, 6985-6994.	1.2	19
23	Design strategies and applications of biomaterials and devices for Hernia repair. Bioactive Materials, 2016, 1, 2-17.	8.6	103
24	A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	5.5	570
25	Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding origami. Materials Horizons, 2016, 3, 536-547.	6.4	129
26	Shape-Morphing Chromonic Liquid Crystal Hydrogels. Chemistry of Materials, 2016, 28, 8489-8492.	3.2	31
27	Gels with sense: supramolecular materials that respond to heat, light and sound. Chemical Society Reviews, 2016, 45, 6546-6596.	18.7	395
28	Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterials Research, 2016, 20, 27.	3.2	77
29	A bioink by any other name: terms, concepts and constructions related to 3D bioprinting. Future Science OA, 2016, 2, FSO133.	0.9	20
30	Lightâ€Mediated Manufacture and Manipulation of Actuators. Advanced Materials, 2016, 28, 8328-8343.	11.1	186
31	A Method for the Efficient Fabrication of Multifunctional Mosaic Membranes by Inkjet Printing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19772-19779.	4.0	35
32	4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports, 2016, 6, 27226.	1.6	296
33	4D sequential actuation: combining ionoprinting and redox chemistry in hydrogels. Smart Materials and Structures, 2016, 25, 10LT02.	1.8	29
34	3D Printing of Ultratough Polyion Complex Hydrogels. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31304-31310.	4.0	105
35	Thermomechanics of printed anisotropic shape memory elastomeric composites. International Journal of Solids and Structures, 2016, 102-103, 186-199.	1.3	28
36	Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Scientific Reports, 2016, 6, 31110.	1.6	751

#	Article	IF	Citations
37	Predicting origami-inspired programmable self-folding of hydrogel trilayers. Smart Materials and Structures, 2016, 25, 11LT02.	1.8	22
38	The Design for Additive Manufacturing Worksheet. , 2016, , .		19
39	Shape-Changing Photodegradable Hydrogels for Dynamic 3D Cell Culture. ACS Applied Materials & Interfaces, 2016, 8, 17885-17893.	4.0	65
40	Shaped after print. Nature Materials, 2016, 15, 379-380.	13.3	19
41	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507
42	Modular assembly of soft deployable structures and robots. Materials Horizons, 2017, 4, 367-376.	6.4	48
43	Extreme Mechanics: Self-Folding Origami. Annual Review of Condensed Matter Physics, 2017, 8, 165-183.	5.2	55
44	3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels. Soft Matter, 2017, 13, 921-929.	1.2	40
45	3D bioprinting: improving <i>in vitro </i> models of metastasis with heterogeneous tumor microenvironments. DMM Disease Models and Mechanisms, 2017, 10, 3-14.	1.2	123
46	A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nature Communications, 2017, 8, 14110.	5.8	99
47	Microactuation and sensing using reversible deformations of laser-written polymeric structures. Nanotechnology, 2017, 28, 124001.	1.3	63
48	Colloidal processing: enabling complex shaped ceramics with unique multiscale structures. Journal of the American Ceramic Society, 2017, 100, 458-490.	1.9	119
49	Reconfigurable Microscale Frameworks from Concatenated Helices with Controlled Chirality. Advanced Materials, 2017, 29, 1606111.	11.1	53
50	Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties. Advanced Optical Materials, 2017, 5, 1600977.	3.6	33
51	Hierarchically Arranged Helical Fiber Actuators Derived from Commercial Cloth. Advanced Materials, 2017, 29, 1605103.	11.1	51
52	Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nature Nanotechnology, 2017, 12, 474-480.	15.6	134
53	Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. Journal of Rheology, 2017, 61, 379-397.	1.3	143
54	Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures. Advanced Functional Materials, 2017, 27, 1604619.	7.8	447

#	ARTICLE	IF	CITATIONS
55	Blooming Knit Flowers: Loop‣inked Soft Morphing Structures for Soft Robotics. Advanced Materials, 2017, 29, 1606580.	11.1	72
56	Highâ€Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs. Angewandte Chemie - International Edition, 2017, 56, 3261-3265.	7.2	110
57	Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids. Accounts of Chemical Research, 2017, 50, 161-169.	7.6	360
58	Direct ink writing of geopolymeric inks. Journal of the European Ceramic Society, 2017, 37, 2481-2489.	2.8	119
59	Sequential self-folding of polymer sheets. Science Advances, 2017, 3, e1602417.	4.7	254
60	Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines. Smart Materials and Structures, 2017, 26, 045008.	1.8	55
61	Bioinspired, Mechanoâ€Regulated Interfaces for Rationally Designed, Dynamically Controlled Collection of Oil Spills from Water. Global Challenges, 2017, 1, 1600014.	1.8	8
62	Direct 4D printing via active composite materials. Science Advances, 2017, 3, e1602890.	4.7	455
63	3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Materials and Design, 2017, 126, 135-140.	3.3	72
64	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	23.3	236
65	Stimuli-responsive hydrogel microfibers with controlled anisotropic shrinkage and cross-sectional geometries. Soft Matter, 2017, 13, 3710-3719.	1.2	54
66	On the subtle tuneability of cellulose hydrogels: implications for binding of biomolecules demonstrated for CBM 1. Journal of Materials Chemistry B, 2017, 5, 3879-3887.	2.9	28
67	Current developments in multifunctional smart materials for 3D/4D bioprinting. Current Opinion in Biomedical Engineering, 2017, 2, 67-75.	1.8	70
68	Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air. ACS Applied Materials & Interfaces, 2017, 9, 17456-17465.	4.0	183
69	Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering - Part B: Reviews, 2017, 23, 211-224.	2.5	133
70	Optically Switchable Luminescent Hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay. Advanced Optical Materials, 2017, 5, 1700149.	3.6	33
71	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
72	Synergistic Thermoresponsive Optical Properties of a Composite Self-Healing Hydrogel. Macromolecules, 2017, 50, 3671-3679.	2.2	61

#	Article	IF	Citations
73	Spatial Control of Functional Response in 4D-Printed Active Metallic Structures. Scientific Reports, 2017, 7, 46707.	1.6	109
74	Origami by frontal photopolymerization. Science Advances, 2017, 3, e1602326.	4.7	193
75	4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2017, 9, 012001.	3.7	271
76	Synthetic biology engineering of biofilms as nanomaterials factories. Biochemical Society Transactions, 2017, 45, 585-597.	1.6	33
77	A robust Riks-like path following method for strain-actuated snap-through phenomena in soft solids. Computer Methods in Applied Mechanics and Engineering, 2017, 323, 416-438.	3.4	14
78	Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Science Advances, 2017, 3, e1601984.	4.7	170
79	Transformative Appetite. , 2017, , .		127
80	Instant tough bonding of hydrogels for soft machines and electronics. Science Advances, 2017, 3, e1700053.	4.7	359
81	Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons, 2017, 4, 1064-1069.	6.4	216
82	3D Printing by Multiphase Silicone/Water Capillary Inks. Advanced Materials, 2017, 29, 1701554.	11.1	140
83	Current and emerging applications of 3D printing in medicine. Biofabrication, 2017, 9, 024102.	3.7	390
84	A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization. NPG Asia Materials, 2017, 9, e380-e380.	3.8	71
85	From 3D models to 3D prints: an overview of the processing pipeline. Computer Graphics Forum, 2017, 36, 537-564.	1.8	100
86	Liquid Resins-Based Additive Manufacturing. Journal of Molecular and Engineering Materials, 2017, 05, 1740004.	0.9	20
87	Robust sacrificial polymer templates for 3D interconnected microvasculature in fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2017, 100, 361-370.	3.8	37
88	New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. Current Stem Cell Reports, 2017, 3, 83-97.	0.7	5
89	3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nature Biomedical Engineering, 2017, 1 , .	11.6	118
90	Rayleigh–Taylor instability in soft elastic layers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160421.	1.6	20

#	Article	IF	CITATIONS
91	Pixelated Polymers: Directed Self Assembly of Liquid Crystalline Polymer Networks. ACS Macro Letters, 2017, 6, 436-441.	2.3	63
92	Textures and shapes in nematic elastomers under the action of dopant concentration gradients. Soft Matter, 2017, 13, 2886-2892.	1.2	4
93	Recyclable 3D printing of vitrimer epoxy. Materials Horizons, 2017, 4, 598-607.	6.4	339
94	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	23.3	463
95	Highâ€Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs. Angewandte Chemie, 2017, 129, 3309-3313.	1.6	26
96	Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH ₃ NH ₃ Pbl ₃ perovskite coating. Journal of Materials Chemistry A, 2017, 5, 7285-7290.	5.2	39
97	Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017, 7, 120-133.	2.3	925
98	3D-Printed Ultratough Hydrogel Structures with Titin-like Domains. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11363-11367.	4.0	39
99	Decoupling local mechanics from large-scale structure in modular metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3590-3595.	3.3	43
100	4D Printing of Shape Memoryâ€Based Personalized Endoluminal Medical Devices. Macromolecular Rapid Communications, 2017, 38, 1600628.	2.0	280
101	Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing. Macromolecular Rapid Communications, 2017, 38, 1600625.	2.0	116
102	Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. ACS Applied Materials & Interfaces, 2017, 9, 876-883.	4.0	351
103	Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer. ACS Applied Materials & Diterfaces, 2017, 9, 1820-1829.	4.0	132
104	Ultrafast Digital Printing toward 4D Shape Changing Materials. Advanced Materials, 2017, 29, 1605390.	11.1	348
105	Additive Manufacturing of Metal Structures at the Micrometer Scale. Advanced Materials, 2017, 29, 1604211.	11.1	279
106	Kirigami/Origamiâ€Based Soft Deployable Reflector for Optical Beam Steering. Advanced Functional Materials, 2017, 27, 1604214.	7.8	71
107	Topography-guided buckling of swollen polymer bilayer films into three-dimensional structures. Soft Matter, 2017, 13, 956-962.	1.2	14
108	Hierarchically self-morphing structure through 4D printing. Virtual and Physical Prototyping, 2017, 12, 61-68.	5.3	70

#	ARTICLE	IF	Citations
109	Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40878-40886.	4.0	106
110	Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart Materials and Structures, 2017, 26, 125023.	1.8	82
111	Four-dimensional Printing of Liquid Crystal Elastomers. ACS Applied Materials & Elastomers, 2017, 9, 37332-37339.	4.0	354
112	Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40898-40904.	4.0	44
113	Siteâ€Specific Preâ€Swellingâ€Directed Morphing Structures of Patterned Hydrogels. Angewandte Chemie - International Edition, 2017, 56, 15974-15978.	7.2	105
114	Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Materials and Structures, 2017, 26, 125001.	1.8	53
115	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
116	Smart patterned surfaces with programmable thermal emissivity and their design through combinatorial strategies. Scientific Reports, 2017, 7, 12908.	1.6	14
117	4D Biofabrication Using Shapeâ€Morphing Hydrogels. Advanced Materials, 2017, 29, 1703443.	11.1	315
118	Stretchable 3D lattice conductors. Soft Matter, 2017, 13, 7731-7739.	1.2	13
119	Computer Simulations of Continuous 3-D Printing. Macromolecules, 2017, 50, 7794-7800.	2.2	17
120	Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter, 2017, 13, 8006-8022.	1.2	66
121	Tissue-mimicking materials for elastography phantoms: A review. Extreme Mechanics Letters, 2017, 17, 62-70.	2.0	28
122	Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11597-11602.	3.3	96
123	Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30900-30908.	4.0	38
124	3D-Printed Self-Folding Electronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32290-32298.	4.0	90
125	Bio nano ink for 4D printing membrane proteins. RSC Advances, 2017, 7, 41429-41434.	1.7	11
126	Accurately controlled sequential self-folding structures by polystyrene film. Smart Materials and Structures, 2017, 26, 085040.	1.8	21

#	Article	IF	CITATIONS
127	Cooperative deformations of periodically patterned hydrogels. Science Advances, 2017, 3, e1700348.	4.7	100
128	Four-Dimensional (4D) Printing: Applying Soft Adaptive Materials to Additive Manufacturing. Journal of Molecular and Engineering Materials, 2017, 05, 1740003.	0.9	13
129	Large Shape Transforming 4D Auxetic Structures. 3D Printing and Additive Manufacturing, 2017, 4, 133-142.	1.4	71
130	Graphene Oxide: An All-in-One Processing Additive for 3D Printing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32977-32989.	4.0	74
131	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	23.0	258
132	Harnessing Photochemical Shrinkage in Direct Laser Writing for Shape Morphing of Polymer Sheets. Advanced Materials, 2017, 29, 1703024.	11.1	66
133	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	11.1	501
134	Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Advanced Healthcare Materials, 2017, 6, 1700496.	3.9	49
135	Gel Microrods for 3D Tissue Printing. Advanced Biology, 2017, 1, e1700075.	3.0	31
136	Highly Elastic, Transparent, and Conductive 3Dâ€Printed Ionic Composite Hydrogels. Advanced Functional Materials, 2017, 27, 1701807.	7.8	162
137	Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO ₃ Nanoparticles. Advanced Functional Materials, 2017, 27, 1700897.	7.8	38
138	Origami and Kirigami Nanocomposites. ACS Nano, 2017, 11, 7587-7599.	7.3	172
139	Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9, 031001.	3.7	121
140	Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics. ACS Applied Materials & Diterfaces, 2017, 9, 26438-26446.	4.0	52
141	Effective software solutions for 4D printing: A review and proposal. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 359-371.	2.7	31
142	3D Printed Silicones with Shape Memory. Scientific Reports, 2017, 7, 4664.	1.6	47
143	Surface Patterning of Hydrogels for Programmable and Complex Shape Deformations by Ion Inkjet Printing. Advanced Functional Materials, 2017, 27, 1701962.	7.8	122
144	Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Advances in Colloid and Interface Science, 2017, 247, 589-609.	7.0	72

#	ARTICLE	IF	CITATIONS
145	Printing Non-Euclidean Solids. Physical Review Letters, 2017, 119, 048001.	2.9	37
146	Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chemical Reviews, 2017, 117, 12851-12892.	23.0	289
147	Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 2017, 117, 10212-10290.	23.0	2,383
148	GDFE: Geometry-Driven Finite Element for Four-Dimensional Printing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	10
149	Review of 4D printing materials and their properties. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 349-357.	2.7	125
150	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 2017, 9, 032001.	3.7	26
151	The Design for Additive Manufacturing Worksheet. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	1.7	90
152	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. Angewandte Chemie - International Edition, 2017, 56, 12594-12598.	7.2	72
153	Soft-, shape changing materials toward physicochemically powered actuators. Korean Journal of Chemical Engineering, 2017, 34, 2355-2365.	1.2	5
154	Mechanics from Calorimetry: Probing the Elasticity of Responsive Hydrogels. Physical Review Applied, 2017, 8, .	1.5	7
155	Geometry-Driven Finite Element for Four-Dimensional Printing. , 2017, , .		0
156	3D-Printed pHEMA Materials for Topographical and Biochemical Modulation of Dorsal Root Ganglion Cell Response. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30318-30328.	4.0	32
157	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. Angewandte Chemie, 2017, 129, 12768-12772.	1.6	50
158	4D Origami by Smart Embroidery. Macromolecular Rapid Communications, 2017, 38, 1700213.	2.0	11
159	Progress in three-dimensional bioprinting. MRS Bulletin, 2017, 42, 557-562.	1.7	36
160	Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering, 2017, 3, 663-674.	3.2	225
161	Main directions in the development of additive technologies for micron-resolution printing. Inorganic Materials, 2017, 53, 1349-1359.	0.2	10
162	Mechanical control of growth: ideas, facts and challenges. Development (Cambridge), 2017, 144, 4238-4248.	1.2	92

#	Article	IF	CITATIONS
163	Siteâ€Specific Preâ€Swellingâ€Directed Morphing Structures of Patterned Hydrogels. Angewandte Chemie, 2017, 129, 16190-16194.	1.6	12
164	Humidity- and Sunlight-Driven Motion of a Chemically Bonded Polymer Bilayer with Programmable Surface Patterns. ACS Applied Materials & Surface Patterns. ACS ACS Applied Materials & Surface Patterns. ACS	4.0	42
165	3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter, 2017, 13, 5558-5568.	1.2	223
166	3D Printed Photoresponsive Devices Based on Shape Memory Composites. Advanced Materials, 2017, 29, 1701627.	11.1	370
167	3D printed active origami with complicated folding patterns. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 281-289.	2.7	48
168	Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual and Physical Prototyping, 2017, 12, 290-300.	5.3	112
169	From molecular design to 3D printed life-like materials with unprecedented properties. Current Opinion in Biomedical Engineering, 2017, 2, 43-48.	1.8	13
170	4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017, 20, 577-591.	8.3	292
171	"Freezingâ€; morphing, and folding of stretchy tough hydrogels. Journal of Materials Chemistry B, 2017, 5, 5726-5732.	2.9	51
172	Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber from nanocomposite dispersion: Rheology, preparation and characterization. Polymer, 2017, 123, 55-64.	1.8	44
173	Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers. Scientific Reports, 2017, 7, 3511.	1.6	72
174	Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	19
175	Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling. Advanced Functional Materials, 2017, 27, 1604281.	7.8	50
176	Recent Advances in Analytical Chemistry by 3D Printing. Analytical Chemistry, 2017, 89, 57-70.	3.2	260
177	3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 2017, 110, 442-458.	5.9	2,295
178	Origami and kirigami inspired self-folding for programming three-dimensional shape shifting of polymer sheets with light. Extreme Mechanics Letters, 2017, 11, 111-120.	2.0	101
179	Large-strain poroelastic plate theory for polymer gels with applications to swelling-induced morphing of composite plates. Composites Part B: Engineering, 2017, 115, 330-340.	5.9	20
180	4D Printing of Reversible Shape Morphing Hydrogel Structures. Macromolecular Materials and Engineering, 2017, 302, 1600212.	1.7	190

#	Article	IF	CITATIONS
181	Cell Assembly in Self-foldable Multi-layered Soft Micro-rolls. Scientific Reports, 2017, 7, 17376.	1.6	19
182	Mechanisms of Action of Human Mesenchymal Stem Cells in Tissue Repair Regeneration and their Implications. Annals of the National Academy of Medical Sciences (India), 2017, 53, 104-120.	0.2	2
183	3D–4D Printed Objects: New Bioactive Material Opportunities. Micromachines, 2017, 8, 102.	1.4	35
184	Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Frontiers in Bioengineering and Biotechnology, 2017, 5, 23.	2.0	345
185	The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2017, 5, 30.	2.0	36
186	3D Printing of Organs-On-Chips. Bioengineering, 2017, 4, 10.	1.6	140
187	Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery. Frontiers in Mechanical Engineering, $2017, 3, \ldots$	0.8	97
188	Effect of Nanofibrillated Cellulose Content on the Temperature and Near Infrared Responses of Polyvinyl Butyral Nanofibers-Containing Bilayer Hydrogel System. Polymers, 2017, 9, 270.	2.0	9
189	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
190	Mechanochemical Regulated Origami with Tough Hydrogels by Ion Transfer Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9077-9084.	4.0	51
191	3D printing of photopolymers. Polymer Chemistry, 2018, 9, 1530-1540.	1.9	260
192	Soft Tendril-Inspired Grippers: Shape Morphing of Programmable Polymer–Paper Bilayer Composites. ACS Applied Materials & Interfaces, 2018, 10, 10419-10427.	4.0	118
193	3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials, 2018, 3, 144-156.	8.6	751
194	3D Jet Writing: Functional Microtissues Based on Tessellated Scaffold Architectures. Advanced Materials, 2018, 30, e1707196.	11.1	58
195	Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10461-10470.	4.0	79
196	3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept. Journal of Neurosurgery, 2018, 130, 248-255.	0.9	15
197	4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. European Polymer Journal, 2018, 101, 169-176.	2.6	156
198	Hierarchical Coâ€Assembly Enhanced Direct Ink Writing. Angewandte Chemie - International Edition, 2018, 57, 5105-5109.	7.2	25

#	Article	IF	CITATIONS
199	Smart scaffolds in tissue regeneration. International Journal of Energy Production and Management, 2018, 5, 125-128.	1.9	44
200	HCI meets Material Science. , 2018, , .		67
201	Thermorph., 2018,,.		98
202	Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation. Biomacromolecules, 2018, 19, 2742-2749.	2.6	17
203	Rational Fabrication of Antiâ€Freezing, Nonâ€Drying Tough Organohydrogels by Oneâ€Pot Solvent Displacement. Angewandte Chemie, 2018, 130, 6678-6681.	1.6	96
204	3D Nanofabrication via Chemoâ€Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials, 2018, 30, e1800233.	11.1	15
205	Rational Fabrication of Antiâ€Freezing, Nonâ€Drying Tough Organohydrogels by Oneâ€Pot Solvent Displacement. Angewandte Chemie - International Edition, 2018, 57, 6568-6571.	7.2	341
206	In Situ Formation of Slippery-Liquid-Infused Nanofibrous Surface for a Transparent Antifouling Endoscope Lens. ACS Biomaterials Science and Engineering, 2018, 4, 1871-1879.	2.6	19
207	Fatigue fracture of nearly elastic hydrogels. Soft Matter, 2018, 14, 3563-3571.	1.2	105
208	Hierarchical Coâ€Assembly Enhanced Direct Ink Writing. Angewandte Chemie, 2018, 130, 5199-5203.	1.6	16
209	Particleâ€Free Emulsions for 3D Printing Elastomers. Advanced Functional Materials, 2018, 28, 1707032.	7.8	37
210	Programmable Lightâ€Activated Gradient Materials Based on Graphene–Polymer Composites. Advanced Materials Interfaces, 2018, 5, 1701374.	1.9	8
211	Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3, .	23.3	455
212	Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal of Materials Chemistry B, 2018, 6, 3246-3253.	2.9	173
213	Super tough magnetic hydrogels for remotely triggered shape morphing. Journal of Materials Chemistry B, 2018, 6, 2713-2722.	2.9	68
214	Polyelectrolyte Soft Actuators: 3D Printed Chitosan and Cast Gelatin. 3D Printing and Additive Manufacturing, 2018, 5, 138-150.	1.4	53
215	"Patterning with loops―to dynamically reconfigure polymer gels. Soft Matter, 2018, 14, 3361-3371.	1.2	8
216	4D printing of shape memory polyurethane via stereolithography. European Polymer Journal, 2018, 101, 120-126.	2.6	107

#	Article	IF	CITATIONS
217	Fibers on the surface of thermo-responsive gels induce 3D shape changes. Soft Matter, 2018, 14, 1822-1832.	1.2	8
218	4D Printing: History and Recent Progress. Chinese Journal of Polymer Science (English Edition), 2018, 36, 563-575.	2.0	157
219	Nature-inspired smart solar concentrators by 4D printing. Renewable Energy, 2018, 122, 35-44.	4.3	60
220	Dually Heterogeneous Hydrogels via Dynamic and Supramolecular Cross-Links Tuning Discontinuous Spatial Ruptures. ACS Sustainable Chemistry and Engineering, 2018, 6, 4294-4301.	3.2	6
221	Surface Molding of Microscale Hydrogels with Microactuation Functionality. Angewandte Chemie, 2018, 130, 1250-1254.	1.6	5
222	Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5030-5037.	4.0	191
223	Design and fabrication of nanofibrillated cellulose-containing bilayer hydrogel actuators with temperature and near infrared laser responses. Journal of Materials Chemistry B, 2018, 6, 1260-1271.	2.9	63
224	Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nature Materials, 2018, 17, 268-276.	13.3	297
225	A mechanical reduced order model for elastomeric 3D printed architectures. Journal of Materials Research, 2018, 33, 309-316.	1.2	10
226	Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter, 2018, 14, 1879-1886.	1.2	150
227	The grand challenges of <i>Science Robotics</i> . Science Robotics, 2018, 3, .	9.9	787
228	A Printing entric Approach to the Electrostatic Modification of Polymer/Clay Composites for Use in 3D Directâ€Ink Writing. Advanced Materials Interfaces, 2018, 5, 1701579.	1.9	8
229	Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Advanced Healthcare Materials, 2018, 7, 1701165.	3.9	96
230	Silkâ€Based Bioinks for 3D Bioprinting. Advanced Healthcare Materials, 2018, 7, e1701204.	3.9	146
231	Ultrathin Shape Change Smart Materials. Accounts of Chemical Research, 2018, 51, 436-444.	7.6	45
232	3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale, 2018, 10, 4421-4431.	2.8	212
233	Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1198-1203.	3.3	205
234	Multitemperature Responsive Selfâ€Folding Soft Biomimetic Structures. Macromolecular Rapid Communications, 2018, 39, 1700692.	2.0	40

#	Article	IF	CITATIONS
235	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie, 2018, 130, 2377-2380.	1.6	7
236	Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Developmental Cell, 2018, 44, 165-178.e6.	3.1	145
237	Assembly and Selfâ€Assembly of Nanomembrane Materials—From 2D to 3D. Small, 2018, 14, e1703665.	5.2	56
238	Drops, Jets and High-Resolution 3D Printing: Fundamentals and Applications. Energy, Environment, and Sustainability, 2018, , 123-162.	0.6	3
239	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 2353-2356.	7.2	89
240	Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sensors and Actuators B: Chemical, 2018, 259, 736-744.	4.0	99
241	4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter, 2018, 14, 765-772.	1.2	77
242	Controlled molecular self-assembly of complex three-dimensional structures in soft materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 70-74.	3.3	23
243	Autonomous Motility of Polymer Films. Advanced Materials, 2018, 30, 1705616.	11.1	25
244	Active textiles with Janus fibres. Soft Matter, 2018, 14, 676-680.	1.2	16
245	Identification of Novel "Inks―for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 6841-6848.	4.0	44
246	Celluloseâ€Based Biomimetics and Their Applications. Advanced Materials, 2018, 30, e1703655.	11.1	143
247	3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Advanced Materials, 2018, 30, 1706164.	11.1	467
248	Covalent Bonding of Thermoplastics to Rubbers for Printable, Reelâ€toâ€Reel Processing in Soft Robotics and Microfluidics. Advanced Materials, 2018, 30, 1705333.	11.1	21
249	Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Advanced Healthcare Materials, 2018, 7, e1700939.	3.9	105
250	3D printed structures for modeling the Young's modulus of bamboo parenchyma. Acta Biomaterialia, 2018, 68, 90-98.	4.1	45
251	Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function. Chemical Communications, 2018, 54, 1229-1232.	2.2	98
253	Diffusiophoretic exclusion of colloidal particles for continuous water purification. Lab on A Chip, 2018, 18, 1713-1724.	3.1	42

#	Article	IF	CITATIONS
254	Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Advanced Drug Delivery Reviews, 2018, 132, 188-213.	6.6	285
255	3D printing of soft robotic systems. Nature Reviews Materials, 2018, 3, 84-100.	23.3	620
256	3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures. Macromolecular Bioscience, 2018, 18, e1800034.	2.1	24
257	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	23.3	502
258	Rapid uniaxial actuation of layered bacterial cellulose/poly(N-isopropylacrylamide) composite hydrogel with high mechanical strength. RSC Advances, 2018, 8, 12608-12613.	1.7	9
259	Towards Ultra Personalized 4D Printed Shoes. , 2018, , .		12
260	Poro-elasto-capillary wicking of cellulose sponges. Science Advances, 2018, 4, eaao7051.	4.7	48
261	Additive Manufacturing of Catalytically Active Living Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13373-13380.	4.0	89
262	Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators. Advanced Functional Materials, 2018, 28, 1800514.	7.8	108
263	3D freeform printing of silk fibroin. Acta Biomaterialia, 2018, 71, 379-387.	4.1	83
264	Plant-inspired pipettes. Journal of the Royal Society Interface, 2018, 15, 20170868.	1.5	4
265	Shape memory behavior and recovery force of 4D printed textile functional composites. Composites Science and Technology, 2018, 160, 224-230.	3.8	115
266	Reconfigurable Printed Liquids. Advanced Materials, 2018, 30, e1707603.	11.1	132
267	4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide. ACS Macro Letters, 2018, 7, 442-446.	2.3	113
268	Shape memory polymers for composites. Composites Science and Technology, 2018, 160, 169-198.	3.8	211
269	Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chemical Engineering Journal, 2018, 344, 342-352.	6.6	90
270	Surface tension-assisted additive manufacturing. Nature Communications, 2018, 9, 1184.	5.8	47
271	3D printing: prospects and challenges. , 2018, , 299-379.		8

#	Article	IF	CITATIONS
272	Advances in 3D Bioprinting for Neural Tissue Engineering. Advanced Biology, 2018, 2, 1700213.	3.0	69
273	Polymer-based smart materials by printing technologies: Improving application and integration. Additive Manufacturing, 2018, 21, 269-283.	1.7	106
274	Direct-write 3D printing of NdFeB bonded magnets. Materials and Manufacturing Processes, 2018, 33, 109-113.	2.7	72
275	Selfâ€Contained Polymer/Metal 3D Printed Electrochemical Platform for Tailored Water Splitting. Advanced Functional Materials, 2018, 28, 1700655.	7.8	98
276	Thermally induced reversible and reprogrammable actuation of tough hydrogels utilising ionoprinting and iron coordination chemistry. Sensors and Actuators B: Chemical, 2018, 254, 519-525.	4.0	16
277	Programming the shape-shifting of flat soft matter. Materials Today, 2018, 21, 144-163.	8.3	188
278	Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials. Advanced Materials, 2018, 30, e1703554.	11.1	270
279	Anisotrope Hydrogele – Synthese und Anwendungen. Angewandte Chemie, 2018, 130, 2558-2570.	1.6	24
280	4D rods: 3D structures via programmable 1D composite rods. Materials and Design, 2018, 137, 256-265.	3.3	110
281	Synthesis of Anisotropic Hydrogels and Their Applications. Angewandte Chemie - International Edition, 2018, 57, 2532-2543.	7.2	287
282	Natureâ€Inspired Lightweight Cellular Coâ€Continuous Composites with Architected Periodic Gyroidal Structures. Advanced Engineering Materials, 2018, 20, 1700549.	1.6	72
283	Architecting Graphene Oxide Rolledâ€Up Micromotors: A Simple Paperâ€Based Manufacturing Technology. Small, 2018, 14, 1702746.	5.2	29
284	Intensive care medicine in 2050: nanotechnology. Emerging technologies and approaches and their impact on critical care. Intensive Care Medicine, 2018, 44, 1299-1301.	3.9	5
285	An instant responsive polymer driven by anisotropy of crystal phases. Materials Horizons, 2018, 5, 99-107.	6.4	50
286	Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 395-403.	1.5	23
287	Surface Molding of Microscale Hydrogels with Microactuation Functionality. Angewandte Chemie - International Edition, 2018, 57, 1236-1240.	7.2	19
288	A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks. Advanced Materials, 2018, 30, 1704028.	11.1	207
289	Mechanical properties of 3D printed polycaprolactone honeycomb structure. Journal of Applied Polymer Science, 2018, 135, 46018.	1.3	21

