CITATION REPORT List of articles citing

Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide

DOI: 10.1002/adma.201504766 Advanced Materials, 2016, 28, 3423-52.

Source: https://exaly.com/paper-pdf/65299651/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1104	ChemInform Abstract: Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. 2016 , 47, no		
1103	Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst. 2016 , 22, 11991-6		104
1102	High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction. 2016 , 22, 14158-61		42
1101	Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. 2017 , 5, 2710-2716		89
1100	Current Status and Bioinspired Perspective of Electrochemical Conversion of CO to a Long-Chain Hydrocarbon. 2017 , 8, 538-545		83
1099	Effect of metal deposition sequence in carbon-supported PdPt catalysts on activity towards CO2 electroreduction to formate. 2017 , 76, 1-5		24
1098	Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts. 2017 , 206, 336-343		80
1097	Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. 2017 , 27, 1606129		224
1096	Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO 2 electroreduction to formate. 2017 , 18, 222-228		106
1095	Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. 2017 , 19, 2086-2091		60
1094	Nanostructured Materials for Heterogeneous Electrocatalytic CO Reduction and their Related Reaction Mechanisms. 2017 , 56, 11326-11353		588
1093	Nanostrukturierte Materialien fildie elektrokatalytische CO2-Reduktion und ihre Reaktionsmechanismen. 2017 , 129, 11482-11511		86
1092	Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. 2017 , 5, 775-795		81
1091	Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu\(\mathbb{Z}\)n alloy catalyst. 2017 , 5, 12113-12119		68
1090	CO2 reduction: the quest for electrocatalytic materials. 2017 , 5, 8230-8246		181
1089	Electrochemical reduction of CO 2 in solid oxide electrolysis cells. 2017 , 26, 593-601		75
1088	Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. 2017 , 47, 661-678		51

(2017-2017)

1087	Temperature of CO Hydrogenation. 2017 , 13, 1602583	49
1086	Cu metal embedded in oxidized matrix catalyst to promote CO activation and CO dimerization for electrochemical reduction of CO. 2017 , 114, 6685-6688	146
1085	Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO. 2017 , 139, 8078-8081	825
1084	,-Dimethylation of nitrobenzenes with CO and water by electrocatalysis. 2017 , 8, 5669-5674	11
1083	Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. 2017 , 7, 1700518	406
1082	Self-growth-templating synthesis of 3D N,P,Co-doped mesoporous carbon frameworks for efficient bifunctional oxygen and carbon dioxide electroreduction. 2017 , 5, 13104-13111	53
1081	BiOCO Nanosheets as Electrocatalysts for Selective Reduction of CO to Formate at Low Overpotential. 2017 , 2, 2561-2567	42
1080	Hollow CuS Microcube Electrocatalysts for CO2 Reduction Reaction. 2017 , 4, 2593-2598	24
1079	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. 2017 , 5, 7257-7284	186
1078	Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. 2017 , 5, 7184-7190	48
1077	Rational Design of High-Performance Wide-Bandgap (2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (1 V). 2017, 38, 1600614	16
1076	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO2 Reduction. 2017 , 1, 1600006	92
1075	Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111). 2017 , 139, 130-136	214
1074	Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. <i>Advanced Materials</i> , 2017 , 29, 1602547	182
1073	Liquid Hydrocarbon Production from CO: Recent Development in Metal-Based Electrocatalysis. 2017 , 10, 4342-4358	41
1072	Rotating ring-disk voltammetry: Diagnosis of catalytic activity of metallic copper catalysts toward CO2 electroreduction. 2017 , 53, 1194-1203	15
1071	Pyridine-decorated carbon nanotubes as a metal-free heterogeneous catalyst for mild CO2 reduction to methanol with hydroboranes. 2017 , 7, 5833-5837	14
1070	Production of Liquid Solar Fuels and Their Use in Fuel Cells. 2017 , 1, 689-738	85

1069	Electrocatalytic Metal-Organic Frameworks for Energy Applications. 2017 , 10, 4374-4392	139
1068	Heterogeneous electrochemical CO reduction using nonmetallic carbon-based catalysts: current status and future challenges. 2017 , 28, 472001	57
1067	Photocatalyzing CO to CO for Enhanced Cancer Therapy. <i>Advanced Materials</i> , 2017 , 29, 1703822	83
1066	Cobalt Spinel Nanocubes on N-Doped Graphene: A Synergistic Hybrid Electrocatalyst for the Highly Selective Reduction of Carbon Dioxide to Formic Acid. 2017 , 7, 7695-7703	59
1065	Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. 2017 , 3, 560-587	513
1064	Cu nanoparticles decorating rGO nanohybrids as electrocatalyst toward CO2 reduction. 2017 , 22, 231-237	19
1063	Resorcinolformaldehyde resin-based porous carbon spheres with high CO2 capture capacities. 2017 , 26, 1007-1013	21
1062	Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. 2017 , 26, 1050-1066	46
1061	Composition-tunable synthesis of fileanthyngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential. 2017 , 19, 4284-4288	44
1060	A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst. 2017 , 10, 3671-3678	7
1059	Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels. 2017 , 1, 1875-1898	115
1058	Electrochemical Reduction of CO2 in Proton Exchange Membrane Reactor: The Function of Buffer Layer. 2017 , 56, 10242-10250	19
1057	Selective Etching of Nitrogen-Doped Carbon by Steam for Enhanced Electrochemical CO2 Reduction. 2017 , 7, 1701456	146
1056	Tuning Product Selectivity for Aqueous CO Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. 2017 , 139, 14425-14435	138
1055	Selective Electrochemical Reduction of CO to Ethylene on Nanopores-Modified Copper Electrodes in Aqueous Solution. 2017 , 9, 32782-32789	57
1054	Metal-Free Carbon Materials for CO Electrochemical Reduction. <i>Advanced Materials</i> , 2017 , 29, 1701784 24	385
1053	CO Reduction: From the Electrochemical to Photochemical Approach. 2017 , 4, 1700194	408
1052	Tuning of CO Reduction Selectivity on Metal Electrocatalysts. 2017 , 13, 1701809	136

1051	Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond. 2017 , 129, 15813-15817	36
1050	Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond. 2017 , 56, 15607-15611	165
1049	Atomically Thin Transition-Metal Dichalcogenides for Electrocatalysis and Energy Storage. 2017 , 1, 1700156	82
1048	CO2 electoreduction reaction on heteroatom-doped carbon cathode materials. 2017 , 5, 21596-21603	48
1047	Facile Fabrication of Ordered Component-Tunable Heterobimetallic Self-Assembly Nanosheet for Catalyzing "Click" Reaction. 2017 , 2, 5415-5433	9
1046	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO2. 2017 , 7, 1700759	250
1045	Metal-Free Nitrogen-Doped Mesoporous Carbon for Electroreduction of CO2 to Ethanol. 2017 , 129, 10980-10	9 8 4
1044	Metal-Free Nitrogen-Doped Mesoporous Carbon for Electroreduction of CO to Ethanol. 2017 , 56, 10840-1084	4 214
1043	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. 2017 , 19, 4023-4030	31
1042	CO electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study. 2017 , 19, 23113-23121	83
1041	Electrochemical Reduction of Carbon Dioxide in a Monoethanolamine Capture Medium. 2017, 10, 4109-4118	44
1040	Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. 2017 , 2, 2058-2070	124
1039	How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates. 2017 , 7, 6245-6250	91
1038	Comparative Study of Carbon Supported Pb, Bi and Sn Catalysts for Electroreduction of Carbon Dioxide in Alkaline Medium. 2017 , 164, H1112-H1120	11
1037	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO Reduction to Hydrocarbon/Alcohol. 2017 , 139, 18093-18100	341
1036	Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. 2017 , 5, 24867-24873	52
1035	Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. 2017 , 26, 1039-1049	39
1034	Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. 2017 . 4. 895-899	45

1033	Titania-Modified Silver Electrocatalyst for Selective CO2 Reduction to CH3OH and CH4 from DFT Study. 2017 , 121, 16275-16282	29
1032	Rise of nano effects in electrode during electrocatalytic CO conversion. 2017 , 28, 352001	17
1031	Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets. 2017 , 31, 270-277	195
1030	In situ spectroscopic monitoring of CO reduction at copper oxide electrode. 2017 , 197, 517-532	30
1029	Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems. 2017 , 7, 373	33
1028	Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. 2018 , 227, 386-408	226
1027	Recent advances in the nanoengineering of electrocatalysts for CO reduction. 2018 , 10, 6235-6260	109
1026	Highly Active, Durable Ultrathin MoTe Layers for the Electroreduction of CO to CH. 2018 , 14, e1704049	78
1025	Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. 2018 , 8, 3116-3122	304
1024	Introduction of carbon-boron atomic groups as an efficient strategy to boost formic acid production toward CO electrochemical reduction. 2018 , 54, 3367-3370	16
1023	Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO Reduction to Liquid Fuels with High Faradaic Efficiencies. <i>Advanced Materials</i> , 2018 , 30, e1706194	164
1022	1D SnO2 with Wire-in-Tube Architectures for Highly Selective Electrochemical Reduction of CO2 to C1 Products. 2018 , 28, 1706289	107
1021	Bipolar Membranes Inhibit Product Crossover in CO2 Electrolysis Cells. 2018 , 2, 1700187	73
1020	Ultrathin Ag Nanowires Electrode for Electrochemical Syngas Production from Carbon Dioxide. 2018 , 6, 7687-7694	29
1019	Atomic origins of high electrochemical CO reduction efficiency on nanoporous gold. 2018 , 10, 8372-8376	39
1018	Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate. 2018 , 9, 1320	446
1017	Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO2. 2018 , 1, 1800004	37
1016	Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO Reduction Outcompeting Hydrogen Evolution. 2018 , 57, 9640-9644	151

(2018-2018)

1015	A reassembled nanoporous gold leaf electrocatalyst for efficient CO2 reduction towards CO. 2018 , 5, 1207-1212	7
1014	Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid. 2018 , 11, 1571-1580	37
1013	A novel N,Fe-Decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. 2018 , 273, 154-161	32
1012	Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO2 Reduction Outcompeting Hydrogen Evolution. 2018 , 130, 9788-9792	53
1011	Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO. 2018 , 130, 6162-6167	65
1010	Oxygen Vacancies in ZnO Nanosheets Enhance CO Electrochemical Reduction to CO. 2018 , 57, 6054-6059	369
1009	Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. 2018 , 54, 2666-2669	39
1008	Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. 2018 , 61, 771-805	115
1007	Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. 2018 , 6, 4714-4720	93
1006	Achieving Simultaneous CO and H S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts. 2018 , 57, 3473-3477	23
1005	Investigating the Role of Copper Oxide in Electrochemical CO Reduction in Real Time. 2018, 10, 8574-8584	132
1004	Promoting Ethylene Selectivity from CO Electroreduction on CuO Supported onto CO Capture Materials. 2018 , 11, 881-887	36
1003	Coordination of Carbon Dioxide to the Lewis Acid Site of a Zinc-Substituted Polyoxometalate and Formation of an Adduct Using a Polyoxometalate 4,4,6-Trimethylpyridine Frustrated Lewis Pair. 2018 , 2018, 791-794	5
1002	Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. 2018 , 11, 893-903	580
1001	MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO2 Electroreduction. 2018 , 130, 2451-2455	37
1000	MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO Electroreduction. 2018 , 57, 2427-2431	142
999	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. 2018 , 57, 2639-2643	92
998	Achieving Simultaneous CO2 and H2S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts. 2018 , 130, 3531-3535	6

997	Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material. 2018 , 39, e1700782	1
996	Carbon - iron electro-catalysts for CO2 reduction. The role of the iron particle size. 2018 , 24, 240-249	15
995	Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction. 2018 , 130, 2993-2997	39
994	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. 2018 , 130, 2669-2673	19
993	Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO Reduction. 2018 , 57, 2943-2947	152
992	g-CN/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO into Renewable Fuels. 2018 , 10, 2667-2678	298
991	Artificial Photosynthesis for Formaldehyde Production with 85% of Faradaic Efficiency by Tuning the Reduction Potential. 2018 , 8, 968-974	24
990	Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte. 2018 , 8, 931-937	132
989	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO. 2018 , 57, 1944-1948	607
988	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. 2018 , 130, 1962-1966	176
987	Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. 2018 , 45, 456-462	77
986	Metal ion cycling of Cu foil for selective CL coupling in electrochemical CO2 reduction. 2018, 1, 111-119	383
985	Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO Electroreduction. <i>Advanced Materials</i> , 2018 , 30, 1705872	110
984	Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. 2018 , 118, 4631-4701	581
983	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. 2018 , 2,	441
982	A Bifunctional Highly Efficient FeN /C Electrocatalyst. 2018 , 14, 1702827	23
981	Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. 2018 , 226, 463-472	177
980	Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction. 2018 , 8, 1510-1519	187

(2018-2018)

979	Highly selective and efficient reduction of CO to CO on cadmium electrodes derived from cadmium hydroxide. 2018 , 54, 5450-5453	10
978	Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes. 2018 , 86, 167-172	42
977	Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. 2018 , 6, 9373-9377	28
976	A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. 2018 , 271, 544-550	30
975	High Selectivity Toward CH Production over Cu Particles Supported by Butterfly-Wing-Derived Carbon Frameworks. 2018 , 10, 12618-12625	47
974	Polyoxometalate-Promoted Electrocatalytic CO Reduction at Nanostructured Silver in Dimethylformamide. 2018 , 10, 12690-12697	48
973	Coordinatively unsaturated nickellitrogen sites towards selective and high-rate CO2 electroreduction. 2018 , 11, 1204-1210	433
972	Surface Immobilization of Transition Metal Ions on Nitrogen-Doped Graphene Realizing High-Efficient and Selective CO Reduction. <i>Advanced Materials</i> , 2018 , 30, e1706617	199
971	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. 2018, 118, 6337-6408	1057
970	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. 2018 , 92, 64-111	161
969	Progress and Perspective of Electrocatalytic CO Reduction for Renewable Carbonaceous Fuels and Chemicals. 2018 , 5, 1700275	423
968	Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. 2018 , 2, 510-537	65
967	Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. 2018 , 13, 127-142	30
966	Bimetallic Zeolitic Imidazolite Framework Derived Carbon Nanotubes Embedded with Co Nanoparticles for Efficient Bifunctional Oxygen Electrocatalyst. 2018 , 8, 1702048	143
965	Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. 2018 , 61, 228-235	23
964	Preparation of MoS/TiO based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. 2017 , 10, 34-68	184
963	Perovskite Hydroxide CoSn(OH)6 Nanocubes for Efficient Photoreduction of CO2 to CO. 2018 , 6, 781-786	25
962	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for High-Performance Electrocatalysis. 2018 , 10, 1241-1247	3

961	Electronic Tuning of Co, Ni-Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. 2018 , 28, 1804886	53
960	Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. 2018 , 6, 23610-23620	16
959	Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. 2018 , 97, 87-90	29
958	Efficient solar-driven electrocatalytic CO reduction in a redox-medium-assisted system. 2018 , 9, 5003	64
957	Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. 2018 , 9, 4933	90
956	Electrochemical Reduction of CO2 over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. 2018 , 3, 1800369	74
955	Oxygen Vacancy Tuning toward Efficient Electrocatalytic CO2 Reduction to C2H4. 2018 , 3, 1800449	51
954	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO Reduction in Water. 2018 , 10, 43588-43594	20
953	Carbon-supported Ni nanoparticles for efficient CO electroreduction. 2018 , 9, 8775-8780	116
952	Influence of Electrolyte on the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes. 2018 , 3, 10209-10213	22
951	Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. 2018 , 53, 808-816	147
950	Efficient and Selective Electroreduction of CO2 by Single-Atom Catalyst Two-Dimensional TM B c Monolayers. 2018 , 6, 15494-15502	85
949	Tuning Metal Catalyst with Metal 13N4 Interaction for Efficient CO2 Electroreduction. 2018, 8, 11035-11041	94
948	Atomic and Molecular Adsorption on the Bi(111) Surface: Insights into Catalytic CO2 Reduction. 2018 , 122, 23084-23090	30
947	Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. 2018, 5, 1800919	36
946	Computation-Aided Design of Single-Atom Catalysts for One-Pot CO Capture, Activation, and Conversion. 2018 , 10, 36866-36872	53
945	Boosting Tunable Syngas Formation via Electrochemical CO Reduction on Cu/InO Core/Shell Nanoparticles. 2018 , 10, 36996-37004	67
944	Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO. 2018 , 9, 4466	221

943	Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. 2018, 2, 2551-2582	272
942	Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. 2018 , 10, 280-301	107
941	Copper adparticle enabled selective electrosynthesis of n-propanol. 2018 , 9, 4614	86
940	Selective CO2 Reduction on 2D Mesoporous Bi Nanosheets. 2018 , 8, 1801536	168
939	Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO to Ethylene. 2018 , 34, 13544-13549	70
938	Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction. 2018 , 4, 2571-2586	249
937	Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO2RR to formate. 2018 , 6, 18960-18966	30
936	Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. 2018 , 6, 18782-18793	89
935	Design of Carbon-Based Metal-Free Electrocatalysts. 2018 , 35-58	
934	One-Pot Seedless Aqueous Design of Metal Nanostructures for Energy Electrocatalytic Applications. 2018 , 1, 531-547	7
933	Electroreduction of carbon dioxide to formate over a thin-layered tin diselenide electrode. 2018 , 8, 5428-543	3 16
933 932	Electroreduction of carbon dioxide to formate over a thin-layered tin diselenide electrode. 2018 , 8, 5428-543. Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. 2018 , 367, 72-80	3 16 24
	Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. 2018 ,	
932	Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. 2018, 367, 72-80 Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based	24
932	Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. 2018, 367, 72-80 Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte. 2018, 289, 65-71	24
932 931 930	Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. 2018, 367, 72-80 Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte. 2018, 289, 65-71 Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO Reduction. 2018, 11, 3449-345 Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of the	24 29 9 ₅₃
932 931 930 929	Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. 2018, 367, 72-80 Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte. 2018, 289, 65-71 Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO Reduction. 2018, 11, 3449-345 Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: the decisive role of the bonding configuration of phosphorus. 2018, 6, 19998-20004 Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO2 Nanosheets	24 29 953 38

925	Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO Nanosheets with Abundant Pd-O-Sn Interfaces. 2018 , 57, 9475-9479	151
924	Cu-based nanocatalysts for electrochemical reduction of CO2. 2018 , 21, 41-54	217
923	Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. 2018 , 236, 475-482	82
922	Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. 2018 , 364, 125-130	36
921	Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. 2018 , 4, 1809-1831	372
920	Surface chemistry imposes selective reduction of CO2 to CO over Ta3N5/LaTiO2N photocatalyst. 2018 , 6, 14838-14846	23
919	2D Assembly of Confined Space toward Enhanced CO2 Electroreduction. 2018 , 8, 1801230	35
918	Facile fabrication of porous Sn-based catalysts for electrochemical CO2 reduction to HCOOH and syngas. 2018 , 66, 248-253	11
917	Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4. 2018 , 8, 7113-7119	323
916	Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. 2018 , 351, 613-621	67
915	Gas Therapy: An Emerging Green Strategy for Anticancer Therapeutics. 2018, 1, 1800084	24
914	Partially reduced Sn/SnO2 porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. 2018 , 285, 70-77	36
913	Mesoporous tin oxide for electrocatalytic CO reduction. 2018 , 531, 564-569	32
912	Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. 2018 , 52, 345-350	67
911	Designing effective Si/Ag interface via controlled chemical etching for photoelectrochemical CO2 reduction. 2018 , 6, 21906-21912	28
910	Nanostructured Copper-Based Electrocatalysts for CO2 Reduction. 2018 , 2, 1800121	84
909	Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2. 2018 , 8, 198	2
908	Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance. Advanced Materials, 2018 , 30, e1801563	. 111

Defect Engineering in Polymeric Cobalt Phthalocyanine Networks for Enhanced Electrochemical CO2 Reduction. 2018 , 5, 2717-2721	36
Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. 2018 , 11, 2935-2944	103
A Brlanion adsorbed porous Ag nanowire film: in situ electrochemical preparation and application toward efficient CO2 electroreduction to CO with high selectivity. 2018 , 5, 2238-2241	20
A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. 2018 , 8, 1801280	57
Utilization of CO2 as a carbon source for production of CO and syngas using a ruthenium(II) electrocatalyst. 2018 , 26, 612-622	6
Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective. 2018 , 3, 591-625	37
Achieving convenient CO electroreduction and photovoltage in tandem using potential-insensitive disordered Ag nanoparticles. 2018 , 9, 6599-6604	22
High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays. 2018 , 10, 17950-17956	35
A Review of Metal- and Metal-Oxide-Based Heterogeneous Catalysts for Electroreduction of Carbon Dioxide. 2018 , 2, 1800028	29
A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. 2018 , 236, 154-161	30
Fourier transformed alternating current voltammetry in electromaterials research: Direct visualisation of important underlying electron transfer processes. 2018 , 10, 72-81	20
Sharp-Tipped Zinc Nanowires as an Efficient Electrocatalyst for Carbon Dioxide Reduction. 2018 , 24, 15486-15490	11
Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. 2018 , 239, 586-598	189
Electrocatalysts based on metal@carbon core@shell nanocomposites: Anlbverview. 2018 , 3, 335-351	52
Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. 2018 , 57, 13120-13124	84
Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. 2018 , 130, 13304-13308	26
CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. 2018 , 53, 27-36	64
Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. 2018 , 6, 16804-16809	40
	Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. 2018, 11, 2935-2944 A Britanion adsorbed porous Ag nanowire film: in situ electrochemical preparation and application toward efficient CO2 electroreduction to CO with high selectivity. 2018, 5, 2238-2241 A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. 2018, 8, 1801280 Utilization of CO2 as a carbon source for production of CO and syngas using a ruthenium(II) electrocatalyst. 2018, 26, 612-622 Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective. 2018, 3, 591-625 Achieving convenient CO electroreduction and photovoltage in tandem using potential-insensitive disordered Ag nanoparticles. 2018, 9, 6599-6604 High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays. 2018, 10, 17950-17956 A Review of Metal- and Metal-Oxide-Based Heterogeneous Catalysts for Electroreduction of Carbon Dioxide. 2018, 2, 1800028 A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. 2018, 236, 154-161 Fourier transformed alternating current voltammetry in electromaterials research: Direct visualisation of limportant underlying electron transfer processes. 2018, 10, 72-81 Sharp-Tipped Zinc Nanowires as an Efficient Electrocatalyst for Carbon Dioxide Reduction. 2018, 24, 15486-15490 Construction of BizWoG/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. 2018, 239, 586-598 Electrocatalysts based on metal@carbon core@shell nanocomposites: Anibverview. 2018, 3, 335-351 Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. 2018, 130, 13304-13308 CO2 electroreduction on copper-c

889	Copper Dimer Supported on a C2N Layer as an Efficient Electrocatalyst for CO2 Reduction Reaction: A Computational Study. 2018 , 122, 19712-19721	111
888	Recent Advances in Electrochemical CO -to-CO Conversion on Heterogeneous Catalysts. <i>Advanced Materials</i> , 2018 , 30, e1802066	267
887	Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO Reduction Performance. 2018 , 57, 13283-13287	95
886	Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO2 Reduction Performance. 2018 , 130, 13467-13471	26
885	One-Pot Soft-Template Synthesis of Nanostructured Copper-Supported Mesoporous Carbon FDU-15 Electrocatalysts for Efficient CO Reduction. 2018 , 19, 1371-1381	13
884	Enhanced electroreduction of CO2 and simultaneous degradation of organic pollutants using a Sn-based carbon nanotubes/carbon black hybrid gas diffusion cathode. 2018 , 26, 425-433	13
883	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. 2018 , 8, 6707-6732	240
882	Electrochemical Conversion of CO 2 to Value-Added Products. 2018 , 29-59	10
881	Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of CO2. 2018 , 4, 1696-1709	180
880	Carbon Dioxide Reduction by Iron Hangman Porphyrins. 2019 , 38, 1219-1223	64
879	Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. 2019 , 30, 314-318	19
878	Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. 2019 , 7, 20478-20493	19
877	Assembly of high-nuclearity , -oxo clusters: solvent strategies and inorganic Sn incorporation. 2019 , 10, 9125-9129	15
876	Recent development in the electrochemical conversion of carbon dioxide: Short review. 2019,	5
875	All-water-based solution processed Ag nanofilms for highly efficient electrocatalytic reduction of CO2 to CO. 2019 , 259, 118045	23
874	Carbon-based catalysts for electrochemical CO2 reduction. 2019 , 3, 2890-2906	36
873	Pd-Ag Alloy Electrocatalysts for CO Reduction: Composition Tuning to Break the Scaling Relationship. 2019 , 11, 33074-33081	36
872	Electrohydrogenation of Carbon Dioxide using a Ternary Pd/Cu O-Cu Catalyst. 2019 , 12, 4471-4479	6

871	Surface Modification of Tin Dioxide via (Bi, S) Co-Doping for Photoelectrocatalytic Reduction of CO2 to Formate. 2019 , 6, 3782-3790		2	
870	Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO Electroreduction. <i>Advanced Materials</i> , 2019 , 31, e1903470	24	150	
869	Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. 2019 , 9, 7937-7956		153	
868	Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction. 2019 , 153, 609-616		15	
867	Direct synthesis of bismuth nanosheets on a gas diffusion layer as a high-performance cathode for a coupled electrochemical system capable of electroreduction of CO2 to formate with simultaneous degradation of organic pollutants. 2019 , 319, 138-147		15	
866	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO2 electroreduction. 2019 , 4, 1411-1415		14	
865	Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation. 2019 , 33, 357-364		23	
864	Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts. 2019 , 7, 18428-18433		42	
863	Interfacial effects in supported catalysts for electrocatalysis. 2019 , 7, 23432-23450		57	
862	Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions. 2019 , 14, 2770-2779		17	
861	Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High-Selectivity Electrochemical Reduction of CO to CH OH. <i>Advanced Materials</i> , 2019 , 31, e1903499	24	100	
860	Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. 2019 , 6, 2582-2618		36	
859	AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO to Ethanol. 2019 , 15, e1902229		50	
858	One-dimensional Nanomaterial Electrocatalysts for CO Fixation. 2019 , 14, 3969-3980		10	
857	Protonic acid-assisted universal synthesis of defect abundant multifunction carbon nitride semiconductor for highly-efficient visible light photocatalytic applications. 2019 , 258, 118011		24	
856	Hollow Porous Ag Spherical Catalysts for Highly Efficient and Selective Electrocatalytic Reduction of CO2 to CO. 2019 , 7, 14443-14450		19	
855	Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO conversion and valorisation. 2019 , 48, 13508-13528		47	
854	A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction. 2019 , 131, 15013-15018		64	

853	A Graphene-Supported Single-Atom FeN Catalytic Site for Efficient Electrochemical CO Reduction. 2019 , 58, 14871-14876		215
852	Semiconductor Quantum Dots: An Emerging Candidate for CO Photoreduction. <i>Advanced Materials</i> , 2019 , 31, e1900709	24	177
851	Superior Selectivity and Tolerance towards Metal-Ion Impurities of a Fe/N/C Catalyst for CO Reduction. 2019 , 12, 3988-3995		12
850	Regulating C-C coupling in thermocatalytic and electrocatalytic CO conversion based on surface science. 2019 , 10, 7310-7326		23
849	Antipoisoning Nickellarbon Electrocatalyst for Practical Electrochemical CO2 Reduction to CO. 2019 , 2, 8002-8009		26
848	PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. 2019 , 12, 2866-2871		38
847	Electrode Materials Engineering in Electrocatalytic CO Reduction: Energy Input and Conversion Efficiency. <i>Advanced Materials</i> , 2020 , 32, e1903796	24	40
846	Amorphous Oxide Nanostructures for Advanced Electrocatalysis. 2019 , 26, 3943		43
845	Electrochemical CO Reduction to C Products on Single Nickel/Cobalt/Iron-Doped Graphitic Carbon Nitride: A DFT Study. 2019 , 12, 5126-5132		35
844	Geometric measures of discordlike quantum correlations based on Tsallis relative entropy. 2019 , 17, 1950034		
843	Tailored Synthesis of Pt-Nanoparticle-Modified Mesoporous TiO2 Popcorn-Like Nanostructures for Photocatalytic Applications. 2019 , 4, 11615-11624		4
842	Electrolyte Driven Highly Selective CO2 Electroreduction at Low Overpotentials. 2019 , 9, 10440-10447		23
841	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. 2019 , 10, 4645		39
840	Critical operating conditions for enhanced energy-efficient molten salt CO2 capture and electrolytic utilization as durable looping applications. 2019 , 255, 113862		15
839	Highly Active and Selective Electrocatalytic CO Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. 2019 , 11, 39722-39727		13
838	Synergistic Catalytic Effect of Ion Tunnels with Polar Dopants to Boost the Electrochemical Kinetics for High-Performance Sulfur Cathodes. 2019 , 6, 5051-5059		8
837	Two-Dimensional Organometallic TM3II12S12 Monolayers for Electrocatalytic Reduction of CO2. 2019 , 2, 193-200		20
836	Highly Efficient Electroreduction of CO on Nickel Single-Atom Catalysts: Atom Trapping and Nitrogen Anchoring. 2019 , 15, e1903668		64

835	Zn nanosheets coated with a ZnS subnanometer layer for effective and durable CO2 reduction. 2019 , 7, 1418-1423	40
834	Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. 2019 , 7, 1267-1272	62
833	Electrocatalytic CO2 Reduction to Formate on Cu Based Surface Alloys with Enhanced Selectivity. 2019 , 7, 19453-19462	16
832	Porosity-Induced High Selectivity for CO2 Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts. 2019 , 9, 11579-11588	52
831	Sn-Oxo Clusters with an Open Hollow Structural Motif and Decorated by Different Functional Ligands. 2019 , 58, 15692-15695	5
830	Hybridization of Defective Tin Disulfide Nanosheets and Silver Nanowires Enables Efficient Electrochemical Reduction of CO into Formate and Syngas. 2019 , 15, e1904882	25
829	Progress in Development of Electrode Materials in Microbial Fuel Cells. 2019 , 165-186	3
828	Porous Copper Microspheres for Selective Production of Multicarbon Fuels via CO Electroreduction. 2019 , 15, e1902582	14
827	Carbon dioxide electroreduction to C products over copper-cuprous oxide derived from electrosynthesized copper complex. 2019 , 10, 3851	159
826	Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. 2019 , 10, 3844	66
825	Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO. 2019 , 55, 11634-11637	35
824	Pushing the activity of CO2 electroreduction by system engineering. 2019 , 64, 1805-1816	25
823	Efficient electrocatalytic reduction of carbon dioxide by metal-doped Eborophene monolayers 2019 , 9, 27710-27719	31
822	B80 Fullerene: A Promising Metal-Free Photocatalyst for Efficient Conversion of CO2 to HCOOH. 2019 , 123, 24193-24199	10
821	Steering hydrogen evolution in CO2 electroreduction through tailoring various co-catalysts. 2019 , 107, 106531	2
820	Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding electrocatalytic CO2 reduction to formate. 2019 , 325, 134923	19
819	Catalytic Effect on CO Electroreduction by Hydroxyl-Terminated Two-Dimensional MXenes. 2019 , 11, 36571-36579	52
818	In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO Electroreduction. 2019 , 141, 15891-15900	110