#	Article	IF	CITATIONS
290	3D Printing of Living Responsive Materials and Devices. Advanced Materials, 2018, 30, 1704821.	11.1	277
291	From flat sheets to curved geometries: Origami and kirigami approaches. Materials Today, 2018, 21, 241-264.	8.3	267
292	Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials, 2018, 156, 88-106.	5.7	190
293	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	4.9	465
294	A Cohesive Zone Model for the Stamping Process Encountered During Three-Dimensional Printing of Fiber-Reinforced Soft Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	4
295	The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques. , 0, , .		4
296	Rolledâ€up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies, 2019, 4, 1800486.	3.0	42
297	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368.	11.1	445
298	Regulatory interfaces surrounding the growing field of additive manufacturing of medical devices and biologic products. Journal of Clinical and Translational Science, 2018, 2, 301-304.	0.3	10
299	Additive manufacturing with stimuli-responsive materials. Journal of Materials Chemistry A, 2018, 6, 20621-20645.	5.2	80
300	Mechanics of biomimetic 4D printed structures. Soft Matter, 2018, 14, 8771-8779.	1.2	22
301	Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter, 2018, 14, 9744-9749.	1.2	72
302	A Review on 4D Printing Material Composites and Their Applications. Materials Today: Proceedings, 2018, 5, 20474-20484.	0.9	42
304	Current Status of Development and Intellectual Properties of Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 2018, 1064, 377-399.	0.8	0
305	Differential growth and shape formation in plant organs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12359-12364.	3.3	68
306	Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (FFoRM). Scientific Reports, 2018, 8, 15559.	1.6	24
307	Bacterial Nanobionics via 3D Printing. Nano Letters, 2018, 18, 7448-7456.	4.5	41
308	Soft Robots Manufacturing: A Review. Frontiers in Robotics and Al, 2018, 5, 84.	2.0	201

#	Article	IF	Citations
309	Designing self-propelled, chemically active sheets: Wrappers, flappers, and creepers. Science Advances, 2018, 4, eaav1745.	4.7	26
310	A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. Science Advances, 2018, 4, eaat4967.	4.7	131
318	Functional Control of Network Dynamics Using Designed Laplacian Spectra. Physical Review X, 2018, 8,	2.8	7
319	Field responsive mechanical metamaterials. Science Advances, 2018, 4, eaau6419.	4.7	154
320	Mechanically Guided Assembly of Monolithic Three-Dimensional Structures from Elastomer Composites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44716-44721.	4.0	7
321	Water/ice as sprayable sacrificial materials in low-temperature 3D printing for biomedical applications. Materials and Design, 2018, 160, 624-635.	3.3	10
322	Localized Selfâ€Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shapeâ€Memory Polymer. Advanced Materials, 2018, 30, e1803072.	11.1	55
323	Printable all-dielectric water-based absorber. Scientific Reports, 2018, 8, 14490.	1.6	15
324	Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. Advanced Materials, 2018, 30, e1800940.	11.1	158
325	4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36435-36442.	4.0	127
326	Digital coding of mechanical stress in a dynamic covalent shape memory polymer network. Nature Communications, 2018, 9, 4002.	5.8	109
327	Additive manufacturing: state of the art and potential for insect science. Current Opinion in Insect Science, 2018, 30, 79-85.	2.2	7
328	Quantitative evaluation of the three-dimensional deployment behavior of a shape memory polymer antenna. Smart Materials and Structures, 2018, 27, 105007.	1.8	8
329	Liquid crystal elastomers: an introduction and review of emerging technologies. Liquid Crystals Reviews, 2018, 6, 78-107.	1.1	190
330	Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Advanced Materials, 2018, 30, e1802404.	11.1	218
331	Nanofilamentous Virus-Based Dynamic Hydrogels with Tunable Internal Structures, Injectability, Self-Healing, and Sugar Responsiveness at Physiological pH. Langmuir, 2018, 34, 12914-12923.	1.6	23
332	Additive manufacturing $\hat{a} \in \text{``}$ A review of 4D printing and future applications. Additive Manufacturing, 2018, 24, 606-626.	1.7	258
333	Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41724-41731.	4.0	90

#	Article	IF	CITATIONS
334	Weather-Manipulated Smart Broadband Electromagnetic Metamaterials. ACS Applied Materials & Interfaces, 2018, 10, 40815-40823.	4.0	53
335	Bioinspired Temperature-Responsive Multilayer Films and Their Performance under Thermal Fatigue. Biomimetics, 2018, 3, 20.	1.5	1
336	Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Materials and Structures, 2018, 27, 125011.	1.8	149
337	Kidney-on-a-chip: untapped opportunities. Kidney International, 2018, 94, 1073-1086.	2.6	104
338	4DMesh., 2018,,.		59
339	An Anisotropic Hydrogel Actuator Enabling Earthwormâ€Like Directed Peristaltic Crawling. Angewandte Chemie, 2018, 130, 15998-16002.	1.6	50
340	An Anisotropic Hydrogel Actuator Enabling Earthwormâ€Like Directed Peristaltic Crawling. Angewandte Chemie - International Edition, 2018, 57, 15772-15776.	7.2	139
341	Development of a Multi-Step Exposure Method for Projection-Based Printing System. , 2018, , .		0
342	Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 2018, 30, e1706539.	11.1	325
343	A shearable and thickness stretchable finite strain beam model for soft structures. Meccanica, 2018, 53, 3759-3777.	1.2	2
344	Dualâ€Programmable Shapeâ€Morphing and Selfâ€Healing Organohydrogels Through Orthogonal Supramolecular Heteronetworks. Advanced Materials, 2018, 30, e1804435.	11.1	91
345	Printed Nanocomposite Energy Harvesters with Controlled Alignment of Barium Titanate Nanowires. ACS Applied Materials & Diterfaces, 2018, 10, 38359-38367.	4.0	59
346	Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40460-40473.	4.0	9
347	A numerical study of the influence of rheology of cohesive particles on blade free planetary mixing. Korea Australia Rheology Journal, 2018, 30, 199-209.	0.7	9
348	Anisotropic contraction of fiber-reinforced hydrogels. Soft Matter, 2018, 14, 7731-7739.	1.2	11
349	Photo Processing for Biomedical Hydrogels Design and Functionality: A Review. Polymers, 2018, 10, 11.	2.0	80
350	3D shape change of multi-responsive hydrogels based on a light-programmed gradient in volume phase transition. Chemical Communications, 2018, 54, 10909-10912.	2.2	28
351	Bioinspired Multiâ€Activities 4D Printing Objects: A New Approach Toward Complex Tissue Engineering. Biotechnology Journal, 2018, 13, e1800098.	1.8	49

#	Article	IF	CITATIONS
352	Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Acta Biomaterialia, 2018, 80, 188-202.	4.1	22
353	Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 2018, 13, e1800148.	1.8	168
354	Predictive modeling of misfit dislocation induced strain relaxation effect on self-rolling of strain-engineered nanomembranes. Applied Physics Letters, 2018, 113, .	1.5	1
355	Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nature Communications, 2018, 9, 3808.	5.8	34
356	Shape transformable bifurcated stents. Scientific Reports, 2018, 8, 13911.	1.6	26
357	Bioinspired 3D structures with programmable morphologies and motions. Nature Communications, 2018, 9, 3705.	5.8	151
358	Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling. Sensors, 2018, 18, 2973.	2.1	39
359	Multi-length scale bioprinting towards simulating microenvironmental cues. Bio-Design and Manufacturing, 2018, 1, 77-88.	3.9	34
360	Origami Biosystems: 3D Assembly Methods for Biomedical Applications. Advanced Biology, 2018, 2, 1800230.	3.0	57
361	Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing Highâ€Performance Dynamic Responsive Bioâ€Nanomaterials. Advanced Materials, 2018, 30, e1802306.	11.1	34
362	Emerging investigator series: design of hydrogel nanocomposites for the detection and removal of pollutants: from nanosheets, network structures, and biocompatibility to machine-learning-assisted design. Environmental Science: Nano, 2018, 5, 2216-2240.	2.2	30
363	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5.3	47
364	Harnessing 3D printed residual stress to design heat-shrinkable metamaterials. Results in Physics, 2018, 11, 85-95.	2.0	12
365	Different Geometric Information Integrated within a Single Polydopamine Pattern to Yield Dual Shape Transformations. Macromolecular Materials and Engineering, 2018, 303, 1800319.	1.7	3
366	Shape changing hydrogels and their applications as soft actuators. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1314-1324.	2.4	69
367	Reversible shape change structures by grayscale pattern 4D printing. Multifunctional Materials, 2018, 1, 015002.	2.4	73
368	Additive Manufacturing and Performance of Architectured Cementâ∈Based Materials. Advanced Materials, 2018, 30, e1802123.	11.1	65
369	Temperature-Controllable Hydrogels in Double-Walled Microtube Structure Prepared by Using a Triple Channel Microfluidic System. Langmuir, 2018, 34, 11553-11558.	1.6	13

#	Article	IF	CITATIONS
370	Bottom-up approaches for material and device designing using practical aspects of self-assembled molecular architectures. Molecular Systems Design and Engineering, 2018, 3, 804-818.	1.7	9
371	3D Printing System of Magnetic Anisotropy for Artificial Cilia. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 139-144.	0.1	31
372	Technological considerations for 4D printing: an overview. Progress in Additive Manufacturing, 2018, 3, 95-107.	2.5	113
373	Morphokinematics of the Hygroactuation of Feather Grass Awns. Advanced Biology, 2018, 2, 1800007.	3.0	6
374	Rolling of 3D Printed Dualâ€Layer Beam into a Cylinder by Ethanol Absorption. Macromolecular Materials and Engineering, 2018, 303, 1700675.	1.7	7
375	Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochimica Acta, 2018, 281, 429-436.	2.6	43
376	Thermal stiffening of hydrophobic association hydrogels. Polymer, 2018, 145, 374-381.	1.8	12
377	3D Printing of Hierarchical Porous Silica and αâ€Quartz. Advanced Materials Technologies, 2018, 3, 1800060.	3.0	27
378	An Autonomous Programmable Actuator and Shape Reconfigurable Structures Using Bistability and Shape Memory Polymers. 3D Printing and Additive Manufacturing, 2018, 5, 91-101.	1.4	57
379	Smart mechano-hydro-dielectric coupled hybrid sponges for multifunctional sensors. Sensors and Actuators B: Chemical, 2018, 270, 239-246.	4.0	16
380	Multiresponsive Kinematics and Robotics of Surface-Patterned Polymer Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19123-19132.	4.0	36
381	Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. Npj Flexible Electronics, 2018, 2, .	5.1	31
382	Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 2018, 12, 6926-6937.	7.3	203
383	4D Biofabrication: Materials, Methods, and Applications. Advanced Healthcare Materials, 2018, 7, e1800412.	3.9	80
384	Bioinspired Electrically Activated Soft Bistable Actuators. Advanced Functional Materials, 2018, 28, 1802999.	7.8	53
385	Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell. Scientific Reports, 2018, 8, 9668.	1.6	28
386	Phase Transitions and Pattern Formation in Chemoâ∈Responsive Gels and Composites. Israel Journal of Chemistry, 2018, 58, 693-705.	1.0	4
387	Switchable Adhesion Actuator for Amphibious Climbing Soft Robot. Soft Robotics, 2018, 5, 592-600.	4.6	112

#	Article	IF	CITATIONS
388	Solution Mask Liquid Lithography (SMaLL) for Oneâ€Step, Multimaterial 3D Printing. Advanced Materials, 2018, 30, e1800364.	11.1	143
389	Universal inverse design of surfaces with thin nematic elastomer sheets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7206-7211.	3.3	213
390	Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet. Smart Materials and Structures, 2018, 27, 055009.	1.8	14
391	Geometry and Elasticity of a Knitted Fabric. Physical Review X, 2018, 8, .	2.8	27
392	Design, Representations, and Processing for Additive Manufacturing. Synthesis Lectures on Visual Computing, 2018, 10, 1-146.	0.7	11
393	A Normalized Trace Geometry Modeling Method with Bulge-Free Analysis for Direct Ink Writing Process Planning. 3D Printing and Additive Manufacturing, 2018, 5, 301-310.	1.4	9
394	Origami/Kirigamiâ€Guided Morphing of Composite Sheets. Advanced Functional Materials, 2018, 28, 1802768.	7.8	48
395	Increasing the Dimensionality of Soft Microstructures through Injectionâ€Induced Selfâ€Folding. Advanced Materials, 2018, 30, e1802739.	11.1	69
396	Modeling of snapping composite shells with magnetically aligned bio-inspired reinforcements. Smart Materials and Structures, 2018, 27, 114003.	1.8	14
397	Toward Growing Robots: A Historical Evolution from Cellular to Plant-Inspired Robotics. Frontiers in Robotics and Al, 2018, 5, 16.	2.0	51
398	A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering, 2018, 2, 930-941.	11.6	162
399	Advancements in the Research of 4D Printing-A Review. IOP Conference Series: Materials Science and Engineering, 2018, 376, 012123.	0.3	21
400	Engineering the Future of Silk Materials through Advanced Manufacturing. Advanced Materials, 2018, 30, e1706983.	11.1	126
401	Robotic Flexible Electronics with Self-Bendable Films. Soft Robotics, 2018, 5, 710-717.	4.6	13
402	Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207.	3.6	111
403	3D printing of shape memory hydrogels with tunable mechanical properties. Soft Matter, 2018, 14, 7809-7817.	1.2	59
404	Photoactivated Polymeric Bilayer Actuators Fabricated via 3D Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27308-27315.	4.0	58
405	Programmed Deformations of 3Dâ€Printed Tough Physical Hydrogels with High Response Speed and Large Output Force. Advanced Functional Materials, 2018, 28, 1803366.	7.8	172

#	Article	IF	Citations
406	Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Composites Part B: Engineering, 2018, 153, 233-242.	5.9	86
407	Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. Journal of Materials Chemistry B, 2018, 6, 5415-5423.	2.9	76
408	Extra‣arge Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between Cofacially Aligned 2D Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 12508-12513.	7.2	30
409	3D printed medicines: A new branch of digital healthcare. International Journal of Pharmaceutics, 2018, 548, 586-596.	2.6	184
410	Advanced Material Strategies for Next-Generation Additive Manufacturing. Materials, 2018, 11, 166.	1.3	76
411	Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing. Micromachines, 2018, 9, 86.	1.4	49
412	A General Aqueous Silanization Protocol to Introduce Vinyl, Mercapto or Azido Functionalities onto Cellulose Fibers and Nanocelluloses. Molecules, 2018, 23, 1427.	1.7	46
413	Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biology, 2018, 2, 1800101.	3.0	114
414	3D printing of materials with spatially non-linearly varying properties. Materials and Design, 2018, 156, 470-479.	3.3	42
415	Rapid macroscale shape morphing of 3D-printed polyrotaxane monoliths amplified from pH-controlled nanoscale ring motions. Journal of Materials Chemistry C, 2018, 6, 11956-11960.	2.7	36
416	Shape morphing of anisotropy-encoded tough hydrogels enabled by asymmetrically-induced swelling and site-specific mechanical strengthening. Journal of Materials Chemistry B, 2018, 6, 4731-4737.	2.9	21
417	Addressing Unmet Clinical Needs with 3D Printing Technologies. Advanced Healthcare Materials, 2018, 7, e1800417.	3.9	70
418	3D Printing in Pharmaceutical and Medical Applications – Recent Achievements and Challenges. Pharmaceutical Research, 2018, 35, 176.	1.7	428
419	Materials for 3D Printing Cardiovascular Devices. , 2018, , 33-59.		0
420	4D Printing of Actuating Cardiac Tissue. , 2018, , 153-162.		18
421	Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy, 2018, 51, 621-631.	8.2	77
422	The Design Process of Additively Manufactured Mesoscale Lattice Structures: A Review. Journal of Computing and Information Science in Engineering, 2018, 18, .	1.7	94
423	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195

#	Article	IF	Citations
424	Hydrophilic/Hydrophobic Composite Shape-Shifting Structures. ACS Applied Materials & Diterfaces, 2018, 10, 19932-19939.	4.0	101
425	4D Printed Actuators with Softâ€Robotic Functions. Macromolecular Rapid Communications, 2018, 39, 1700710.	2.0	268
426	Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17512-17518.	4.0	258
427	Novel Materials for 3D Printing by Photopolymerization. Advanced Materials, 2018, 30, e1706344.	11.1	367
428	Spontaneous bending of pre-stretched bilayers. Meccanica, 2018, 53, 511-518.	1.2	9
429	Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Crossâ€Linked Centers. Macromolecular Rapid Communications, 2018, 39, e1800143.	2.0	38
430	3D Hybrid Small Scale Devices. Small, 2018, 14, e1702497.	5.2	8
431	Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices. ACS Applied Materials & Devices, 2018, 10, 17489-17507.	4.0	171
432	Design, fabrication and control of origami robots. Nature Reviews Materials, 2018, 3, 101-112.	23.3	372
433	Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites. RSC Advances, 2018, 8, 27045-27053.	1.7	12
434	Origami and 4D printing of elastomer-derived ceramic structures. Science Advances, 2018, 4, eaat0641.	4.7	159
435	The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature. ACS Nano, 2018, 12, 7425-7433.	7.3	128
436	Extra‣arge Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between Cofacially Aligned 2D Electrolytes. Angewandte Chemie, 2018, 130, 12688-12693.	1.6	8
437	Nanoparticle–Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromolecular Rapid Communications, 2018, 39, e1800337.	2.0	85
438	A perspective on 3D bioprinting in tissue regeneration. Bio-Design and Manufacturing, 2018, 1, 157-160.	3.9	61
439	A readily programmable, fully reversible shape-switching material. Science Advances, 2018, 4, eaat4634.	4.7	146
440	Poly(<i>N</i> -isopropylacrylamide) Cross-Linked Gels as Intrinsic Amphiphilic Materials: Swelling Properties Used to Build Novel Interphases. Journal of Physical Chemistry B, 2018, 122, 9038-9048.	1.2	26
441	3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers. Journal of the European Ceramic Society, 2018, 38, 5294-5300.	2.8	107

#	Article	IF	CITATIONS
442	3Dâ€Printed Microfluidic Devices for Materials Science. Advanced Materials Technologies, 2018, 3, 1800068.	3.0	33
443	Demonstrating Thermorph. , 2018, , .		9
444	Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomaterialia, 2018, 76, 71-79.	4.1	39
445	A theoretical model of postbuckling in straight ribbons with engineered thickness distributions for three-dimensional assembly. International Journal of Solids and Structures, 2018, 147, 254-271.	1.3	23
446	A Bezelâ€Less Tetrahedral Image Sensor Formed by Solventâ€Assisted Plasticization and Transformation of an Acrylonitrile Butadiene Styrene Framework. Advanced Materials, 2018, 30, e1801256.	11.1	9
447	3D printing with cellulose materials. Cellulose, 2018, 25, 4275-4301.	2.4	204
448	A UV-curable epoxy with "soft―segments for 3D-printable shape-memory materials. Journal of Materials Science, 2018, 53, 12650-12661.	1.7	12
449	3Dâ€Printed Organic–Ceramic Complex Hybrid Structures with High Silica Content. Advanced Science, 2018, 5, 1800061.	5.6	55
450	Plant Biomechanics. , 2018, , .		16
451	Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios. Scientific Reports, 2018, 8, 9139.	1.6	100
452	Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Science Advances, 2018, 4, eaar8535.	4.7	159
453	Biomechanics and Functional Morphology of Plantsâ€"Inspiration for Biomimetic Materials and Structures., 2018,, 399-433.		11
454	Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558, 274-279.	13.7	1,426
455	Dehydration-triggered shape morphing based on asymmetric bubble hydrogel microfibers. Soft Matter, 2018, 14, 6623-6626.	1.2	13
456	Programmable morphing composites with embedded continuous fibers by 4D printing. Materials and Design, 2018, 155, 404-413.	3.3	92
457	Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nature Communications, 2018, 9, 2395.	5.8	102
458	Multiscale bioprinting of vascularized models. Biomaterials, 2019, 198, 204-216.	5.7	191
459	Fabricating 3D Structures by Combining 2D Printing and Relaxation of Strain. Advanced Materials Technologies, 2019, 4, 1800299.	3.0	36

#	Article	IF	CITATIONS
460	Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. Journal of Experimental Biology, 2019, 222, .	0.8	98
461	Magnetic programming of 4D printed shape memory composite structures. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105571.	3.8	151
462	3D Bioprinting Technologies. , 2019, , 1-66.		1
463	Advanced 4D-bioprinting technologies for brain tissue modeling and study. International Journal of Smart and Nano Materials, 2019, 10, 177-204.	2.0	40
464	Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Biofabrication, 2019, 11, 045019.	3.7	88
465	Rapid Openâ€Air Digital Light 3D Printing of Thermoplastic Polymer. Advanced Materials, 2019, 31, e1903970.	11.1	112
466	Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nature Communications, 2019, 10, 3464.	5.8	71
467	4D printing: a critical review of current developments, and future prospects. International Journal of Advanced Manufacturing Technology, 2019, 105, 701-717.	1.5	47
468	4D Printing of a Digital Shape Memory Polymer with Tunable High Performance. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 32408-32413.	4.0	95
469	Miniature Pneumatic Actuators for Soft Robots by Highâ€Resolution Multimaterial 3D Printing. Advanced Materials Technologies, 2019, 4, 1900427.	3.0	91
470	Smart Hydrogels with Antibacterial Properties Built from All Natural Building Blocks. Chemistry of Materials, 2019, 31, 7678-7685.	3.2	97
471	Stiff reconfigurable polygons for smart connecters and deployable structures. International Journal of Mechanical Sciences, 2019, 161-162, 105052.	3.6	7
472	Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments. Advanced Functional Materials, 2019, 29, 1904342.	7.8	74
473	Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Lowâ€Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation. Macromolecular Bioscience, 2019, 19, e1900245.	2.1	22
474	Thermoresponsive Water Transportation in Dually Electrostatically Crosslinked Nanocomposite Hydrogels. Macromolecular Rapid Communications, 2019, 40, e1900317.	2.0	4
475	Advances in biomimetic stimuli responsive soft grippers. Nano Convergence, 2019, 6, 20.	6.3	55
476	Reprogrammable Three-Dimensional Configurations Using Ionomer Bilayers. ACS Applied Polymer Materials, 2019, 1, 2760-2767.	2.0	5
477	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72

#	ARTICLE	IF	CITATIONS
478	Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11, 042001.	3.7	363
479	4D printing smart biosystems for nanomedicine. Nanomedicine, 2019, 14, 1643-1645.	1.7	25
480	Voxelated Molecular Patterning in Three-Dimensional Freeforms. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28236-28245.	4.0	67
481	Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Direct Ink Writing Order (PTFE) with Tunable Mechanical Properties.	4.0	42
482	Bioinspired Electroâ€Thermoâ€Hygro Reversible Shapeâ€Changing Materials by 4D Printing. Advanced Functional Materials, 2019, 29, 1903280.	7.8	64
483	Can 4D bioprinting revolutionize drug development?. Expert Opinion on Drug Discovery, 2019, 14, 953-956.	2.5	22
484	Programmable Multistable Hydrogel Morphs. Advanced Intelligent Systems, 2019, 1, 1900055.	3.3	14
485	Flexible Gripper Manufacturing and Simulation Based on 3D Printing. , 2019, , .		0
486	Cholesteric-type cellulosic structures: from plants to applications. Liquid Crystals, 2019, 46, 1937-1949.	0.9	5
487	Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking. Advanced Functional Materials, 2019, 29, 1903181.	7.8	22
488	Shape Memory Effect in Micro-Sized Shape Memory Polymer Composite Chains. Applied Sciences (Switzerland), 2019, 9, 2919.	1.3	6
489	3D printed Ni/Al2O3 based catalysts for CO2 methanation - a comparative and operando XRD-CT study. Journal of CO2 Utilization, 2019, 33, 478-487.	3.3	62
490	3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 164.	2.0	275
491	Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. Advanced Materials, 2019, 31, e1901895.	11.1	84
492	4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid. Micromachines, 2019, 10, 433.	1.4	45
493	Nanocellulose Composite Biomaterials in Industry and Medicine. Biologically-inspired Systems, 2019, , 693-784.	0.4	5
494	Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. Nano Convergence, 2019, 6, 18.	6.3	56
495	Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics. Soft Robotics, 2019, 6, 657-663.	4.6	35

#	Article	IF	CITATIONS
496	Smart polymers for cell therapy and precision medicine. Journal of Biomedical Science, 2019, 26, 73.	2.6	60
497	Tough, Selfâ∈Healing Hydrogels Capable of Ultrafast Shape Changing. Advanced Materials, 2019, 31, e1904956.	11.1	118
498	Programmed Diffusion Induces Anisotropic Superstructures in Hydrogels with High Mechanoâ€Optical Sensitivity. Advanced Materials Technologies, 2019, 4, 1900665.	3.0	14
499	Fiber forming mechanism and reaction kinetics of novel dynamic-crosslinking-spinning for Poly(ethylene glycol) diacrylate fiber fabrication. Polymer, 2019, 183, 121903.	1.8	9
500	Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Frontiers in Chemistry, 2019, 7, 735.	1.8	47
501	Morphlour., 2019,,.		44
502	3D Printed Actuators: Reversibility, Relaxation, and Ratcheting. Advanced Functional Materials, 2019, 29, 1905545.	7.8	12
503	3D printing of conjugated polymers. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1592-1605.	2.4	40
504	3D Printing of Amylopectinâ€Based Natural Fiber Composites. Advanced Materials Technologies, 2019, 4, 1900521.	3.0	22
505	Nanomagnetic encoding of shape-morphing micromachines. Nature, 2019, 575, 164-168.	13.7	307
506	Swelling thermodynamics and phase transitions of polymer gels. Nano Futures, 2019, 3, 042001.	1.0	22
507	4D-Printing System for Elastic Magnetic Actuators. , 2019, , .		7
508	Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS Omega, 2019, 4, 20558-20563.	1.6	17
509	3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy. Advanced Materials Technologies, 2019, 4, 1900784.	3.0	20
510	The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials. Nature Communications, 2019, 10, 5210.	5.8	15
511	Biasing Buckling Direction in Shapeâ€Programmable Hydrogel Sheets with Throughâ€Thickness Gradients. Advanced Functional Materials, 2019, 29, 1905273.	7.8	39
512	Bayesian calibration of AquaCrop model for winter wheat by assimilating UAV multi-spectral images. Computers and Electronics in Agriculture, 2019, 167, 105052.	3.7	25
513	Semi-implicit methods for the dynamics of elastic sheets. Journal of Computational Physics, 2019, 399, 108952.	1.9	6

#	Article	IF	Citations
514	On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nature Communications, 2019, 10, 4751.	5.8	48
515	Experimental study of the temporal profile of breath alcohol concentration in a Chinese population after a light meal. PLoS ONE, 2019, 14, e0221237.	1.1	0
516	Plants and architecture: the role of biology and biomimetics in materials development for buildings. Intelligent Buildings International, 2019, 11, 178-211.	1.3	15
517	3D Nanoprinting of Perovskites. Advanced Materials, 2019, 31, e1904073.	11.1	64
518	Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Progress in Polymer Science, 2019, 98, 101147.	11.8	120
519	A 3D Printed Paper-Based Thermally Driven Soft Robotic Gripper Inspired by Cabbage. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1915-1928.	1.1	33
520	Novel Method to Simultaneously Adjust the Size and pH Value of Individual Microdroplets in Silicone Oil. IEEE Access, 2019, 7, 114183-114190.	2.6	1
521	Multi-Hydrogel 4D Printing for Deformation Control. , 2019, , .		1
522	3D Printed Ferrofluid Based Soft Actuators. , 2019, , .		5
523	Untethered Soft Robots with Bioinspired Bone-and-Flesh Constructs for Fast Deterministic Actuation. , 2019, , .		1
524	Digital Light Processing 3D Printing of Triple Shape Memory Polymer for Sequential Shape Shifting. , 2019, 1, 410-417.		53
525	Multi-stimuli-responsive programmable biomimetic actuator. Nature Communications, 2019, 10, 4087.	5.8	243
526	Getting the measure of living biomaterials. Nature, 2019, 572, 38-39.	13.7	4
527	Electrochemically reconfigurable architected materials. Nature, 2019, 573, 205-213.	13.7	145
528	3D SiC containing uniformly dispersed, aligned SiC whiskers: Printability, microstructure and mechanical properties. Journal of Alloys and Compounds, 2019, 809, 151824.	2.8	32
529	Tiger mosquitoes tackled in a trial. Nature, 2019, 572, 39-40.	13.7	3
530	Curved Geometries from Planar Director Fields: Solving the Two-Dimensional Inverse Problem. Physical Review Letters, 2019, 123, 127801.	2.9	33
531	Fabrication of soluble salt-based support for suspended ceramic structure by layered extrusion forming method. Materials and Design, 2019, 183, 108173.	3.3	11

#	Article	IF	CITATIONS
532	Photomechanical Azobenzene Crystals. Crystals, 2019, 9, 437.	1.0	61
533	Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065.	1.3	34
534	Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 2019, 23, 100758.	5. 6	66
535	Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41649-41658.	4.0	130
536	Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20856-20862.	3.3	257
537	Kaolinite Nanomaterials: Preparation, Properties and Functional Applications. , 2019, , 285-334.		8
538	A finite deformation theory of desolvation and swelling in partially photo-cross-linked polymer networks for 3D/4D printing applications. Soft Matter, 2019, 15, 1005-1016.	1.2	19
540	A Review on Hierarchical Origami and Kirigami Structure for Engineering Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 147-161.	2.7	53
541	A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nature Communications, 2019, 10, 344.	5.8	130
542	4D Printing: The Shape-Morphing in Additive Manufacturing. Journal of Functional Biomaterials, 2019, 10, 9.	1.8	46
543	Ionoprinting controlled information storage of fluorescent hydrogel for hierarchical and multi-dimensional decryption. Science China Materials, 2019, 62, 831-839.	3.5	51
544	Dual-Gel 4D Printing of Bioinspired Tubes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8492-8498.	4.0	100
545	Light-induced shape morphing of thin films. Current Opinion in Colloid and Interface Science, 2019, 40, 70-86.	3.4	38
546	Strategic Design of Clayâ€Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes. Advanced Functional Materials, 2019, 29, 1807611.	7.8	65
547	Biological and Engineered Topological Droplet Rectifiers. Advanced Materials, 2019, 31, e1806501.	11.1	113
548	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
549	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120
550	Bioinspired fiber-regulated composite with tunable permanent shape and shape memory properties via 3d magnetic printing. Composites Part B: Engineering, 2019, 164, 458-466.	5.9	45