817	Disclosing CO2 Activation Mechanism by Hydroxyl-Induced Crystalline Structure Transformation in Electrocatalytic Process. 2019 , 1, 1656-1668	41
816	Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO Reduction. 2019 , 141, 16569-16573	267
815	Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO Conversion Full Cell for Efficient Electrochemical Reduction of Carbon Dioxide. 2019 , 11, 40432-40442	6
814	Single Mn atom as a promising electrocatalyst for CO reduction to C2H5OH and C3H6: A computational study. 2019 , 498, 143868	8
813	Highly coke resistant Mg-Ni/AlO catalyst prepared via a novel magnesiothermic reduction for methane reforming catalysis with CO: the unique role of Al-Ni intermetallics. 2019 , 11, 1262-1272	21
812	From CO methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. 2019 , 48, 205-259	131
811	Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. 2019 , 12, 747-755	76
810	MetalBrganic framework-derived indiumBopper bimetallic oxide catalysts for selective aqueous electroreduction of CO2. 2019 , 21, 503-508	34
809	Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO2 Electroreduction. 2019 , 131, 6667-6671	15
808	Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO Electroreduction. 2019 , 58, 6595-6599	118
807	A 2D metal-organic framework/Ni(OH) heterostructure for an enhanced oxygen evolution reaction. 2019 , 11, 3599-3605	86
806	Principles for the Application of Nanomaterials in Environmental Pollution Control and Resource Reutilization. 2019 , 1-23	10
805	Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO. 2019 , 4, 666-672	104
804	Electrochemical reduction of CO2 by single atom catalyst TMIICNQ monolayers. 2019, 7, 3805-3814	70
803	N-Doped Nanoporous Carbon from Biomass as a Highly Efficient Electrocatalyst for the CO2 Reduction Reaction. 2019 , 7, 5249-5255	21
802	Progress and Perspectives of Electrochemical CO Reduction on Copper in Aqueous Electrolyte. 2019 , 119, 7610-7672	1244
801	Insights into the Photoassisted Electrocatalytic Reduction of CO2 over a Two-dimensional MoS2 Nanostructure Loaded on SnO2 Nanoparticles. 2019 , 6, 3077-3084	7
800	Can a Single Valence Electron Alter the Electrocatalytic Activity and Selectivity for CO2 Reduction on the Subnanometer Scale?. 2019 , 123, 14591-14609	6

799	Carbon dioxide photo/electroreduction with cobalt. 2019 , 7, 16622-16642	37
79 ⁸	Fe and N Co-Doped Porous Carbon Nanospheres with High Density of Active Sites for Efficient CO2 Electroreduction. 2019 , 123, 16651-16659	34
797	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. 2019 , 10, 2807	252
796	Nanostructured amalgams with tuneable silverthercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. 2019 , 7, 15907-15912	22
795	Ag10Ti28-Oxo Cluster Containing Single-Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. 2019 , 131, 11048-11051	7
794	Selective Electroreduction of Carbon Dioxide to Formic Acid on Cobalt-Decorated Copper Thin Films. 2019 , 3, 1900362	11
793	N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction. 2019 , 152, 241-246	17
792	Selective electrolysis of CO2 to CO on ultrathin In2Se3 nanosheets. 2019 , 103, 127-132	13
791	CO2 electroreduction to formate: Continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes. 2019 , 34, 12-19	29
790	All-inorganic SrSnO3 perovskite nanowires for efficient CO2 electroreduction. 2019 , 62, 861-868	17
7 ⁸ 9	Ag Ti -Oxo Cluster Containing Single-Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. 2019 , 58, 10932-10935	33
788	Atomically dispersed Fe sites catalyze efficient CO electroreduction to CO. 2019 , 364, 1091-1094	685
787	Highly efficient electrochemical conversion of CO2 and NaCl to CO and NaClO. 2019, 21, 3256-3262	27
786	Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction. 2019 , 151, 46-52	50
7 ⁸ 5	Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166	396
784	Efficient Electroreduction CO to CO over MnO Nanosheets. 2019 , 58, 8910-8914	22
783	Substitution of Zinc(II) in Nickel(II) Oxide as Proficient Copper-Free Catalysts for Selective CO2 Electroreduction. 2019 , 2, 2998-3003	9
782	Review of two-dimensional materials for electrochemical CO2 reduction from a theoretical perspective. 2019 , 9, e1416	33

781	Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. 2019 , 12, 2324-2329	63
78o	Synergistic effect of N-doped layered double hydroxide derived NiZnAl oxides in CO2 electroreduction. 2019 , 3, 1455-1460	10
779	Electroreduction of CO2 catalyzed by Co@N-C materials. 2019 , 32, 241-250	12
778	Rapid and Scalable Synthesis of Cuprous Halide-Derived Copper Nano-Architectures for Selective Electrochemical Reduction of Carbon Dioxide. 2019 , 19, 3925-3932	40
777	LiquidBolid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered MembraneBased Devices toward Electrochemical Energy Systems. 2019 , 9, 1804005	12
776	Zinc-Modified Copper Catalyst for Efficient (Photo-)Electrochemical CO2 Reduction with High Selectivity of HCOOH Production. 2019 , 123, 11555-11563	21
775	Simultaneous Achieving of High Faradaic Efficiency and CO Partial Current Density for CO2 Reduction via Robust, Noble-Metal-Free Zn Nanosheets with Favorable Adsorption Energy. 2019 , 9, 1900276	51
774	Copper-Bismuth Bimetallic Microspheres for Selective Electrocatalytic Reduction of CO2 to Formate. 2019 , 37, 497-500	33
773	Highly selective electrochemical CO2 reduction to CO using a redox-active couple on low-crystallinity mesoporous ZnGa2O4 catalyst. 2019 , 7, 9316-9323	18
772	CoxNi1🛮 nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. 2019 , 372, 277-286	15
771	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. 2019 , 370, 37-59	63
770	Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO to formate. 2019 , 11, 7805-7812	49
769	Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. 2019 , 250, 347-354	49
768	Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. 2019 , 40, 117-149	49
767	Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst. 2019 , 7, 6106-6112	24
766	Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. 2019 , 2, 198-210	493
765	Intrinsic Carbon-Defect-Driven Electrocatalytic Reduction of Carbon Dioxide. <i>Advanced Materials</i> , 2019, 31, e1808276	155
764	Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO. 2019 , 58, 6972-6976	406

(2019-2019)

763	Carbon-Based Substrates for Highly Dispersed Nanoparticle and Even Single-Atom Electrocatalysts. 2019 , 3, 1900050	52
762	Two dimensional bismuth-based layered materials for energy-related applications. 2019 , 19, 446-463	54
761	Aqueous CO2 Reduction with High Efficiency Using ⊞co(OH)2-Supported Atomic Ir Electrocatalysts. 2019 , 131, 4717-4721	12
760	Edge-Exposed Molybdenum Disulfide with N-Doped Carbon Hybridization: A Hierarchical Hollow Electrocatalyst for Carbon Dioxide Reduction. 2019 , 9, 1900072	45
759	Nanoelectrocatalysts for Carbon Dioxide Reduction. 2019 , 243-272	
758	Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cells. 2019 , 6, 1802066	107
757	Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticles, Single Atoms, and Molecular Complexes. 2019 , 15, e1900772	59
756	Switchable Product Selectivity in the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes. 2019 , 141, 7414-7420	49
755	Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. 2019 , 12, 1730-1750	293
754	Low-temperature plasma technology for electrocatalysis. 2019 , 30, 826-838	28
753	Isolated Diatomic Ni-Fe Metal litrogen Sites for Synergistic Electroreduction of CO2. 2019 , 131, 7046-7050	42
75 ²	Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO Reduction at Modified Cu Surfaces. 2019 , 141, 7355-7364	76
751	Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. 2019 , 1,	31
750	Strain Engineering Electrocatalysts for Selective CO2 Reduction. 2019 , 4, 980-986	59
749	Enhanced selectivity of carbonaceous products from electrochemical reduction of CO2 in aqueous media. 2019 , 30, 214-221	24
748	Production of Solar Fuels Using CO2. 2019 , 7-30	9
747	Aqueous CO Reduction with High Efficiency Using ⊞o(OH) -Supported Atomic Ir Electrocatalysts. 2019 , 58, 4669-4673	65
746	Graphene-based materials for electrochemical CO2 reduction. 2019 , 30, 168-182	57

745	Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. 2019 , 59, 138-145	49
744	The regulation of reaction processes and rate-limiting steps for efficient photocatalytic CO2 reduction into methane over the tailored facets of TiO2. 2019 , 9, 1451-1456	4
743	Oxygen Vacancies in Amorphous InOx Nanoribbons Enhance CO2 Adsorption and Activation for CO2 Electroreduction. 2019 , 131, 5665-5669	28
742	Oxygen Vacancies in Amorphous InO Nanoribbons Enhance CO Adsorption and Activation for CO Electroreduction. 2019 , 58, 5609-5613	162
741	Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. 2019 , 3, 1800440	104
740	Recent Advances for MOF-Derived Carbon-Supported Single-Atom Catalysts. 2019 , 3, 1800471	169
739	Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. 2019 , 12, 1334-1340	137
738	Restructuring of CuO to CuO@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO. 2019 , 11, 9904-9910	95
737	Tuning the activity of N-doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano-hybrid carbon substrates. 2019 , 7, 6894-6900	32
736	Cocatalysts for Selective Photoreduction of CO into Solar Fuels. 2019 , 119, 3962-4179	965
735	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. 2019 , 119, 2752-2875	377
734	Recent advances in low-temperature electrochemical conversion of carbon dioxide. 2019,	2
733	Selective electrochemical reduction of carbon dioxide to formic acid using indium inc bimetallic nanocrystals. 2019 , 7, 22879-22883	25
732	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. 2019 , 7, 26231-26237	46
731	Facile synthesis of polymerized cobalt phthalocyanines for highly efficient CO2 reduction. 2019 , 21, 6056-606	51 15
730	13. Carbon dioxide activation. 2019 , 227-248	
729	Mechanistic insight into electroreduction of carbon dioxide on FeN (x = 0-4) embedded graphene. 2019 , 21, 23638-23644	10
728	Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. 2019 , 48, 5658-5716	268

727	Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. 2019 , 241, 113-119	163
726	Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. 2019 , 37, 93-96	34
725	pH effects on the electrochemical reduction of CO towards C products on stepped copper. 2019 , 10, 32	207
724	Electrochemical training of nanoporous Cu-In catalysts for efficient CO2-to-CO conversion and high durability. 2019 , 295, 584-590	16
723	Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. 2019 , 29, 1806419	129
722	Facile Synthesis of Nanostructural High-Performance Cu B b Electrocatalysts for CO2 Reduction. 2019 , 6, 1801200	13
721	Controlled chemical etching leads to efficient siliconBismuth interface for photoelectrochemical CO2 reduction to formate. 2019 , 11, 80-85	19
720	Carbon-Based Metal-Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019 , 31, e1801526	184
719	Benzimidazoles as Metal-Free and Recyclable Hydrides for CO Reduction to Formate. 2019 , 141, 272-280	40
718	Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. 2019 , 40, 23-37	46
717	Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst. 2019 , 3, 265-278	408
716	A Gold P alladium Nanoparticle Alloy Catalyst for CO Production from CO2 Electroreduction. 2019 , 7, 1800859	10
715	Selective and Low Overpotential Electrochemical CO2 Reduction to Formate on CuS Decorated CuO Heterostructure. 2019 , 149, 860-869	17
714	Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. 2019 , 246, 82-88	102
713	Organic functionalization of metal catalysts: Enhanced activity towards electroreduction of carbon dioxide. 2019 , 13, 40-46	18
712	Design of Noble Metal Electrocatalysts on an Atomic Level. 2019 , 6, 289-303	23
711	KOH-modified Ni/LaTiO2N Schottky junction efficiently reducing CO2 to CH4 under visible light irradiation. 2019 , 244, 786-794	9
710	Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. 2019 , 244, 899-908	62

709	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. 2019 , 3, 584-594	186
708	Selective conversion of carbon dioxide into methane with a 98% yield on an in situ formed Ni nanoparticle catalyst in water. 2019 , 357, 421-427	31
707	Catalyst coated membrane electrodes for the gas phase CO2 electroreduction to formate. 2020 , 346, 58-64	21
706	Electrochemical reduction of CO2 to synthesis gas on CNT supported CuxZn1-x O catalysts. 2020 , 357, 311-321	14
705	Hybrid Cu and Cu as Atomic Interfaces Promote High-Selectivity Conversion of CO to C H OH at Low Potential. 2020 , 16, e1901981	42
704	Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. 2020 , 40, 156-170	75
703	Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. 2020 , 260, 118134	67
702	Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction. 2020 , 157, 408-419	26
701	Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. 2020 , 10, 1902104	174
700	Two-Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. 2020 , 13, 59-77	18
699	Metal-promoted Mo6S8 clusters: a platform for probing ensemble effects on the electrochemical conversion of CO2 and CO to methanol. 2020 , 7, 193-202	16
698	Rational Design of Ag-Based Catalysts for the Electrochemical CO Reduction to CO: A Review. 2020 , 13, 39-58	55
697	Highly Selective Electrochemical Reduction of CO2 to Alcohols on an FeP Nanoarray. 2020, 132, 768-772	14
696	Highly Selective Electrochemical Reduction of CO to Alcohols on an FeP Nanoarray. 2020 , 59, 758-762	73
695	Electrochemical reduction of CO2: Two- or three-electrode configuration. 2020 , 44, 548-559	6
694	Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. 2020 , 67, 104233	43
693	Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. 2020 , 120, 814-850	47
692	High-capacity thermochemical CO2 dissociation using iron-poor ferrites. 2020 , 13, 592-600	12

691	2020 , 4, 277-284	36
690	CO Reduction: From Homogeneous to Heterogeneous Electrocatalysis. 2020 , 53, 255-264	168
689	Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. 2020 , 13, 374-403	163
688	Organic-inorganic hybrids for CO sensing, separation and conversion. 2020 , 5, 431-453	15
687	Hierarchical heterostructure of SnO confined on CuS nanosheets for efficient electrocatalytic CO reduction. 2020 , 12, 772-784	23
686	An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. 2020 , 4, 50-67	38
685	Carbonaceous materials for electrochemical CO2 reduction. 2020 , 2, 100024	29
684	Selective electroreduction of CO2 to CO over co-electrodeposited dendritic core-shell indium-doped Cu@Cu2O catalyst. 2020 , 37, 204-212	20
683	Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction. 2020 , 43, 154-160	8
682	Enhanced Ethanol Production from CO Electroreduction at Micropores in Nitrogen-Doped Mesoporous Carbon. 2020 , 13, 293-297	30
681	Rapid and scalable synthesis of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO2 to formate. 2020 , 36, 96-104	19
680	On engineering strategies for photoselective CO2 reduction 🛭 thorough review. 2020 , 18, 100499	11
679	Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. 2020 , 36, 116-123	29
678	A CO2 adsorption dominated carbon defect-based electrocatalyst for efficient carbon dioxide reduction. 2020 , 8, 1205-1211	40
677	Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. 2020 , 8, 1511-1544	141
676	In-situ growth of CuO/Cu nanocomposite electrode for efficient CO2 electroreduction to CO with bacterial cellulose as support. 2020 , 37, 188-194	12
675	Promises of Main Group Metal B ased Nanostructured Materials for Electrochemical CO2 Reduction to Formate. 2020 , 10, 1902338	187
674	Effective Magnetic Field Regulation of the Radical Pair Spin States in Electrocatalytic CO Reduction. 2020 , 11, 48-53	20

673	Borophene: A Metal-free and Metallic Electrocatalyst for Efficient Converting CO2 into CH4. 2020 , 12, 1483-1490	15
672	Chlorine-Promoted Nitrogen and Sulfur Co-Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction. 2020 , 7, 320-327	9
671	Ag@Au Core-Shell Nanowires for Nearly 100 % CO -to-CO Electroreduction. 2020 , 15, 425-431	6
670	Copper-Indium Binary Catalyst on a Gas Diffusion Electrode for High-Performance CO Electrochemical Reduction with Record CO Production Efficiency. 2020 , 12, 601-608	30
669	Nitrogen-Stabilized Low-Valent Ni Motifs for Efficient CO2 Electrocatalysis. 2020 , 10, 1086-1093	45
668	Highly Efficient Porous Carbon Electrocatalyst with Controllable N-Species Content for Selective CO Reduction. 2020 , 59, 3244-3251	88
667	Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. 2020 , 13, 105-111	10
666	Fabricated g-C3N4/Ag/m-CeO2 composite photocatalyst for enhanced photoconversion of CO2. 2020 , 506, 144931	32
665	Highly Efficient Porous Carbon Electrocatalyst with Controllable N-Species Content for Selective CO2 Reduction. 2020 , 132, 3270-3277	12
664	Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide. 2020 , 8, 179-189	3
663	Sn/SnOx electrode catalyst with mesoporous structure for efficient electroreduction of CO2 to formate. 2020 , 508, 145221	14
662	Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. 2020 , 77, 105296	32
661	Photochemical Construction of Nitrogen-Containing Nanocarbons for Carbon Dioxide Photoreduction. 2020 , 10, 12706-12715	13
660	Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide 2020 , 10, 38013-38023	7
659	Three-Dimensional Cathodes for Electrochemical Reduction of CO: From Macro- to Nano-Engineering. 2020 , 10,	13
658	Quantitative Electro-Reduction of CO to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworks. 2020 , 142, 17384-17392	26
657	Tuning the coordination number of Fe single atoms for the efficient reduction of CO2. 2020 , 22, 7529-7536	18
656	Highly Selective CO2 Electroreduction to CH4 by In Situ Generated Cu2O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. 2020 , 132, 23849-23856	34

655	3, 9841-9847	22
654	Electrocatalytic reduction of carbon dioxide on goldflopper bimetallic nanoparticles: Effects of surface composition on selectivity. 2020 , 356, 136756	15
653	Anodic SnO porous nanostructures with rich grain boundaries for efficient CO electroreduction to formate 2020 , 10, 22828-22835	2
652	Electroreduction of Carbon Dioxide in Metallic Nanopores through a Pincer Mechanism. 2020 , 59, 19297-1930	03 ₁₂
651	Unraveling Structure Sensitivity in CO2 Electroreduction to Near-Unity CO on Silver Nanocubes. 2020 , 10, 3158-3163	37
650	Electrochemical study of carbon dioxide reduction at copperpalladium nanoparticles: Influence of the bimetallic composition in the CO poisoning tolerance. 2020 , 354, 136739	7
649	A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings. 2020 , 5, 322-332	5
648	Importance of Au nanostructures in CO2 electrochemical reduction reaction. 2020 , 65, 796-802	25
647	Electrochemical Fabrication and Reactivation of Nanoporous Gold with Abundant Surface Steps for CO2 Reduction. 2020 , 10, 8860-8869	20
646	Copper tetrazolate based metal-organic frameworks as highly efficient catalysts for artificially chemical and electrochemical CO2 conversion. 2020 , 1, 311-319	9
645	Engineering Heterostructured Nanocatalysts for CO Transformation Reactions: Advances and Perspectives. 2020 , 13, 6090-6123	6
644	Scalable strategy to fabricate single Cu atoms coordinated carbons for efficient electroreduction of CO2 to CO. 2020 , 168, 528-535	25
643	Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials. 2020 , 25, e00200	9
642	Molten-Salt-Assisted Synthesis of Bismuth Nanosheets for Long-term Continuous Electrocatalytic Conversion of CO to Formate. 2020 , 59, 20112-20119	40
641	Defect-engineering of tin oxide via (Cu, N) co-doping for electrocatalytic and photocatalytic CO2 reduction into formate. 2020 , 227, 115947	9
640	Electroreduction of Carbon Dioxide in Metallic Nanopores through a Pincer Mechanism. 2020 , 132, 19459-194	46 5
639	Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. 2020 , 36, 597-610	3
638	Advances in Clean Fuel Ethanol Production from Electro-, Photo- and Photoelectro-Catalytic CO2 Reduction. 2020 , 10, 1287	10

637	Recent Advances in Electrode Materials for Electrochemical CO2 Reduction. 2020, 49-91	Ο
636	Single transition metal atoms on nitrogen-doped carbon for CO2 electrocatalytic reduction: CO production or further CO reduction?. 2020 , 533, 147466	21
635	Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants. 2020 , 120, 108146	10
634	Surface-Enhanced Raman Spectroscopic Evidence on the Origin of Selectivity in CO Electrocatalytic Reduction. 2020 , 14, 11363-11372	47
633	Carbon Nanohorn-Based Electrocatalysts for Energy Conversion. 2020 , 10,	14
632	Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination chemistry. 2020 , 422, 213436	21
631	Transforming active sites in nickellitrogenlarbon catalysts for efficient electrochemical CO2 reduction to CO. 2020 , 78, 105213	22
630	Highly Selective CO2 Electroreduction to CO on Cullo Bimetallic Catalysts. 2020 , 8, 12561-12567	10
629	Role of ion-selective membranes in the carbon balance for CO electroreduction gas diffusion electrode reactor designs. 2020 , 11, 8854-8861	34
628	Tailoring electronic structure of bifunctional Cu/Ag layered electrocatalysts for selective CO2 reduction to CO and CH4. 2020 , 78, 105168	25
627	Molten-Salt-Assisted Synthesis of Bismuth Nanosheets for Long-term Continuous Electrocatalytic Conversion of CO2 to Formate. 2020 , 132, 20287-20294	8
626	Mechanism of CO2 conversion into methanol and methane at the edge of graphitic carbon nitride sheet: A first-principle study. 2020 , 169, 73-81	6
625	Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction. 2020 , 77, 105158	40
624	Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. 2020 , 422, 213435	48
623	Electroreduction Reaction Mechanism of Carbon Dioxide to C Products via Cu/Au Bimetallic Catalysis: A Theoretical Prediction. 2020 , 11, 6593-6599	22
622	Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts. 2020 , 277, 115557	46
621	Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. 2020 , 49, 9028-9056	53
620	A local proton source from carboxylic acid functionalized metal porphyrins for enhanced electrocatalytic CO2 reduction. 2020 , 44, 16062-16068	1

	619	Synthesis of a Nickel Single-Atom Catalyst Based on NiN4NCx Active Sites for Highly Efficient CO2 Reduction Utilizing a Gas Diffusion Electrode. 2020 , 3, 8739-8745	14
ı	618	Conversion of CO2 to chemical feedstocks over bismuth nanosheets in situ grown on nitrogen-doped carbon. 2020 , 8, 19938-19945	6
	617	Two-dimensional nonlayered materials for electrocatalysis. 2020 , 13, 3993-4016	31
,	616	Anode Photovoltage Compensation-Enabled Synergistic CO2 Photoelectrocatalytic Reduction on a Flower-Like Graphene-Decorated Cu Foam Cathode. 2020 , 30, 2005983	12
	615	Quantifying Electrocatalytic Reduction of CO2 on Twin Boundaries. 2020 , 6, 3007-3021	24
,	614	Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction. 2020 , 22, 6804-6808	9
	613	Bismuth-Decorated Silicon Photocathodes for CO2-to-Formate Solar-Driven Conversion. 2020 , 12, 5819-5825	2
	612	Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. 2020 , 13, 3206-3211	25
	611	Source of magnetic field effects on the electrocatalytic reduction of CO. 2020 , 153, 084303	6
,	610	Thermal Transformation of Molecular Ni2+N4 Sites for Enhanced CO2 Electroreduction Activity. 2020 , 10, 10920-10931	32
	609	Highly Selective CO Electroreduction to CH by In Situ Generated Cu O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. 2020 , 59, 23641-23648	117
,	608	Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. 2020 , 8, 14630-14656	47
	607	Hierarchically Porous SnO Coupled Organic Carbon for CO Electroreduction. 2020 , 13, 5896-5900	6
,	606	Research Progress in Conversion of CO to Valuable Fuels. 2020 , 25,	34
	605	Defect-Enhanced CO Reduction Catalytic Performance in O-Terminated MXenes. 2020 , 13, 5690-5698	24
	604	Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. 2020 , 59, 20235-20252	12
	603	Fe and N co-doped carbon with High doping content of sulfur and nitrogen for efficient CO2 electro-reduction. 2020 , 42, 101316	1
	602	Tunable Selectivity and High Efficiency of CO Electroreduction via Borate-Enhanced Molten Salt Electrolysis. 2020 , 23, 101607	8

601	Fabrication of dandelion clock-inspired preparation of core-shell TiO2@MoS2 composites for unprecedented high visible light-driven photocatalytic performance. 2020 , 31, 22252-22264	1
600	Recent strategy(ies) for the electrocatalytic reduction of CO2: Ni single-atom catalysts for the selective electrochemical formation of CO in aqueous electrolytes. 2020 , 22, 87-93	3
599	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. 2020 , 49, 3565-3604	256
598	Reduced polyoxometalates and bipyridine ruthenium complex forming a tunable photocatalytic system for high efficient CO2 reduction. 2020 , 398, 125518	20
597	Post-Test Raman Investigation of Silver Based Gas Diffusion Electrodes. 2020 , 167, 086505	2
596	Metal®rganic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. 2020 , 132, 15124-15130	29
595	Metal-Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. 2020 , 59, 15014-15020	131
594	Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. 2020 , 115, 106731	16
593	Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction. 2020 , 36, 410-419	12
592	Electrodeposited CuAgHg Multimetallic Thin Films for Improved CO2 Conversion: the Dramatic Impact of Hg Incorporation on Product Selectivity. 2020 , 3, 6670-6677	8
591	Selective electroreduction of CO to acetone by single copper atoms anchored on N-doped porous carbon. 2020 , 11, 2455	121
590	Spontaneously Formed CuS Catalysts for Selective and Stable Electrochemical Reduction of Industrial CO Gas to Formate. 2020 , 12, 22891-22900	20
589	Designing CO2 reduction electrode materials by morphology and interface engineering. 2020 , 13, 2275-2309	105
588	MetalBrganic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. 2020 , 8, 12418-12423	16
587	Coupled Copper-Zinc Catalysts for Electrochemical Reduction of Carbon Dioxide. 2020 , 13, 4128-4139	19
586	Formation of Lattice-Dislocated Zinc Oxide via Anodic Corrosion for Electrocatalytic CO Reduction to Syngas with a Potential-Dependent CO:H Ratio. 2020 , 12, 30466-30473	14
585	Stable and Efficient Single-Atom Zn Catalyst for CO Reduction to CH. 2020 , 142, 12563-12567	188
584	Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO Electroreduction and High-Performance Zn-CO Batteries. <i>Advanced</i> 24 <i>Materials</i> , 2020 , 32, e2002430	80

583	Coupling N and CO in HO to synthesize urea under ambient conditions. 2020 , 12, 717-724	146
582	Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid. 2020 , 400, 125879	17
581	Catalytic conversion of CO2 to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. 2020 , 1, 1506-1545	44
580	From non-innocent to guilty: on the role of redox-active ligands in the electro-assisted reduction of CO2 mediated by a cobalt(II)-polypyridyl complex. 2020 , 4, 3668-3676	13
579	Metal-Nitrogen-Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. 2020 , 7, 2001069	91
578	Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction. 2020 , 8, 12291-12295	11
577	Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates. 2020 , 10, 4562-4570	13
576	Rational Design of Nanocatalysts with Nonmetal Species Modification for Electrochemical CO2 Reduction. 2020 , 10, 2000588	23
575	Organic-Inorganic Hybrid Nanomaterials for Electrocatalytic CO Reduction. 2020, 16, e2001847	41
574	Uncovering Atomic-Scale Stability and Reactivity in Engineered Zinc Oxide Electrocatalysts for Controllable Syngas Production. 2020 , 10, 2001381	19
573	Graphene Quantum Dots-Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. 2020 , 10, 2001275	52
57 ²	Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO Reduction Electrocatalysis for the Two-Metal Case. 2020 , 11, 2541-2549	25
57 ¹	. 2020,	
570	600 nm Irradiation-Induced Efficient Photocatalytic CO2 Reduction by Ultrathin Layered Double Hydroxide Nanosheets. 2020 , 59, 5848-5857	26
569	Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu. 2020 , 5, 1206-1214	80
568	Selective ligand modification of cobalt porphyrins for carbon dioxide electrolysis: Generation of a renewable H2/CO feedstock for downstream catalytic hydrogenation. 2020 , 507, 119594	5
567	Heterostructured Catalysts for Electrocatalytic and Photocatalytic Carbon Dioxide Reduction. 2020 , 30, 1910768	105
566	Engineering pristine 2D metal@rganic framework nanosheets for electrocatalysis. 2020 , 8, 8143-8170	89