#	Article	IF	Citations
551	Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 1150-1169.	2.6	86
552	Dual-3D Femtosecond Laser Nanofabrication Enables Dynamic Actuation. ACS Nano, 2019, 13, 4041-4048.	7.3	90
553	Additive manufacturing of self-healing elastomers. NPG Asia Materials, 2019, 11, .	3.8	111
554	Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification. Carbohydrate Polymers, 2019, 211, 257-265.	5.1	43
555	Dynamics of carbohydrate strands in water and interactions with clay minerals: influence of pH, surface chemistry, and electrolytes. Nanoscale, 2019, 11, 11183-11194.	2.8	13
556	Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. Bioprinting, 2019, 16, e00053.	2.9	44
557	pH-Controlled Self-Assembled Fibrillar Network Hydrogels: Evidence of Kinetic Control of the Mechanical Properties. Chemistry of Materials, 2019, 31, 4817-4830.	3.2	35
558	Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites. Acta Mechanica Solida Sinica, 2019, 32, 535-565.	1.0	73
559	Tissue engineering scaffolds. , 2019, , 165-185.		6
560	Additively manufacturing high-performance bismaleimide architectures with ultraviolet-assisted direct ink writing. Materials and Design, 2019, 180, 107947.	3.3	60
561	4D Printing of Smart Stimuli-Responsive Polymers. Journal of the Electrochemical Society, 2019, 166, B3274-B3281.	1.3	39
562	Origami-inspired sacrificial joints for folding compliant mechanisms. Mechanism and Machine Theory, 2019, 140, 194-210.	2.7	20
563	Geodesy. , 2019, , .		38
564	Light to Shape the Future: From Photolithography to 4D Printing. Advanced Optical Materials, 2019, 7, 1900598.	3.6	152
565	Additive Manufacturing of 3D Structures Composed of Wood Materials. Advanced Materials Technologies, 2019, 4, 1900158.	3.0	32
566	Design Approaches for Generating Organ Constructs. Cell Stem Cell, 2019, 24, 877-894.	5.2	26
567	Biomimetic Thermal-sensitive Multi-transform Actuator. Scientific Reports, 2019, 9, 7905.	1.6	9
568	Buffering by buckling as a route for elastic deformation. Nature Reviews Physics, 2019, 1, 425-436.	11.9	40

#	Article	IF	CITATIONS
569	Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators <i>via</i> 3D printing. Journal of Materials Chemistry A, 2019, 7, 15395-15403.	5.2	73
570	Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Construction and Building Materials, 2019, 218, 582-609.	3.2	107
571	Recent advances on 3D printing graphene-based composites. Nano Materials Science, 2019, 1, 101-115.	3.9	143
572	Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Science Advances, 2019, 5, eaav8141.	4.7	103
573	Review of mechanisms and deformation behaviors in 4D printing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4633-4649.	1.5	48
574	Amorphous polyphosphate nanoparticles: application of the morphogenetically active inorganic polymer for personalized tissue regeneration. Journal Physics D: Applied Physics, 2019, 52, 363001.	1.3	6
575	4D printing of polyurethane paint-based composites. International Journal of Smart and Nano Materials, 2019, 10, 237-248.	2.0	49
576	Directed Printing and Reconfiguration of Thermoresponsive Silicaâ€pNIPAM Nanocomposites. Macromolecular Rapid Communications, 2019, 40, e1900191.	2.0	9
577	Twoâ€Photon Verticalâ€Flow Lithography for Microtube Synthesis. Small, 2019, 15, e1901356.	5.2	24
578	Decentralized manufacturing for biomimetics through cooperation of digitization and nanomaterial design. Nanoscale, 2019, 11, 19179-19189.	2.8	1
579	Switchable Adhesives for Multifunctional Interfaces. Advanced Materials Technologies, 2019, 4, 1900193.	3.0	101
580	In Operando Monitoring of Dynamic Recovery in 3D-Printed Thermoset Nanocomposites by XPCS. Langmuir, 2019, 35, 8758-8768.	1.6	38
581	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	1.3	309
582	Controllable Bending of Bi-hydrogel Strips with Differential Swelling. Acta Mechanica Solida Sinica, 2019, 32, 652-662.	1.0	15
583	Hierarchical cellular scaffolds fabricated via direct foam writing using gelled colloidal particleâ€stabilized foams as the ink. Journal of the American Ceramic Society, 2019, 102, 6498-6506.	1.9	16
584	A Review of Biological Fluid Power Systems and Their Potential Bionic Applications. Journal of Bionic Engineering, 2019, 16, 367-399.	2.7	21
585	Engineering the vasculature for islet transplantation. Acta Biomaterialia, 2019, 95, 131-151.	4.1	65
586	Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates. Nano Letters, 2019, 19, 3684-3691.	4.5	54

#	Article	IF	CITATIONS
587	Shape Morphing of Hydrogels in Alternating Magnetic Field. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21194-21200.	4.0	108
588	Distortion-controlled isotropic swelling: numerical study of free boundary swelling patterns. Soft Matter, 2019, 15, 4890-4897.	1.2	1
589	Mechanical Properties of Ultraviolet-Assisted Paste Extrusion and Postextrusion Ultraviolet-Curing of Three-Dimensional Printed Biocomposites. 3D Printing and Additive Manufacturing, 2019, 6, 127-137.	1.4	16
590	4D and 5D Printing. , 2019, , 143-163.		12
591	4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomaterialia, 2019, 92, 19-36.	4.1	191
592	Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles. Journal of the Electrochemical Society, 2019, 166, B3235-B3239.	1.3	60
593	Long Liquid Crystal Elastomer Fibers with Large Reversible Actuation Strains for Smart Textiles and Artificial Muscles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19514-19521.	4.0	168
594	Bending, curling, and twisting in polymeric bilayers. Soft Matter, 2019, 15, 4541-4547.	1.2	17
595	Advanced Polymer Designs for Directâ€Inkâ€Write 3D Printing. Chemistry - A European Journal, 2019, 25, 10768-10781.	1.7	171
596	Thermal-controlled releasing and assembling of functional nanomembranes through polymer pyrolysis. Nanotechnology, 2019, 30, 354001.	1.3	6
597	Lightâ€Driven Shape Morphing, Assembly, and Motion of Nanocomposite Gel Surfers. Advanced Materials, 2019, 31, e1900932.	11.1	57
598	4D Printing of Shapeâ€Memory Hydrogels for Softâ€Robotic Functions. Advanced Materials Technologies, 2019, 4, 1900071.	3.0	129
599	Mechanics of bistable cross-shaped structures through loading-path controlled 3D assembly. Journal of the Mechanics and Physics of Solids, 2019, 129, 261-277.	2.3	31
600	A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Renal Replacement Therapy, 2019, 5, .	0.3	27
601	Effects of architecture level on mechanical properties of hierarchical lattice materials. International Journal of Mechanical Sciences, 2019, 157-158, 282-292.	3.6	49
602	Bio-inspired sensing and actuating materials. Journal of Materials Chemistry C, 2019, 7, 6493-6511.	2.7	112
603	lonic Hydrogels with Biomimetic 4Dâ€Printed Mechanical Gradients: Models for Softâ€Bodied Aquatic Organisms. Advanced Functional Materials, 2019, 29, 1806723.	7.8	37
604	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	4.1	23

#	Article	IF	CITATIONS
605	Amyloid-Based Injectable Hydrogel Derived from Hydrolyzed Hen Egg White Lysozyme. ACS Omega, 2019, 4, 8071-8080.	1.6	43
606	Molecularly-ordered hydrogels with controllable, anisotropic stimulus response. Soft Matter, 2019, 15, 4508-4517.	1.2	13
607	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	5.2	235
608	Structure-driven biomimetic self-morphing composites fabricated by multi-process 3-D printing. Composites Part A: Applied Science and Manufacturing, 2019, 123, 1-9.	3.8	5
609	3D Printed Sensors for Biomedical Applications: A Review. Sensors, 2019, 19, 1706.	2.1	150
610	Chemistry from 3D printed objects. Nature Reviews Chemistry, 2019, 3, 305-314.	13.8	93
611	Patterning order and disorder with an angle: modeling single-layer dual-phase nematic elastomer ribbons. RSC Advances, 2019, 9, 8994-9000.	1.7	3
612	Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Applied Physics Reviews, 2019, 6, .	5.5	163
613	3D Printed Photoresponsive Materials for Photonics. Advanced Optical Materials, 2019, 7, 1900156.	3.6	41
614	3D Printing/Bioprinting Based Tailoring of <i>in Vitro</i> Tissue Models: Recent Advances and Challenges. ACS Applied Bio Materials, 2019, 2, 1385-1405.	2.3	52
615	Modeling and Application of Planarâ€toâ€3D Structures via Optically Programmed Frontal Photopolymerization. Advanced Engineering Materials, 2019, 21, 1801279.	1.6	9
616	Sustainable Biomass Materials for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 2079-2092.	2.6	36
617	3D Printing of Multifunctional Hydrogels. Advanced Functional Materials, 2019, 29, 1900971.	7.8	225
618	Stimuli-responsive materials in additive manufacturing. Progress in Polymer Science, 2019, 93, 36-67.	11.8	148
619	Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 2019, 94, 57-116.	11.8	364
620	Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomaterials Science and Engineering, 2019, 5, 3688-3702.	2.6	18
621	3D printed cellulose nanocrystal composites through digital light processing. Cellulose, 2019, 26, 3973-3985.	2.4	65
622	Elasticity and stability of shape-shifting structures. Current Opinion in Colloid and Interface Science, 2019, 40, 118-137.	3.4	95

#	Article	IF	CITATIONS
623	Materials from trees assembled by 3D printing $\hat{a} \in \text{``Wood tissue}$ beyond nature limits. Applied Materials Today, 2019, 15, 280-285.	2.3	35
624	Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality. Advanced Materials Technologies, 2019, 4, 1800659.	3.0	20
625	Ultrafast Fabrication of Gradient Nanoporous Allâ€Polysaccharide Films as Strong, Superfast, and Multiresponsive Actuators. Advanced Functional Materials, 2019, 29, 1807692.	7.8	106
626	Modified commercial UV curable elastomers for passive 4D printing. International Journal of Smart and Nano Materials, 2019, 10, 225-236.	2.0	28
627	Developments in 4D-printing: a review on current smart materials, technologies, and applications. International Journal of Smart and Nano Materials, 2019, 10, 205-224.	2.0	232
628	Autonomous origami: pre-programmed folding of inkjet printed structures. Smart Materials and Structures, 2019, 28, 055019.	1.8	1
629	Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing. Applied Physics Reviews, 2019, 6, .	5.5	89
630	A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research, 2019, 12, 1381-1388.	5.8	82
631	The Third Era of Tissue Engineering: Reversing the Innovation Drivers. Tissue Engineering - Part A, 2019, 25, 821-826.	1.6	22
632	New frontiers for the materials genome initiative. Npj Computational Materials, 2019, 5, .	3.5	312
633	Emerging Trends in Informationâ€Driven Engineering of Complex Biological Systems. Advanced Materials, 2019, 31, 1806898.	11.1	11
634	Active Mixing of Disparate Inks for Multimaterial 3D Printing. Advanced Materials Technologies, 2019, 4, 1800717.	3.0	30
635	Robotics: Science preceding science fiction. MRS Bulletin, 2019, 44, 295-301.	1.7	5
636	Nanogrooved carbon microtubes for wet threeâ€dimensional printing of conductive composite structures. Polymer International, 2019, 68, 922-928.	1.6	2
637	Controllable Shape Changing and Tristability of Bilayer Composite. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16881-16887.	4.0	14
638	Bioinspired Actuators Based on Stimuliâ€Responsive Polymers. Chemistry - an Asian Journal, 2019, 14, 2369-2387.	1.7	60
639	Architectured Polymeric Materials Produced by Additive Manufacturing. Springer Series in Materials Science, 2019, , 257-285.	0.4	3
640	Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today, 2019, 26, 176-198.	6.2	60

#	ARTICLE	IF	CITATIONS
641	Effects of material heterogeneity on self-rolling of strained membranes. Extreme Mechanics Letters, 2019, 29, 100451.	2.0	0
642	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	3.7	47
643	2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. Advanced Materials, 2019, 31, e1900332.	11.1	237
644	Thermoresponsive Stiffness Softening of Hierarchically Porous Nanohybrid Membranes Promotes Niches for Mesenchymal Stem Cell Differentiation. Advanced Healthcare Materials, 2019, 8, e1801556.	3.9	12
645	Electrodeposition-based rapid bioprinting of 3D-designed hydrogels with a pin art device. Biofabrication, 2019, 11, 035018.	3.7	13
646	A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers. Progress in Additive Manufacturing, 2019, 4, 167-184.	2.5	38
647	Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10328-10336.	4.0	126
648	Recyclable 3D Printing of Polyimine-Based Covalent Adaptable Network Polymers. 3D Printing and Additive Manufacturing, 2019, 6, 31-39.	1.4	34
649	3D printing of thermoreversible polyurethanes with targeted shape memory and precise <i>in situ</i> self-healing properties. Journal of Materials Chemistry A, 2019, 7, 6972-6984.	5.2	70
650	Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels. Biomaterials Science, 2019, 7, 1805-1814.	2.6	90
651	Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials, 2019, 21, 1800864.	1.6	493
652	Advancing Frontiers in Bone Bioprinting. Advanced Healthcare Materials, 2019, 8, e1801048.	3.9	164
653	The Pathway to Intelligence: Using Stimuliâ€Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 2019, 31, e1804540.	11.1	169
654	SiCw/SiCp reinforced 3D-SiC ceramics using direct ink writing of polycarbosilane-based solution: Microstructure, composition and mechanical properties. Journal of the European Ceramic Society, 2019, 39, 2648-2657.	2.8	48
655	Shape-programming of hyperelastic plates through differential growth: an analytical approach. Soft Matter, 2019, 15, 2391-2399.	1.2	15
656	Approaches to mimic the complexity of the skeletal mesenchymal stem/stromal cell niche in vitro. , 2019, 37, 88-112.		5
657	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043.	3.0	207
658	Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 2019, 1, 593-611.	2.0	776

#	Article	IF	CITATIONS
659	4D Bioprinting: Technological Advances in Biofabrication. Macromolecular Bioscience, 2019, 19, e1800441.	2.1	92
661	Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Composites Part A: Applied Science and Manufacturing, 2019, 120, 140-146.	3.8	128
662	Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chemical Engineering Journal, 2019, 366, 264-304.	6.6	175
663	A smart bottom-up strategy for fabrication of complex hydrogel constructs with 3D controllable geometric shapes through dynamic interfacial adhesion. Journal of Materials Chemistry B, 2019, 7, 1996-2000.	2.9	8
664	Wood-based nanocellulose and bioactive glass modified gelatin–alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 2019, 11, 035010.	3.7	125
665	Self-stresses control stiffness and stability in overconstrained disordered networks. Physical Review E, 2019, 99, 023001.	0.8	2
666	Temperatureâ€Mediated Microfluidic Extrusion of Structurally Anisotropic Hydrogels. Advanced Materials Technologies, 2019, 4, 1800627.	3.0	18
667	3D Printing of Hydrogel Architectures with Complex and Controllable Shape Deformation. Advanced Materials Technologies, 2019, 4, 1800713.	3.0	71
668	Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. Smart Materials and Structures, 2019, 28, 045011.	1.8	21
669	Buckling-induced Shape Morphing using Dielectric Elastomer Actuators Patterned with Spatially-varying Electrodes., 2019,,.		0
670	Encoding kirigami bi-materials to morph on target in response to temperature. Scientific Reports, 2019, 9, 19499.	1.6	19
671	Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers, 2019, 11, 1864.	2.0	94
672	2. State of the art of the fused deposition modeling using PLA: improving the performance. , 2019, , 59-112.		2
673	UV-responsive cyclic peptide progelator bioinks. Faraday Discussions, 2019, 219, 44-57.	1.6	4
674	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
675	Supramolecular Hydrogels with Properties Tunable by Calcium Ions: A Bio-Inspired Chemical System. ACS Applied Bio Materials, 2019, 2, 5819-5828.	2.3	13
676	Bioinspired dual-morphing stretchable origami. Science Robotics, 2019, 4, .	9.9	127
677	Visualizing Morphogenesis through Instability Formation in 4-D Printing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47468-47475.	4.0	20

#	Article	IF	CITATIONS
678	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	23.0	121
679	Fast Digital Patterning of Surface Topography toward Three-Dimensional Shape-Changing Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48412-48418.	4.0	12
680	Design and Control of an Educational Redundant 3D Printed Robot. , 2019, , .		10
681	4D-printed hybrids with localized shape memory behaviour: Implementation in a functionally graded structure. Scientific Reports, 2019, 9, 18754.	1.6	37
682	Additive manufacturing of smart materials exhibiting 4-D properties: A state of art review. Journal of Thermoplastic Composite Materials, 2022, 35, 1358-1381.	2.6	31
683	Additive Manufacturing Methods for Producing Hydroxyapatite and Hydroxyapatite-Based Composite Scaffolds: A Review. Frontiers in Materials, 2019, 6, .	1.2	113
684	An insight into biomimetic 4D printing. RSC Advances, 2019, 9, 38209-38226.	1.7	34
685	3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 2019, 203, 71-86.	5.1	232
686	Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 3336-3350.	0.7	3
687	Mechanical performance of additively manufactured meta-biomaterials. Acta Biomaterialia, 2019, 85, 41-59.	4.1	230
688	Multistable Thermal Actuators Via Multimaterial 4D Printing. Advanced Materials Technologies, 2019, 4, 1800495.	3.0	54
689	Sharp Fano Resonance and Spectral Collapse in Stimuliâ€Responsive Photonic Structures. Advanced Optical Materials, 2019, 7, 1801206.	3.6	4
690	A Stimuliâ€Responsive Nanocomposite for 3D Anisotropic Cellâ€Guidance and Magnetic Soft Robotics. Advanced Functional Materials, 2019, 29, 1804647.	7.8	126
691	Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage. ACS Applied Materials & Dechange interfaces, 2019, 11, 3450-3458.	4.0	45
692	Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3482-3492.	4.0	23
693	4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Materials and Design, 2019, 163, 107544.	3.3	93
694	Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies. Journal of Computing and Information Science in Engineering, 2019, 19, .	1.7	50
695	Molecularlyâ€Engineered, 4Dâ€Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019, 29, 1806412.	7.8	234

#	Article	IF	CITATIONS
696	A general strategy of 3D printing thermosets for diverse applications. Materials Horizons, 2019, 6, 394-404.	6.4	89
697	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	3.6	132
698	Progress in the Field of Water―and/or Temperatureâ€Triggered Polymer Actuators. Macromolecular Materials and Engineering, 2019, 304, 1800548.	1.7	71
699	Bio-inspired pneumatic shape-morphing elastomers. Nature Materials, 2019, 18, 24-28.	13.3	226
700	Tensile properties of multi-material interfaces in 3D printed parts. Materials and Design, 2019, 162, 1-9.	3.3	63
701	Soft grasping mechanisms composed of shape memory polymer based self-bending units. Composites Part B: Engineering, 2019, 164, 198-204.	5.9	55
702	3D Printing of Anisotropic Hydrogels with Bioinspired Motion. Advanced Science, 2019, 6, 1800703.	5.6	85
703	Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 2019, 84, 16-33.	4.1	547
704	Oneâ€Step Preparation of Tough and Selfâ€Healing Polyion Complex Hydrogels with Tunable Swelling Behaviors. Macromolecular Rapid Communications, 2019, 40, e1800691.	2.0	4
705	CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1805372.	7.8	148
706	Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomaterials Science and Engineering, 2019, 5, 318-328.	2.6	38
707	Design and applications of man-made biomimetic fibrillar hydrogels. Nature Reviews Materials, 2019, 4, 99-115.	23.3	253
708	Printing and mechanical characterization of cellulose nanofibril materials. Cellulose, 2019, 26, 2639-2651.	2.4	17
709	From two-dimensional to three-dimensional structures: A superior thermal-driven actuator with switchable deformation behavior. Chemical Engineering Journal, 2019, 360, 680-685.	6.6	12
710	Bifurcation-based embodied logic and autonomous actuation. Nature Communications, 2019, 10, 128.	5.8	106
712	3Dâ€Printed Silicone Soft Architectures with Programmed Magneto apillary Reconfiguration. Advanced Materials Technologies, 2019, 4, 1800528.	3.0	62
713	Recent Progress in Biomimetic Anisotropic Hydrogel Actuators. Advanced Science, 2019, 6, 1801584.	5.6	403
714	Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 2019, 10, 183.	5.8	125

#	Article	IF	CITATIONS
715	Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics, 2019, 2, 26-35.	13.1	322
716	Additive manufacturing of soft robots. , 2019, , 335-359.		18
717	Deformation Behavior of Fiber-Reinforced Hydrogel Structures. International Journal of Structural Stability and Dynamics, 2019, 19, 1950032.	1.5	20
718	Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 798-818.	3.4	37
719	A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors. Macromolecular Materials and Engineering, 2019, 304, 1800501.	1.7	7
720	Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 151-159.	4.0	70
721	3Dâ€Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Advanced Healthcare Materials, 2019, 8, e1800788.	3.9	21
722	Siteâ€Specific Oxidationâ€Induced Stiffening and Shape Morphing of Soft Tough Hydrogels. Macromolecular Materials and Engineering, 2019, 304, 1800589.	1.7	8
723	Printing Birefringent Figures by Surface Tension-Directed Self-Assembly of a Cellulose Nanocrystal/Polymer Ink Components. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1538-1545.	4.0	18
724	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	2.1	206
725	Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties. Advanced Materials, 2019, 31, e1805282.	11.1	171
726	Self-Folded Three-Dimensional Graphene with a Tunable Shape and Conductivity. Nano Letters, 2019, 19, 461-470.	4.5	17
727	pH and Thermo Dualâ€Responsive Fluorescent Hydrogel Actuator. Macromolecular Rapid Communications, 2019, 40, e1800648.	2.0	73
728	Finite element modeling to predict the steady-state structural behavior of 4D textiles. Textile Reseach Journal, 2019, 89, 3484-3498.	1.1	13
729	Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290.	7.8	633
730	3D bioprinting of hydrogelâ€based biomimetic microenvironments. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1695-1705.	1.6	27
731	Photolithographically Patterned Hydrogels with Programmed Deformations. Chemistry - an Asian Journal, 2019, 14, 94-104.	1.7	25
732	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	2.6	68

#	ARTICLE	IF	CITATIONS
733	4D printing applications in medical field: A brief review. Clinical Epidemiology and Global Health, 2019, 7, 317-321.	0.9	130
734	Smart materials in additive manufacturing: state of the art and trends. Virtual and Physical Prototyping, 2019, 14, 1-18.	5.3	106
735	Investigations for Barium Titanate and Graphene Reinforced PVDF Matrix for 4D Applications. , 2020, , 366-375.		6
736	Multiscale modelling and homogenisation of fibre-reinforced hydrogels for tissue engineering. European Journal of Applied Mathematics, 2020, 31, 143-171.	1.4	25
737	Four-dimensional direct laser writing of reconfigurable compound micromachines. Materials Today, 2020, 32, 19-25.	8.3	131
738	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
739	Controlled Microstructural Architectures Based on Smart Fabrication Strategies. Advanced Functional Materials, 2020, 30, 1901760.	7.8	36
740	4D Printing: Future Insight in Additive Manufacturing. Metals and Materials International, 2020, 26, 564-585.	1.8	77
741	Organ-level vascularization: The Mars mission of bioengineering. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 2003-2007.	0.4	15
742	Biomaterials for Personalized Cell Therapy. Advanced Materials, 2020, 32, e1902005.	11.1	76
743	Spatiotemporal consistency-based adaptive hand-held video stabilization. Science China Information Sciences, 2020, 63, 1.	2.7	1
744	Inorganic Stimuliâ€Responsive Nanomembranes for Smallâ€Scale Actuators and Robots. Advanced Intelligent Systems, 2020, 2, 1900092.	3.3	7
745	Nature-Inspired Chemical Engineering. , 2020, , 19-31.		8
746	3D and 4D printing of pH-responsive and functional polymers and their composites. , 2020, , 85-117.		30
747	Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing., 2020,, 119-160.		16
748	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465.		12
749	Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospects of future research., 2020,, 527-560.		25
750	3D printing for membrane separation, desalination and water treatment. Applied Materials Today, 2020, 18, 100486.	2.3	122

#	ARTICLE	IF	CITATIONS
751	A novel leaf inspired hydrogel film based on fiber reinforcement as rapid steam sensor. Chemical Engineering Journal, 2020, 382, 122948.	6.6	33
752	Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479.	2.3	266
753	3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554.	3.9	25
754	Stimuli-responsive anisotropic actuation of melem-formaldehyde polymer. Materials Horizons, 2020, 7, 149-156.	6.4	13
755	Materials Forming, Machining and Post Processing. Materials Forming, Machining and Tribology, 2020,	0.7	4
756	4D Printing. Materials Forming, Machining and Tribology, 2020, , 93-107.	0.7	0
757	Printing Flexible and Hybrid Electronics for Human Skin and Eyeâ€Interfaced Health Monitoring Systems. Advanced Materials, 2020, 32, e1902051.	11.1	83
758	Polymernetzwerke: Von Kunststoffen und Gelen zu por \tilde{A}^\P sen Ger $\tilde{A}^1\!\!/\!4$ sten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
759	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
760	Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Materials Horizons, 2020, 7, 203-213.	6.4	70
761	Kidney-on-a-chip. , 2020, , 233-253.		7
762	Mechanical Assembly of Thermoâ€Responsive Polymerâ€Based Untethered Shapeâ€Morphing Structures. Macromolecular Materials and Engineering, 2020, 305, 1900568.	1.7	7
763	Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale. Advanced Functional Materials, 2020, 30, 1907377.	7.8	122
764	Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia, 2020, 101, 26-42.	4.1	216
765	Biofabrication for 3D tissue test systems. , 2020, , 243-267.		2
766	Dimension Reduction for Thin Films with Transversally Varying Prestrain: Oscillatory and Nonoscillatory Cases. Communications on Pure and Applied Mathematics, 2020, 73, 1880-1932.	1.2	10
767	High thermal conductive epoxy based composites fabricated by multi-material direct ink writing. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105684.	3.8	42
768	Programming the time into 3D printing: current advances and future directions in 4D printing. Multifunctional Materials, 2020, 3, 012001.	2.4	31

#	Article	IF	Citations
769	Topographic Mechanics and Applications of Liquid Crystalline Solids. Annual Review of Condensed Matter Physics, 2020, 11, 125-145.	5.2	58
770	Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Advanced Materials, 2020, 32, e1902516.	11.1	126
771	Recent Advances in 4D Bioprinting. Biotechnology Journal, 2020, 15, e1900086.	1.8	105
772	3D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers. , 2020, , 467-504.		4
773	Folding deformation modeling and simulation of 4D printed bilayer structures considering the thickness ratio. Mathematics and Mechanics of Solids, 2020, 25, 348-361.	1.5	10
774	Pros and Cons: Supramolecular or Macromolecular: What Is Best for Functional Hydrogels with Advanced Properties?. Advanced Materials, 2020, 32, e1906012.	11.1	78
775	Viewpoint: Homeostasis as Inspirationâ€"Toward Interactive Materials. Advanced Materials, 2020, 32, e1905554.	11.1	35
776	4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts. Materials and Design, 2020, 188, 108485.	3.3	57
777	Microfabrication Using Shapeâ€Transforming Soft Materials. Advanced Functional Materials, 2020, 30, 1908028.	7.8	43
778	Morphogenesis Deconstructed. The Frontiers Collection, 2020, , .	0.1	2
779	Multi-cell energy-absorbing structures with hollow columns inspired by the beetle elytra. Journal of Materials Science, 2020, 55, 4279-4291.	1.7	23
780	Recent progress in 4D printing of stimuli-responsive polymeric materials. Science China Technological Sciences, 2020, 63, 532-544.	2.0	61
781	Predicting the orientation of magnetic microgel rods for soft anisotropic biomimetic hydrogels. Polymer Chemistry, 2020, 11, 496-507.	1.9	29
782	Liquid Crystal Networks on Thermoplastics: Reprogrammable Photoâ€Responsive Actuators. Angewandte Chemie - International Edition, 2020, 59, 4532-4536.	7.2	84
783	Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Reviews of Modern Plasma Physics, 2020, 4, 1.	2.2	16
784	Reactive spinning to achieve nanocomposite gel fibers: from monomer to fiber dynamically with enhanced anisotropy. Materials Horizons, 2020, 7, 811-819.	6.4	29
785	Simultaneous control of Gaussian curvature and buckling direction by swelling of asymmetric trilayer hydrogel hybrids. Soft Matter, 2020, 16, 688-694.	1.2	13
786	Combination and processing keratin with lignin as biocomposite materials for additive manufacturing technology. Acta Biomaterialia, 2020, 104, 95-103.	4.1	39

#	Article	IF	CITATIONS
787	Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 2020, 232, 119739.	5.7	191
788	Liquid crystalline 3D printing for superstrong graphene microlattices with high density. Carbon, 2020, 159, 166-174.	5. 4	21
789	Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. European Polymer Journal, 2020, 124, 109448.	2.6	32
790	Nanofabrication approaches for functional three-dimensional architectures. Nano Today, 2020, 30, 100825.	6.2	37
791	Reprogrammable 3D Shaping from Phase Change Microstructures in Elastic Composites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4014-4021.	4.0	6
792	Stimuli induced cellulose nanomaterials alignment and its emerging applications: A review. Carbohydrate Polymers, 2020, 230, 115609.	5.1	46
793	3D Printing in Medicine for Preoperative Surgical Planning: A Review. Annals of Biomedical Engineering, 2020, 48, 536-555.	1.3	105
794	Mechanical characteristics of tunable uniaxial aligned carbon nanotubes induced by robotic extrusion technique for hydrogel nanocomposite. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105707.	3.8	13
795	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	7.8	59
796	Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Advanced Materials, 2020, 32, e1906657.	11.1	367
798	Light-weight/defect-tolerant topologically self-interlocking polymeric structure by fused deposition modeling. Composites Part B: Engineering, 2020, 183, 107700.	5.9	11
799	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
800	Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Advanced Functional Materials, 2020, 30, 1904127.	7.8	54
801	Flexural, pull-out, and fractured surface characterization for multi-material 3D printed functionally graded prototype. Journal of Composite Materials, 2020, 54, 2087-2099.	1.2	22
802	Analytical study on growth-induced bending deformations of multi-layered hyperelastic plates. International Journal of Non-Linear Mechanics, 2020, 119, 103370.	1.4	18
803	Opportunities and challenges of translational 3D bioprinting. Nature Biomedical Engineering, 2020, 4, 370-380.	11.6	309
804	A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112741.	3.4	24
805	4D printed anisotropic structures with tailored mechanical behaviors and shape memory effects. Composites Science and Technology, 2020, 186, 107935.	3.8	49

#	Article	IF	CITATIONS
807	3D Printing of Textiles: Potential Roadmap to Printing with Fibers. Advanced Materials, 2020, 32, e1902086.	11.1	100
808	Responsive and Foldable Soft Materials. Trends in Chemistry, 2020, 2, 107-122.	4.4	46
809	Formalizing shape-change: Three-dimensional printed shapes and hygroscopic material transformations. International Journal of Architectural Computing, 2020, 18, 67-83.	0.9	10
810	Growth and patterns of residually stressed core–shell soft sphere. International Journal of Non-Linear Mechanics, 2020, 127, 103594.	1.4	7
811	Smart Structures—Additive Manufacturing of Stimuli-Responsive Hydrogels for Adaptive Packings. Industrial & Damp; Engineering Chemistry Research, 2020, 59, 19458-19464.	1.8	5
812	Nanocellulose: a promising green treasure from food wastes to available food materials. Critical Reviews in Food Science and Nutrition, 2022, 62, 989-1002.	5.4	51
813	Shape Programming by Modulating Actuation over Hierarchical Length Scales. Advanced Materials, 2020, 32, e2004515.	11.1	7
814	Tailoring the mechanical properties of 3D-printed continuous flax/PLA biocomposites by controlling the slicing parameters. Composites Part B: Engineering, 2020, 203, 108474.	5.9	55
815	Whisker orientation controls wear of 3D-printed epoxy nanocomposites. Additive Manufacturing, 2020, 36, 101515.	1.7	7
816	Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations. Advanced Materials, 2020, 32, e2005567.	11.1	89
817	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
818	Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials. Engineering, 2020, 6, 1232-1243.	3.2	41
819	Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels. ACS Applied Materials & English (2008), 12, 50068-50076.	4.0	26
820	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
821	3D and 4D Printing of Multistable Structures. Applied Sciences (Switzerland), 2020, 10, 7254.	1.3	14
822	High strength and low swelling composite hydrogels from gelatin and delignified wood. Scientific Reports, 2020, 10, 17842.	1.6	14
823	Processing advances in liquid crystal elastomers provide a path to biomedical applications. Journal of Applied Physics, 2020, 128, 140901.	1.1	59
824	Laws of 4D Printing. Engineering, 2020, 6, 1035-1055.	3.2	40

#	Article	IF	CITATIONS
825	Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation. Nature Communications, 2020, 11, 5166.	5.8	148
826	3D bioprinting and craniofacial regeneration. Journal of Oral Biology and Craniofacial Research, 2020, 10, 650-659.	0.8	22
827	Lanthanide-Ion-Coordinated Supramolecular Hydrogel Inks for 3D Printed Full-Color Luminescence and Opacity-Tuning Soft Actuators. Chemistry of Materials, 2020, 32, 8868-8876.	3.2	65
828	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	3.1	27
829	A review of 3D printing processes and materials for soft robotics. Rapid Prototyping Journal, 2020, 26, 1345-1361.	1.6	116
830	A Novel Paper-Based Capacitance Mast Cell Sensor for Evaluating Peanut Allergen Protein Ara h 2. Food Analytical Methods, 2020, 13, 1993-2001.	1.3	8
831	Boolean AND/OR mechanical logic using multi-plane mechanical metamaterials. Extreme Mechanics Letters, 2020, 40, 100865.	2.0	24
832	Improving Bioprinted Volumetric Tumor Microenvironments In Vitro. Trends in Cancer, 2020, 6, 745-756.	3.8	38
833	Tapered elastic \tilde{A}_{i}^{\dagger} as a route for axisymmetric morphing structures. Soft Matter, 2020, 16, 7739-7750.	1.2	32
834	Controlled helical deformation of programmable bilayer structures: design and fabrication. Smart Materials and Structures, 2020, 29, 085042.	1.8	17
835	Biofabrication strategies for engineering heterogeneous artificial tissues. Additive Manufacturing, 2020, 36, 101459.	1.7	15
836	3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nature Communications, 2020, 11, 3462.	5.8	124
837	Light-driven complex 3D shape morphing of glassy polymers by resolving spatio-temporal stress confliction. Scientific Reports, 2020, 10, 10840.	1.6	5
838	4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Biofabrication, 2020, 12, 045018.	3.7	58
839	Active Surface with Dynamic Microstructures and Hierarchical Gradient Enabled by in situ Pneumatic Control. Micromachines, 2020, 11, 992.	1.4	2
840	Trends in biomaterials for three-dimensional cancer modeling. , 2020, , 3-41.		3
841	Hexagon-Twist Frequency Reconfigurable Antennas via Multi-Material Printed Thermo-Responsive Origami Structures. Frontiers in Materials, 2020, 7, .	1.2	11
842	Design and analysis of 2D/3D negative hydration expansion Metamaterial driven by hydrogel. Materials and Design, 2020, 196, 109084.	3.3	22

#	Article	IF	CITATIONS
843	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	5.2	106
844	Large Curvature Folding Strategies of Butterfly Proboscis. Journal of Bionic Engineering, 2020, 17, 1239-1250.	2.7	2
845	Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomaterials Science and Engineering, 2021, 7, 4009-4026.	2.6	30
846	Design and applications of light responsive liquid crystal polymer thin films. Applied Physics Reviews, 2020, 7, .	5.5	44
847	Defective nematogenesis: Gauss curvature in programmable shape-responsive sheets with topological defects. Soft Matter, 2020, 16, 10935-10945.	1.2	15
848	Recent Progress on Polymer Materials for Additive Manufacturing. Advanced Functional Materials, 2020, 30, 2003062.	7.8	364
849	A Photoresponsive Hydrogel with Enhanced Photoefficiency and the Decoupled Process of Light Activation and Shape Changing for Precise Geometric Control. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38647-38654.	4.0	17
850	Programmable 4D-Printed Responsive Structures. Key Engineering Materials, 0, 856, 317-322.	0.4	4
851	Programming stiff inflatable shells from planar patterned fabrics. Soft Matter, 2020, 16, 7898-7903.	1.2	27
852	Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100001.	1.6	45
853	Oxygen inhibition induced hydrophilic-hydrophobic surface for self-assembled droplet microarrays. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	0
854	Direct ink writing advances in multi-material structures for a sustainable future. Journal of Materials Chemistry A, 2020, 8, 15646-15657.	5.2	167
855	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
856	3D printing: An emerging opportunity for soil science. Geoderma, 2020, 378, 114588.	2.3	15
857	Ingenious humidity-powered micro-worm with asymmetric biped from single hydrogel. Sensors and Actuators B: Chemical, 2020, 322, 128620.	4.0	15
858	Reconfiguring Gaussian Curvature of Hydrogel Sheets with Photoswitchable Host–Guest Interactions. ACS Macro Letters, 2020, 9, 1172-1177.	2.3	24
859	3Dâ€Printed Woodâ€Fiber Reinforced Architected Cellular Composites. Advanced Engineering Materials, 2020, 22, 2000565.	1.6	22
860	Wood and the Activity of Dead Tissue. Advanced Materials, 2021, 33, e2001412.	11.1	29

#	Article	IF	Citations
861	A blend of stretching and bending in nematic polymer networks. Soft Matter, 2020, 16, 8877-8892.	1.2	10
862	3D Printing of Ordered Mesoporous Silica Complex Structures. Nano Letters, 2020, 20, 6598-6605.	4.5	30
863	Programmable Porous Polymers via Direct Bubble Writing with Surfactant-Free Inks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42048-42055.	4.0	22
864	Wet esterification of never-dried cellulose: a simple process to surface-acetylated cellulose nanofibers. Green Chemistry, 2020, 22, 5605-5609.	4.6	41
865	Deciphering, Designing, and Realizing Selfâ€Folding Biomimetic Microstructures Using a Massâ€Spring Model and Inkjetâ€Printed, Selfâ€Folding Hydrogels. Advanced Functional Materials, 2020, 30, 2003959.	7.8	4
866	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	11.1	77
867	Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Advanced Science, 2020, 7, 2001379.	5.6	171
868	Versatile Rolling Origami to Fabricate Functional and Smart Materials. Cell Reports Physical Science, 2020, 1, 100244.	2.8	11
869	Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 2020, 7, 192210.	1.1	12
870	Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. European Polymer Journal, 2020, 141, 110099.	2.6	13
871	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	11.1	75
872	An accurate finite element approach for programming 4D-printed self-morphing structures produced by fused deposition modeling. Mechanics of Materials, 2020, 151, 103628.	1.7	41
873	Recent advances and challenges in materials for 3D bioprinting. Progress in Natural Science: Materials International, 2020, 30, 618-634.	1.8	77
874	Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules, 2020, 25, 4910.	1.7	59
875	Design and closed loop control of a 3D printed soft actuator. , 2020, , .		9
876	Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44195-44204.	4.0	77
877	Electroosmosis-Driven Hydrogel Actuators Using Hydrophobic/Hydrophilic Layer-By-Layer Assembly-Induced Crack Electrodes. ACS Nano, 2020, 14, 11906-11918.	7.3	31
878	Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chemical Communications, 2020, 56, 13731-13747.	2.2	30

#	Article	IF	CITATIONS
879	Three-dimensional printing of functionally graded liquid crystal elastomer. Science Advances, 2020, 6,	4.7	129
880	Shape memory effect and rapid reversible actuation of nanocomposite hydrogels with electrochemically controlled local metal ion coordination and crosslinking. Journal of Materials Chemistry B, 2020, 8, 9679-9685.	2.9	14
881	Extending Cellulose-Based Polymers Application in Additive Manufacturing Technology: A Review of Recent Approaches. Polymers, 2020, 12, 1876.	2.0	44
882	Intelligent Polymerâ€Based Bioinspired Actuators: From Monofunction to Multifunction. Advanced Intelligent Systems, 2020, 2, 2000138.	3.3	33
883	3D-printed programmable tensegrity for soft robotics. Science Robotics, 2020, 5, .	9.9	104
884	4D Printing: A Review on Recent Progresses. Micromachines, 2020, 11, 796.	1.4	115
885	Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chemical Reviews, 2020, 120, 11028-11055.	23.0	552
886	Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters. ACS Applied Bio Materials, 2020, 3, 6897-6907.	2.3	16
887	Simultaneous Regeneration of Bone and Nerves Through Materials and Architectural Design: Are We There Yet?. Advanced Functional Materials, 2020, 30, 2003542.	7.8	17
888	Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. National Science Review, 2021, 8, nwaa209.	4.6	36
889	4D Printing Auxetic Metamaterials with Tunable, Programmable, and Reconfigurable Mechanical Properties. Advanced Functional Materials, 2020, 30, 2004226.	7.8	152
890	Effect of 3D Printing Parameters on Selfâ€Driven Deformation Characteristics of Intelligent Hydrogel Actuators. ChemistrySelect, 2020, 5, 10367-10373.	0.7	1
891	Femtosecond laser programmed artificial musculoskeletal systems. Nature Communications, 2020, 11, 4536.	5.8	117
892	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Advanced Functional Materials, 2020, 30, 2002759.	7.8	148
893	Foundations for Soft, Smart Matter by Active Mechanical Metamaterials. Advanced Science, 2020, 7, 2001384.	5.6	52
894	Printed hydrogel nanocomposites: fine-tuning nanostructure for anisotropic mechanical and conductive properties. Advanced Composites and Hybrid Materials, 2020, 3, 315-324.	9.9	44
895	Additive manufacturing of silica aerogels. Nature, 2020, 584, 387-392.	13.7	323
896	Inflationary routes to Gaussian curved topography. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200047.	1.0	10

#	Article	IF	Citations
897	Printing and Programming of In-Situ Actuators. , 2020, , .		1
898	4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field. Sustainability, 2020, 12, 10628.	1.6	50
899	Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Applied Materials & Deformation &	4.0	11
900	Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nature Communications, 2020, 11 , 6325.	5.8	113
901	Microfiber-Shaped Programmable Materials with Stimuli-Responsive Hydrogel. Soft Robotics, 2022, 9, 89-97.	4.6	11
902	Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 586406.	2.0	66
903	Controlled Arrangement of Nanocellulose in Polymeric Matrix: From Reinforcement to Functionality. ACS Nano, 2020, 14, 16169-16179.	7. 3	87
904	Actuating Supramolecular Shape Memorized Hydrogel Toward Programmable Shape Deformation. Small, 2020, 16, e2005461.	5.2	68
905	Water-responsive materials for sustainable energy applications. Journal of Materials Chemistry A, 2020, 8, 15227-15244.	5.2	57
906	Investigation on the Functionality of Thermoresponsive Origami Structures. Advanced Engineering Materials, 2020, 22, 2000296.	1.6	36
907	Printability Optimization of Gelatin-Alginate Bioinks by Cellulose Nanofiber Modification for Potential Meniscus Bioprinting. Journal of Nanomaterials, 2020, 2020, 1-13.	1.5	19
908	Reconfigurable and Latchable Shapeâ€Morphing Dielectric Elastomers Based on Local Stiffness Modulation. Advanced Functional Materials, 2020, 30, 2001597.	7.8	42
909	Main-Chain Liquid Crystalline Hydrogels that Support 3D Stem Cell Culture. Biomacromolecules, 2020, 21, 2365-2375.	2.6	3
910	Changes in Filament Microstructures During Direct Ink Writing with a Yield Stress Fluid Support. ACS Applied Polymer Materials, 2020, 2, 2528-2540.	2.0	12
911	Four-dimensional metal-organic frameworks. Nature Communications, 2020, 11, 2690.	5.8	109
912	Nano/microstructures of shape memory polymers: from materials to applications. Nanoscale Horizons, 2020, 5, 1155-1173.	4.1	63
913	3D printing and growth induced bending based on PET-RAFT polymerization. Polymer Chemistry, 2020, 11, 4084-4093.	1.9	32
914	Microstructural evolution and failure in short fiber soft composites: Experiments and modeling. Journal of the Mechanics and Physics of Solids, 2020, 141, 103973.	2.3	16

#	Article	IF	CITATIONS
915	Formulation of Sugar/Hydrogel Inks for Rapid Thermal Response 4D Architectures with Sugar-derived Macropores. Scientific Reports, 2020, 10, 7527.	1.6	29
916	Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms. Integrative and Comparative Biology, 2020, 60, 886-895.	0.9	29
917	4D Printing Strain Selfâ€Sensing and Temperature Selfâ€Sensing Integrated Sensor–Actuator with Bioinspired Gradient Gaps. Advanced Science, 2020, 7, 2000584.	5.6	72
918	Fabrication of biocompatible and bioabsorbable polycaprolactone/ magnesium hydroxide 3D printed scaffolds: Degradation and in vitro osteoblasts interactions. Composites Part B: Engineering, 2020, 197, 108158.	5.9	64
919	Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28568-28575.	4.0	20
920	Evolutionary Algorithmâ€Guided Voxelâ€Encoding Printing of Functional Hardâ€Magnetic Soft Active Materials. Advanced Intelligent Systems, 2020, 2, 2000060.	3.3	93
921	4D Biofabrication of fibrous artificial nerve graft for neuron regeneration. Biofabrication, 2020, 12, 035027.	3.7	38
922	Real-time characterization of hydrogel viscoelastic properties and sol-gel phase transitions using cantilever sensors. Journal of Rheology, 2020, 64, 837-850.	1.3	11
923	4D Printing of Hydrogels: A Review. Advanced Functional Materials, 2020, 30, 1910606.	7.8	224
924	Programmable Reversible Shape Transformation of Hydrogels Based on Transient Structural Anisotropy. Advanced Materials, 2020, 32, e2001693.	11.1	77
925	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	23.0	161
926	Recent progress of morphable 3D mesostructures in advanced materials. Journal of Semiconductors, 2020, 41, 041604.	2.0	9
927	Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14602-14608.	3.3	63
928	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	11.1	117
929	3D printing of Fe3O4 functionalized graphene-polymer (FGP) composite microarchitectures. Carbon, 2020, 167, 278-284.	5.4	58
930	Actuators assembled from hydrogel blocks of various shapes via condensation reactions. Materials Chemistry and Physics, 2020, 253, 123332.	2.0	9
931	Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing. Additive Manufacturing, 2020, 34, 101385.	1.7	38
932	Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules, 2020, 21, 2949-2965.	2.6	17

#	ARTICLE	IF	CITATIONS
933	Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density. Soft Matter, 2020, 16, 6379-6388.	1.2	26
934	Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28692-28699.	4.0	61
935	Electron Irradiation Driven Nanohands for Sequential Origami. Nano Letters, 2020, 20, 4975-4984.	4.5	9
936	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51
937	Untethered, ultra-light soft actuator based on positively charged 3D fluffy silica micro-nanofibers by electrospinning. Journal of Materials Science, 2020, 55, 12789-12800.	1.7	3
938	On 4D printing as a revolutionary fabrication technique for smart structures. Smart Materials and Structures, 2020, 29, 083001.	1.8	41
939	Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. Journal of Advanced Ceramics, 2020, 9, 312-319.	8.9	61
940	Comparative study of robotic artificial actuators and biological muscle. Advances in Mechanical Engineering, 2020, 12, 168781402093340.	0.8	41
941	Large deformation near a crack tip in a fiber-reinforced neo-Hookean sheet. Journal of the Mechanics and Physics of Solids, 2020, 143, 104049.	2.3	10
942	Modular 4D Printing via Interfacial Welding of Digital Light-Controllable Dynamic Covalent Polymer Networks. Matter, 2020, 2, 1187-1197.	5.0	94
943	Shape-Programmed Fabrication and Actuation of Magnetically Active Micropost Arrays. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17113-17120.	4.0	44
944	Tailoring the Dynamic Actuation of 3Dâ€Printed Mechanical Metamaterials through Inherent and Extrinsic Instabilities. Advanced Engineering Materials, 2020, 22, 1901586.	1.6	13
945	Hydrogelâ€Based Artificial Muscles: Overview and Recent Progress. Advanced Intelligent Systems, 2020, 2, 1900135.	3.3	103
946	Printing on liquid elastomers. Soft Matter, 2020, 16, 3137-3142.	1.2	7
947	Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels. Biofabrication, 2020, 12, 035007.	3.7	25
948	Additive Manufacturing of Epoxy Resins: Materials, Methods, and Latest Trends. Industrial & Engineering Chemistry Research, 2020, 59, 6375-6390.	1.8	49
949	<scp>Highâ€Strength</scp> and Tough Crystalline <scp>Polysaccharideâ€Based</scp> Materials ^{â€} . Chinese Journal of Chemistry, 2020, 38, 761-771.	2.6	12
950	4D printed shape memory polymers and their structures for biomedical applications. Science China Technological Sciences, 2020, 63, 545-560.	2.0	85

#	Article	IF	CITATIONS
951	Anisotropic nanocomposite hydrogels with enhanced actuating performance through aligned polymer networks. Science China Materials, 2020, 63, 832-841.	3.5	34
952	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	16.0	113
953	Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7622-7632.	3.3	82
954	A Material Combination Concept to Realize 4D Printed Products with Newly Emerging Property/Functionality. Advanced Science, 2020, 7, 1903208.	5.6	41
955	Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications, 2020, 24, 101024.	0.9	76
956	Rapid Volatilization Induced Mechanically Robust Shape-Morphing Structures toward 4D Printing. ACS Applied Materials & Diterfaces, 2020, 12, 17979-17987.	4.0	50
957	Hydrogel Actuator with a Builtâ€in Stimulator Using Liquid Metal for Local Control. Advanced Intelligent Systems, 2020, 2, 2000008.	3.3	17
958	Multi-responsive hydrogel structures from patterned droplet networks. Nature Chemistry, 2020, 12, 363-371.	6.6	148
959	Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B, 2020, 8, 2930-2950.	2.9	124
960	Programmable patterns in a DNA-based reaction–diffusion system. Soft Matter, 2020, 16, 3555-3563.	1.2	17
961	Healable, memorizable, and transformable lattice structures made of stiff polymers. NPG Asia Materials, 2020, 12 , .	3.8	18
962	3D printing of conducting polymers. Nature Communications, 2020, 11, 1604.	5.8	568
963	Fabrication of Bioinspired Hydrogels: Challenges and Opportunities. Macromolecules, 2020, 53, 2769-2782.	2.2	185
964	Origami-inspired self-deployment 4D printed honeycomb sandwich structure with large shape transformation. Smart Materials and Structures, 2020, 29, 065015.	1.8	41
965	Lightâ€Coded Digital Crystallinity Patterns Toward Bioinspired 4D Transformation of Shapeâ€Memory Polymers. Advanced Functional Materials, 2020, 30, 2000522.	7.8	55
966	Blueprinting Photothermal Shapeâ€Morphing of Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2000609.	11.1	110
967	Elastic buckling of a free-standing annulus subjected to partial shrinkage. International Journal of Mechanical Sciences, 2020, 177, 105610.	3.6	0
968	Miniaturization of worm-type soft robot actuated by magnetic field. Japanese Journal of Applied Physics, 2020, 59, SIIL04.	0.8	19

#	Article	IF	CITATIONS
969	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	11.1	144
970	Materials as Machines. Advanced Materials, 2020, 32, e1906564.	11.1	213
971	The chemistry behind 4D printing. Applied Materials Today, 2020, 19, 100611.	2.3	42
972	A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 2020, 194, 108911.	3.3	146
973	Direct Ink Writing Based 4D Printing of Materials and Their Applications. Advanced Science, 2020, 7, 2001000.	5.6	168
974	Anisotropic, porous hydrogels templated by lyotropic chromonic liquid crystals. Journal of Materials Chemistry B, 2020, 8, 6988-6998.	2.9	10
975	Additive manufacturing technologies for polymer composites: State-of-the-art and future trends. , 2020, , $3-15$.		1
976	Smart polymers and nanocomposites for 3D and 4D printing. Materials Today, 2020, 40, 215-245.	8.3	144
977	Bioengineering of Human Corneal Endothelial Cells from Single- to Four-Dimensional Cultures. Current Ophthalmology Reports, 2020, 8, 172-184.	0.5	2
978	Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances, 2020, 8, 100088.	2.5	67
979	Chemically controlled shape-morphing of elastic sheets. Materials Horizons, 2020, 7, 2314-2327.	6.4	13
980	Shape Memory Silicone Using Phase-Changing Inclusions. , 2020, , .		3
981	Material aspects during additive manufacturing of nano-cellulose composites., 2020,, 409-428.		2
982	Indentation experiments and simulations of nonuniformly photocrosslinked polymers in 3D printed structures. Additive Manufacturing, 2020, 35, 101420.	1.7	8
983	Recent advances in multi-material additive manufacturing: methods and applications. Current Opinion in Chemical Engineering, 2020, 28, 158-166.	3.8	130
984	Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Materials Today Bio, 2020, 7, 100058.	2.6	54
985	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17
986	Photothermal actuated origamis based on graphene oxide–cellulose programmable bilayers. Nanoscale Horizons, 2020, 5, 730-738.	4.1	32

#	ARTICLE	IF	CITATIONS
987	3D and 4D printing for optics and metaphotonics. Nanophotonics, 2020, 9, 1139-1160.	2.9	48
988	3D Assembly of Graphene Nanomaterials for Advanced Electronics. Advanced Intelligent Systems, 2020, 2, 1900151.	3.3	10
989	A constitutive model of microfiber reinforced anisotropic hydrogels: With applications to wood-based hydrogels. Journal of the Mechanics and Physics of Solids, 2020, 138, 103893.	2.3	24
990	Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuliâ€Responsive Actuation. Advanced Science, 2020, 7, 1903048.	5.6	51
991	Dynamic Bioinks to Advance Bioprinting. Advanced Healthcare Materials, 2020, 9, e1901798.	3.9	141
992	Multiphase matrix of silica, culture medium and air for 3D mammalian cell culture. Cytotechnology, 2020, 72, 271-282.	0.7	6
993	Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Advanced Healthcare Materials, 2020, 9, e1901255.	3.9	35
994	A phase evolution based constitutive model for shape memory polymer and its application in 4D printing. Smart Materials and Structures, 2020, 29, 055016.	1.8	30
995	4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12068-12074.	4.0	44
996	Functional Biomaterials for Bone Regeneration: A Lesson in Complex Biology. Advanced Functional Materials, 2020, 30, 1909874.	7.8	122
997	Investigation into hydroxypropyl-methylcellulose-reinforced polylactide composites for fused deposition modelling. Industrial Crops and Products, 2020, 146, 112174.	2.5	21
998	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
999	4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12176-12185.	4.0	110
1000	Carbon nanotubes promote cell migration in hydrogels. Scientific Reports, 2020, 10, 2543.	1.6	40
1001	Bistable structures with controllable wrinkled surface. Extreme Mechanics Letters, 2020, 36, 100653.	2.0	13
1002	Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nature Communications, 2020, 11 , 963 .	5.8	36
1003	Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Engineering - Part A, 2020, 26, 318-338.	1.6	104
1004	Ionic Strength and Thermal Dualâ€Responsive Bilayer Hollow Spherical Hydrogel Actuator. Macromolecular Rapid Communications, 2020, 41, e1900543.	2.0	29

#	Article	IF	Citations
1005	Spatial Manipulation and Integration of Supramolecular Filaments on Hydrogel Substrates towards Advanced Soft Devices. Angewandte Chemie, 2020, 132, 8679-8685.	1.6	1
1006	Design of a continuous fiber trajectory for 4D printing of thermally stimulated composite structures. Science China Technological Sciences, 2020, 63, 571-577.	2.0	12
1007	Reviewâ€"Recent Progresses in 4D Printing of Gel Materials. Journal of the Electrochemical Society, 2020, 167, 037563.	1.3	45
1008	Spatial Manipulation and Integration of Supramolecular Filaments on Hydrogel Substrates towards Advanced Soft Devices. Angewandte Chemie - International Edition, 2020, 59, 8601-8607.	7.2	7
1009	An analytical model for shape morphing through combined bending and twisting in piezo composites. Mechanics of Materials, 2020, 144, 103350.	1.7	10
1010	Pneumatic Coiling Actuator Inspired by the Awns of Erodium cicutarium. Frontiers in Robotics and Al, 2020, 7, 17.	2.0	13
1011	Computational design of shape-programmable gel plates. Mechanics of Materials, 2020, 144, 103313.	1.7	5
1012	Programming temporal morphing of self-actuated shells. Nature Communications, 2020, 11, 237.	5.8	65
1013	Directâ€Ink Written Shapeâ€Morphing Film with Rapid and Programmable Multimotion. Advanced Materials Technologies, 2020, 5, 1900974.	3.0	22
1014	Biomimetic Nonuniform, Dual-Stimuli Self-Morphing Enabled by Gradient Four-Dimensional Printing. ACS Applied Materials & Diterfaces, 2020, 12, 6351-6361.	4.0	54
1015	Biopolymeric photonic structures: design, fabrication, and emerging applications. Chemical Society Reviews, 2020, 49, 983-1031.	18.7	138
1016	Stack-Based Hydrogels with Mechanical Enhancement, High Stability, Self-Healing Property, and Thermoplasticity from Poly(<scp>l</scp> -glutamic acid) and Ureido-Pyrimidinone. ACS Biomaterials Science and Engineering, 2020, 6, 1715-1726.	2.6	14
1017	Additive manufacturing of multidirectional preforms and composites: from three-dimensional to four-dimensional. Materials Today Advances, 2020, 5, 100045.	2.5	22
1018	Shape-morphing living composites. Science Advances, 2020, 6, eaax8582.	4.7	53
1019	Non-equilibrium signal integration in hydrogels. Nature Communications, 2020, 11, 386.	5.8	38
1020	Liquid Crystal Networks on Thermoplastics: Reprogrammable Photoâ€Responsive Actuators. Angewandte Chemie, 2020, 132, 4562-4566.	1.6	11
1021	Hydrogel machines. Materials Today, 2020, 36, 102-124.	8.3	625
1022	Mechanics-guided design of shape-morphing composite sheets with hard and soft materials. Extreme Mechanics Letters, 2020, 35, 100643.	2.0	8

#	Article	IF	CITATIONS
1023	Uniaxial stretching mechanics of cellular flexible metamaterials. Extreme Mechanics Letters, 2020, 35, 100637.	2.0	15
1024	Four-dimensional micro-building blocks. Science Advances, 2020, 6, eaav8219.	4.7	81
1025	Keeping It Together: Interleaved Kirigami Extension Assembly. Physical Review X, 2020, 10, .	2.8	6
1027	Freeform Microfluidic Networks Encapsulated in Laserâ€Printed 3D Macroscale Glass Objects. Advanced Materials Technologies, 2020, 5, 1900989.	3.0	29
1028	Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Carbohydrate Polymers, 2020, 234, 115898.	5.1	45
1029	Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydrate Polymers, 2020, 235, 115933.	5.1	57
1030	Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nature Communications, 2020, 11, 753.	5.8	114
1031	Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing, 2020, 2, 022004.	6.3	213
1032	Bioprintable tough hydrogels for tissue engineering applications. Advances in Colloid and Interface Science, 2020, 281, 102163.	7.0	73
1033	Soft actuator with large volumetric change using vapor–liquid phase transition. Japanese Journal of Applied Physics, 2020, 59, SIIL08.	0.8	9
1034	Recent Progress on Celluloseâ€Based Ionic Compounds for Biomaterials. Advanced Materials, 2021, 33, e2000717.	11.1	70
1035	4D Printed Hydrogels: Fabrication, Materials, and Applications. Advanced Materials Technologies, 2020, 5, 2000034.	3.0	75
1036	Quantitative Immersability of Riemann Metrics and the Infinite Hierarchy of Prestrained Shell Models. Archive for Rational Mechanics and Analysis, 2020, 236, 1677-1707.	1.1	8
1037	Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. Journal of Polymers and the Environment, 2020, 28, 1345-1367.	2.4	110
1038	Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 2020, 37, 126-141.	8.3	134
1039	Self-Helical Fiber for Glucose-Responsive Artificial Muscle. ACS Applied Materials & Co. 2020, 12, 20228-20233.	4.0	37
1040	Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation. Scientific Reports, 2020, 10, 6258.	1.6	73
1041	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190

#	ARTICLE	IF	Citations
1042	Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication, 2020, 12, 035023.	3.7	43
1043	Design of 3D Printed Programmable Horseshoe Lattice Structures Based on a Phase-Evolution Model. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22146-22156.	4.0	27
1044	Energy Consumption Modeling of 4D Printing Thermal-responsive Polymers with Integrated Compositional Design for Material. Additive Manufacturing, 2020, 34, 101223.	1.7	15
1045	4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds. ACS Applied Materials & Star Scaffolds. ACS Applied Materials & Star Scaffolds. ACS	4.0	70
1046	A Review of 3D Printing Technologies for Soft Polymer Materials. Advanced Functional Materials, 2020, 30, 2000187.	7.8	379
1047	4D printing and beyond: where to from here?., 2020, , 139-157.		3
1048	100th Anniversary of Macromolecular Science Viewpoint: Macromolecular Materials for Additive Manufacturing. ACS Macro Letters, 2020, 9, 627-638.	2.3	69
1049	Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chemical Reviews, 2020, 120, 10695-10743.	23.0	283
1050	Kirigamiâ€Designâ€Enabled Hydrogel Multimorphs with Application as a Multistate Switch. Advanced Materials, 2020, 32, e2000781.	11.1	93
1051	Computational and Experimental Design Exploration of 3Dâ€Printed Soft Pneumatic Actuators. Advanced Intelligent Systems, 2020, 2, 2000013.	3.3	8
1052	Study on intelligent deformation characteristics of temperatureâ€driven hydrogel actuators prepared via molding and <scp>3D</scp> printing. Polymers for Advanced Technologies, 2020, 31, 1980-1993.	1.6	5
1053	Novel bioinks from UV-responsive norbornene-functionalized carboxymethyl cellulose macromers. Bioprinting, 2020, 18, e00083.	2.9	22
1054	Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105903.	3.8	47
1055	Engineering crack tortuosity in printed polymer–polymer composites through ordered pores. Materials Horizons, 2020, 7, 1854-1860.	6.4	7
1056	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	2.8	52
1057	Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Progress in Materials Science, 2021, 115, 100702.	16.0	402
1058	Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 2021, 403, 126162.	6.6	163
1059	An analysis of the methods and materials for 4-dimensional printing. Materials Today: Proceedings, 2021, 38, 2167-2173.	0.9	6