565	From low to high-index facets of noble metal nanocrystals: a way forward to enhance the performance of electrochemical CO reduction. 2020 , 12, 8626-8635	12
564	The Origin of the Electrocatalytic Activity for CO Reduction Associated with Metal-Organic Frameworks. 2020 , 13, 2552-2556	8
563	Application of two-dimensional materials for electrochemical carbon dioxide reduction. 2020 , 289-326	
562	Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol. 2020 , 570, 375-381	16
561	Recent Advances in Atomic-Level Engineering of Nanostructured Catalysts for Electrochemical CO2 Reduction. 2020 , 30, 1910534	55
560	Potential Link between Cu Surface and Selective CO Electroreduction: Perspective on Future Electrocatalyst Designs. <i>Advanced Materials</i> , 2020 , 32, e1908398	78
559	Investigation on InIIiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. 2020 , 340, 135948	4
558	Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction. 2020 , 7, 1719-1725	17
557	Toward Highly Selective Electrochemical CO Reduction using Metal-Free Heteroatom-Doped Carbon. 2020 , 7, 2001002	21
556	Heterophase fcc-2H-fcc gold nanorods. 2020 , 11, 3293	41
555	Electroreduction of carbon dioxide using platinum-iridium modified boron-doped diamond (BDD) with various platinum-iridium ratios. 2020 , 763, 012051	3
554	Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. 2020 , 13, 2777-2783	25
553	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO2. 2020 , 8, 14966-14974	9
552	Highly active coral-like porous silver for electrochemical reduction of CO2 to CO. 2020 , 41, 101242	8
551	Carbon recycling IAn immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact. 2020 , 131, 110010	12
550	Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. 2020 , 63, 2314-2324	16
549	Theoretical study of two-dimensional bis(iminothiolato)metal monolayers as promising electrocatalysts for carbon dioxide reduction. 2020 , 44, 12299-12306	7
548	Tunable Syngas Production through CO Electroreduction on Cobalt-Carbon Composite Electrocatalyst. 2020 , 12, 9307-9315	42

547	Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. 2020 , 269, 118800	53
546	Metal-Modulated Nitrogen-Doped Carbon Electrocatalyst for Efficient Carbon Dioxide Reduction. 2020 , 7, 1142-1148	3
545	Efficient CO2 Reduction to HCOOH with High Selectivity and Energy Efficiency over Bi/rGO Catalyst. 2020 , 4, 1900846	34
544	Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO2 Reduction Electrocatalysts. 2020 , 132, 8339-8346	16
543	Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO Reduction Electrocatalysts. 2020 , 59, 8262-8269	34
542	Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater. 2020 , 45, 84-91	12
541	Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction. 2020 , 453, 227846	14
540	Insights into pressure tunable reaction rates for electrochemical reduction of CO2 in organic electrolytes. 2020 , 22, 2434-2442	10
539	Recent Progress in Self-Supported Catalysts for CO2 Electrochemical Reduction. 2020 , 4, 1900826	30
538	Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based Covalent Organic Framework for Highly Efficient Electroreduction of CO2. 2020 , 5, 1005-1012	80
537	Promotion of CO Electrochemical Reduction via Cu Nanodendrites. 2020 , 12, 11562-11569	17
536	Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. 2020 , 8, 3328-3335	6
535	Strategies in catalysts and electrolyzer design for electrochemical CO reduction toward C products. 2020 , 6, eaay3111	229
534	Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. 2020, 13, 729-735	30
533	Investigating the Origin of Enhanced C Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO Electroreduction. 2020 , 142, 4213-4222	109
532	Polyoxometalate-based electron transfer modulation for efficient electrocatalytic carbon dioxide reduction. 2020 , 11, 3007-3015	35
531	Fluorine Doped Cagelike Carbon Electrocatalyst: An Insight into the Structure-Enhanced CO Selectivity for CO Reduction at High Overpotential. 2020 , 14, 2014-2023	55
530	Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. 2020 , 11, 497	146

529	CoSe2 nanobelt coupled with CoMoO4 nanosheet as efficient electrocatalysts for hydrogen and oxygen evolution reaction. 2020 , 1, 100004	8
528	Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane. 2020 , 875, 113862	17
527	Fundamental Aspects of Electrocatalysis 1). 2020 , 773-890	8
526	Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO Reduction to Ethylene. 2020 , 142, 2857-2867	142
525	Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. 2020 , 117, 1330-1338	47
524	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO2 to Value-Added Chemicals and Fuel. 2020 , 10, 1902106	57
523	CO2 sensing under ambient conditions using metal®rganic frameworks. 2020 , 5, 1071-1076	6
522	Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies. 2020 , 8, 10695-10708	48
521	Metal-Organic Framework-Based Catalysts with Single Metal Sites. 2020 , 120, 12089-12174	291
520	Selective C-C Coupling by Spatially Confined Dimeric Metal Centers. 2020 , 23, 101051	21
519	Theoretical understanding of the electrochemical reaction barrier: a kinetic study of CO reduction reaction on copper electrodes. 2020 , 22, 9607-9615	11
518	Integrated design for electrocatalytic carbon dioxide reduction. 2020 , 10, 2711-2720	35
517	Efficient electrocatalytic reduction of carbon dioxide to ethylene on copperIntimony bimetallic alloy catalyst. 2020 , 41, 1091-1098	17
516	Computational insights into the strain effect on the electrocatalytic reduction of CO to CO on Pd surfaces. 2020 , 22, 9600-9606	9
515	Exploring Bi Te Nanoplates as Versatile Catalysts for Electrochemical Reduction of Small Molecules. Advanced Materials, 2020 , 32, e1906477	37
514	Nanostructures for Electrocatalytic CO Reduction. 2020 , 26, 14024-14035	10
513	Toward Excellence of Transition Metal-Based Catalysts for CO2 Electrochemical Reduction: An Overview of Strategies and Rationales. 2020 , 4, 2000033	35
512	Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide. 2020 , 272, 118974	35

511	Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction. 2020 , 11, 3481-3487	34
510	Boron-doped carbon microspheres as a new catalyst for rechargeable Li-CO2 batteries. 2020 , 28, 680-685	6
509	Hierarchical architectures of mesoporous Pd on highly ordered TiO2 nanotube arrays for electrochemical CO2 reduction. 2020 , 8, 8041-8048	8
508	Composite of medium-chain-length polyhydroxyalkanoates-co-methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. 2021 , 68, 307-318	3
507	Nitrogen-rich metal-organic framework mediated Cu N C composite catalysts for the electrochemical reduction of CO2. 2021 , 54, 555-563	7
506	CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. 2021 , 540, 148293	15
505	Ultrathin two-dimensional metalBrganic framework nanosheets for efficient electrochemical CO2 reduction. 2021 , 57, 627-631	1
504	Potential-Dependent Morphology of Copper Catalysts During CO Electroreduction Revealed by In Situ Atomic Force Microscopy. 2021 , 60, 2561-2568	40
503	Spontaneously producing syngas from MFC-MEC coupling system based on biocompatible bifunctional metal-free electrocatalyst. 2021 , 64, 592-600	О
502	Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction. 2021 , 80, 105504	34
501	Plasma-induced oxygen vacancies in amorphous MnOx boost catalytic performance for electrochemical CO2 reduction. 2021 , 79, 105492	18
500	More is Different: Synergistic Effect and Structural Engineering in Double-Atom Catalysts. 2021 , 31, 2007423	74
499	Enhancing CO Electrocatalysis on 2D Porphyrin-Based Metal-Organic Framework Nanosheets Coupled with Visible-Light 2021 , 5, e2000991	24
498	Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. 2021 , 133, 4929-4935	10
497	Oxygen vacancies enriched Bi based catalysts for enhancing electrocatalytic CO2 reduction to formate. 2021 , 367, 137478	13
496	Gas-phase CO2 electroreduction over Sntu hollow fibers. 2021 , 2, 241-247	2
495	Ternary heterostructural CoO/CN/Ni catalyst for promoted CO2 electroreduction to methanol. 2021 , 393, 83-91	4
494	Cu2O/Ti3C2MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. 2021 , 542, 148685	17

493 Metal-organic framework-derived porous carbon templates for catalysis. **2021**, 73-121

492	Recent advances of electrically conductive metal-organic frameworks in electrochemical applications. 2021 , 13, 100105	17
491	Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. 2021 , 60, 4879-4885	52
490	Recent Advances in Strategies for Improving the Performance of CO2 Reduction Reaction on Single Atom Catalysts. 2021 , 1, 2000028	28
489	Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. 2021 , 289, 119783	26
488	Recent advances in innovative strategies for the CO2 electroreduction reaction. 2021 , 14, 765-780	61
487	Reduction of carbon dioxide (CO2) using DR Dblock electro-catalysts: A review. 2021, 9, 104798	7
486	Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of CO2 to ethanol. 2021 , 9, 3044-3051	8
485	N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO2 reduction. 2021 , 9, 320-326	3
484	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO Reduction. 2021 , 60, 7382-7388	53
483	Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO Reduction. 2020, 13, 5	34
482	High selectivity of CO2 conversion to formate by porous copper hollow fiber: Microstructure and pressure effects. 2021 , 365, 137343	1
481	Recent Progress of Sn-Based Derivative Catalysts for Electrochemical Reduction of CO 2. 2021 , 9, 2000799	19
480	Potentialabhfigige Morphologie von Kupferkatalysatoren wfirend der Elektroreduktion von CO2, ermittelt durch In-situ-Rasterkraftmikroskopie. 2021 , 133, 2591-2599	4
479	Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. 2021 , 40, 1412-1430	36
478	Identification of the activity source of CO electroreduction by strategic catalytic site distribution in stable supramolecular structure system. 2021 , 8, nwaa195	11
477	Atomistic modeling of electrocatalysis: Are we there yet?. 2021 , 11, e1499	39
476	Synthesis of Advanced Materials by Electrochemical Methods. 2021 , 435-466	

475	Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO2 to liquid fuels. 2021 , 9, 10546-10561	5
474	Enhanced OER performance of composite Co E e-based MOF catalysts via a one-pot ultrasonic-assisted synthetic approach. 2021 , 5, 1095-1102	6
473	Capture and electroreduction of CO2 using highly efficient bimetallic PdAg aerogels paired with carbon nanotubes.	8
472	Electrocatalysis for CO conversion: from fundamentals to value-added products. 2021 , 50, 4993-5061	157
471	Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO reduction. 2021 , 57, 1839-1854	10
470	Copper-Based Metal-Organic Frameworks (MOFs) for Electroreduction of CO2. 2021 , 544-544	
469	Confining Chainmail-Bearing Ni Nanoparticles in N-doped Carbon Nanotubes for Robust and Efficient Electroreduction of CO. 2021 , 14, 1140-1154	9
468	Electrografting amines onto silver nanoparticle-modified electrodes for electroreduction of CO2 at low overpotential. 2021 , 9, 9791-9797	7
467	Boosting electrochemical CO2 reduction to formate using SnO2/graphene oxide with amide linkages. 2021 , 9, 19681-19686	5
466	MetalBrganic framework derived carbon supported Cu I h nanoparticles for highly selective CO2 electroreduction to CO. 2021 , 11, 6096-6102	3
465	Enhancing selectivity through decrypting the uncoordinated zirconium sites in MOF electrocatalysts. 2021 , 57, 5191-5194	4
464	Electrochemical Reduction of CO2 on Cu-Based Heterogeneous Catalysts. 2021 , 807-807	
463	Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: strategy and mechanism. 2021 , 23, 5394-5428	35
462	Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO reduction. 2021 , 12, 660	25
461	Understanding trends in the activity and selectivity of bi-atom catalysts for the electrochemical reduction of carbon dioxide. 2021 , 9, 8761-8771	9
460	Selective electroreduction of CO2 to carbon-rich products with a simple binary copper selenide electrocatalyst. 2021 , 9, 7150-7161	10
459	Selective electrocatalytic CO2 reduction to acetate on polymeric CuII (L = pyridinic N and carbonyl group) complex coreIhell microspheres. 2021 , 23, 5129-5137	11
458	Fe1N4D1 site with axial FeD coordination for highly selective CO2 reduction over a wide potential range. 2021 , 14, 3430-3437	40

457	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. 2021 , 50, 2540-2581	85
456	Experimental and Theoretical Studies on Effects of Structural Modification of Tin Nanoclusters for Third-Order Nonlinear Optical Properties. 2021 , 60, 1885-1892	5
455	Ionic liquid-based electrolytes for CO electroreduction and CO electroorganic transformation 2022 , 9, nwab022	7
454	Carbon-Based Materials for Electrochemical Reduction of CO2 to C2+ Oxygenates: Recent Progress and Remaining Challenges. 2021 , 11, 2076-2097	31
453	Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2electroreduction to CO. 2021 , 36, 19-33	1
452	Recent Progress on Catalyst Development for CO2 Conversion into Value-Added Chemicals by Photo- and Electroreduction. 2021 , 335-360	O
451	Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. 2021 , 281, 119426	27
450	Sn nanoparticles deposited onto a gas diffusion layer via impregnation-electroreduction for enhanced CO2 electroreduction to formate. 2021 , 369, 137662	5
449	Atomically Dispersed Indium Sites for Selective CO Electroreduction to Formic Acid. 2021 , 15, 5671-5678	38
448	Electro-, Photo-, and Photoelectro-chemical Reduction of CO2. 2021 , 649-669	2
447	Density Functional Theory Investigation of StructureActivity Relationship for Efficient Electrochemical CO2 Reduction on Defective SnSe2 Nanosheets. 2021 , 4, 2760-2767	2
446	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO2 Reduction. 2021 , 133, 7458-7464	7
445	Recent Advance of Transition-Metal-Based Layered Double Hydroxide Nanosheets: Synthesis, Properties, Modification, and Electrocatalytic Applications. 2021 , 11, 2002863	43
444	Boosting Production of HCOOH from CO Electroreduction via Bi/CeO. 2021 , 60, 8798-8802	35
443	Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO Electroreduction Activity of Co/N-Doped Carbon Materials. 2021 , 13, 15122-15131	7
442	Electrodeposition of Ni on MWNTs as a promising catalyst for CO2RR. 2021 , 9, 1042	1
441	Redox-Active Ligands in Electroassisted Catalytic H+ and CO2 Reductions: Benefits and Risks. 2021 , 11, 4024-4035	7
440	Boosting electrocatalytic activity for CO2 reduction on nitrogen-doped carbon catalysts by co-doping with phosphorus. 2021 , 54, 143-150	21

439	Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx. 2021, 133, 8880-8884	3
438	Enhancing the Electrochemical Reduction of CO2 by Controlling the Flow Conditions: An Intermittent Flow Reduction System with a Boron-Doped Diamond Electrode. 2021 , 9, 5298-5303	6
437	Electrospun nanofibers for electrochemical reduction of CO2: A mini review. 2021, 124, 106968	6
436	Single-Ni Sites Embedded in Multilayer Nitrogen-Doped Graphene Derived from Amino-Functionalized MOF for Highly Selective CO2 Electroreduction. 2021 , 9, 3792-3801	6
435	Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. 2021 , 4, 888-926	21
434	Hidden Mechanism Behind the Roughness-Enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. 2021 , 133, 11233-11237	1
433	Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. 2021 , 11, 535	4
432	Hydrangea-like Superstructured Micro/Nanoreactor of Topotactically Converted Ultrathin Bismuth Nanosheets for Highly Active CO Electroreduction to Formate. 2021 , 13, 20589-20597	17
431	Sn Atoms on Cu Nanoparticles for Suppressing Competitive H2 Evolution in CO2 Electrolysis. 2021 , 4, 4994-5003	5
430	Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction. 2021 , 546, 149111	22
429	Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction. 2021 , 27, 269-277	1
428	Intermediates for catalytic reduction of CO2 on p-block element surfaces. 2021 , 96, 236-242	4
427	Hidden Mechanism Behind the Roughness-Enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. 2021 , 60, 11133-11137	4
426	A Data-Driven Framework for the Accelerated Discovery of CO2 Reduction Electrocatalysts. 2021 , 9,	2
425	Surface evolution of electrocatalysts in energy conversion reactions. 2021 , 82, 105745	20
424	One-Dimensional Superlattice Heterostructure Library. 2021 , 143, 7013-7020	6
423	Metal®rganic Frameworks as Heterogeneous Electrocatalysts for Water Splitting and CO2 Fixation. 2021 , 21, 3123-3142	12
422	Ni-N-Doped Carbon-Modified Reduced Graphene Oxide Catalysts for Electrochemical CO2 Reduction Reaction. 2021 , 11, 561	1