#	Article	IF	CITATIONS
1060	3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomaterialia, 2021, 119, 75-88.	4.1	110
1061	Hydration-induced reversible deformation of biological materials. Nature Reviews Materials, 2021, 6, 264-283.	23.3	58
1062	Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. Additive Manufacturing, 2021, 37, 101701.	1.7	24
1063	Evaluation in 4D printing – A review. Materials Today: Proceedings, 2021, 45, 1433-1437.	0.9	21
1064	Mechanical Sciences., 2021,,.		1
1065	Photoâ€curing <scp>3D</scp> printing robust elastomers with ultralow viscosity resin. Journal of Applied Polymer Science, 2021, 138, 49965.	1.3	8
1066	Building SiC-based composites from polycarbosilane-derived 3D-SiC scaffolds via polymer impregnation and pyrolysis (PIP). Journal of the European Ceramic Society, 2021, 41, 1121-1131.	2.8	23
1067	A review on spacers and membranes: Conventional or hybrid additive manufacturing?. Water Research, 2021, 188, 116497.	5.3	46
1068	Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials, 2021, 267, 120465.	5.7	22
1069	Laser-based additively manufactured polymers: a review on processes and mechanical models. Journal of Materials Science, 2021, 56, 961-998.	1.7	65
1070	Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Carbohydrate Polymers, 2021, 253, 117217.	5.1	81
1071	A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics, 2021, 11, 48-63.	4.6	69
1072	3D and 4D Printing of Functional and Smart Composite Materials., 2021,, 402-419.		14
1073	A 3D Printed Morphing Nozzle to Control Fiber Orientation during Composite Additive Manufacturing. Advanced Materials Technologies, 2021, 6, .	3.0	21
1074	Multimaterial direct 4D printing of high stiffness structures with large bending curvature. Extreme Mechanics Letters, 2021, 42, 101122.	2.0	41
1075	Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 3390-3396.	7.2	213
1076	Smart Polymers for Microscale Machines. Advanced Functional Materials, 2021, 31, 2007125.	7.8	48
1077	Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release, 2021, 329, 237-256.	4.8	45

#	Article	IF	CITATIONS
1078	Recent progress in the design and fabrication of multifunctional structures based on metamaterials. Current Opinion in Solid State and Materials Science, 2021, 25, 100883.	5.6	65
1079	3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Advanced Materials, 2021, 33, e2004425.	11.1	48
1080	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie, 2021, 133, 5596-5603.	1.6	18
1081	Hydrogel-Based Sensor Networks: Compositions, Properties, and Applicationsâ€"A Review. ACS Applied Bio Materials, 2021, 4, 140-162.	2.3	139
1082	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie - International Edition, 2021, 60, 5536-5543.	7.2	104
1083	Formation of helices with controllable chirality in gel-fiber composites. Polymer, 2021, 212, 123191.	1.8	1
1084	Smart Composites and Their Applications. , 2021, , 380-389.		0
1085	Recent progress in field-assisted additive manufacturing: materials, methodologies, and applications. Materials Horizons, 2021, 8, 885-911.	6.4	35
1086	(AB) <i>_n</i> Segmented Copolyetherimides for 4D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000473.	1.7	1
1087	Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie, 2021, 133, 3432-3438.	1.6	20
1088	From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomaterialia, 2021, 122, 1-25.	4.1	57
1089	3D Printing of Biocompatible Shape-Memory Double Network Hydrogels. ACS Applied Materials & amp; Interfaces, 2021, 13, 12726-12734.	4.0	31
1090	Digital light processing 3D printing with thiol–acrylate vitrimers. Polymer Chemistry, 2021, 12, 639-644.	1.9	53
1091	Shape-shifting panel from 3D printed undulated ribbon lattice. Extreme Mechanics Letters, 2021, 42, 101089.	2.0	5
1092	4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12797-12804.	4.0	28
1093	Programming Stepwise Motility into a Sheet of Paper Using Inkjet Printing. Advanced Intelligent Systems, 2021, 3, 2000153.	3.3	4
1094	4D Printing Elastic Composites for Strain-Tailored Multistable Shape Morphing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12719-12725.	4.0	25
1095	Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends. ACS Applied Materials & 1, 12777-12788.	4.0	64

#	Article	IF	CITATIONS
1096	3D Printing of Strong and Tough Double Network Granular Hydrogels. Advanced Functional Materials, 2021, 31, 2005929.	7.8	85
1097	Future of additive manufacturing in healthcare. Current Opinion in Biomedical Engineering, 2021, 17, 100255.	1.8	60
1098	Recent progress in conductive polymers for advanced fiber-shaped electrochemical energy storage devices. Materials Chemistry Frontiers, 2021, 5, 1140-1163.	3.2	51
1099	Printing Multiâ€Material Organic Haptic Actuators. Advanced Materials, 2021, 33, e2002541.	11.1	35
1100	Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials, 2021, 33, e2002882.	11.1	66
1101	A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 2021, 33, e2000713.	11.1	558
1102	Integrated microsystems for bridging multiscale elements. Advances in Chemical Engineering, 2021, 57, 157-196.	0.5	2
1103	Self-healable tactile sensors. , 2021, , 263-289.		0
1104	Three-Dimensional Printing of Nanocellulose-Based Hydrogels. Gels Horizons: From Science To Smart Materials, 2021, , 1-20.	0.3	0
1105	Hydrogel as Bio-lnk for Organ Regeneration. Gels Horizons: From Science To Smart Materials, 2021, , 165-179.	0.3	2
1106	Introduction to 4D printing., 2021,, 303-342.		6
1107	Nanofunctionalized 3D printing. , 2021, , 457-504.		0
1108	Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices. Nature Communications, 2021, 12, 509.	5.8	19
1109	Future Perspectives for Gel-Inks for 3D Printing in Tissue Engineering. Gels Horizons: From Science To Smart Materials, 2021, , 383-395.	0.3	1
1110	3D printing biomimetic materials and structures for biomedical applications. Bio-Design and Manufacturing, 2021, 4, 405-428.	3.9	66
1111	Multifunctional materials based on smart hydrogels for biomedical and 4D applications. , 2021, , 407-467.		2
1112	4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12746-12758.	4.0	82
1113	Recent progress in the shape deformation of polymeric hydrogels from memory to actuation. Chemical Science, 2021, 12, 6472-6487.	3.7	46

#	Article	IF	CITATIONS
1114	Smart Cellulose Composites: Advanced Applications and Properties Prediction Using Machine Learning., 2021,, 527-538.		2
1115	Agile reversible shape-morphing of particle rafts. Soft Matter, 2021, 17, 7554-7564.	1.2	4
1116	Programmable shape-shifting 3D structures via frontal photopolymerization. Materials and Design, 2021, 198, 109381.	3.3	8
1117	Materials for additive manufacturing and 4D printing. , 2021, , 209-232.		6
1118	3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure. Small, 2021, 17, e2005743.	5.2	54
1119	3D printing of highly stretchable hydrogel with diverse UV curable polymers. Science Advances, 2021, 7, .	4.7	233
1120	Review of Materials and Processes Used in 4D Printing. Lecture Notes in Mechanical Engineering, 2021, , 677-684.	0.3	0
1121	Additive manufacturing with shape changing/memory materials: A review on 4D printing technology. Materials Today: Proceedings, 2021, 44, 1744-1749.	0.9	12
1122	Direct Ink Writing of Hierarchically Porous Cellulose/Alginate Monolithic Hydrogel as a Highly Effective Adsorbent for Environmental Applications. ACS Applied Polymer Materials, 2021, 3, 699-709.	2.0	58
1123	Multi-responsive PNIPAM–PEGDA hydrogel composite. Soft Matter, 2021, 17, 10421-10427.	1.2	17
1124	4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4174-4184.	4.0	108
1125	A programmable powerful and ultra-fast water-driven soft actuator inspired by the mutable collagenous tissue of the sea cucumber. Journal of Materials Chemistry A, 2021, 9, 15937-15947.	5.2	8
1126	Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review. Advanced Engineering Materials, 2021, 23, 2001002.	1.6	38
1127	4D printing in biomedical applications: emerging trends and technologies. Journal of Materials Chemistry B, 2021, 9, 7608-7632.	2.9	65
1128	An anisotropic nanocomposite hydrogel guides aligned orientation and enhances tenogenesis of human tendon stem/progenitor cells. Biomaterials Science, 2021, 9, 1237-1245.	2.6	25
1129	Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252.	0.7	0
1130	Shape recovery analysis of the additive manufactured 3D smart surfaces through reverse engineering. Progress in Additive Manufacturing, 2021, 6, 281-295.	2.5	12
1131	3D bioprinting in cardiac tissue engineering. Theranostics, 2021, 11, 7948-7969.	4.6	56

#	Article	IF	CITATIONS
1132	Stable quantum dots/polymer matrix and their versatile 3D printing frameworks. Journal of Materials Chemistry C, 2021, 9, 7194-7199.	2.7	8
1133	Multi-Material Production of 4D Shape Memory Polymer Composites. , 2021, , 879-894.		4
1134	H-bond/ionic coordination switching for fabrication of highly oriented cellulose hydrogels. Journal of Materials Chemistry A, 2021, 9, 5533-5541.	5.2	19
1135	Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nature Communications, 2021, 12, 112.	5.8	102
1136	Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano, 2021, 15, 175-209.	7.3	119
1137	Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing. Advanced Science, 2021, 8, 2003701.	5.6	85
1138	Bioprinting., 2021,, 45-96.		0
1139	Tailoring the multistability of origami-inspired, buckled magnetic structures <i>via</i> compression and creasing. Materials Horizons, 2021, 8, 3324-3333.	6.4	4
1140	Multimaterial Printing for Cephalopod-Inspired Light-Responsive Artificial Chromatophores. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12735-12745.	4.0	19
1141	Materials for four-dimensional printing. , 2021, , 679-739.		1
1142	Buckling-regulated bandgaps of soft metamaterials with chiral hierarchical microstructure. Extreme Mechanics Letters, 2021, 43, 101166.	2.0	10
1143	On the Kirchhoff-Love Hypothesis (Revised and Vindicated). Journal of Elasticity, 2021, 143, 359-384.	0.9	13
1144	3D Patterning within Hydrogels for the Recreation of Functional Biological Environments. Advanced Functional Materials, 2021, 31, 2009574.	7.8	35
1145	A high-efficiency way to improve the shape memory property of 4D-printed polyurethane/polylactide composite by forming in situ microfibers during extrusion-based additive manufacturing. Additive Manufacturing, 2021, 38, 101718.	1.7	12
1146	Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms. ACS Applied Materials & District Platforms. ACS Applied Materials & District Platforms.	4.0	22
1147	Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology. Frontiers in Bioengineering and Biotechnology, 2021, 9, 624435.	2.0	25
1148	Polarization improvement of CsPbClBr ₂ quantum dot film by laser direct writing technology. Optics Letters, 2021, 46, 777.	1.7	3
1149	Rapid Highâ€Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization. Angewandte Chemie, 2021, 133, 8921-8932.	1.6	7

#	Article	IF	CITATIONS
1150	Bioink Formulations for Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 630488.	2.0	25
1151	Actuation of Threeâ€Dimensionalâ€Printed Nanocolloidal Hydrogel with Structural Anisotropy. Advanced Functional Materials, 2021, 31, 2010743.	7.8	59
1152	Rapid Highâ€Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization. Angewandte Chemie - International Edition, 2021, 60, 8839-8850.	7.2	92
1153	Development of Thermoinks for 4D Direct Printing of Temperatureâ€Induced Selfâ€Rolling Hydrogel Actuators. Advanced Functional Materials, 2021, 31, 2009664.	7.8	43
1154	Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 2021, 13, 753.	2.0	156
1155	Euclidean Frustrated Ribbons. Physical Review X, 2021, 11, .	2.8	5
1156	Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 2021, 48, 135-154.	8.3	46
1157	The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access, 2021, 4, 100113.	1.5	47
1158	Effect of nanosilica on shape memory and mechanical characterization of polylactic acid wood composite. Polymer Composites, 2021, 42, 2502-2510.	2.3	7
1159	Autonomous Shapeshifting Hydrogels via Temporal Programming of Photoswitchable Dynamic Network. Chemistry of Materials, 2021, 33, 2046-2053.	3.2	29
1160	Complex 3D bioprinting methods. APL Bioengineering, 2021, 5, 011508.	3.3	47
1161	A solid-shell finite element method for the anisotropic swelling of hydrogels with reinforced fibers. European Journal of Mechanics, A/Solids, 2021, 86, 104197.	2.1	6
1162	Large Bending Deformation of a Cantilevered Soft Beam under External Load: The Applicability of Inextensibility Assumption of the Centerline. Current Mechanics and Advanced Materials, 2021, 1, 24-38.	0.1	4
1163	Reconstructable Gradient Structures and Reprogrammable 3D Deformations of Hydrogels with Coumarin Units as the Photolabile Crosslinks. Advanced Materials, 2021, 33, e2008057.	11.1	82
1164	Direct 2D-to-3D transformation of pen drawings. Science Advances, 2021, 7, .	4.7	25
1165	Reconfigurable Threeâ€Dimensional Mesotructures of Spatially Programmed Liquid Crystal Elastomers and Their Ferromagnetic Composites. Advanced Functional Materials, 2021, 31, 2100338.	7.8	36
1166	Multi-recyclable Shape Memory Supramolecular Polyurea with Long Cycle Life and Superior Stability., 2021, 3, 331-336.		24
1167	Dimension reduction for thin films prestrained by shallow curvature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	0

#	Article	IF	CITATIONS
1168	Ring Opening Copolymerization of Four-Dimensional Printed Shape Memory Polyester Photopolymers Using Digital Light Processing. Macromolecules, 2021, 54, 2681-2690.	2.2	15
1169	Bioinspired Soft Robots Based on the Moistureâ€Responsive Graphene Oxide. Advanced Science, 2021, 8, 2002464.	5.6	70
1170	Surface molding of multi-stimuli-responsive microgel actuators. MRS Bulletin, 2021, 46, 337-344.	1.7	6
1171	Fluid mechanical modeling of the upper urinary tract. WIREs Mechanisms of Disease, 2021, 13, e1523.	1.5	18
1172	Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme. Cellulose, 2021, 28, 3359-3372.	2.4	13
1173	4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges. Advanced Functional Materials, 2021, 31, 2100257.	7.8	84
1174	Actuation of cylindrical nematic elastomer balloons. Journal of Applied Physics, 2021, 129, .	1.1	17
1175	Printing Reconfigurable Bundles of Dielectric Elastomer Fibers. Advanced Functional Materials, 2021, 31, 2010643.	7.8	63
1176	Shapeâ€Memory Balloon Structures by Pneumatic Multiâ€material 4D Printing. Advanced Functional Materials, 2021, 31, 2010872.	7.8	30
1177	3D printing hydrogels for actuators: A review. Chinese Chemical Letters, 2021, 32, 2923-2932.	4.8	59
1178	A Wettingâ€Enabledâ€Transfer (WET) Strategy for Precise Surface Patterning of Organohydrogels. Advanced Materials, 2021, 33, e2008557.	11.1	36
1179	Reverse shape compensation via a gradient-based moving particle optimization method. Computer Methods in Applied Mechanics and Engineering, 2021, 377, 113658.	3.4	3
1180	Shape Matching: Evolving Fiber Constraints on a Pneumatic Bilayer., 2021, , .		2
1181	Cactus-inspired design principles for soft robotics based on 3D printed hydrogel-elastomer systems. Materials and Design, 2021, 202, 109515.	3.3	35
1182	Multiâ€Dimensional Printing for Bone Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2001986.	3.9	41
1183	Cool, Dry, Nano-scale DIC Patterning of Delicate, Heterogeneous, Non-planar Specimens by Micro-mist Nebulization. Experimental Mechanics, 2021, 61, 917-937.	1.1	10
1184	Three-Dimensional Printing of Self-Assembled Dipeptides. ACS Applied Materials & Dipeptides. Dipeptides. ACS Applied Materials & Dipeptides. Dipeptides. ACS Applied Materials & Dipeptides. Dipeptide	4.0	16
1185	Hydroxyethyl Cellulose As a Rheological Additive for Tuning the Extrusion Printability and Scaffold Properties. 3D Printing and Additive Manufacturing, 2021, 8, 87-98.	1.4	6

#	Article	IF	CITATIONS
1186	Modeling and live imaging of mechanical instabilities in the zebrafish aorta during hematopoiesis. Scientific Reports, 2021, 11, 9316.	1.6	3
1187	3D printability of highly ductile poly(ethylene glycolâ€coâ€cyclohexaneâ€1,4â€dimethanol terephthalate) â€EMAA blends. Polymer Engineering and Science, 2021, 61, 1695-1705.	1.5	2
1188	Additive manufacturing of structural materials. Materials Science and Engineering Reports, 2021, 145, 100596.	14.8	254
1189	Assessment of the Dimensional and Geometric Precision of Micro-Details Produced by Material Jetting. Materials, 2021, 14, 1989.	1.3	6
1190	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
1191	The new material science of robots. Current Opinion in Solid State and Materials Science, 2021, 25, 100894.	5. 6	3
1192	3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges. Frontiers in Robotics and Al, 2021, 8, 673533.	2.0	27
1193	Photopolymerization of Pollen Based Biosourced Composites and Applications in 3D and 4D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000774.	1.7	7
1194	Moisture sensitivity and compressive performance of 3D-printed cellulose-biopolyester foam lattices. Additive Manufacturing, 2021, 40, 101918.	1.7	3
1195	Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter, 2021, 4, 1377-1390.	5.0	57
1196	Large deformation analysis of spontaneous twist and contraction in nematic elastomer fibers with helical director. Journal of Applied Physics, 2021, 129, .	1.1	7
1197	High resolution additive manufacturing with acrylate based vitrimers using organic phosphates as transesterification catalyst. Polymer, 2021, 221, 123631.	1.8	37
1198	Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. Journal of Controlled Release, 2021, 332, 367-389.	4.8	157
1199	Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Science Robotics, 2021, 6, .	9.9	42
1200	Current progress of 4D-printing technology. Progress in Additive Manufacturing, 2021, 6, 495-516.	2.5	32
1201	Mechanoactivation of Color and Autonomous Shape Change in 3D-Printed Ionic Polymer Networks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19263-19270.	4.0	15
1202	Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18120-18127.	4.0	39
1203	Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review. Micromachines, 2021, 12, 465.	1.4	33

#	Article	IF	CITATIONS
1204	Intelligent Hydrogel Actuators With Controllable Deformations and Movements. Frontiers in Materials, $2021,8,.$	1.2	5
1205	Patientâ€Specific Organoid and Organâ€onâ€oâ€Chip: 3D Cellâ€Culture Meets 3D Printing and Numerical Simulation. Advanced Biology, 2021, 5, e2000024.	1.4	31
1206	Capillaryâ€Forceâ€Driven Selfâ€Assembly of 4Dâ€Printed Microstructures. Advanced Materials, 2021, 33, e2100332.	11.1	32
1207	An ontology-based framework to formalize and represent 4D printing knowledge in design. Computers in Industry, 2021, 126, 103374.	5.7	32
1208	Multistimuliâ€Responsive Artificial Skin with Dual Output of Photoelectric Signals. Macromolecular Materials and Engineering, 2021, 306, 2100017.	1.7	4
1209	4D printing: Recent advances and proposals in the food sector. Trends in Food Science and Technology, 2021, 110, 349-363.	7.8	104
1210	Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics, 2021, 6, .	9.9	70
1211	Four-Dimensional Printing of Alternate-Actuated Composite Structures for Reversible Deformation under Continuous Reciprocation Loading. Frontiers in Materials, 2021, 8, .	1.2	2
1212	Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Molecules, 2021, 26, 2817.	1.7	9
1213	Bioâ€Inspired Motion Mechanisms: Computational Design and Material Programming of Selfâ€Adjusting 4Dâ€Printed Wearable Systems. Advanced Science, 2021, 8, 2100411.	5.6	27
1214	Topics in the mathematical design of materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200108.	1.6	1
1215	Unmaking: Enabling and Celebrating the Creative Material of Failure, Destruction, Decay, and Deformation. , 2021, , .		34
1216	Design and Preparation of Magnetism-Driven Intelligent Hydrogel Actuators. International Polymer Processing, 2021, 36, 165-171.	0.3	1
1217	Recent Progress in 3D Printing of Smart Structures: Classification, Challenges, and Trends. Advanced Intelligent Systems, 2021, 3, 2000271.	3.3	16
1218	Morphing pasta and beyond. Science Advances, 2021, 7, .	4.7	43
1219	Living Polymer Networks Based on a RAFT Cross-Linker: Toward 3D and 4D Printing Applications. ACS Applied Polymer Materials, 2021, 3, 2921-2930.	2.0	26
1220	3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 2021, 259, 117716.	5.1	59
1221	Sustainable Cellulose-Nanofiber-Based Hydrogels. ACS Nano, 2021, 15, 7889-7898.	7.3	84

#	ARTICLE	IF	CITATIONS
1222	4D Printing of Continuous Shape Representation. Advanced Materials Technologies, 2021, 6, 2100133.	3.0	5
1223	Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers, 2021, 13, 1663.	2.0	35
1224	Tough hydrogels for soft artificial muscles. Materials and Design, 2021, 203, 109609.	3.3	35
1225	Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application. Micromachines, 2021, 12, 608.	1.4	16
1226	Everting of tubular net structures based on Shape Memory Alloys. Engineering Research Express, 2021, 3, 025028.	0.8	0
1227	Plant-Morphing Strategies and Plant-Inspired Soft Actuators Fabricated by Biomimetic Four-Dimensional Printing: A Review. Frontiers in Materials, 2021, 8, .	1.2	10
1228	Intelligent Shape-Morphing Micromachines. Research, 2021, 2021, 9806463.	2.8	6
1229	Multi-functionalization Strategies Using Nanomaterials: A Review and Case Study in Sensing Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 323-347.	2.7	23
1230	Mechanically Robust and UVâ€Curable Shapeâ€Memory Polymers for Digital Light Processing Based 4D Printing. Advanced Materials, 2021, 33, e2101298.	11.1	129
1231	3D Printing of Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrically Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Gel Actuators. ACS Applied Materials & Electrical Responsive PVC Actuators. ACS Applied Materials & Electrical Responsive PVC Actuators. ACS Applied PVC Actuators. ACTUATOR ACTUATOR ACTUATOR ACTUATOR ACTUATOR ACTUATOR ACTUATOR ACTUA	4.0	27
1232	ExoForm: Shape Memory and Self-Fusing Semi-Rigid Wearables. , 2021, , .		2
1233	Engineering (Bio)Materials through Shrinkage and Expansion. Advanced Healthcare Materials, 2021, 10, e2100380.	3.9	15
1234	Self-Actuated Paper and Wood Models: Low-Cost Handcrafted Biomimetic Compliant Systems for Research and Teaching. Biomimetics, 2021, 6, 42.	1.5	9
1235	Bone tissue engineering via application of a collagen/hydroxyapatite 4D-printed biomimetic scaffold for spinal fusion. Applied Physics Reviews, 2021, 8, .	5 . 5	40
1236	Moving frames and compatibility conditions for three-dimensional director fields. New Journal of Physics, 2021, 23, 063016.	1.2	9
1237	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
1238	Fluidic Infiltrative Assembly of 3D Hydrogel with Heterogeneous Composition and Function. Advanced Functional Materials, 2021, 31, 2103288.	7.8	9
1239	Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges. Journal of Science: Advanced Materials and Devices, 2021, 6, 167-185.	1.5	43

#	Article	IF	CITATIONS
1240	Photodeformable Liquid Crystalline Polymers Containing Functional Additives: Toward Photomanipulatable Intelligent Soft Systems. Small Structures, 2021, 2, 2100038.	6.9	58
1241	New modeling approach for 4D printing by using kinetic components. Journal of Computational Design and Engineering, 2021, 8, 1013-1022.	1.5	2
1242	3D Printingâ€Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small, 2021, 17, e2100817.	5.2	61
1243	Assembly of Defect-Free Microgel Nanomembranes for CO ₂ Separation. ACS Applied Materials & Separation.	4.0	18
1244	Direct Ink Writing of Pure PDMS for Soft 3D Microstructures and Tactile Sensors. , 2021, , .		4
1245	Artificial Visual Electronics for Closed‣oop Sensation/Action Systems. Advanced Intelligent Systems, 2021, 3, 2100071.	3.3	3
1246	Quantifying the Shape Memory Performance of a Three-Dimensional-Printed Biobased Polyester/Cellulose Composite Material. 3D Printing and Additive Manufacturing, 2021, 8, 193-200.	1.4	9
1247	Hydrogel-based DIY Underwater Morphing Artifacts. , 2021, , .		6
1248	A Brief Review on Additive Manufacturing of Polymeric Composites and Nanocomposites. Micromachines, 2021, 12, 704.	1.4	19
1249	Random Liquid Crystalline Copolymers Consisting of Prolate and Oblate Liquid Crystal Monomers. Macromolecules, 2021, 54, 5376-5387.	2.2	11
1250	Regulating Asynchronous Deformations of Biopolyester Elastomers via Photoprogramming and Strain-Induced Crystallization. Macromolecules, 2021, 54, 5694-5704.	2.2	17
1251	Fabrication and applications of stimuliâ€responsive micro/nanopillar arrays. Journal of Polymer Science, 2021, 59, 1491-1517.	2.0	17
1252	Approaches of combining a 3D-printed elastic structure and a hydrogel to create models for plant-inspired actuators. MRS Advances, 2021, 6, 625-630.	0.5	6
1253	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
1254	Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Delivery of Charged Biopharmaceutics.	4.0	12
1255	Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Letters, 2021, 10, 857-863.	2.3	44
1256	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
1257	4D printing of reconfigurable metamaterials and devices. Communications Materials, 2021, 2, .	2.9	60

#	Article	IF	CITATIONS
1258	Additive manufacturing landscape and materials perspective in 4D printing. International Journal of Advanced Manufacturing Technology, 2021, 115, 2973-2988.	1.5	30
1259	An open-source technology platform to increase reproducibility and enable high-throughput production of tailorable gelatin methacryloyl (GelMA) - based hydrogels. Materials and Design, 2021, 204, 109619.	3.3	10
1260	Dehydration-triggered shape transformation of 4D printed edible gel structure affected by material property and heating mechanism. Food Hydrocolloids, 2021, 115, 106608.	5.6	46
1261	Shape memory and mechanical characterization of polylactic acid wood composite fabricated by fused filament fabrication 4D printing technology. Materialwissenschaft Und Werkstofftechnik, 2021, 52, 635-643.	0.5	6
1262	Programmable 4D Printing of Bioinspired Solventâ€Driven Morphing Composites. Advanced Materials Technologies, 2021, 6, 2001289.	3.0	6
1263	4D-printed self-recovered triboelectric nanogenerator for energy harvesting and self-powered sensor. Nano Energy, 2021, 84, 105873.	8.2	48
1264	Natural Origin Biomaterials for 4D Bioprinting Tissueâ€Like Constructs. Advanced Materials Technologies, 2021, 6, 2100168.	3.0	27
1265	Pneumatically Controlled Reconfigurable Bistable Bionic Flower for Robotic Gripper. Soft Robotics, 2022, 9, 657-668.	4.6	30
1266	4D printing: Fundamentals, materials, applications and challenges. Polymer, 2021, 228, 123926.	1.8	118
1267	Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomaterialia, 2021, 134, 32-42.	4.1	5
1268	Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration and Biomimetics, 2021, 16, 055002.	1.5	30
1269	Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021, 7, .	4.7	99
1270	Printed hydrogels with orderly distributed nanowire. Journal of Physics: Conference Series, 2021, 1965, 012079.	0.3	0
1271	4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nature Communications, 2021, 12, 3771.	5.8	59
1272	Mechanoâ€Optical Sensors Fabricated with Multilayered Liquid Crystal Elastomers Exhibiting Tunable Deformation Recovery. Advanced Functional Materials, 2021, 31, 2104702.	7.8	25
1273	Materials with Electroprogrammable Stiffness. Advanced Materials, 2021, 33, e2007952.	11.1	42
1274	4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Materials and Design, 2021, 205, 109699.	3.3	77
1276	Recent developments in next-generation occlusion devices. Acta Biomaterialia, 2021, 128, 100-119.	4.1	21

#	Article	IF	CITATIONS
1277	3D and 4D lithography of untethered microrobots. Progress in Materials Science, 2021, 120, 100808.	16.0	50
1278	Crack tip fields in a neo-Hookean sheet reinforced by nonlinear fibers. Journal of the Mechanics and Physics of Solids, 2021, 152, 104406.	2.3	8
1279	4D Printing of Electroactive Materials. Advanced Intelligent Systems, 2021, 3, 2100019.	3.3	20
1280	Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chemical Engineering Journal, 2021, 415, 128988.	6.6	61
1281	Best of Both Worlds: Synergistically Derived Material Properties via Additive Manufacturing of Nanocomposites. Advanced Functional Materials, 2021, 31, 2103334.	7.8	8
1282	3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 2021, 274, 120871.	5.7	40
1283	Structure and Unique Functions of Anisotropic Hydrogels Comprising Uniaxially Aligned Lamellar Bilayers. Bulletin of the Chemical Society of Japan, 2021, 94, 2221-2234.	2.0	18
1284	Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing. Carbohydrate Polymers, 2021, 263, 117976.	5.1	40
1285	Furcated droplet motility on crystalline surfaces. Nature Nanotechnology, 2021, 16, 1106-1112.	15.6	36
1286	Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials. Advanced Functional Materials, 2021, 31, 2106276.	7.8	15
1287	3D weaving with curved ribbons. ACM Transactions on Graphics, 2021, 40, 1-15.	4.9	17
1288	Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon, 2021, 181, 48-57.	5.4	37
1289	<scp>Oneâ€stop</scp> fabrication of triboelectric nanogenerator based on <scp>3D</scp> printing. EcoMat, 2021, 3, e12130.	6.8	23
1290	4D printing materials for vat photopolymerization. Additive Manufacturing, 2021, 44, 102024.	1.7	45
1291	Computational inverse design of surface-based inflatables. ACM Transactions on Graphics, 2021, 40, 1-14.	4.9	0
1292	Chain-mail fabric stiffens under confining pressure. Nature, 2021, 596, 196-197.	13.7	0
1293	Nanocelluloseâ€Based Functional Materials: From Chiral Photonics to Soft Actuator and Energy Storage. Advanced Functional Materials, 2021, 31, 2104991.	7.8	128
1294	Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704048.	2.0	32

#	ARTICLE	IF	CITATIONS
1295	3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing. Essays in Biochemistry, 2021, 65, 417-427.	2.1	12
1296	Complexity from simplicity: Confinement directs morphogenesis and motility in nematic polymers. Extreme Mechanics Letters, 2021, 47, 101362.	2.0	3
1297	Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer. Advanced Materials, 2021, 33, e2103309.	11.1	43
1298	Functional applications of 4D printing: a review. Rapid Prototyping Journal, 2021, 27, 1501-1522.	1.6	20
1299	Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. Journal of Energy Chemistry, 2021, 63, 498-513.	7.1	71
1300	Review of Fiber-Based Three-Dimensional Printing for Applications Ranging from Nanoscale Nanoparticle Alignment to Macroscale Patterning. ACS Applied Nano Materials, 2021, 4, 7538-7562.	2.4	21
1301	Fractional Excitations in Non-Euclidean Elastic Plates. Physical Review Letters, 2021, 127, 098001.	2.9	5
1302	Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing. Smart Materials and Structures, 2021, 30, 105006.	1.8	21
1303	An investigation into the effect of thermal variables on the 3D printed shape memory polymer structures with different geometries. Journal of Intelligent Material Systems and Structures, 2022, 33, 715-726.	1.4	6
1304	A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives. Journal of Drug Delivery Science and Technology, 2021, 64, 102571.	1.4	10
1305	4D Printing of Self-Folding Hydrogel Tubes for Potential Tissue Engineering Applications. Nano LIFE, 2021, 11 , .	0.6	8
1306	3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nature Communications, 2021, 12, 5133.	5.8	22
1307	Computational inverse design of surface-based inflatables. ACM Transactions on Graphics, 2021, 40, 1-14.	4.9	34
1308	Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. Advanced NanoBiomed Research, 2021, 1, 2100035.	1.7	11
1309	3D weaving with curved ribbons. ACM Transactions on Graphics, 2021, 40, 1-15.	4.9	1
1310	Controlled production of soft magnetic hydrogel beads by biosynthesis of bacterial cellulose. Journal of Industrial and Engineering Chemistry, 2021, 100, 260-269.	2.9	2
1311	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
1312	Large deformation near a crack tip in a fiber-reinforced neo-Hookean sheet with discrete and continuous distributions of fiber orientations. Theoretical and Applied Fracture Mechanics, 2021, 114, 103020.	2.1	3

#	Article	IF	CITATIONS
1313	4D-printed bi-material composite laminate for manufacturing reversible shape-change structures. Composites Part B: Engineering, 2021, 219, 108918.	5.9	43
1314	4D Printing for Automotive Industry Applications. Journal of the Institution of Engineers (India): Series D, 2021, 102, 521-529.	0.6	22
1315	Biomimetic 4Dâ€Printed Breathing Hydrogel Actuators by Nanothylakoid and Thermoresponsive Polymer Networks. Advanced Functional Materials, 2021, 31, 2105544.	7.8	45
1316	Perspective: 3D bioprinted skin - engineering the skin for medical applications. Annals of 3D Printed Medicine, 2021, 3, 100018.	1.6	0
1317	Synergistic combination of 4D printing and electroless metallic plating for the fabrication of a highly conductive electrical device. Chemical Engineering Journal, 2022, 430, 132513.	6.6	23
1318	Strong, Ultrafast, Reprogrammable Hydrogel Actuators with Muscle-Mimetic Aligned Fibrous Structures. Chemistry of Materials, 2021, 33, 7818-7828.	3.2	49
1319	A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis. Nature Communications, 2021, 12, 5603.	5.8	24
1320	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
1321	Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Progress in Materials Science, 2022, 124, 100870.	16.0	81
1322	Nanodancing with Moisture: Humidityâ€ S ensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide. Advanced Intelligent Systems, 2022, 4, 2100084.	3.3	15
1323	Synthesis and alignment of liquid crystalline elastomers. Nature Reviews Materials, 2022, 7, 23-38.	23.3	205
1324	Microalgal nanocellulose – opportunities for a circular bioeconomy. Trends in Plant Science, 2021, 26, 924-939.	4.3	25
1325	Microadditive Manufacturing Technologies of 3D Microelectromechanical Systems. Advanced Engineering Materials, 2021, 23, 2100422.	1.6	10
1326	A 3Dâ€Bioprinted Multiple Myeloma Model. Advanced Healthcare Materials, 2022, 11, e2100884.	3.9	14
1327	Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104643.	1.5	23
1328	Unconstrained 3D Shape Programming with Lightâ€Induced Stress Gradient. Advanced Materials, 2021, 33, e2105194.	11.1	44
1329	Three-Dimensional Photochemical Printing of Thermally Activated Polymer Foams. ACS Applied Polymer Materials, 2021, 3, 4984-4991.	2.0	9
1330	Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene. Infrastructure Asset Management, 2022, 9, 237-256.	1.2	6

#	Article	IF	CITATIONS
1331	A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 2021, 13, 044108.	3.7	37
1332	Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration. IScience, 2021, 24, 103075.	1.9	34
1333	Single-Layer 4D Printing System Using Focused Light: A Tool for Untethered Microrobot Applications. Chemistry of Materials, 2021, 33, 7703-7712.	3.2	12
1334	Coupling Moving Morphable Voids and Components Based Topology Optimization of Hydrogel Structures Involving Large Deformation. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	7
1335	Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732130.	2.0	11
1336	4D printing of shape memory polylactic acid (PLA). Polymer, 2021, 230, 124080.	1.8	103
1337	3D Printing of Hydrogels for Stretchable Ionotronic Devices. Advanced Functional Materials, 2021, 31, 2107437.	7.8	70
1338	Pop-up cookie molds: self-folding elastomer sheets using thermal expansion of embedded air chambers. Smart Materials and Structures, 2021, 30, 115013.	1.8	0
1339	3D-printed strong hybrid materials with low shrinkage for dental restoration. Composites Science and Technology, 2021, 213, 108902.	3.8	13
1340	State-of-art affordable bioprinters: A guide for the DiY community. Applied Physics Reviews, 2021, 8, .	5. 5	17
1341	Multivalued Inverse Design: Multiple Surface Geometries from One Flat Sheet. Physical Review Letters, 2021, 127, 128001.	2.9	7
1342	DLP 4Dâ€Printing of Remotely, Modularly, and Selectively Controllable Shape Memory Polymer Nanocomposites Embedding Carbon Nanotubes. Advanced Functional Materials, 2021, 31, 2106774.	7.8	56
1343	3D printing for polymer/particle-based processing: A review. Composites Part B: Engineering, 2021, 223, 109102.	5.9	129
1344	Controlled shape-morphing metallic components for deployable structures. Materials and Design, 2021, 208, 109935.	3.3	18
1345	Reconfiguration of multistable 3D ferromagnetic mesostructures guided by energy landscape surveys. Extreme Mechanics Letters, 2021, 48, 101428.	2.0	8
1346	Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior. Nano Energy, 2021, 88, 106254.	8.2	40
1347	Reprogrammable soft actuation and shape-shifting via tensile jamming. Science Advances, 2021, 7, eabh2073.	4.7	41
1348	Effects of multiple families of nonlinear fibers on finite deformation near a crack tip in a neo-Hookean sheet. European Journal of Mechanics, A/Solids, 2021, 90, 104324.	2.1	5

#	Article	IF	Citations
1349	Applications of four-dimensional printing in emerging directions: Review and prospects. Journal of Materials Science and Technology, 2021, 91, 105-120.	5.6	29
1350	An anisotropic constitutive model for 3D printed hydrogel-fiber composites. Journal of the Mechanics and Physics of Solids, 2021, 156, 104611.	2.3	17
1351	Mechanical design and analytic solution for unfolding deformation of locomotive ferromagnetic robots. International Journal of Mechanical Sciences, 2021, 211, 106799.	3.6	8
1352	Recent progress on hydrogel actuators. Journal of Materials Chemistry B, 2021, 9, 1762-1780.	2.9	69
1353	Strong anisotropic hydrogels with ion transport capability <i>via</i> reswelling contrast of two oriented polymer networks. Journal of Materials Chemistry A, 2021, 9, 20362-20370.	5.2	14
1354	Direct printing of functional 3D objects using polymerization-induced phase separation. Nature Communications, 2021, 12, 55.	5.8	38
1355	Evolution and applications of polymer brush hypersurface photolithography. Polymer Chemistry, 2021, 12, 5724-5746.	1.9	8
1356	Mechanics of hydrogel-based bioprinting: From 3D to 4D. Advances in Applied Mechanics, 2021, 54, 285-318.	1.4	9
1357	Polymer nanocomposites in additive manufacturing processes for typical applications in the industry. , 2021, , 633-673.		0
1358	2D material programming for 3D shaping. Nature Communications, 2021, 12, 603.	5.8	43
1359	4D printing for continuous fibers reinforced composites. Journal of Physics: Conference Series, 2021, 1721, 012027.	0.3	0
1360	Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chemical Society Reviews, 2021, 50, 3824-3841.	18.7	110
1361	From Sketches and Installations to Bioinspired 5D Printing Models. Advances in Civil and Industrial Engineering Book Series, 2021, , 365-387.	0.2	2
1362	3D and 4D printable dual cross-linked polymers with high strength and humidity-triggered reversible actuation. Materials Advances, 2021, 2, 5124-5134.	2.6	11
1363	Patterning, morphing, and coding of gel composites by direct ink writing. Journal of Materials Chemistry A, 2021, 9, 8586-8597.	5.2	8
1364	Mechanochemical induction of wrinkling morphogenesis on elastic shells. Soft Matter, 2021, 17, 4738-4750.	1.2	9
1365	Recent progress of biomimetic motionsâ€"from microscopic micro/nanomotors to macroscopic actuators and soft robotics. RSC Advances, 2021, 11, 27406-27419.	1.7	9
	Potential of Bio-Inspiration in 3- and 4-D Printing. Advances in Chemical and Materials Engineering		

#	ARTICLE	IF	CITATIONS
1367	Conductive Hydrogels for Bioelectronic Interfaces. , 2020, , 237-265.		3
1369	Design for Additive Manufacturing., 2021,, 555-607.		18
1370	A New Dimension: 4D Printing Opportunities in Pharmaceutics. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 153-162.	0.2	14
1371	Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology. Tissue Engineering and Regenerative Medicine, 2020, 17, 423-431.	1.6	53
1372	Recent advances in the fabrication and application of biopolymer-based micro- and nanostructures: A comprehensive review. Chemical Engineering Journal, 2020, 397, 125409.	6.6	80
1373	3D printing technologies: techniques, materials, and post-processing. Current Opinion in Chemical Engineering, 2020, 28, 134-143.	3.8	154
1374	4D printing of shape memory polymers. European Polymer Journal, 2020, 134, 109771.	2.6	101
1375	Programmable and Reversible 3D-/4D-Shape-Morphing Hydrogels with Precisely Defined Ion Coordination. ACS Applied Materials & Interfaces, 2020, 12, 26476-26484.	4.0	41
1376	Selective Laser Sintering-Based 4D Printing of Magnetism-Responsive Grippers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12679-12688.	4.0	49
1377	3D-Printed Multi-Stimuli-Responsive Mobile Micromachines. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12759-12766.	4.0	64
1378	4D-Printable Liquid Metal–Liquid Crystal Elastomer Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12805-12813.	4.0	98
1379	A machine learning workflow for 4D printing: understand and predict morphing behaviors of printed active structures. Smart Materials and Structures, 2021, 30, 015028.	1.8	17
1380	4D printing and collaborative design of highly flexible shape memory alloy structures: a case study for a metallic robot prototype. Smart Materials and Structures, 2021, 30, 015018.	1.8	24
1381	Shape-programmable and healable materials and devices using thermo- and photo-responsive vitrimer. Multifunctional Materials, 2020, 3, 045001.	2.4	19
1382	Multifunctional magnetic soft composites: a review. Multifunctional Materials, 2020, 3, 042003.	2.4	159
1383	Sequential shapeshifting 4D printing: programming the pathway of multi-shape transformation by 3D printing stimuli-responsive polymers. Multifunctional Materials, 2020, 3, 042002.	2.4	14
1384	Additive manufacturing of polymer-based structures by extrusion technologies. Oxford Open Materials Science, 2020, $1, \dots$	0.5	26
1385	4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190445.	1.6	59

#	Article	IF	CITATIONS
1389	Reversible patterning of spherical shells through constrained buckling. Physical Review Materials, $2017, 1, .$	0.9	17
1390	Programmable filaments and textiles. Physical Review Materials, 2019, 3, .	0.9	2
1391	Modeling of Flexible Beam Networks and Morphing Structures by Geometrically Exact Discrete Beams. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	10
1392	Kinetics-Induced Morphing of Three-Dimensional-Printed Gel Structures Based on Geometric Asymmetry. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	8
1393	CurveUps. ACM Transactions on Graphics, 2017, 36, 1-12.	4.9	71
1394	Morphino., 2020,,.		5
1395	Self-shaping Curved Folding:., 2020,,.		17
1396	Multifunctional Mesostructures: DesignÂandÂMaterialÂProgrammingÂforÂ4D-printing. , 2020, , .		12
1397	Inverse Design Tool for Asymmetrical Self-Rising Surfaces with Color Texture., 2020,,.		5
1398	MorphingCircuit. , 2020, 4, 1-26.		30
1399	Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion. Research, 2018, 2018, 4795604.	2.8	49
1400	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 1-12.	2.8	16
1401	Design and preparation of 3D printing intelligent poly <i>N</i> , <i>N</i> -dimethylacrylamide hydrogel actuators. E-Polymers, 2020, 20, 273-281.	1.3	11
1402	Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus. MRS Bulletin, 2021, 46, 1-8.	1.7	1
1403	MODIFICATION OF ADDITIVE TECHNOLOGIES FOR OBTAINING MEDICAL FORMS. , 2020, 19, 13-21.	0.3	2
1404	Post-printing surface modification and functionalization of 3D-printed biomedical device. International Journal of Bioprinting, 2017, 3, 93.	1.7	21
1405	3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. International Journal of Bioprinting, 2018, 4, 119.	1.7	16
1406	3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. International Journal of Bioprinting, 2018, 4, 126.	1.7	159

#	Article	IF	CITATIONS
1407	Polymeric Scaffolds for Pancreatic Tissue Engineering: A Review. Review of Diabetic Studies, 2017, 14, 334-353.	0.5	18
1408	FOUR-DIMENSIONAL BIOPRINTING FOR REGENERATIVE MEDICINE: MECHANISMS TO INDUCE SHAPE VARIATION AND POTENTIAL APPLICATIONS. European Medical Journal Innovations, 0, , 36-43.	2.0	8
1409	Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators, 2020, 9, 10.	1.2	104
1410	Four-Dimensional (Bio-)printing: A Review on Stimuli-Responsive Mechanisms and Their Biomedical Suitability. Applied Sciences (Switzerland), 2020, 10, 9143.	1.3	28
1411	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 6398296.	2.8	65
1412	Emerging polymeric materials in additive manufacturing for use in biomedical applications. AIMS Bioengineering, 2019, 6, 1-20.	0.6	19
1413	MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering, 2020, 2, 230-252.	0.5	3
1415	On the theoretical basis of rational continuum mechanics in softmatter. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 188103.	0.2	2
1416	The Matrisome Contributes to the Increased Rigidity of the Bovine Ovarian Cortex and Provides a Source of New Bioengineering Tools to Investigate Ovarian Biology. SSRN Electronic Journal, 0, , .	0.4	1
1417	3D Bioprinting of Cell‣aden Hydrogels for Improved Biological Functionality. Advanced Materials, 2022, 34, e2103691.	11.1	88
1419	Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1619-1632.	1.9	9
1420	3Dâ€Printed Anisotropic Polymer Materials for Functional Applications. Advanced Materials, 2022, 34, e2102877.	11.1	92
1421	Integrating helicoid channels for passive control of fiber alignment in direct-write 3D printing. Additive Manufacturing, 2021, 48, 102419.	1.7	5
1422	Carbonâ∈Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. Advanced Healthcare Materials, 2022, 11, e2101834.	3.9	30
1423	Design of topological elastic waveguides. Journal of Applied Physics, 2021, 130, .	1.1	29
1424	Mechanicallyâ€Guided 4D Printing of Magnetoresponsive Soft Materials across Different Length Scale. Advanced Intelligent Systems, 2022, 4, 2100137.	3.3	23
1425	4D Printing of Engineered Living Materials. Advanced Functional Materials, 2022, 32, 2106843.	7.8	38
1426	Emerging Technologies in Multiâ€Material Bioprinting. Advanced Materials, 2021, 33, e2104730.	11.1	100

#	Article	IF	CITATIONS
1427	Manufacturing process-driven structured materials (MPDSMs): design and fabrication for extrusion-based additive manufacturing. Rapid Prototyping Journal, 2021, ahead-of-print, .	1.6	3
1428	Totimorphic assemblies from neutrally stable units. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2107003118.	3.3	6
1429	Structurally anisotropic hydrogels for tissue engineering. Trends in Chemistry, 2021, 3, 1002-1026.	4.4	28
1430	Modern concepts and application of soft robotics in 4D printing. Journal of Physics: Conference Series, 2021, 2054, 012056.	0.3	7
1431	Solventâ€Castâ€Assisted Printing of Biomimetic Morphing Hydrogel Structures with Solvent Evaporationâ€Induced Swelling Mismatch. Advanced Functional Materials, 2022, 32, 2108548.	7.8	17
1432	Hybrid colloidal gels assembled from inorganic and polymeric nanoparticles as a drug-delivery platform. Chemical Physics Letters, 2021, 784, 139122.	1.2	0
1433	The shape – morphing performance of magnetoactive soft materials. Materials and Design, 2021, 211, 110172.	3.3	94
1434	4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: Towards sustainable metamaterials. Materials and Design, 2021, 211, 110158.	3.3	35
1435	In vitro experimental models and their molding technology of tumor cell. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 188705.	0.2	0
1436	Additive Manufacturing. Seikei-Kakou, 2017, 29, 254-259.	0.0	0
1438	HIDROGEL PARA IMPRESSÃO 4D. , 0, , .		0
1439	3D-Drucken – wir designen uns selbst. , 2018, , 161-184.		0
1440	A Quest towards Fashion Design Protection Model for the Intellectual Property Rights Global Regime. International Journal for Research in Applied Sciences and Biotechnology, 2018, 5, 4-14.	0.2	0
1441	Mechanics Modeling of Additive Manufactured Polymers. , 2019, , 51-71.		1
1442	Polymers in Biofabrication and 3D Tissue Modelling. Biomaterials Science Series, 2019, , 119-147.	0.1	0
1443	Shear Thinning Hydrogel-based 3D Tissue Modelling. Biomaterials Science Series, 2019, , 94-118.	0.1	1
1445	Finite element analysis of stimuli-responsive mesoscopic hydrogel via ultrafast laser processing (Withdrawal Notice). , 2019, , .		0
1446	Programming 4D Printed Parts Through Shape-Memory Polymers and Computer-Aided-Design. Lecture Notes in Mechanical Engineering, 2020, , 143-151.	0.3	0

#	Article	IF	CITATIONS
1449	Material Extrusion Based Ceramic Additive Manufacturing. , 2020, , 97-111.		0
1450	Origami MEMS., 2021, , 197-239.		2
1451	On bioinspired 4d printing: materials, design and potential applications. Australian Journal of Mechanical Engineering, 2021, 19, 642-652.	1.5	8
1452	Intrinsic Field-Induced Nanoparticle Assembly in Three-Dimensional (3D) Printing Polymeric Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52274-52294.	4.0	15
1453	Additive Manufacturing of Shape Memory Polymer Composites for Futuristic Technology. Industrial & Engineering Chemistry Research, 2021, 60, 15885-15912.	1.8	33
1454	Preparation of Smart Materials by Additive Manufacturing Technologies: A Review. Materials, 2021, 14, 6442.	1.3	23
1455	Shaping by Internal Material Frustration: Shifting to Architectural Scale. Advanced Science, 2021, 8, e2102171.	5.6	4
1456	3D Hollow Xerogels with Ordered Cellulose Nanocrystals for Tailored Mechanical Properties. Small, 2021, 17, e2104702.	5.2	7
1457	4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials, 2022, 34, e2104390.	11.1	75
1458	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Driven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	7.8	9
1459	Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines, 2021, 9, 1537.	1.4	49
1460	Mono–Material 4D Printing of Digital Shape–Memory Components. Polymers, 2021, 13, 3767.	2.0	6
1461	Highâ€Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermoâ€Responsive Poloxamer Ink Platform. Macromolecular Rapid Communications, 2022, 43, e2100579.	2.0	7
1462	Patterned Electrode Assisted Oneâ€Step Fabrication of Biomimetic Morphing Hydrogels with Sophisticated Anisotropic Structures. Advanced Science, 2021, 8, e2102353.	5.6	35
1463	Photopatterning Crystal Orientation in Shape-Morphing Polymers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22762-22770.	4.0	5
1464	Advances in polymers for bio-additive manufacturing: A state of art review. Journal of Manufacturing Processes, 2021, 72, 439-457.	2.8	19
1465	The status, barriers, challenges, and future in design for 4D printing. Materials and Design, 2021, 212, 110193.	3.3	55
1466	3D Printed Responsive Wood Interfaces: Shape-Changing Origami-Inspired Prototypes. , 0, , .		4

#	Article	IF	CITATIONS
1467	4D printed programmable auxetic metamaterials with shape memory effects. Composite Structures, 2022, 279, 114791.	3.1	28
1468	Programmable multistability for 3D printed reinforced multifunctional composites with reversible shape change. Composites Science and Technology, 2022, 217, 109097.	3.8	7
1469	Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates. International Journal of Engineering Science, 2022, 170, 103594.	2.7	12
1470	3D Printing of Microbial Polysaccharides. , 2021, , 1-34.		0
1471	On Wear of Multi Material 3D Printed PLA Composites. , 2022, , 413-425.		1
1472	On Process Capability of Multi Stage Primary and Secondary Recycled PLA Composite Matrix for 3D Printing Applications. , 2020, , .		0
1473	Nanoscaffolds for neural regenerative medicine. , 2020, , 47-88.		4
1474	3D Ceramics Forming Using Direct-Writing Technique. Journal of Smart Processing, 2020, 9, 169-173.	0.0	1
1475	4D printing with smart materials and structures. Ceramist, 2020, 23, 27-37.	0.0	1
1476	Swelling-induced telephone cord blisters in hydrogel films. Composite Structures, 2022, 280, 114909.	3.1	3
1477	Precisely Defining Local Gradients of Stimuliâ€Responsive Hydrogels for Complex 2Dâ€ŧoâ€4D Shape Evolutions. Small, 2022, 18, e2104440.	5.2	12
1478	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters, 2022, 33, 1650-1658.	4.8	47
1479	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173
1480	Bioengineering textiles across scales for a sustainable circular economy. CheM, 2021, 7, 2913-2926.	5.8	12
1481	Four-Dimensional Printing for Hydrogel: Theoretical Concept, 4D Materials, Shape-Morphing Way, and Future Perspectives. Polymers, 2021, 13, 3858.	2.0	13
1482	Pop-up Print. , 2020, , .		14
1483	E-seed., 2020,,.		8
1485	4D Printing Using Multifunctional Polymeric Materials: A Review. , 2022, , 17-36.		2

#	Article	IF	CITATIONS
1486	Hierarchical self-assembly into chiral nanostructures. Chemical Science, 2022, 13, 633-656.	3.7	63
1487	Shear-induced alignment in 3D-printed nitrile rubber-reinforced glass fiber composites. Composites Part B: Engineering, 2022, 229, 109479.	5.9	13
1488	Ceramic biomaterials for tissue engineering. , 2022, , 3-40.		10
1489	Generating complex fold patterns through stress-free deformation induced by growth. Journal of the Mechanics and Physics of Solids, 2022, 159, 104702.	2.3	3
1490	4D-actuators by 3D-printing combined with water-based curing. Materials Today Communications, 2022, 30, 102966.	0.9	4
1491	Advances in Fieldâ€Assisted 3D Printing of Bioâ€Inspired Composites: From Bioprototyping to Manufacturing. Macromolecular Bioscience, 2022, 22, e2100332.	2.1	19
1492	3D extrusion bioprinting. Nature Reviews Methods Primers, 2021, 1, .	11.8	127
1493	Stimuli-Responsive Polymers for Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 515-545.	7.5	21
1494	Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect, 2021, 6, 12358-12382.	0.7	11
1495	Soft actuators for real-world applications. Nature Reviews Materials, 2022, 7, 235-249.	23.3	296
1496	Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silaneâ€Modified MWCNTs. Macromolecular Rapid Communications, 2022, 43, e2100663.	2.0	2
1497	Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Frontiers in Oncology, 2021, 11, 782766.	1.3	29
1498	Machine Learningâ€Evolutionary Algorithm Enabled Design for 4Dâ€Printed Active Composite Structures. Advanced Functional Materials, 2022, 32, 2109805.	7.8	47
1499	Thermally induced deformations in multi-layered polymeric struts. International Journal of Mechanical Sciences, 2022, 215, 106959.	3.6	10
1500	Bubble casting soft robotics. Nature, 2021, 599, 229-233.	13.7	113
1501	Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS Applied Bio Materials, 2021, 4, 8129-8158.	2.3	22
1502	4D Printing of Surface Morphing Hydrogels. Advanced Materials Technologies, 2022, 7, 2101118.	3.0	4
1503	Harnessing the power of chemically active sheets in solution. Nature Reviews Physics, 2022, 4, 125-137.	11.9	13

#	Article	IF	Citations
1504	Asymmetric Mass Transport through Dense Heterogeneous Polymer Membranes: Fundamental Principles, Lessons from Nature, and Artificial Systems. Macromolecular Rapid Communications, 2022, 43, e2100654.	2.0	1
1505	Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement. ACS Biomaterials Science and Engineering, 2022, 8, 303-313.	2.6	10
1506	Magnetically driven in-plane modulation of the 3D orientation of vertical ferromagnetic flakes. Soft Matter, 2022, 18, 1054-1063.	1.2	6
1507	4D printing of polymers: Techniques, materials, and prospects. Progress in Polymer Science, 2022, 126, 101506.	11.8	70
1508	Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio, 2022, 13, 100186.	2.6	129
1509	A new stereolithographic 3D printing strategy for hydrogels with a large mechanical tunability and self-weldability. Additive Manufacturing, 2022, 50, 102563.	1.7	7
1510	A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing. Additive Manufacturing, 2022, 50, 102559.	1.7	7
1511	Recent advances in nature-inspired antifouling membranes for water purification. Chemical Engineering Journal, 2022, 432, 134425.	6.6	36
1512	Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106757.	3.8	18
1513	Biologically-inspired Stimuli-responsive DDS. Biomaterials Science Series, 2018, , 265-283.	0.1	0
1514	Rapid Preparation of Dual Cross-Linked Mechanical Strengthening Hydrogels via Frontal Polymerization for use as Shape Deformable Actuators. ACS Applied Polymer Materials, 2022, 4, 1457-1465.	2.0	6
1515	Jammed Microâ€Flake Hydrogel for Fourâ€Dimensional Living Cell Bioprinting. Advanced Materials, 2022, 34, e2109394.	11.1	49
1516	3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—toward Tunable and Sustainable Volumetric Photonic Structures. Advanced Functional Materials, 2022, 32, .	7.8	38
1517	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
1518	3D printing of functional polymers for miniature machines. Multifunctional Materials, 2022, 5, 012001.	2.4	3
1519	Smart Film Actuators for Biomedical Applications. Small, 2022, 18, e2105116.	5.2	15
1520	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29
1521	A programmable bilayer hydrogel actuator based on the asymmetric distribution of crystalline regions. Journal of Materials Chemistry B, 2021, 10, 120-130.	2.9	10

#	Article	IF	Citations
1522	A universal post-treatment strategy for biomimetic composite hydrogel with anisotropic topological structure and wide range of adjustable mechanical properties. Materials Science and Engineering C, 2022, 133, 112654.	3.8	2
1523	Bioinspired Self-Shaping Clay Composites for Sustainable Development. Biomimetics, 2022, 7, 13.	1.5	3
1524	Stimuliâ€Responsive Liquid Crystal Printheads for Spatial and Temporal Control of Polymerization. Advanced Materials, 2022, , 2106535.	11.1	8
1525	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	5.6	29
1526	Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions. Macromolecular Rapid Communications, 2022, , 2100703.	2.0	2
1527	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7. 5	35
1528	On 3D printed multiblended and hybrid-blended poly(lactic)acid composite matrix for self-assembly. , 2022, , $1-15$.		0
1529	Photodegradation actuated shapeâ€changing hydrogels. Journal of Polymer Science, 2022, 60, 825-841.	2.0	3
1530	A Tissue Adhesion ontrollable and Biocompatible Smallâ€5cale Hydrogel Adhesive Robot. Advanced Materials, 2022, 34, e2109325.	11.1	70
1531	Inverse Design of Inflatable Soft Membranes Through Machine Learning. Advanced Functional Materials, 2022, 32, .	7.8	26
1532	Multifunctional Injectable Hydrogel for <i>In Vivo</i> Diagnostic and Therapeutic Applications. ACS Nano, 2022, 16, 554-567.	7.3	49
1533	Programmable Anisotropic Hydrogel Composites for Soft Bioelectronics. Macromolecular Bioscience, 2022, , 2100467.	2.1	1
1534	Light activation of 3D-printed structures: from millimeter to sub-micrometer scale. Nanophotonics, 2022, 11, 461-486.	2.9	12
1535	Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics. Small, 2022, 18, e2106824.	5.2	49
1536	3D printing of polymer composites: Materials, processes, and applications. Matter, 2022, 5, 43-76.	5.0	136
1537	Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Letters, 2022, 7, 720-735.	8.8	40
1538	Shape multistability in flexible tubular crystals through interactions of mobile dislocations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115423119.	3.3	1
1539	A voyage from 3D to 4D printing in nanomedicine and healthcare: part I. Nanomedicine, 2022, 17, 237-253.	1.7	4

#	Article	IF	CITATIONS
1540	Magnetic Soft Materials and Robots. Chemical Reviews, 2022, 122, 5317-5364.	23.0	249
1541	Messy or Ordered? Multiscale Mechanics Dictates Shapeâ€Morphing of 2D Networks Hierarchically Assembled of Responsive Microfibers. Advanced Functional Materials, 2022, 32, .	7.8	3
1542	Field-assisted additive manufacturing of polymeric composites. Additive Manufacturing, 2022, 51, 102642.	1.7	11
1543	Light-controlled multifunctional reconfigurable structures. Applied Materials Today, 2022, 26, 101393.	2.3	2
1544	Utilization of Ethyl Cellulose in the Osmotically-Driven and Anisotropically-Actuated 4D Printing Concept of Edible Food Composites. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100183.	1.6	13
1546	Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics, 2022, 6, 100074.	1.3	29
1547	Incorporating Shape-Changing Food Materials Into Everyday Culinary Practices., 2022,,.		5
1548	Assessing Polymer-Surface Adhesion with a Polymer Collection. Langmuir, 2022, , .	1.6	3
1549	Shape morphing mechanical metamaterials through reversible plasticity. Science Robotics, 2022, 7, eabg2171.	9.9	67
1550	Capillary Flow Characterizations of Chiral Nematic Cellulose Nanocrystal Suspensions. Langmuir, 2022, 38, 2192-2204.	1.6	21
1551	Creative transformation of biomedical polyurethanes: from biostable tubing to biodegradable smart materials. Journal of Polymer Research, 2022, 29, 1.	1.2	2
1552	Mechanics-based design strategies for 4D printing: A review. Forces in Mechanics, 2022, 7, 100081.	1.3	14
1553	An Electrospinning Anisotropic Hydrogel with Remotely-Controlled Photo-Responsive Deformation and Long-Range Navigation for Synergist Actuation. Chemical Engineering Journal, 2022, 433, 134258.	6.6	40
1554	Polymer Fabrication Using Photochemical Processes—A Review. , 2022, , 1-20.		0
1555	Subtractive manufacturing with swelling induced stochastic folding of sacrificial materials for fabricating complex perfusable tissues in multi-well plates. Lab on A Chip, 2022, 22, 1929-1942.	3.1	9
1556	Multi-responsive and conductive bilayer hydrogel and its application in flexible devices. RSC Advances, 2022, 12, 7898-7905.	1.7	4
1557	4D Printing: 3D Printing of Responsive and Programmable Materials. , 2022, , 213-237.		4
1558	3D Printing of Microbial Polysaccharides. , 2022, , 1213-1245.		O