421	Atomic-Dispersed Coordinated Unsaturated Nickel Nitrogen Sites in Hollow Carbon Spheres for the Efficient Electrochemical CO2 Reduction. 2021 , 9, 5437-5444	4
420	Boosting CO Electroreduction via the Synergistic Effect of Tuning Cationic Clusters and Visible-Light Irradiation. <i>Advanced Materials</i> , 2021 , 33, e2101886	4 6
419	In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO Reduction to Formate. 2021 , 16, 1539-1544	3
418	Porous Bilayer Electrode-Guided Gas Diffusion for Enhanced CO2 Electrochemical Reduction. 2021 , 2, 2100083	4
417	Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization. 2021 , 133, 20795-20816	13
416	Nickel Nanoparticles with Narrow Size Distribution Confined in Nitrogen-Doped Carbon for Efficient Reduction of CO2 to CO. 1	1
415	An electrochemical cell for in operando ¹³C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution. 2021 , 2, 265-280	2
414	Selective Conversion of Carbon Dioxide to Formate with High Current Densities. 2150001	
413	Electrochemical Catalysts for Green Hydrogen Energy. 2021 , 2, 2100019	2
412	Metal©rganic Frameworks for Photo/Electrocatalysis. 2021 , 2, 2100033	47
412 411	Metal©rganic Frameworks for Photo/Electrocatalysis. 2021, 2, 2100033 Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. 2021, 97, 466-475	47 5
	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior	5
411	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. 2021 , 97, 466-475	5
411 410	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. 2021 , 97, 466-475 Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. 2021 , 17, e200681	5 3 7
411 410 409	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. 2021 , 97, 466-475 Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. 2021 , 17, e200681 Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. 2021 , 16, 1 Architectural Design for Enhanced C Product Selectivity in Electrochemical CO Reduction Using	5 3 7 8
411 410 409 408	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. 2021, 97, 466-475 Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. 2021, 17, e200681 Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. 2021, 16, 1 Architectural Design for Enhanced C Product Selectivity in Electrochemical CO Reduction Using Cu-Based Catalysts: A Review. 2021, 15, 7975-8000 CuFeO2/CuInS2 Composite Thin Film Photocathode Prepared by Template Method for CO2	5 3 7 8
411 410 409 408 407	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. 2021, 97, 466-475 Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. 2021, 17, e200681 Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. 2021, 16, 1 Architectural Design for Enhanced C Product Selectivity in Electrochemical CO Reduction Using Cu-Based Catalysts: A Review. 2021, 15, 7975-8000 CuFeO2/CuInS2 Composite Thin Film Photocathode Prepared by Template Method for CO2 Conversion Into Methanol. Advances and Challenges for the Electrochemical Reduction of CO to CO: From Fundamentals to	5 3 7 8 41

403	CO2 electrochemical reduction to methane on transition metal porphyrin nitrogen-doped carbon material M@d-NC: theoretical insight. 2021 , 140, 1	1
402	Size-Dependent Selectivity of Electrochemical CO Reduction on Converted In O Nanocrystals. 2021 , 60, 15844-15848	24
401	Single iron atom catalysis: An environmental perspective. 2021 , 38, 101117	7
400	Enhanced multi-carbon selectivity via CO electroreduction approach. 2021 , 398, 185-191	6
399	Sn(101) Derived from Metal-Organic Frameworks for Efficient Electrocatalytic Reduction of CO. 2021 , 60, 9653-9659	2
398	Size-Dependent Selectivity of Electrochemical CO2 Reduction on Converted In2O3 Nanocrystals. 2021 , 133, 15978-15982	2
397	Synthesis of a Boron-Imidazolate Framework Nanosheet with Dimer Copper Units for CO Electroreduction to Ethylene. 2021 , 60, 16687-16692	21
396	Synthesis of a BoronImidazolate Framework Nanosheet with Dimer Copper Units for CO2 Electroreduction to Ethylene. 2021 , 133, 16823-16828	2
395	Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study. 2021 , 414, 128857	79
394	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper-Based Catalysts toward Multicarbon Products. 2021 , 31, 2102151	28
393	ActivityBelectivity Enhancement and Catalytic Trend of CO2 Electroreduction on Metallic Dimers Supported by N-Doped Graphene: A Computational Study. 2021 , 125, 13176-13184	6
392	Recent Development of Electrocatalytic CO Reduction Application to Energy Conversion. 2021 , 17, e2100323	12
391	Functionalized Nanomaterials for Catalytic Application: Trends and Developments. 2021, 355-415	0
390	A brief review of electrocatalytic reduction of CO2Materials, reaction conditions, and devices. 2021 , 9, 1012-1032	8
389	Highly selective metal-organic framework-based electrocatalyst for the electrochemical reduction of CO2 to CO. 2021 , 138, 111228	3
388	Interfacial Interactions between Co-Based Cocatalysts and Semiconducting Light Absorbers for Solar-Light-Driven Redox Reactions. 2021 , 5, 2100234	1
387	Efficient electroreduction of CO2 by single-atom catalysts two-dimensional metal hexahydroxybenzene frameworks: A theoretical study. 2021 , 550, 149389	5
386	Molecular Linking Stabilizes Bi Nanoparticles for Efficient Electrochemical Carbon Dioxide Reduction. 2021 , 125, 12699-12706	1

385	CdS-Enhanced Ethanol Selectivity in Electrocatalytic CO Reduction at Sulfide-Derived Cu-Cd. 2021 , 14, 2924-2934	2
384	Self-Supporting Electrodes for Gas-Involved Key Energy Reactions. 2021 , 31, 2104620	14
383	Constructing low-valent Ni nanoparticles for highly selective CO2 reduction. 2021, 33, 424-424	1
382	Dual-Doping Promotes the Carbon Dioxide Electroreduction Activity of MoS2 Nanosheet Array. 2021 , 4, 7492-7496	2
381	Turning manganese into gold: Efficient electrochemical CO2 reduction by a fac-Mn(apbpy)(CO)3Br complex in a gasIlquid interface flow cell. 2021 , 416, 129050	4
380	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. 2021 , 13, 156	20
379	The Controllable Reconstruction of Bi-MOFs for Electrochemical CO2 Reduction through Electrolyte and Potential Mediation. 2021 , 133, 18326-18332	1
378	Direct conversion of CO2 to graphene via vaporllquid reaction for magnesium matrix composites with structural and functional properties. 2021 ,	O
377	Water Splitting Basic Parameter/Others. 2021 , 45-51	
376	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. 2021 , 121, 10271-	10366і
376 375	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. 2021 , 121, 10271-H 2 O Oxidation. 2021 , 53-90	1036€і
		1036 6 1
375	H 2 O Oxidation. 2021 , 53-90 Mechanistic Insights into the Electrochemical Reduction of CO and N on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations.	· ·
375 374	H 2 O Oxidation. 2021 , 53-90 Mechanistic Insights into the Electrochemical Reduction of CO and N on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations. 2021 , 12, 7151-7158	2
375 374 373	H 2 O Oxidation. 2021, 53-90 Mechanistic Insights into the Electrochemical Reduction of CO and N on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations. 2021, 12, 7151-7158 CO2 electroreduction by AuCu bimetallic clusters: A first principles study. A Purely Inorganic Quasi-Keggin Polyoxometalate for Photocatalytic Conversion of Carbon Dioxide	2
375 374 373 372	H 2 O Oxidation. 2021, 53-90 Mechanistic Insights into the Electrochemical Reduction of CO and N on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations. 2021, 12, 7151-7158 CO2 electroreduction by AuCu bimetallic clusters: A first principles study. A Purely Inorganic Quasi-Keggin Polyoxometalate for Photocatalytic Conversion of Carbon Dioxide to Carbon Monoxide. 2021, 86, 1014-1020 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte	2 1
375 374 373 372 371	H 2 O Oxidation. 2021, 53-90 Mechanistic Insights into the Electrochemical Reduction of CO and N on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations. 2021, 12, 7151-7158 CO2 electroreduction by AuCu bimetallic clusters: A first principles study. A Purely Inorganic Quasi-Keggin Polyoxometalate for Photocatalytic Conversion of Carbon Dioxide to Carbon Monoxide. 2021, 86, 1014-1020 The Controllable Reconstruction of Bi-MOFs for Electrochemical CO Reduction through Electrolyte and Potential Mediation. 2021, 60, 18178-18184 Nanoporous Intermetallic Cu Sn/Cu Hybrid Electrodes as Efficient Electrocatalysts for Carbon	2 1 0

367	Tin Metal Cluster Compounds as New Third-Order Nonlinear Optical Materials by Computational Study. 2021 , 12, 7537-7544	1
366	One-step and sustainable preparations of inert additive-doped CaO-based CO2 adsorbents by hydrogenation reduction of CaCO3. 2021 , 418, 129479	4
365	Achieving Selective and Efficient Electrocatalytic Activity for CO Reduction on N-Doped Graphene. 2021 , 9, 734460	1
364	Tetrameric and Polymeric Zn(II) Coordination Complexes of 4-Diallylaminobenzoic Acid and Their Applications in the Electroreduction of CO2 and Schottky Diode Behavior. 2021 , 21, 5240-5250	3
363	Boosting electron transport over controllable N ligand doping for electrochemical conversion of CO2 to syngas. 2021 , 388, 138647	2
362	Intrinsic Descriptors for Coordination Environment and Synergistic Effects of Metal and Environment in Single-Atom-Catalyzed Carbon Dioxide Electroreduction. 2021 , 125, 18180-18186	2
361	Ultra-low-loaded Ni-Fe Dimer Anchored to Nitrogen/Oxygen Sites for Boosting Electroreduction of Carbon Dioxide. 2021 , 14, 4499-4506	1
360	Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. 2021 , 277, 130285	5
359	Sustained CO-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. 2021 , 12, 4936	48
358	Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. 2021 , 441, 213983	14
357	Dual-atom catalysts: controllable synthesis and electrocatalytic applications. 1	10
356	Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction. 1	5
	December of alcohological (1000 and only a constitution of Con	
355	Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles. 1	О
355 354	Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. 2021,	0
	Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide	
354	Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. 2021, Enhancement of Mass Transfer for Facilitating Industrial-Level CO2 Electroreduction on Atomic	1
354 353	Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. 2021, Enhancement of Mass Transfer for Facilitating Industrial-Level CO2 Electroreduction on Atomic Ni?N4 Sites. 2021, 11, 2102152 Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene:	8

349	Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO2 Reduction to CH4. 2021, 133, 23184	4
348	Atomic iridium species anchored on porous carbon network support: An outstanding electrocatalyst for CO2 conversion to CO. 2021 , 292, 120173	6
347	Unique properties of fine bubbles in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. 2021 , 389, 138769	1
346	FeNi Nanoparticles on N-doped Carbon as Catalysts for Electrocatalytic Reduction of CO2 to Tune CO/H2 Ratio. 2021 , 8, 4233	O
345	Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. 2021 , 21, 100816	10
344	Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel Nitrogen Site/Copper Nanoparticle Catalysts.	O
343	Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. 2021 , 220, 108986	8
342	Efficient CO Electroreduction via Au-Complex Derived Carbon Nanotube Supported Au Nanoclusters. 2021 , 14, 4929-4935	1
341	In-situ assembly of Cu/CuxO composite with CNT/Bacterial Cellulose matrix as a support for efficient CO2 electroreduction reaction to CO and C2H4. 2021 , 280, 119832	3
340	Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO Reduction to CH. 2021 , 60, 23002-23009	7
339	Highly Selective Tandem Electroreduction of CO to Ethylene over Atomically Isolated Nickel-Nitrogen Site/Copper Nanoparticle Catalysts. 2021 , 60, 25485-25492	24
	3 , 11 1 3 , ,	
338	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. 2021 , 88, 106251	5
338		
	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. 2021 , 88, 106251 Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with	5
337	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. 2021 , 88, 106251 Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with BiVO4 photoanode. 2021 , 295, 120267	5
337	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. 2021, 88, 106251 Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with BiVO4 photoanode. 2021, 295, 120267 CO activation at Au(110)-water interfaces: An ab initio molecular dynamics study. 2021, 155, 134703 Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting	5 4 5
337 336 335	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. 2021, 88, 106251 Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with BiVO4 photoanode. 2021, 295, 120267 CO activation at Au(110)-water interfaces: An ab initio molecular dynamics study. 2021, 155, 134703 Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer. 2021, 562, 150197 OD/1D heterostructure for efficient electrocatalytic CO2-to-C1 conversion by ultra-small	5454

331	Triboelectric plasma decomposition of CO2 at room temperature driven by mechanical energy. 2021 , 88, 106287	5
330	Single molecular precursors for CxNy materials- Blending of carbon and nitrogen beyond g-C3N4. 2021 , 183, 332-354	7
329	Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode. 2021 , 52, 101697	1
328	Ultrastable Cu Catalyst for CO2 Electroreduction to Multicarbon Liquid Fuels by Tuning Clack Coupling with CuTi Subsurface.	O
327	Ultrastable Cu Catalyst for CO Electroreduction to Multicarbon Liquid Fuels by Tuning C-C Coupling with CuTi Subsurface. 2021 , 60, 26122-26127	7
326	Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. 2021 , 62, 43-50	13
325	Construction of solar light-driven dual Z-scheme Bi2MoO6/Bi2WO6AgIAg photocatalyst for enhanced simultaneous degradation and conversion of nitrogenous organic pollutants. 2021 , 274, 119140	11
324	Understanding the activity transport nexus in water and CO2 electrolysis: State of the art, challenges and perspectives. 2021 , 424, 130501	6
323	Boosting electrochemical CO2 reduction on ternary heteroatoms-doped porous carbon. 2021 , 425, 131661	3
322	Electrochemical CO2 reduction on sub-microcrystalline boron-doped diamond electrodes. 2021 , 120, 108608	1
321	Defect engineering in metal sulfides for energy conversion and storage. 2021 , 448, 214147	19
320	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. 2022 , 64, 263-275	6
319	Performance of photovoltaic-driven electrochemical cell systems for CO2 reduction. 2022 , 428, 130259	3
318	Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. 2022 , 427, 131654	2
317	Two three-dimensional polyanionic clusters [M(PMo)] (M = Co, Zn) exhibiting excellent photocatalytic CO reduction performance. 2021 , 50, 9137-9143	1
316	Nanostructured Cu foam and its derivatives: emerging materials for the heterogeneous conversion of CO2 to fuels. 2021 , 5, 2393-2414	3
315	Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. 2021 , 14, 2790-2796	19
314	High-density Ag nanosheets for selective electrochemical CO reduction to CO. 2021 , 32, 165705	7