#	Article	IF	CITATIONS
1559	Hydrogels for Bioprinting., 2022, , 185-211.		2
1560	Clinically relevant preclinical animal models for testing novel cranioâ€maxillofacial bone 3Dâ€printed biomaterials. Clinical and Translational Medicine, 2022, 12, e690.	1.7	15
1561	Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. Science Advances, 2022, 8, eabk1888.	4.7	22
1562	Wood Warping Composite by 3D Printing. Polymers, 2022, 14, 733.	2.0	5
1563	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
1564	Microâ€Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing. Advanced Materials, 2022, 34, e2110115.	11.1	69
1565	Solid Lubrication at High-Temperatures—A Review. Materials, 2022, 15, 1695.	1.3	60
1566	Lightâ€Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. Advanced Optical Materials, 2022, 10, .	3.6	16
1567	Construction of 3D shapeâ€changing hydrogels via lightâ€modulated internal stress fields. Energy and Environmental Materials, 0, , .	7.3	2
1570	Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artificial Organs, 2022, 46, .	1.0	16
1571	Additive manufacturing of cellular ceramic structures: From structure to structure–function integration. Materials and Design, 2022, 215, 110470.	3.3	57
1572	A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity. Polymers, 2022, 14, 1323.	2.0	4
1573	Three-Dimensional Printing and Recycling of Multifunctional Composite Material Based on Commercial Epoxy Resin and Graphene Nanoplatelet. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13758-13767.	4.0	16
1574	Structuring Hydrogel Cross-Link Density Using Hierarchical Filament 3D Printing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15667-15677.	4.0	7
1575	Vitrimers: Using Dynamic Associative Bonds to Control Viscoelasticity, Assembly, and Functionality in Polymer Networks. ACS Macro Letters, 2022, 11, 475-483.	2.3	32
1576	Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments. Polymers, 2022, 14, 1351.	2.0	16
1577	Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials, 2022, 34, e2108855.	11.1	361
1578	Flexible Sensory Systems: Structural Approaches. Polymers, 2022, 14, 1232.	2.0	5

#	Article	IF	CITATIONS
1579	3D Printing of Auxetic Metamaterials with Highâ€Temperature and Programmable Mechanical Properties. Advanced Materials Technologies, 2022, 7, .	3.0	15
1580	Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review. Materials, 2022, 15, 2397.	1.3	3
1581	Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective. Advanced Materials, 2022, 34, e2108391.	11.1	34
1582	Stimuli-responsive metamaterials with information-driven elastodynamics programming. Matter, 2022, 5, 988-1003.	5.0	12
1583	Onâ€Demand Programming of Liquid Metalâ€Composite Microstructures through Direct Ink Write 3D Printing. Advanced Materials, 2022, 34, e2200182.	11.1	40
1584	Microphase Separationâ€Driven Sequential Selfâ€Folding of Nanocomposite Hydrogel/Elastomer Actuators. Advanced Functional Materials, 2022, 32, .	7.8	17
1585	3D printing auxetic draft-angle structures towards tunable buckling complexity. Smart Materials and Structures, 2022, 31, 055010.	1.8	3
1586	Programmable Lightâ€Driven Liquid Crystal Elastomer Kirigami with Controlled Molecular Orientations. Advanced Intelligent Systems, 2022, 4, .	3.3	9
1587	Plant-inspired multi-stimuli and multi-temporal morphing composites. Bioinspiration and Biomimetics, 2022, 17, 046002.	1.5	3
1589	Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications. Advanced Materials Technologies, 2022, 7, .	3.0	37
1590	Celluloseâ€Based Soft Actuators. Macromolecular Materials and Engineering, 2022, 307, .	1.7	23
1591	A reliable and easy-to-implement optical characterization method for dynamic and static properties of smart hydrogels. Polymer, 2022, 246, 124713.	1.8	2
1592	A Bioinspired Programmable Soft Bilayer Actuator Based on Aluminum Exoskeleton. Advanced Materials Technologies, 0, , 2200036.	3.0	1
1593	Controlled morphing of architected liquid crystal elastomer elements: modeling and simulations. Mechanics Research Communications, 2022, 121, 103858.	1.0	8
1594	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16703-16717.	4.0	11
1595	Flytrap Inspired pHâ€Driven 3D Hydrogel Actuator by Femtosecond Laser Microfabrication. Advanced Materials Technologies, 2022, 7, .	3.0	25
1597	A theoretical scheme for shape-programming of thin hyperelastic plates through differential growth. Mathematics and Mechanics of Solids, 2022, 27, 1412-1428.	1.5	9
1598	Design of interfaces to promote the bonding strength between dissimilar materials. Journal of Manufacturing Processes, 2022, 76, 786-795.	2.8	6

#	Article	IF	CITATIONS
1599	4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties. Additive Manufacturing, 2022, 53, 102689.	1.7	19
1600	A review of the structural and physical properties that govern cell interactions with structured biomaterials enabled by additive manufacturing. Bioprinting, 2022, 26, e00201.	2.9	9
1601	Programming polymorphable yet stiff truss metamaterials in response to temperature. Applied Materials Today, 2022, 27, 101432.	2.3	4
1602	Characterization of a 30µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization. Additive Manufacturing, 2022, 55, 102800.	1.7	8
1603	3Dâ€Printed Strong Dental Crown with Multiâ€Scale Ordered Architecture, Highâ€Precision, and Bioactivity. Advanced Science, 2022, 9, e2104001.	5.6	12
1604	Nanocellulose and Its Interface: On the Road to the Design of Emerging Materials. Advanced Materials Interfaces, 2022, 9, .	1.9	7
1605	Polymer <scp>4D</scp> printing: Advanced shape hange and beyond. Journal of Polymer Science, 2022, 60, 149-174.	2.0	32
1606	Mathematical Modeling of a Supramolecular Assembly for Pyrophosphate Sensing. Frontiers in Chemistry, 2021, 9, 759714.	1.8	0
1607	Four-Dimensional Stimuli-Responsive Hydrogels Micro-Structured via Femtosecond Laser Additive Manufacturing. Micromachines, 2022, 13, 32.	1.4	10
1608	Metric mechanics with nontrivial topology: Actuating irises, cylinders, and evertors. Physical Review E, 2021, 104, 065004.	0.8	6
1609	The integrity of synthetic magnesium silicate in charged compounds. Scientific Reports, 2021, 11, 23717.	1.6	1
1611	Materials for Smart Soft Actuator Systems. Chemical Reviews, 2022, 122, 1349-1415.	23.0	131
1612	Grayscale Stereolithography of Gradient Hydrogel with Siteâ€Selective Shape Deformation. Advanced Materials Technologies, 2022, 7, .	3.0	12
1613	3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality. ACS Applied Materials & Diterfaces, 2021, 13, 61723-61732.	4.0	2
1614	Soft Actuator Based on Metal/Hydrogel Nanocomposites with Anisotropic Structure. Macromolecular Chemistry and Physics, 2022, 223, 2100117.	1.1	10
1615	Recent Progress in Shape-Transformable Materials and Their Applications. Electronic Materials Letters, 2022, 18, 215-231.	1.0	2
1616	Advances in 4Dâ€printed physiological monitoring sensors. Exploration, 2021, 1, .	5.4	25
1617	Patterned Actuators via Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals & Direct Ink Writing Of Liquid	4.0	19

#	Article	IF	CITATIONS
1618	Onâ€Demand Editing of Surface Properties of Microstructures Made by 3D Direct Laser Writing via Photoâ€Mediated RAFT Polymerization. Advanced Functional Materials, 2022, 32, .	7.8	18
1619	Anisotropic Responsive Microgels Based on the Cholesteric Phase of Chitin Nanocrystals. ACS Macro Letters, 2022, 11, 96-102.	2.3	2
1620	Four-Dimensional Printed Shape Memory Metasurface to Memorize Absorption and Reflection Functions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59487-59496.	4.0	8
1621	The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels. Soft Matter, 2022, 18, 3422-3429.	1.2	12
1622	3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds. Biofabrication, 2022, 14, 035009.	3.7	12
1623	Formation of Pixelated Elastic Films via Capillary Suction of Curable Elastomers in Templated Heleâ€Shaw Cells. Advanced Materials, 2022, , 2109682.	11.1	2
1624	Low Melting Point Alloys Enabled Stiffness Tunable Advanced Materials. Advanced Functional Materials, 2022, 32, .	7.8	38
1625	Selfâ€Assembled Artificial Nanocilia Actuators. Advanced Materials, 2022, 34, e2200185.	11.1	13
1626	Sharing of Strain Between Nanofiber Forests and Liquid Crystals Leads to Programmable Responses to Electric Fields. Advanced Functional Materials, 2022, 32, .	7.8	5
1627	A Brief Overview of Bioinspired Robust Hydrogel Based Shape Morphing Functional Structure for Biomedical Soft Robotics. Frontiers in Materials, 2022, 9, .	1.2	4
1628	Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature, 2022, 604, 474-478.	13.7	100
1629	Zeoliteâ€Reinforced Interpenetrating Polymer Network Initiated by Chalcone Based Photoinitiating System and Their Application in 3D/4D Printing. Advanced Materials Technologies, 2022, 7, .	3.0	8
1630	Design of pre-stressed plate-strips to cover non-developable shells. European Journal of Mechanics, A/Solids, 2022, 95, 104609.	2.1	0
1631	Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Accounts of Chemical Research, 2022, 55, 1533-1545.	7.6	94
1632	Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science, 2022, 376, 301-307.	6.0	121
1633	Digitally Programmable Manufacturing of Living Materials Grown from Biowaste. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20062-20072.	4.0	4
1634	Multiâ€Color 3D Printing via Singleâ€Vat Grayscale Digital Light Processing. Advanced Functional Materials, 2022, 32, .	7.8	22
1635	Experimental investigations of the effectiveness of simultaneous topology/orientation optimization via SOMP and principal stress directions. Materials and Design, 2022, 217, 110647.	3.3	2

#	Article	IF	CITATIONS
1636	Functionalized Hydrogels for Articular Cartilage Tissue Engineering. Engineering, 2022, 13, 71-90.	3.2	25
1637	Anisotropic Swelling in Fiber-reinforced Hydrogels: An Incremental Finite Element Method and Its Applications in Design of Bilayer Structures. International Journal of Applied Mechanics, 0, , .	1.3	O
1640	Programming Cellular Alignment in Engineered Cardiac Tissue via Bioprinting Anisotropic Organ Building Blocks. Advanced Materials, 2022, 34, e2200217.	11.1	46
1641	Methods for numerical simulation of knit based morphable structures: knitmorphs. Scientific Reports, 2022, 12, 6630.	1.6	3
1642	Controlled local orientation of 2D nanomaterials in 3D devices: methods and prospects for multifunctional designs and enhanced performance. Journal of Materials Chemistry A, 2022, 10, 19129-19168.	5.2	9
1643	Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Materials Horizons, 2022, 9, 1825-1849.	6.4	59
1644	Bioinspired Structures for Soft Actuators. Advanced Materials Technologies, 2022, 7, .	3.0	20
1645	A brief review on mechanical designs for 4D printing. , 2022, 01, .		1
1646	A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials. Advanced Materials Technologies, 2022, 7, .	3.0	11
1647	Fingerprinting soft material nanostructure response to complex flow histories. Physical Review Materials, 2022, 6, .	0.9	6
1648	New Industrial Sustainable Growth: 3D and 4D Printing. , 0, , .		1
1649	Self-regulated non-reciprocal motions in single-material microstructures. Nature, 2022, 605, 76-83.	13.7	63
1650	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010 \hat{a} e"2021). Frontiers in Robotics and Al, 2022, 9, .	2.0	12
1651	Epithelial cells adapt to curvature induction via transient active osmotic swelling. Developmental Cell, 2022, 57, 1257-1270.e5.	3.1	10
1652	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
1653	Untethered selectively actuated microwave 4D printing through ferromagnetic PLA. Additive Manufacturing, 2022, 56, 102866.	1.7	8
1654	Photopolymerisable liquid crystals for additive manufacturing. Additive Manufacturing, 2022, 55, 102861.	1.7	1
1655	Biomaterials for bioprinting. , 2022, , 51-86.		2

#	ARTICLE	IF	CITATIONS
1656	Formation of rolls from liquid crystal elastomer bistrips. Soft Matter, 2022, 18, 4077-4089.	1.2	2
1658	Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. Journal of Polymer Science, 2022, 60, 2679-2700.	2.0	4
1659	Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications. ACS Applied Bio Materials, 2022, 5, 2598-2607.	2.3	3
1662	Recent Developments on 4D Printings and Applications. , 2022, , 361-388.		2
1663	Synthesis Techniques of Shape-Memory Polymer Composites. , 2022, , 115-153.		1
1664	Effective continuum models for the buckling of non-periodic architected sheets that display quasi-mechanism behaviors. Journal of the Mechanics and Physics of Solids, 2022, 166, 104934.	2.3	6
1665	Double-layer temperature-sensitive hydrogel fabricated by 4D printing with fast shape deformation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129307.	2.3	13
1666	Encoding of direct 4D printing of isotropic single-material system for double-curvature and multimodal morphing. Extreme Mechanics Letters, 2022, 54, 101779.	2.0	12
1667	Anti-Freezing, Non-Drying, Localized Stiffening, and Shape-Morphing Organohydrogels. Gels, 2022, 8, 331.	2.1	3
1668	Silk Fibroin Nacre. Advanced Fiber Materials, 2022, 4, 1191-1208.	7.9	8
1669	Additive manufacturing of biomaterials for bone tissue engineering – A critical review of the state of the art and new concepts. Progress in Materials Science, 2022, 130, 100963.	16.0	52
1670	Computational Design of Selfâ€Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric. Computer Graphics Forum, 2022, 41, 493-506.	1.8	6
1671	The Föppl–von Kármán equations of elastic plates with initial stress. Royal Society Open Science, 2022, 9, .	1.1	1
1672	Bioderived 4D Printable Terpene Photopolymers from Limonene and \hat{l}^2 -Myrcene. Biomacromolecules, 2022, 23, 2342-2352.	2.6	16
1673	3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Progress in Polymer Science, 2022, 131, 101574.	11.8	49
1674	Fabrication of a tunable photothermal actuator <i>via in situ</i> oxidative polymerization of polydopamine nanoparticles in hydrogel bilayers. Soft Matter, 2022, 18, 4604-4612.	1.2	5
1675	Hydrogels with both mechanical strength and luminescence anisotropy. Inorganic Chemistry Frontiers, 2022, 9, 4194-4200.	3.0	5
1676	Geometry, analysis, and morphogenesis: Problems and prospects. Bulletin of the American Mathematical Society, 2022, 59, 331-369.	0.8	4

#	Article	IF	CITATIONS
1677	Fabrication and Functionality Integration Technologies for Smallâ€Scale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
1678	Advances in 4D printing: from stimulation to simulation. Drug Delivery and Translational Research, 2023, 13, 164-188.	3.0	23
1679	Tunable hyperbolic out-of-plane deformation of 3D-printed auxetic PLA shape memory arrays. Smart Materials and Structures, 2022, 31, 075025.	1.8	4
1680	Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications. Journal of Functional Biomaterials, 2022, 13, 83.	1.8	4
1681	Stretchâ€Activated Reprogrammable Shapeâ€Morphing Composite Elastomers. Advanced Functional Materials, 2022, 32, .	7.8	7
1682	Multistimuli-responsive hydrogels with both anisotropic mechanical performance and anisotropic luminescent behavior. Chemical Engineering Journal, 2022, 449, 137718.	6.6	26
1683	Frequency Memorizing Shape Morphing Microstrip Monopole Antenna using Hybrid Programmable 3-Dimensional Printing. Additive Manufacturing, 2022, , 102988.	1.7	1
1684	Co-extrusion 4D printing of shape memory polymers with continuous metallic fibers for selective deformation. Composites Science and Technology, 2022, 227, 109603.	3.8	18
1685	3D bioprinted glioma models. Progress in Biomedical Engineering, 2022, 4, 042001.	2.8	14
1686	Design and printing of embedded conductive patterns in liquid crystal elastomer for programmable electrothermal actuation. Virtual and Physical Prototyping, 2022, 17, 881-893.	5.3	8
1687	Singleâ€Stepâ€Lithography Microâ€Stepper Based on Frictional Contact and Chiral Metamaterial. Small, 2022, 18, .	5.2	12
1689	Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Science Advances, 2022, 8, .	4.7	105
1690	Natural tooth enamel and its analogs. Cell Reports Physical Science, 2022, 3, 100945.	2.8	6
1691	Polymers in Technologies of Additive and Inkjet Printing of Dosage Formulations. Polymers, 2022, 14, 2543.	2.0	7
1692	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	23.3	80
1693	Dumbbell-Shaped Block Copolymers for the Fabrication of Anisotropic Soft Actuators. ACS Applied Polymer Materials, 0, , .	2.0	O
1694	4D printed self-helix structure based on internal stress reversibility. Smart Materials and Structures, 2022, 31, 085001.	1.8	4
1695	4D printing: Technological developments in robotics applications. Sensors and Actuators A: Physical, 2022, 343, 113670.	2.0	60

#	Article	IF	CITATIONS
1696	Biotemplating synthesis of organized structures inspired by biological processes. Giant, 2022, 11, 100108.	2.5	6
1697	Forming three-dimensional micro-objects using two-dimensional gradient printing. Applied Materials Today, 2022, 28, 101538.	2.3	1
1698	4D-printed light-responsive structures. , 2022, , 55-105.		0
1699	4D-printed stimuli-responsive hydrogels modeling and fabrication. , 2022, , 151-192.		1
1700	Digital light processing 3D printing of hydrogels: a minireview. Molecular Systems Design and Engineering, 2022, 7, 1017-1029.	1.7	22
1701	Reversible 4D printing., 2022, , 395-417.		0
1702	4D-printed shape memory polymer: Modeling and fabrication. , 2022, , 195-228.		3
1703	Multimaterial 4D printing simulation using a grasshopper plugin. , 2022, , 329-345.		0
1705	A Global Methodology for 3d Multi-Material Laser Powder Bed Fusion Processes. SSRN Electronic Journal, 0, , .	0.4	0
1706	4D printing of natural fiber composite. , 2022, , 297-333.		1
1707	Closed-loop control of 4D-printed hydrogel soft robots. , 2022, , 251-278.		1
1708	4D printing of gels and soft materials. , 2022, , 265-295.		0
1709	4D-printed low-voltage electroactive polymers modeling and fabrication., 2022,, 107-150.		0
1710	4D bioprinting: Fabrication approaches and biomedical applications. , 2022, , 193-229.		1
1711	Manufacturing highly elastic skin integrated with twisted and coiled polymer muscles: Toward 4D printing., 2022,, 311-327.		0
1712	Kirigamiâ€Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Advanced Materials, 2022, 34, .	11.1	63
1713	The Synergy of Biomimetic Design Strategies for Tissue Constructs. Advanced Functional Materials, 2022, 32, .	7.8	12
1714	RAFT-Mediated 3D Printing of "Living―Materials with Tailored Hierarchical Porosity. ACS Applied Polymer Materials, 2022, 4, 4940-4948.	2.0	15

#	Article	IF	CITATIONS
1715	4D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticles. Advanced Functional Materials, 2022, 32, .	7.8	10
1716	Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO2 to Additively Manufacture High-Performance Thermosetting Polyimide Composites. Polymers, 2022, 14, 2669.	2.0	4
1717	Reconfigurable 4D Printing of Reprocessable and Mechanically Strong Polythiourethane Covalent Adaptable Networks. Advanced Functional Materials, 2022, 32, .	7.8	47
1718	Alignment of Colloidal Rods in Crowded Environments. Macromolecules, 2022, 55, 5610-5620.	2.2	10
1719	Interfacial metric mechanics: stitching patterns of shape change in active sheets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	4
1720	Bimorph electrothermal micro-gripper with large deformation, precise and rapid response, and low operating voltage. Applied Physics Letters, 2022, 121, 023502.	1.5	3
1721	Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators. Science Advances, 2022, 8, .	4.7	25
1722	Recent Advances in Stimuliâ€Responsive Shapeâ€Morphing Hydrogels. Advanced Functional Materials, 2022, 32, .	7.8	49
1723	Theoretical stiffness limits of 4D printed self-folding metamaterials. Communications Materials, 2022, 3, .	2.9	11
1724	Tough, aorta-inspired soft composites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
1725	Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers, 2022, 14, 2794.	2.0	29
1726	A Superabsorbent Sodium Polyacrylate Printing Resin as Actuator Material in 4D Printing. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
1727	Monitoring of hand function enabled by low complexity sensors printed on textile. Flexible and Printed Electronics, 2022, 7, 035003.	1.5	4
1728	Comparison of Bulk- vs Layer-by-Layer-Cured Stimuli-Responsive PNIPAM–Alginate Hydrogel Dynamic Viscoelastic Property Response via Embedded Sensors. ACS Applied Polymer Materials, 0, , .	2.0	1
1729	Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 287, 121672.	5.7	36
1730	Smart biomaterials: From 3D printing to 4D bioprinting. Methods, 2022, 205, 191-199.	1.9	13
1731	Morphological and structural changes in thermally-induced soybean protein isolate xerogels modulated by soybean polysaccharide concentration. Food Hydrocolloids, 2022, 133, 107967.	5.6	12
1732	A Highly Multiâ€Stable Metaâ€Structure via Anisotropy for Large and Reversible Shape Transformation. Advanced Science, 2022, 9, .	5.6	14

#	Article	IF	Citations
1733	Postfabrication Functionalization of 4D-Printed Polycarbonate Photopolymer Scaffolds. ACS Applied Polymer Materials, 2022, 4, 5670-5679.	2.0	8
1734	Hydrogels as functional components in artificial cell systems. Nature Reviews Chemistry, 2022, 6, 562-578.	13.8	47
1735	Dimension reduction through gamma convergence for general prestrained thin elastic sheets. Calculus of Variations and Partial Differential Equations, 2022, 61, .	0.9	3
1736	A hackable, multi-functional, and modular extrusion 3D printer for soft materials. Scientific Reports, 2022, 12, .	1.6	11
1737	4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. Journal of Manufacturing Processes, 2022, 81, 759-797.	2.8	120
1738	Multi-material fused filament fabrication of flexible 3D piezoelectric nanocomposite lattices for pressure sensing and energy harvesting applications. Applied Materials Today, 2022, 29, 101596.	2.3	7
1739	Multicomponent chiral hydrogel fibers with block configurations based on the chiral liquid crystals of cellulose nanocrystals and M13 bacteriophages. Polymer Chemistry, 2022, 13, 5200-5211.	1.9	1
1740	Recent advances in 3D printing hydrogel for topical drug delivery. , 2022, 1, .		2
1741	Photo-responsive hydrogel-based re-programmable metamaterials. Scientific Reports, 2022, 12, .	1.6	10
1742	Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots. Sensors, 2022, 22, 5639.	2.1	1
1743	3D Printing of Polymer Hydrogels—From Basic Techniques to Programmable Actuation. Advanced Functional Materials, 2022, 32, .	7.8	43
1744	Additive manufacturing of smart polymeric composites: Literature review and future perspectives. Polymer Composites, 2022, 43, 6355-6380.	2.3	47
1745	Knowledge mapping of 4D printing technologies in computer engineering. Computer Applications in Engineering Education, 2022, 30, 1959-1978.	2.2	0
1746	Additive Manufacturing of Biomaterialsâ€"Design Principles and Their Implementation. Materials, 2022, 15, 5457.	1.3	31
1747	Thermadapt Shape Memory Polymers Enabling Spatially Regulated Plasticity. ACS Macro Letters, 2022, 11, 1112-1116.	2.3	3
1748	Conformational Transitionâ€Driven Selfâ€Folding Hydrogel Based on Silk Fibroin and Gelatin for Tissue Engineering Applications. Macromolecular Bioscience, 0, , 2200189.	2.1	2
1749	Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Advanced Materials Technologies, 2023, 8, .	3.0	24
1750	An anisotropic constitutive model for fiber reinforced salt-sensitive hydrogels. Mechanics of Advanced Materials and Structures, 2023, 30, 4814-4827.	1.5	7

#	Article	IF	CITATIONS
1751	3D Printing of Soft Magnetoactive Devices with Thiolâ€Click Photopolymer Composites. Advanced Engineering Materials, 2023, 25, .	1.6	6
1752	4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing. Advanced Materials, 2022, 34, .	11.1	40
1753	Rapid and Multimaterial 4D Printing of Shapeâ€Morphing Micromachines for Narrow Micronetworks Traversing. Small, 2022, 18, .	5 . 2	9
1754	Emerging application of 3D-printing techniques in lithium batteries: From liquid to solid. Materials Today, 2022, 59, 161-181.	8.3	25
1755	Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 40344-40350.	4.0	10
1756	Critical appraisal and systematic review of 3D & D printing in sustainable and environment-friendly smart manufacturing technologies. Sustainable Materials and Technologies, 2022, 34, e00481.	1.7	12
1757	Bioinspired Pattern-Driven Single-Material 4D Printing for Self-Morphing Actuators. Sustainability, 2022, 14, 10141.	1.6	20
1759	Phototunable, Reconfigurable, and Complex Shape Transformation of Fe ³⁺ -Containing Bilayer Polymer Materials. Chemistry of Materials, 2022, 34, 7481-7492.	3.2	4
1760	Metallic <i>Mimosa pudica</i> : A 3D biomimetic buckling structure made of metallic glasses. Science Advances, 2022, 8, .	4.7	7
1762	Smart materials for four-dimensional printing: An overview. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 571-579.	1.4	1
1763	Design of soft matter for additive processing. , 2022, 1, 592-600.		4
1764	Auricular reconstruction via 3D bioprinting strategies: An update. Journal of Oral Biology and Craniofacial Research, 2022, 12, 580-588.	0.8	1
1765	4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. Reactive and Functional Polymers, 2022, 179, 105374.	2.0	72
1766	Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Advances in Colloid and Interface Science, 2022, 308, 102749.	7.0	17
1767	Mechanical Intelligence (MI): A Bioinspired Concept for Transforming Engineering Design. Advanced Science, 2022, 9, .	5 . 6	7
1768	Self-assembled liquid crystal architectures for soft matter photonics. Light: Science and Applications, 2022, 11, .	7.7	44
1769	Photopolymerization of ceramic/zeolite reinforced photopolymers: Towards 3D/4D printing and gas adsorption applications. European Polymer Journal, 2022, 179, 111552.	2.6	8
1770	Design of 3D and 4D printed continuous fibre composites via an evolutionary algorithm and voxel-based Finite Elements: Application to natural fibre hygromorphs. Additive Manufacturing, 2022, 59, 103144.	1.7	3

#	ARTICLE	IF	CITATIONS
1771	Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. International Journal of Biological Macromolecules, 2022, 222, 1-29.	3.6	23
1772	Behavior of an FG temperature-responsive hydrogel bilayer: Analytical and numerical approaches. Composite Structures, 2022, 301, 116203.	3.1	3
1773	Remarkable gas bubble transport driven by capillary pressure in 3D printing-enabled anisotropic structures for efficient hydrogen evolution electrocatalysts. Applied Catalysis B: Environmental, 2023, 320, 121995.	10.8	12
1774	Future of 3D Printing in Oral Health Sciences. , 2022, , 293-311.		1
1775	Hydroelastomers: soft, tough, highly swelling composites. Soft Matter, 2022, 18, 7229-7235.	1,2	5
1776	Emerging Technological Applications of Additive Manufacturing. , 2022, , 169-238.		2
1777	Direct ink writing of tough, stretchable silicone composites. Soft Matter, 2022, 18, 7341-7347.	1.2	1
1778	Evolution and emerging trends of 4D printing: a bibliometric analysis. Manufacturing Review, 2022, 9, 30.	0.9	1
1779	Principles of Elastic Bridging in Biological Materials. SSRN Electronic Journal, 0, , .	0.4	0
1780	The emerging frontiers in materials for functional three-dimensional printing. , 2022, , 299-343.		0
1781	Transient shape morphing of active gel plates: geometry and physics. Soft Matter, 2022, 18, 5867-5876.	1.2	3
1782	Photo-induced spatial gradient network for shape memory polymer with pattern-memorizing surface. Materials Horizons, 2022, 9, 3078-3086.	6.4	3
1783	Recent advances in molecular programming of liquid crystal elastomers with additive manufacturing for 4D printing. Molecular Systems Design and Engineering, 2022, 7, 1588-1601.	1.7	7
1784	Direct-write 3D printing of UV-curable composites with continuous carbon fiber. Journal of Composite Materials, 0, , 002199832211271.	1.2	3
1785	Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures. ACS Nano, 2022, 16, 13468-13491.	7.3	19
1786	4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 2022, 265, 111874.	1.1	15
1787	Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet. ACS Applied Materials & (2022, 14, 42841-42851.	4.0	2
1788	Morphing of stiffness-heterogeneous liquid crystal elastomers via mechanical training and locally controlled photopolymerization. Matter, 2022, 5, 4332-4346.	5.0	5