313	Steric effect induces CO electroreduction to CH4 on CuAu alloys.	3
312	Efficient electroreduction of CO to C products on CeO modified CuO. 2021 , 12, 6638-6645	22
311	Permanently polarized hydroxyapatite for selective electrothermal catalytic conversion of carbon dioxide into ethanol. 2021 , 57, 5163-5166	5
310	Long-term-stability continuous flow CO2 reduction electrolysers with high current efficiency. 2021 , 5, 758-766	3
309	Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. 2021 , 5, 2668-2683	6
308	Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy. 2021 , 14, 1928-1958	59
307	Electrocatalytic CO2 Reduction Activity Over Transition Metal Anchored on Nitrogen-Doped Carbon: A Density Functional Theory Investigation. 2021 , 151, 2547-2559	1
306	CuAg nanoparticle/carbon aerogel for electrochemical CO2 reduction.	O
305	Atomic-level engineering of two-dimensional electrocatalysts for CO reduction. 2021, 13, 7081-7095	7
304	Efficient Hydrogenation of CO2 to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. 2017 , 9, 3691-3696	30
303	Structural Optimization of Metal Oxyhalide for CO2 Reduction with High Selectivity and Current Density. 2020 , 38, 1752-1756	3
302	Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis. 2018 , 12, 7371-7379	53
301	CHAPTER 1:Carbon-based CO2 Adsorbents. 2018 , 1-75	3
300	Chapter 8:Nanocatalysts for CO2 Conversion. 2019 , 207-235	2
299	Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. 2020 , 13, 977-985	133
298	Concentrating and activating carbon dioxide over AuCu aerogel grain boundaries. 2020 , 152, 204703	6
297	Nitrogen Coordinated Single Atomic Metals Supported on Nanocarbons: A New Frontier in Electrocatalytic CO2 Reduction. 2018 ,	11
296	Efficient electrocatalytic CO2 conversion into formate with AlxBiyOz nanorods in a wide potential window.	2

295	Electrocatalytic CO2 reduction: role of the cross-talk at nano-carbon interfaces. 2021 , 14, 5816-5833	3
294	Hybrid Metal-Boron Diatomic Site Embedded in C N Monolayer Promotes C-C Coupling in CO Electroreduction. 2021 , 17, e2104445	5
293	Recent Advances in Interface Engineering for Electrocatalytic CO Reduction Reaction. 2021, 13, 216	6
292	Rational confinement engineering of MOF-derived carbon-based electrocatalysts toward CO2 reduction and O2 reduction reactions.	7
291	Single Nickel Atom-Modified Phosphorene Nanosheets for Electrocatalytic CO2 Reduction. 2021 , 4, 11017-	11030
290	Electrocatalytic CN Coupling for Urea Synthesis. 2021 , 1, 2100070	7
289	Molecular Cleavage of Metal-Organic Frameworks and Application to Energy Storage and Conversion. <i>Advanced Materials</i> , 2021 , e2104341	17
288	Encyclopedia of Ionic Liquids. 2019 , 1-15	
287	A Highly Selective Tin-Copper Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to Formate. 2019 ,	
286	Environmental Monitoring by Removing Air Pollutants Using Nanocomposites Materials. 2021 , 43-59	O
285	Engineering Ir Atomic Configuration for Switching the Pathway of Formic Acid Electrooxidation Reaction. 2107672	3
284	Recent Advances in Structural Engineering of 2D Hexagonal Boron Nitride Electrocatalysts. 2021 , 91, 106661	6
283	2 D -Materials-Free Heterostructures for EC Energy Conversion. 2022 , 3-51	
282	Electrochemical Reduction of CO to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. 2021 , e2102886	18
281	Selectively triggering photoelectrons for CO2-to-CH4 reduction over {110} SrTiO3 with dual-metal sites. 2021 ,	2
280	The targeted multi-electrons transfer for acetic acid and ethanol obtained with (n-Bu4N)3SVW11O40 and in synergetic catalysis in CO2 electroreduction. 2022 , 517, 230665	O
279	The function of porous working electrodes for hydrogen production from water splitting in non-thermal plasma reactor. 2022 , 310, 122156	2
278	Municipal sludge-derived carbon dots-decorated, N-doped hierarchical biocarbon for the electrochemical reduction of carbon dioxide. 2022 , 177, 105980	6

277	CO2 reduction mechanism on the Nb2CO2 MXene surface: Effect of nonmetal and metal modification. 2022 , 202, 110971	1
276	Study of carbon dioxide electrochemical reduction in flow cell system using copper modified boron-doped diamond. 2020 , 211, 03011	1
275	Sn-Doped BiO nanosheets for highly efficient electrochemical CO reduction toward formate production. 2021 , 13, 19610-19616	1
274	Mass production of a single-atom cobalt photocatalyst for high-performance visible-light photocatalytic CO2 reduction.	3
273	Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation. 2021 , 433, 133512	1
272	Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO reduction to CH. 2021 , 12, 6390	21
271	Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review. 2021 , 6, 11603-11629	1
270	ZnSn nanocatalyst: Ultra-high formate selectivity from CO electrochemical reduction and the structure evolution effect. 2021 ,	5
269	Exploring the influence of atomic level structure, porosity, and stability of bismuth(iii) coordination polymers on electrocatalytic CO2 reduction. 2021 , 9, 26298-26310	1
268	Bi particles with exposed (012) facet on 3D substrate as highly active and durable electrode for CO2 reduction to formate. 2022 , 55, 101797	1
267	In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. 2022 , 43, 33-46	2
266	Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction. 2022 , 303, 120897	8
265	Asymmetric Oxo-Bridged ZnPb Bimetallic Electrocatalysis Boosting CO -to-HCOOH Reduction. 2021 , e2104138	2
264	Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction. 2021 , 37, 1328-1333	4
263	Exploring the Synergistic Effect of Novel Ni-Fe in 2D Bimetallic Metal-Organic Frameworks for Enhanced Electrochemical Reduction of CO2. 2101505	4
262	Two-dimensional metal carbides for electro- and photocatalytic CO2 reduction: Review. 2021 , 55, 101814	2
261	Impacts of the Catalyst Structures on CO Activation on Catalyst Surfaces 2021, 11,	8
260	Effect of Dealloying Time and Post-Annealing on the Surface Morphology and Electrocatalytic Behavior of Nanoporous Copper Films for CO2 Reduction Reaction. 2021 , 168, 123501	1

259	Coordination environment engineering on nickel single-atom catalysts for CO electroreduction. 2021 , 13, 19133-19143	2
258	Recent advances in MoS-based materials for electrocatalysis 2022 ,	4
257	Porous organic polymers for electrocatalysis 2022,	19
256	Controllable growth of branched silver crystals over a rod of the same material as an efficient electrode in CO2 reduction at high current densities. 2022 , 405, 224-235	1
255	Rational design of low loading Pd-alloyed Ag nanocorals for high current density CO2-to-CO electroreduction at elevated pressure. 2022 , 24, 100923	2
254	Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction. 2022 , 305, 121022	7
253	Mo 2CS 2-Mxene Supported Single-Atom Catalysts for Efficient and Selective CO 2 Electrochemical Reduction.	
252	LDH-based nanostructured electrocatalysts for hydrogen production. 2022 , 237-251	
251	Double-atom catalysts for energy-related electrocatalysis applications: a theoretical perspective. 2022 , 55, 203001	11
250	Influence of halide ions on the electrochemical reduction of carbon dioxide over a copper surface. 2022 , 10, 1086-1104	1
249	Superiority of Dual-Atom Catalysts in Electrocatalysis: One Step Further Than Single-Atom Catalysts. 2103564	21
248	CO Electrolysis System under Industrially Relevant Conditions 2022,	8
247	Advances of the functionalized carbon nitrides for electrocatalysis.	0
246	Engineering of Pt-based nanostructures for efficient dry (CO2) reforming: Strategy and mechanism for rich-hydrogen production. 2022 , 47, 5901-5928	3
245	Potential-dependent C-C coupling mechanism and activity of C formation in the electrocatalytic reduction of CO on defective Cu(100) surfaces 2021 ,	1
244	Electroreduction of carbon dioxide to formate using highly efficient bimetallic Sn B d aerogels. 2022 , 3, 1224-1230	1
243	Atomically dispersed Fe-N-C catalyst displaying ultra-high stability and recyclability for efficient electroreduction of CO to CO 2022 ,	2
242	Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas.	3

241	Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. 2022 , 522, 230998	4
240	Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO 2 reduction.	3
239	Atomic Tuning of Single-Atom Fe-N-C Catalysts with Phosphorus for Robust Electrochemical CO Reduction 2022 ,	10
238	FeV3O8/MoS2 nanostructure heterojunctions as a highly effective electrocatalyst for hydrogen evolution.	2
237	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality.	O
236	Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide 2022 , 13, 803	8
235	Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO Reduction to Methane: Combining High Activity and Selectivity 2022 ,	3
234	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality 2021 ,	13
233	Interfacial Assembly of Functional Mesoporous Carbon-Based Materials into Films for Batteries and Electrocatalysis. 2101998	4
232	Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO Electrocatalytic Reduction 2022 ,	7
231	Electro-synthesis of Ammonia from Dilute Nitric Oxide on a Gas Diffusion Electrode. 958-965	6
230	3D Cu/In Nanocones by Morphological and Interface Engineering Design in Achieving a High Current Density of Electroreduction from CO ₂ to Syngas at High Pressure.	
229	Coupling Co2 Reduction with Ch3oh Oxidation for Efficient Electrosynthesis of Formate on Hierarchical Bifunctional Cusn Alloy.	
228	Electrochemical CO2 Reduction. 2022 , 161-176	
227	Enhanced Electrocatalytic Reduction of CO2 to Formate via Doping Ce in Bi2O3 Nanosheets.	O
226	Enhancing mechanism of electron-deficient p states on photocatalytic activity of g-C3N4 for CO2 reduction.	1
225	Dynamic determination of Cu+ roles for CO2 reduction on electrochemically stable Cu2O-based nanocubes.	1
224	Activity switching of Sn and In species in Heusler alloys for electrochemical CO reduction 2022,	1

223	DFT Modeling of CO Adsorption and HCOO Group Conversion in Anatase Au-TiO-Based Photocatalysis 2022 , 7, 7179-7189	3
222	An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO2 to ethanol. 2022 ,	О
221	Single-Atom Catalysts for the Electro-Reduction of CO2 to Syngas with a Tunable CO/H2 Ratio: A Review. 2022 , 12, 275	О
220	Bismuth Nanosheets Derived by In Situ Morphology Transformation of Bismuth Oxides for Selective Electrochemical CO Reduction to Formate 2022 ,	3
219	Efficient Electrochemical Reduction of CO2 to CO by Ag-Decorated B-Doped g-C3N4: A Combined Theoretical and Experimental Study.	2
218	Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. 1	0
217	Review of photocatalytic and photo-electrocatalytic reduction of CO2 on carbon supported films. 2022 ,	2
216	Dynamic surface restructuring of nanoporous Cu2Be for efficient CO2 electroreduction into methanol. 2022 ,	О
215	A Graphene-supported Copper Complex as Site-Isolated Catalyst for Electrochemical CO2 Reduction.	
214	A Heuristic Approach to Linking Experimental Descriptors with Product Selectivity in Electrochemical CO2 Reduction 2022 ,	О
213	Mo2CS2MXene Supported Single-Atom Catalysts for Efficient and Selective CO2 Electrochemical Reduction. 2022 , 153339	2
212	Structural Reconstruction of Cu O Superparticles toward Electrocatalytic CO Reduction with High C Products Selectivity 2022 , e2105292	6
211	Ultrasmall Cu Nanocrystals Dispersed in Nitrogen-Doped Carbon as Highly Efficient Catalysts for CO Electroreduction 2022 ,	1
210	Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects. 2022 , 161, 112329	5
209	The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. 2022 , 590, 153001	1
208	Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. 2022 , 70, 310-331	1
207	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. 2022 , 70, 444-471	1
206	Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. 2022 , 310, 121320	5

3

Electrochemistry-Induced Restructuring of Tin-Doped Indium Oxide Nanocrystal Films of Relevance 205 to CO2 Reduction. 2021, 168, 126521 Boosting electrocatalytic selectivity in carbon dioxide reduction: the fundamental role of 204 dispersing gold nanoparticles on silicon nanowires. 2021, Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. 2022, 12, 2103289 203 3 Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO2. **2021**, 4, 12845-12890 Construction and two-dimensional assembly of double-shell Na@SnL@SnL clusters through 201 0 tetrahedral citrate ligands.. 2022. CO2 Electroreduction over Metallic Oxide, Carbon-Based, and Molecular Catalysts: A Mini-Review 200 of the Current Advances. 2022, 12, 450 Ultrafine Bi Nanoparticles Confined in Hydrothermal Carbon-Modified Carbon Nanotubes for 199 1 Highly Efficient CO2 Electroreduction to Formate. Understanding and leveraging the effect of cations in the electrical double layer for 198 electrochemical CO2 reduction. 2022, Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic 197 25 medium. Coupling CO2 Reduction with CH3OH Oxidation for Efficient Electrosynthesis of Formate on 196 1 Hierarchical Bifunctional CuSn Alloy. 2022, 107277 Local reaction environment for selective electroreduction of carbon monoxide. 195 5 Electrocatalytic CO2 reduction reaction on dual-metal- and nitrogen-doped graphene: coordination 194 environment effect of active sites. BiZnx/Si Photocathode: Preparation and Its CO2 Reduction Performance. 2022, 27 193 Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction. 2022, 192 Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. 191 Utilizing Metal-Organic Frameworks to Achieve High-Efficiency CO2 Electroreduction. 2022, 2254, 012025 190

Efficient Modulation of Electrocatalyst Interfaces by Atomic Layer Deposition: Fundamentals to

Efficient carbon dioxide electroreduction over rationally designed heterogeneous Ag2S-Au

Application. 2200026

nanocomposites. 2022,

189

188

187	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO2 Reduction with Tunable C2H4/CH4 Selectivity 2022 ,	4
186	Insight into the synergistic collaboration of g-C3N4/SnO2 composites for photoelectrocatalytic CO2 reduction.	
185	Operando Converting BiOCl into BiO(CO)Cl for Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate 2022 , 14, 121	О
184	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO2 Reduction with Tunable C2H4/CH4 Selectivity.	1
183	Reconstruction of Ultrahigh-Aspect-Ratio Crystalline Bismuth Drganic Hybrid Nanobelts for Selective Electrocatalytic CO 2 Reduction to Formate. 2201125	6
182	Carbon Catalysts for Electrochemical CO 2 Reduction toward Multicarbon Products. 2200586	2
181	3D Cu/In nanocones by morphological and interface engineering design in achieving a high current density for electroreduction of CO2 to syngas under elevated pressure. 2022 , 61, 102033	О
180	Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. 2022 , 52, 104764	3
179	Binary copper-bismuth catalysts for the electrochemical reduction of CO2: Study on surface properties and catalytic activity. 2022 , 445, 136575	3
178	Sulfur-Modified Copper Synergy with Nitrogen-Defect Sites for the Electroreduction of CO2 to Formate at Low Overpotentials. 2022 , 140557	2
177	Electrocatalysis with metal-free carbon-based catalysts. 2022 , 213-244	
176	Indium decorated nanoporous Ag as an efficient catalyst for enhanced CO2 electroreduction. 2022 , 129, 106916	
175	Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. 2022 , 43, 1680-1686	4
174	Reaction Pathways for the Highly Selective and Durable Electrochemical Co2 to Co Conversion on Zno Enclosed Ag Nanoparticles in Kcl Electrolyte.	
173	Application of Boron-doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide. 2022 ,	1
172	Nickel Phthalocyanine Modified Fruit -Peel -Derived Carbon Framework Selectively Electro-Catalyzes Co2-to-Co Conversion.	
171	An Isolated Doughnut-like Molybdenum(V) Cobalto-phosphate Cluster Displaying Excellent Photocatalytic Performance for Carbon Dioxide Conversion.	1
170	Recent Advances in Dual-Atom Site Catalysts for Efficient Oxygen and Carbon Dioxide Electrocatalysis. 2200408	2