#	Article	IF	Citations
1789	Twoâ€Photon Polymerized Shape Memory Microfibers: A New Mechanical Characterization Method in Liquid. Advanced Functional Materials, 2023, 33, .	7.8	3
1792	Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nature Communications, 2022, 13, .	5.8	29
1794	A dynamically reprogrammable surface with self-evolving shape morphing. Nature, 2022, 609, 701-708.	13.7	45
1795	Recent progress in fabrications and applications of functional hydrogel films. Journal of Polymer Science, 2023, 61, 1026-1039.	2.0	6
1796	4D printing: a cutting-edge platform for biomedical applications. Biomedical Materials (Bristol), 2022, 17, 062001.	1.7	23
1797	Principles of elastic bridging in biological materials. Acta Biomaterialia, 2022, 153, 320-330.	4.1	3
1798	Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings, 2022, 12, 1380.	1.2	23
1799	Solventâ€Driven Biomimetic Soft Sensors and Actuators. Advanced Materials Interfaces, 0, , 2201349.	1.9	0
1800	2.5D, 3D and 4D printing in nanophotonics - a progress report. Materials Today: Proceedings, 2022, 70, 304-309.	0.9	4
1801	Discussion on the possibility of multi-layer intelligent technologies to achieve the best recover of musculoskeletal injuries: Smart materials, variable structures, and intelligent therapeutic planning. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1802	Emerging Technologies of Three-Dimensional Printing and Mobile Health in COVID-19 Immunity and Regenerative Dentistry. Tissue Engineering - Part C: Methods, 2023, 29, 163-182.	1.1	1
1803	Development and characterisation of structurally reforming engineered flatâ€rice xerogel for hot water cooking. International Journal of Food Science and Technology, 2023, 58, 502-511.	1.3	3
1804	Vat photopolymerization of tough glassy polymers with multiple shape memory performances. Additive Manufacturing, 2022, 59, 103171.	1.7	3
1805	Geometrical incompatibility guides pattern selection in growing bilayer tubes. Journal of the Mechanics and Physics of Solids, 2022, 169, 105087.	2.3	9
1806	Effect of variations in manufacturing and material properties on the self-folding behaviors of hydrogel and elastomer bilayer structures. Soft Matter, 2022, 18, 8771-8778.	1.2	2
1807	Introduction to High-Resolution Manufacturing from 2D to 3D/4D Printing Technology Evolutions and Design Considerations. , 2022, , 3-15.		O
1808	Biodegradable Materials from Natural Origin for Tissue Engineering and Stem Cells Technologies. , 2022, , 1-40.		2
1809	4D printing of light activated shape memory polymers with organic dyes. Molecular Systems Design and Engineering, 2023, 8, 323-329.	1.7	8

#	Article	IF	CITATIONS
1810	Curvature arising in shape memory polymer sheets via light absorption. Acta Mechanica, 0, , .	1.1	0
1811	Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing. Advanced Materials, 2023, 35, .	11.1	9
1812	The potential of 3D printing in facilitating carbon neutrality. Journal of Environmental Sciences, 2023, 130, 85-91.	3.2	6
1813	3D bioprinted cancer models: from basic biology to drug development. Nature Reviews Cancer, 2022, 22, 679-692.	12.8	29
1814	Three-Dimensional Printable Magnetic Microfibers: Development and Characterization for Four-Dimensional Printing. 3D Printing and Additive Manufacturing, 0, , .	1.4	1
1815	Fluid-Mediated Fabrication of Complex Assemblies. Jacs Au, 2022, 2, 2417-2425.	3.6	2
1816	4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals, 2022, 15, 1282.	1.7	19
1817	Curvature-driven instabilities in thin active shells. Royal Society Open Science, 2022, 9, .	1.1	1
1818	A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nature Biomedical Engineering, 2023, 7, 135-148.	11.6	11
1819	Shape-morphing into 3D curved surfaces with nacre-like composite architectures. Science Advances, 2022, 8, .	4.7	16
1820	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
1821	Networking of Block Copolymer Nanoassemblies via Digital Light Processing Four-Dimensional Printing for Programmable Actuation. ACS Applied Polymer Materials, 2022, 4, 8676-8683.	2.0	4
1822	Boneâ€Adhesive Anisotropic Tough Hydrogel Mimicking Tendon Enthesis. Advanced Materials, 2023, 35, .	11.1	17
1823	Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 49389-49397.	4.0	10
1824	Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels, 2022, 8, 685.	2.1	7
1825	4D Printing Via Multispeed Fused Deposition Modeling. Advanced Materials Technologies, 2023, 8, .	3.0	10
1826	Multiple shapes from a single nematic elastomer sheet activated via patterned illumination. Europhysics Letters, 2022, 140, 36003.	0.7	2
1827	A general multi-layered hyperelastic plate theory for growth-induced deformations in soft material samples. Applied Mathematical Modelling, 2023, 115, 300-336.	2.2	3

#	ARTICLE	IF	CITATIONS
1828	Powerful 2D Soft Morphing Actuator Propels Giant Manta Ray Robot. Advanced Intelligent Systems, 2022, 4, .	3.3	1
1829	4D Printing of Shape Memory Polymers, Blends, and Composites and Their Advanced Applications: A Comprehensive Literature Review. Advanced Engineering Materials, 2023, 25, .	1.6	13
1830	Rational Design of Soft–Hard Interfaces through Bioinspired Engineering. Small, 2023, 19, .	5.2	6
1831	Advances in Biodegradable Soft Robots. Polymers, 2022, 14, 4574.	2.0	8
1832	Poroelastic plant-inspired structures & materials to sense, regulate flow, and move. Bioinspiration and Biomimetics, 2023, 18, 015002.	1.5	1
1833	Coupling of a magnetic field with instability for multimodal and multistep deformations of a curved beam with asymmetric magnetic torque. Journal of Applied Mechanics, Transactions ASME, 0, , 1-19.	1.1	O
1834	Advances and Challenges of Hydrogel Materials for Robotic and Sensing Applications. Chemistry of Materials, 2022, 34, 9307-9328.	3.2	20
1835	Overview of 3D and 4D Printing Techniques and their Emerging Applications in Medical Sectors. Current Materials Science, 2023, 16, 143-170.	0.2	1
1836	4D Multiscale Origami Soft Robots: A Review. Polymers, 2022, 14, 4235.	2.0	10
1837	Targeted Additive Micromodulation of Grain Size in Nanocrystalline Copper Nanostructures by Electrohydrodynamic Redox 3D Printing. Small, 2022, 18, .	5.2	7
1838	4D Printing of Stimuli-Responsive Materials. , 2023, , 85-112.		1
1839	Functional flexibility: The potential of morphing composites. Composites Science and Technology, 2022, 230, 109792.	3.8	4
1840	Merging the Interfaces of Different Shapeâ€Shifting Polymers Using Hybrid Exchange Reactions. Advanced Materials, 2023, 35, .	11.1	11
1841	3D printing of bioinspired hydrogel microstructures with programmable and complex shape deformations based on a digital micro-mirror device. Optics and Laser Technology, 2023, 157, 108759.	2.2	8
1842	Design, Analysis, and Experiment of a Novel Ultrasonic Printing System., 2022,,.		0
1843	4D Printing of Seed Capsuleâ€Inspired Hygroâ€Responsive Structures via Liquid Crystal Templatingâ€Assisted Vat Photopolymerization. Advanced Functional Materials, 2023, 33, .	7.8	7
1844	On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers, 2022, 14, 4698.	2.0	23
1845	Magnetoâ€Thermomechanically Reprogrammable Mechanical Metamaterials. Advanced Materials, 2023, 35, .	11.1	14

#	Article	IF	CITATIONS
1846	Design, fabrication and application of self-spiraling pattern-driven 4D-printed actuator. Scientific Reports, 2022, 12, .	1.6	2
1848	Stiff Shape Memory Polymers for High-Resolution Reconfigurable Nanophotonics. Nano Letters, 2022, 22, 8917-8924.	4.5	14
1849	Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nature Materials, 2022, 21, 1357-1365.	13.3	11
1850	3Dâ€Printed Photoresponsive Liquid Crystal Elastomer Composites for Freeâ€Form Actuation. Advanced Functional Materials, 2023, 33, .	7.8	34
1851	Improved Performance of Biohybrid Muscleâ€Based Bioâ€Bots Doped with Piezoelectric Boron Nitride Nanotubes. Advanced Materials Technologies, 2023, 8, .	3.0	5
1852	Reconfigurable network structure with tunable multiple deformation modes: Mechanical designs, theoretical predictions, and experimental demonstrations. International Journal of Solids and Structures, 2023, 260-261, 112043.	1.3	1
1853	3D printing of plant-based foods. , 2023, , 301-314.		1
1854	The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion. Research, 2022, 2022, .	2.8	12
1855	Mechanical and heat transfer properties of 4D-printed shape memory graphene oxide/epoxy acrylate composites. Nanotechnology Reviews, 2022, 11, 3138-3154.	2.6	1
1856	Printable Multi-Stage Variable Stiffness Material Enabled by Low Melting Point Particles Additives. Journal of Materials Chemistry C, 0, , .	2.7	0
1857	Design space and manufacturing of programmable 4D printed continuous flax fibre polylactic acid composite hygromorphs. Materials and Design, 2023, 225, 111472.	3.3	8
1858	Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. European Polymer Journal, 2023, 184, 111778.	2.6	8
1859	A knowledge recommendation approach in design for multi-material 4D printing based on semantic similarity vector space model and case-based reasoning. Computers in Industry, 2023, 145, 103824.	5.7	2
1860	Three-Dimensional Printing of Sustainable Polymer for Motion Programming Applications. , 2022, , 1-10.		0
1861	Optimization and fabrication of programmable domains for soft magnetic robots: A review. Frontiers in Robotics and Al, $0, 9, .$	2.0	5
1862	Shape morphing of plastic films. Nature Communications, 2022, 13, .	5.8	9
1863	Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites. Small, 2023, 19, .	5.2	11
1864	4D Printing in Biomedical Engineering: a State-of-the-Art Review of Technologies, Biomaterials, and Application. Regenerative Engineering and Translational Medicine, 2023, 9, 339-365.	1.6	2

#	Article	IF	Citations
1865	4D Printingâ€"A Smart Way of 3D Printing: A Brief Review. Lecture Notes in Mechanical Engineering, 2023, , 25-34.	0.3	0
1866	Hierarchically structured bioinspired nanocomposites. Nature Materials, 2023, 22, 18-35.	13.3	119
1867	Four-Dimensional Printing of Multifunctional Photocurable Resin Based on Waste Cooking Oil. ACS Sustainable Chemistry and Engineering, 2022, 10, 16344-16358.	3.2	4
1868	Perceived Affordances in Programmable Matter. , 2022, , .		0
1869	Orientational Co Nanorod-Enabled Ferromagnetic Hydrogel Actuators with Diverse Hosts. ACS Applied Electronic Materials, 2022, 4, 5963-5972.	2.0	4
1870	4D printing of bilayer structures with programmable shape-shifting behavior. Journal of Materials Science, 2022, 57, 21309-21323.	1.7	3
1871	Magnetic Resonance Imaging: Time-Dependent Wetting and Swelling Behavior of an Auxetic Hydrogel Based on Natural Polymers. Polymers, 2022, 14, 5023.	2.0	1
1872	Hydrogel Nanocomposite Adsorbents and Photocatalysts for Sustainable Water Purification. Advanced Materials Interfaces, 2023, 10, .	1.9	38
1873	Emerging trends in humidity-responsive 4D bioprinting. Chemical Engineering Journal, 2023, 455, 140550.	6.6	11
1874	Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. Advanced Materials, 2023, 35, .	11.1	34
1875	Biomaterials of human source for 3D printing strategies. JPhys Materials, 2023, 6, 012002.	1.8	5
1876	Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Advanced Healthcare Materials, 2023, 12, .	3.9	15
1877	Programmable aniso-electrodeposited modular hydrogel microrobots. Science Advances, 2022, 8, .	4.7	31
1878	Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection. International Journal of Bioprinting, 2022, 9, 649.	1.7	6
1879	Untethered unidirectionally crawling gels driven by asymmetry in contact forces. Science Robotics, 2022, 7, .	9.9	18
1880	The Design of 4Dâ€Printed Hygromorphs: Stateâ€ofâ€theâ€Art and Future Challenges. Advanced Functional Materials, 2023, 33, .	7.8	6
1881	Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nature Communications, 2022, 13, .	5.8	40
1882	Highâ€Performance Organohydrogel Artificial Muscle with Compartmentalized Anisotropic Actuation Under Microdomain Confinement. Advanced Materials, 2023, 35, .	11.1	23

#	ARTICLE	IF	CITATIONS
1884	Biotissueâ€Inspired Anisotropic Carbon Fiber Composite Hydrogels for Logic Gates, Integrated Soft Actuators, and Sensors with Ultraâ€High Sensitivity. Advanced Functional Materials, 2023, 33, .	7.8	15
1885	Nature-inspired reentrant surfaces. Progress in Materials Science, 2023, 133, 101064.	16.0	17
1888	3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond. Acta Biomaterialia, 2023, 158, 308-323.	4.1	2
1889	Air Permeable Vibrotactile Actuators for Wearable Wireless Haptics. Advanced Functional Materials, 2023, 33, .	7.8	8
1890	Melt Electrowriting of Liquid Crystal Elastomer Scaffolds with Programmed Mechanical Response. Advanced Materials, 2023, 35, .	11.1	11
1891	Computational design and fabrication of active 3D-printed multi-state structures for shape morphing. Smart Materials and Structures, 2023, 32, 015008.	1.8	2
1892	Lightâ€Fueled Nonreciprocal Selfâ€Oscillators for Fluidic Transportation and Coupling. Advanced Materials, 0, , .	11.1	10
1893	Nanocellulose: Recent Advances Toward Biomedical Applications. Small Science, 2023, 3, .	5.8	11
1894	Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery. Current Drug Delivery, 2023, 20, 752-769.	0.8	7
1896	Emerging 3D bioprinting applications in plastic surgery. Biomaterials Research, 2023, 27, .	3.2	31
1897	Multifunctional 3Dâ€Printed Pollen Grainâ€Inspired Hydrogel Microrobots for Onâ€Demand Anchoring and Cargo Delivery. Advanced Materials, 2023, 35, .	11.1	24
1898	Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS Applied Materials & District Sciences, 2023, 15, 4538-4548.	4.0	4
1899	Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chemical Reviews, 2023, 123, 2016-2048.	23.0	98
1900	Four-Dimensional Bioprinting for Regenerative Medicine: Mechanisms to Induce Shape Variation and Potential Applications. European Medical Journal Innovations, 0, , 36-43.	2.0	4
1901	Unconventional direct ink writing of polyelectrolyte films. MRS Bulletin, 0, , .	1.7	0
1902	Stimuliâ€Triggered Multishape, Multimode, and Multistep Deformations Designed by Microfluidic 3D Droplet Printing. Small, 2023, 19, .	5.2	3
1904	A robust and 3D-printed solar evaporator based on naturally occurring molecules. Science Bulletin, 2023, 68, 203-213.	4.3	59
1905	Femtosecond Laser 4D Printing of Lightâ€Driven Intelligent Micromachines. Advanced Functional Materials, 2023, 33, .	7.8	20

#	Article	IF	Citations
1906	Alginate Hydrogels Reinforced by Dehydration under Stressâ€"Application to a Soft Magnetic Actuator. Gels, 2023, 9, 39.	2.1	2
1907	Computational design for 4D printing of topology optimized multi-material active composites. Npj Computational Materials, 2023, 9, .	3.5	22
1908	Rotational multimaterial printing of filaments with subvoxel control. Nature, 2023, 613, 682-688.	13.7	48
1909	Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2564-2577.	4.0	4
1910	4Dâ€Printed Soft and Stretchable Selfâ€Folding Cuff Electrodes for Smallâ€Nerve Interfacing. Advanced Materials, 2023, 35, .	11.1	12
1911	Application of 4D printing and AI to cardiovascular devices. Journal of Drug Delivery Science and Technology, 2023, 80, 104162.	1.4	6
1912	Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. European Polymer Journal, 2023, 184, 111806.	2.6	15
1913	Ultrasound directed self-assembly of filler in continuous flow of a viscous medium through an extruder nozzle for additive manufacturing. Additive Manufacturing Letters, 2023, 5, 100120.	0.9	4
1914	Codesign of Biobased Cellulose-Filled Filaments and Mesostructures for 4D Printing Humidity Responsive Smart Structures. 3D Printing and Additive Manufacturing, 2023, 10, 1-14.	1.4	7
1915	Bioinspired Selfâ€Growing Hydrogels by Harnessing Interfacial Polymerization. Advanced Materials, 2023, 35, .	11.1	8
1916	Bioinspired shape shifting of liquid-infused ribbed sheets. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
1917	4D printing for product development: State of the art and future scope. , 2023, , 293-306.		0
1918	Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics, 2023, 8, 42.	1.5	3
1919	Role of 3D printing in biomechanics. , 2023, , 1-33.		1
1920	Structure-property-function relationships of sustainable hydrogels., 2023,, 79-111.		0
1921	Chemical Optimization Strategy of Rapid Additive Manufacturing via Upâ€Conversion Assisted Photopolymerization Based Direct Ink Writing. Advanced Materials Technologies, 2023, 8, .	3.0	4
1922	An Ultra High Gain Converter for Driving HASEL Actuator Used in Soft Mobile Robots. Biomimetics, 2023, 8, 53.	1.5	1
1923	Four-dimension printing in healthcare. , 2023, , 337-359.		1

#	Article	IF	CITATIONS
1924	3D Laser Nanoprinting of Functional Materials. Advanced Functional Materials, 2023, 33, .	7.8	8
1925	From Drosophila material to functional structures: Biomimetic through additive manufacturing technology., 2023,, 129-151.		1
1926	Self-Powered Sensors: Applications, Challenges, and Solutions. IEEE Sensors Journal, 2023, 23, 20483-20509.	2.4	9
1927	Bioinspired, biomimetic hydrogels., 2023,, 325-354.		О
1928	Emerging trends in 4d printing of hydrogels in the biomedical field: A review. Materials Today: Proceedings, 2023, , .	0.9	2
1929	Regenerative Living 4D Printing via Reversible Growth of Polymer Networks. Advanced Materials, 2023, 35, .	11.1	10
1930	Squid/synthetic polymer double-network gel: elaborated anisotropy and outstanding fracture toughness characteristics. NPG Asia Materials, $2023,15,.$	3.8	0
1931	Effect of the fiber-matrix bond on the toughness of soft, short-fiber composites. Journal of Composite Materials, 2023, 57, 521-530.	1.2	0
1932	Metallic 4D Printing of Laser Stimulation. Advanced Science, 2023, 10, .	5.6	3
1933	Perspectives of 3D and 4D bioprinting. , 2023, , 265-288.		O
1934	Quality of AM implants in biomedical application. , 2023, , 689-743.		1
1935	Ligninâ€Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. Advanced Science, 2023, 10, .	5.6	22
1936	4D printing: An experimental case study on processing of shape memory polymer by FDM/FFF for nature inspired structures. , 2023, , 361-377.		5
1937	Ontological Knowledge Graph Framework for 4D Printed Product Design: Elongated Homogenous Rod Case. Lecture Notes in Mechanical Engineering, 2023, , 101-109.	0.3	0
1938	3D Printing of Customized Drug Delivery Systems with Controlled Architecture via Reversible Additionâ€Fragmentation Chain Transfer Polymerization. Advanced Engineering Materials, 2023, 25, .	1.6	11
1939	Bulk Polymerization of Thermoplastic Shape Memory Epoxy Polymer for Recycling Applications. Polymers, 2023, 15, 809.	2.0	2
1940	Hydrogelâ€Based Multifunctional Soft Electronics with Distributed Sensing Units: A Review. , 2023, 2, .		3
1941	Nature-Inspired Cellulose-Based Active Materials: From 2D to 4D. , 2023, 2, 94-114.		5

#	Article	IF	CITATIONS
1942	4D Printed Thermoplastic Polyamide Elastomers with Reversible Twoâ€Way Shape Memory Effect. Advanced Materials Technologies, 2023, 8, .	3.0	3
1943	Microâ€Scale Mechanical Metamaterial with a Controllable Transition in the Poisson's Ratio and Band Gap Formation. Advanced Materials, 2023, 35, .	11.1	20
1944	Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review. Composites Part B: Engineering, 2023, 256, 110661.	5.9	24
1945	Multi-thermo responsive double network composite hydrogel for 3D printing medical hydrogel mask. Journal of Colloid and Interface Science, 2023, 638, 882-892.	5.0	9
1946	Morph-genetic bamboo-reinforced hydrogel complex for bio-mimetic actuator. Chemical Engineering Journal, 2023, 463, 142391.	6.6	9
1947	Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 2023, 402, 136815.	4.6	114
1948	A novel chitosan-alginate-dicalcium phosphate membrane coated on poly(lactic acid) to control biological condition, swelling and cell growth. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116435.	1.7	2
1949	Additive manufacturing method of electrothermal 4D bimorph microactuator. Sensors and Actuators A: Physical, 2023, 356, 114348.	2.0	5
1950	Modeling for silicone foam material extrusion with liquid rope coiling. International Journal of Mechanical Sciences, 2023, 249, 108234.	3.6	3
1951	4D printed TMP origami metamaterials with programmable mechanical properties. International Journal of Mechanical Sciences, 2023, 250, 108275.	3.6	9
1952	Programmable Tissue Folding Patterns in Structured Hydrogels. Advanced Materials, 0, , .	11.1	5
1953	In situ characterization of material extrusion printing by near-infrared spectroscopy. Additive Manufacturing, 2023, 63, 103420.	1.7	0
1954	A general theoretical scheme for shape-programming of incompressible hyperelastic shells through differential growth. International Journal of Solids and Structures, 2023, 265-266, 112128.	1.3	3
1955	4D Printing Materials for Soft Robots. Fashion & Textile Research Journal, 2022, 24, 667-685.	0.1	0
1956	Understanding Nanocellulose–Water Interactions: Turning a Detriment into an Asset. Chemical Reviews, 2023, 123, 1925-2015.	23.0	61
1957	3Dâ€Printed Anisotropic Nanofiber Composites with Gradual Mechanical Properties. Advanced Materials Technologies, 2023, 8, .	3.0	5
1958	4D Printing of Shape Memory Polymers: A Concise Review of Photopolymerized Acrylate-Based Materials., 0, 32, 1-12.		0
1959	A constitutive model for predicting the time-dependent behavior of multi-material 4D printed structures. Progress in Additive Manufacturing, 2024, 9, 27-35.	2.5	1

#	Article	IF	CITATIONS
1960	Amphibious Nastic Hydrogel Based on the Tropic Movement of Gelatin and Its Opposite Phase Transition to PNIPAm. Biomacromolecules, 2023, 24, 1522-1531.	2.6	1
1962	Advanced supramolecular design for direct ink writing of soft materials. Chemical Society Reviews, 2023, 52, 1614-1649.	18.7	25
1963	Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomaterials Science and Engineering, 2023, 9, 1164-1189.	2.6	13
1964	Perspectives on Computation in Plants. Artificial Life, 0, , 1-15.	1.0	1
1965	Vat Photopolymerization Additive Manufacturing of Tough, Fully Recyclable Thermosets. ACS Applied Materials & Samp; Interfaces, 2023, 15, 11111-11121.	4.0	18
1966	Wettingâ€Enabled Threeâ€Dimensional Interfacial Polymerization (WETâ€DIP) for Bioinspired Antiâ€Dehydration Hydrogels. Small, 2023, 19, .	5.2	2
1967	3D printed electronics with nanomaterials. Nanoscale, 2023, 15, 5623-5648.	2.8	11
1968	Organized mineralized cellulose nanostructures for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 5321-5349.	2.9	2
1969	Formulation of threeâ€dimensional, photoâ€responsive printing ink: Gold nanorodâ€hydrogel nanocomposites and their fourâ€dimensional structures that respond quickly to stimuli. Journal of Applied Polymer Science, 2023, 140, .	1.3	0
1970	Biodegradable Materials from Natural Origin for Tissue Engineering and Stem Cells Technologies. , 2023, , 1133-1172.		0
1971	Flow-network-controlled shape transformation of a thin membrane through differential fluid storage and surface expansion. Physical Review E, 2023, 107, .	0.8	0
1972	Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale, 2023, 15, 6105-6120.	2.8	3
1973	Fullâ€field hygroscopic characterization of tough <scp>3D</scp> â€printed supramolecular hydrogels. Journal of Polymer Science, 2023, 61, 1120-1131.	2.0	0
1974	Application of RAFT in 3D Printing: Where Are the Future Opportunities?. Macromolecules, 2023, 56, 1778-1797.	2.2	12
1975	Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nature Communications, 2023, 14, .	5.8	22
1976	4D printing of polyamide 1212 based shape memory thermoplastic polyamide elastomers by selective laser sintering. Journal of Manufacturing Processes, 2023, 92, 157-164.	2.8	7
1977	A Systematic Review on 4D Printing Technology. Materials Today: Proceedings, 2023, , .	0.9	2
1978	Twoâ€Photon Polymerization of Sugar Responsive 4D Microstructures. Advanced Functional Materials, 2023, 33, .	7.8	10

#	Article	IF	CITATIONS
1979	Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions. Soft Matter, 2023, 19, 2466-2485.	1.2	2
1980	Repeatedly Recyclable 3D Printing Catalystâ€Free Dynamic Thermosetting Photopolymers. Advanced Materials, 2023, 35, .	11.1	10
1981	Multiscale bilayer hydrogels enabled by macrophase separation. Matter, 2023, 6, 1484-1502.	5.0	18
1982	3D Printing of Biomimetic Functional Nanocomposites <i>via</i> Vat Photopolymerization., 0, , .		0
1983	Soft Deployable Structures via Core-Shell Inflatables. Physical Review Letters, 2023, 130, .	2.9	2
1984	Twoâ€Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Advanced Functional Materials, 2023, 33, .	7.8	39
1985	Research on imminent enlargements of smart materials and structures towards novel 4D printing (4DP: SMs-SSs). International Journal of Advanced Manufacturing Technology, 2023, 126, 2803-2823.	1.5	3
1986	Programming 3D Curves with Discretely Constrained Cylindrical Inflatables. Advanced Materials, 2023, 35, .	11.1	5
1987	3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. Npj Regenerative Medicine, 2023, 8, .	2.5	14
1988	New water-soluble photo-initiators for two-photon polymerization based on benzylidene cyclopentanones. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442, 114743.	2.0	0
1989	Natural fiber biocomposites via 4D printing technologies: a review of possibilities for agricultural bio-mulching and related sustainable applications. Progress in Additive Manufacturing, 2024, 9, 37-67.	2.5	3
1990	Plant-Fiber and Wood-Based Functional Materials. Springer Handbooks, 2023, , 1645-1693.	0.3	2
1991	Swelling under Constraints: Exploiting 3Dâ€Printing to Optimize the Performance of Gelâ€Based Devices. Advanced Materials Technologies, 2023, 8, .	3.0	1
1992	4D Printed Programmable Shapeâ€Morphing Hydrogels as Intraoperative Selfâ€Folding Nerve Conduits for Sutureless Neurorrhaphy. Advanced Healthcare Materials, 2023, 12, .	3.9	14
1993	The Universality of Self-Organisation: A Path to an Atom Printer?. Springer Series in Optical Sciences, 2023, , 173-207.	0.5	0
1994	Exploration of molecular machines in supramolecular soft robotic systems. Advances in Colloid and Interface Science, 2023, 315, 102892.	7.0	6
1995	Magnetically Responsive Melt Electrowritten Structures. Advanced Materials Technologies, 2023, 8, .	3.0	11
1996	Molecular dynamics study of low molecular weight gel forming salt-triggered dipeptide. Scientific Reports, 2023, 13, .	1.6	1

#	Article	IF	Citations
1997	Octopusâ€Inspired Adaptable Soft Grippers Based on 4D Printing: Numerical Modeling, Inverse Design, and Experimental Validation. Advanced Intelligent Systems, 2023, 5, .	3.3	3
1998	Additive manufacturing of hygromorphic structures using regenerated cellulose/PLA biocomposites. Materials Today: Proceedings, 2023, , .	0.9	1
1999	Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications. Composites Part B: Engineering, 2023, 254, 110585.	5.9	54
2006	Advances in 4D printed shape memory composites and structures: Actuation and application. Science China Technological Sciences, 2023, 66, 1271-1288.	2.0	10
2010	Recent insights on advancements and substantial transformations in food printing technology from 3 to 7D. Food Science and Biotechnology, 2023, 32, 1783-1804.	1.2	4
2024	Hygroscopic Tunable Multishape Memory Effect in Cellulosic Macromolecular Networks with a Supramolecular Mesophase. ACS Macro Letters, 2023, 12, 835-840.	2.3	1
2036	4D Printing in Pharmaceutics and Biomedical Applications. Advanced Clinical PharmacyÂ- Research, Development and Practical Applications, 2023, , 207-247.	0.0	0
2038	4D printing of biopolymers. , 2023, , 191-227.		0
2042	Evolving variable stiffness fiber patterns for multi-shape robotic sheets., 2023,,.		0
2045	3D Printing of Multicomponent Hydrogels for Biomedical Applications. , 2023, , 231-287.		0
2047	Rapid-Responsive Hydrogel Actuators with Hierarchical Structures: Strategies and Applications. ACS Applied Polymer Materials, 2023, 5, 4605-4620.	2.0	3
2066	Application of 4D printing and bioprinting in cardiovascular tissue engineering. Biomaterials Science, 2023, 11, 6403-6420.	2.6	4
2073	Recent advances in 4D printing hydrogel for biological interfaces. International Journal of Material Forming, 2023, 16, .	0.9	3
2085	3D shape morphing of stimuli-responsive composite hydrogels. Materials Chemistry Frontiers, 2023, 7, 5989-6034.	3.2	2
2097	Bioinspired strategies for biomimetic actuators from ultrafast to ultraslow. Nano Research, 2024, 17, 570-586.	5.8	0
2127	Digital Processes for Wood Innovation Design. Lecture Notes in Mechanical Engineering, 2024, , 431-450.	0.3	0
2133	Bi-Directional Deformation, Stiffness-Tunable, and Electrically Controlled Soft Actuators Based on LCEs 4D Printing. Lecture Notes in Computer Science, 2023, , 53-62.	1.0	0
2139	Developments of additive manufacturing and 5D printing in tissue engineering. Journal of Materials Research, 2023, 38, 4692-4725.	1.2	2

#	Article	IF	CITATIONS
2140	Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. Nano-Micro Letters, 2023, 15, .	14.4	5
2169	3D printing of composite material through blending of PLA and PETG using fused deposition modelling. AIP Conference Proceedings, 2023, , .	0.3	0
2172	Applications of 3D Bioprinting in Oral and Maxillofacial Surgery: An Insight. Journal of Maxillofacial and Oral Surgery, 0, , .	0.6	0
2173	One-way/two-way programming of fabric thermoplastic substrate for sensor applications. , 2023, , .		0
2183	Additive Manufacturing for Complex Geometries in Polymer Composites. Advances in Material Research and Technology, 2024, , 121-186.	0.3	0
2185	Bioinspired magnetic cilia: from materials to applications. Microsystems and Nanoengineering, 2023, 9,	3.4	2
2194	A critical review on 4D printing and their processing parameters. International Journal on Interactive Design and Manufacturing, $0, \dots$	1.3	0
2200	Applications of 4D Printing Technology. Advances in Logistics, Operations, and Management Science Book Series, 2024, , 54-66.	0.3	0
2207	Role of 3D printing in microfluidics and applications. , 2024, , 67-107.		0
2209	Material and structural approaches for human-machine interfaces. , 2024, , 227-290.		0
2210	Emerging trends of three-dimensional printing in biotechnology. , 2024, , 155-180.		0
2228	Naturally-Derived Biomaterials for Oral and Dental Tissue Engineering. , 2024, , 91-118.		0
2237	Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. Materials Horizons, 0, , .	6.4	0
2245	Nanocomposite hydrogel: Fabrication methods and applications. , 2023, , .		0