169	Porphyrin-based Framework Materials for Energy Conversion. 2022 , null	26
168	Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. 20210181	2
167	Ultra-small Size ZIF-8 Materials for Efficient and Selective Electrocatalytic Reduction of CO2 to CO.	
166	Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts. 2022 , 1, 100007	2
165	Ab initio random structure searching and catalytic properties of copper-based nanocluster with Earth-abundant metals for the electrocatalytic CO2-to-CO conversion. 2022 , 527, 112406	O
164	Electrochemical Applications of Metal®rganic Frameworks: Overview, Challenges, and Perspectives. 395-453	
163	Environmental Applications of Metal®rganic Frameworks: Recent Advances and Challenges. 299-318	1
162	Single atomic FeN4 active sites and neighboring graphitic nitrogen for efficient and stable electrochemical CO2 reduction.	O
161	Reaction mechanism and kinetics for carbon dioxide reduction on ironflickel Bi-atom catalysts.	O
160	Cu-based bimetallic catalysts for CO2 reduction reaction. 2022 , 100023	1
159	Selective CO2 Reduction to Formate on a Zn-Based Electrocatalyst Promoted by Tellurium.	O
158	In Situ Mechanistic Insights for the Oxygen Reduction Reaction in Chemically Modulated Ordered Intermetallic Catalyst Promoting Complete Electron Transfer.	4
157	Electrocatalyst Modulation toward Bidirectional Sulfur Redox in LiB Batteries: From Strategic Probing to Mechanistic Understanding. 2201056	8
156	Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO2 Reduction in a Fe-Porphyrin-Based Metal-Organic Framework.	3
155	High-throughput screening of dual-atom doped PC6 electrocatalysts for efficient CO2 electrochemical reduction to CH4 by breaking scaling relations. 2022 , 140764	0
154	Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. 2022 , 13,	3
153	Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO2 Reduction in a Fe-Porphyrin-Based Metal-Organic Framework.	1
152	Beyond single-atom catalysts: Exploration of Cu dimer and trimer for CO2 reduction to methane. 2022 , 642, 118708	О

151	Conjugated ligands effect for the electrocatalytic CO2 reduction activity of Sn6O6 platform by experimental and theoretical studies. 2022 , 4, 100055	Ο
150	Nickel Phthalocyanine Modified Fruit -Peel -Derived Carbon Framework Selectively Electro-Catalyzes Co2-to-Co Conversion.	
149	Carbon dioxide electroreduction into formic acid and ethylene: a review.	2
148	Advances in the Key Metal-Based Catalysts for Efficient Electrochemical Conversion of CO 2.	
147	Toward Effective CO2 Reduction in an Acid Medium: Electrocatalysis at Cu2O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO3 Nanowires.	
146	Tailoring Coordination Microenvironment of Cu(I) in Metal (Drganic Frameworks for Enhancing Electroreduction of CO 2 to CH 4. 2203677	6
145	Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. 2022 , 12, 2389	1
144	Cobalt telluride electrocatalyst for selective electroreduction of CO2 to value-added chemicals.	3
143	Electrochemical CO 2 Reduction to C 2+ Products Using Cu-Based Electrocatalysts: A Review. 2022 ,	9
142	Heteroatom-Doped Porous Carbon-Based Nanostructures for Electrochemical CO2 Reduction. 2022 , 12, 2379	O
141	Engineering the Interfacial Microenvironment via Surface Hydroxylation to Realize the Global Optimization of Electrochemical CO2 Reduction.	1
140	High-entropy alloy catalysts: From bulk to nano toward highly efficient carbon and nitrogen catalysis.	1
139	Electrochemical reduction of CO2 on single-atom catalysts anchored on N-terminated TiN (111): Low overpotential and high selectivity. 2022 , 154239	0
138	Sulfur-doped unsaturated Ni-N3 coordination for efficient electroreduction of CO2. 2022 , 450, 137950	2
137	Cu-based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction.	2
136	Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4.	1
135	Designing Cu-Based Tandem Catalysts for CO2 Electroreduction Based on Mass Transport of CO Intermediate. 9735-9752	4
134	Two 1D Anderson-Type Polyoxometalate-Based Metal®rganic Complexes as Bifunctional Heterogeneous Catalysts for CO2 Photoreduction and Sulfur Oxidation. 2022 , 61, 11775-11786	Ο

133	Bicarbonate Rebalances the *COOH/*OCOIDual Pathways in CO2 Electrocatalytic Reduction: In Situ Surface-Enhanced Raman Spectroscopic Evidence. 2022 , 13, 7296-7305	О
132	Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. 2022 , 5,	1
131	Transformation of carbon dioxide, a greenhouse gas, into useful components and reducing global warming: A comprehensive review.	1
130	Chemically dezincified copper nanowires catalysts with competitive selectivity for ethylene production by carbon dioxide reduction reaction.	
129	Review on Heteroatom Doping Carbonaceous Materials Toward Electrocatalytic Carbon Dioxide Reduction.	О
128	Review on Heteroatom Doping Carbonaceous Materials Toward Electrocatalytic Carbon Dioxide Reduction.	
127	Engineering Hydrogen Generation Sites to Promote Electrocatalytic CO2 Reduction to Formate. 10551-10559	5
126	Insight Into Heterogeneous Electrocatalyst Design Understanding for the Reduction of Carbon Dioxide. 2201461	1
125	CoN4 active sites in a graphene matrix for the highly efficient electrocatalysis of CO2 reduction. 2022 , 37, 734-742	0
124	Strain-Regulated Pd/Cu Core/Shell Icosahedra for Tunable Syngas Electrosynthesis from CO2.	1
123	Interfacial electric field effect on electrochemical carbon dioxide reduction reaction. 2022,	3
122	Superbase and Hydrophobic Ionic Liquid Confined within Ni Foams as a Free-Standing Catalyst for CO2 Electroreduction.	1
121	Dual-Scale Integration Design of Sn⊠nO Catalyst toward Efficient and Stable CO 2 Electroreduction. 2204637	7
120	Electrochemical reduction of carbon dioxide on the oxide-containing electrocatalysts. 2022, 64, 102194	O
119	Cuprous Sulfide Nanoarrays for Selective Electroreduction of CO2 to Formate at Low Overpotentials. 2022 , 12, 100383	
118	Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. 2022, 5,	O
117	Iron-Poor Ferrites for Low-Temperature CO2 Conversion via Reverse Water©as Shift Thermochemical Looping. 2022 , 10, 12252-12261	О
116	Convection control in a flow cell on electrochemical CO2 reduction using a boron-doped diamond electrode. 2022 , 200, 456-461	1

115	Covalent organic framework-based catalysts for efficient CO2 utilization reactions. 2022 , 473, 214835	1
114	Carbon-Based Nanomaterials for Carbon Dioxide Reduction Reaction. 2022 , 169-186	Ο
113	Lithium stabilizes square-two-dimensional metal sheets: a computational exploration. 2022 , 14, 11770-11778	0
112	Dual-Atom Cu2/N-Doped Carbon Catalyst for Electroreduction of Co2 to C2h4.	О
111	Mo3(C6O6)2 monolayers as promising electrocatalysts for the CO2 reduction reaction: a first-principles study.	1
110	A review on recent advances in the electrochemical reduction of CO2 to CO with nano-electrocatalysts. 2022 , 12, 22703-22721	2
109	Sn-Stabilized Cu⊞ Electrocatalyst toward Highly Selective CO2-to-CO in a Wide Potential Range.	2
108	Stabilizing Cu2O for enhancing selectivity of CO2 electroreduction to C2H4 with the modification of Pd nanoparticles. 2023 , 452, 139358	O
107	Evaluating the Effects of Membranes, Cell Designs, and Flow Configurations on the Performance of Cu-GDEs in Converting CO2 to CO.	0
106	Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal © rganic Frameworks and Their Derived Materials. 2058-2079	5
105	The Progress and Outlook of Metal Single-Atom-Site Catalysis.	3
104	Modeling the Potential-Dependent Kinetics of CO2 Electroreduction on Single-Nickel Atom Catalysts with Explicit Solvation. 2022 , 12, 11380-11390	O
103	Recent Studies of Electrochemical Promotion for H2 Production from Ethanol. 2023, 269-301	0
102	In-Situ Hydrogen-Bond Tailoring To Construct Ultrathin Bi 2 O 2 O/Bi 2 O 2 (OH)(NO 3) Nanosheets: Interactive CO 2 RR Promotion and Bismuth-Oxygen Moiety Preservation.	O
101	Reaction Pathways for the Highly Selective and Durable Electrochemical CO2 to CO Conversion on ZnO Supported Ag Nanoparticles in KCl Electrolyte. 2022 , 155224	0
100	Aluminum-Doped Mesoporous Copper Oxide Nanofibers Enabling High-Efficiency CO2 Electroreduction to Multicarbon Products.	Ο
99	First-Principles Investigation of the Electrocatalytic Reduction of CO2 on Zirconium-Based Single-, Double-, and Triple-Atom Catalysts Anchored on a Graphitic Carbon Nitride Monolayer.	2
98	Multi-heterointerfaces for selective and efficient urea production.	4

97	In operando-formed interface between silver and perovskite oxide for efficient electroreduction of carbon dioxide to carbon monoxide.	0
96	Robust O-Pd-Cl Catalyst-Electrolyte Interfaces Enhance CO Tolerance of Pd/C Catalyst for Stable CO2 Electroreduction. 2022 , 107957	О
95	Zn-Sb Bimetallic Electrocatalyst Enhances the Conversion of CO2 to Formate.	1
94	The Advance and Critical Functions of Energetic Carbon Dots in Carbon Dioxide Photo/Electroreduction Reactions. 2200914	1
93	Controlling Mineralization with Protein-Functionalized Peptoid Nanotubes. 2207543	0
92	Progress of Nb-containing catalysts for carbon dioxide reduction: a minireview.	O
91	Heteroatom Doped Asymmetric Metal-Nx-C Single Atom Catalysts for Electrochemical CO2[Reduction Reaction.	0
90	Surface Structure Engineering of PdAg Alloys with Boosted CO2 Electrochemical Reduction Performance. 2022 , 12, 3860	1
89	Surface-Oxygen-Rich Bi@C Nanoparticles for High-Efficiency Electroreduction of CO2 to Formate.	1
88	Tunable activity of electrocatalytic CO dimerization on strained Cu surfaces: Insights from ab initio molecular dynamics simulations. 2022 , 43, 2898-2905	O
87	Electrochemical Reduction of Carbon Dioxide: Recent Advances on Au-Based Nanocatalysts. 2022 , 12, 1348	1
86	Efficient electrochemical CO2 reduction to CO by metal and nitrogen co-doped carbon catalysts derived from pharmaceutical wastes adsorbed on commercial carbon nanotubes. 2023 , 453, 139712	1
85	MetalBrganic framework derived single-atom catalysts for electrochemical CO2 reduction. 2022 , 12, 32518-32525	2
84	Electrocatalytic CO2 Reduction at Pyridine Functionalized Au Nanoparticles Supported by Nanostructured NanoCOT Electrode.	O
83	Progress and Perspectives of Metal (Li, Na, Al, Zn and K)-CO2 Batteries. 2022, 101196	0
82	Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO 2 Reduction. 2205168	O
81	Organic molecule-modified copper catalyst enables efficient electrochemical reduction of CO2-to-methane. 2023 , 929, 117068	0
80	MetalBrganic framework-derived single atom catalysts for electrocatalytic reduction of carbon dioxide to C1 products.	O

79	In situ characterisation for nanoscale structureperformance studies in electrocatalysis.	О
78	Coupling continuous CO2 electroreduction to formate with efficient Ni-based anodes. 2023 , 11, 109171	3
77	Nanosized LaInO3 perovskite for efficient electrocatalytic reduction of CO2 to formate. 2023 , 68, 102342	О
76	Efficient carbon monoxide electroreduction on two-dimensional transition metal phosphides: A computational study. 2023 , 613, 156025	O
75	Edge engineering on layered WS2 toward the electrocatalytic reduction of CO2: a first principles study. 2022 , 24, 30027-30034	1
74	Targeted Intermetallic Nanocatalysts for Sustainable Biomass and CO2 Valorization. 2022 , 12, 14999-15020	O
73	Analysis on electrochemical CO2 reduction by diamond doping technology. 1-53	О
7 2	Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst.	O
71	Electrocatalytic Reduction of CO2 Coupled with Organic Conversion to Selectively Synthesize High-Value Chemicals.	О
70	TM2-B2 Active Sites Supported on Defective C3N towards Electrochemical CO2 Reduction: a Theretical Perspective.	Ο
69	Surface and Interface Engineering for the Catalysts of Electrocatalytic CO 2 Reduction.	О
68	Rapid and Green Electric-Explosion Preparation of Spherical Indium Nanocrystals with Abundant Metal Defects for Highly-Selective CO2 Electroreduction.	1
67	Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. 2204121	O
66	All-in-One Process for Mass Production of Membrane-Type Carbon Aerogel Electrodes for Solid-State Rechargeable Zinc-Air Batteries. 2022 , 12, 1243	O
65	Metal and metal oxide electrocatalysts for the electrochemical reduction of CO2-to-C1 chemicals: are we there yet?. 2023 , 16,	О
64	Cation-Coordinated Inner-Sphere CO2 Electroreduction at AulWater Interfaces.	O
63	KOH-Enabled Axial-Oxygen Coordinated Ni Single-Atom Catalyst for Efficient Electrocatalytic CO 2 Reduction. 2201311	0
62	Recent Advances of Core-Shell Cu-based Catalysts for the Reduction of CO2 to C2+ Products.	Ο

61	Metal Nitrogen Carbon Catalysts by Dynamic Template Removal for Highly Efficient and Selective Electroreduction of CO2.	0
60	Metal Organic Framework Glasses: a New Platform for Electrocatalysis?.	O
59	Scalable synthesis of CuSn bimetallic catalyst for selective CO2 electroreduction to CO over a wide potential range.	O
58	Multicomponent catalyst design for CO2/N2/NOx electroreduction.	1
57	Highly Selective Semiconductor Photocatalysis for CO2 reduction.	O
56	Cobalt phthalocyanine-based conjugated polymer as efficient and exclusive electrocatalyst for CO2 reduction to ethanol. 2023 , 100176	O
55	Dual-atom Cu2/N-doped carbon catalyst for electroreduction of CO2 to C2H4. 2023 , 651, 119025	O
54	Double-Dependence Correlations in Graphdiyne-Supported Atomic Catalysts to Promote CO 2 RR toward the Generation of C 2 Products. 2203858	O
53	Cu-Sn Aerogels for Electrochemical CO2 Reduction with High CO Selectivity. 2023, 28, 1033	О
52	Recent progress on the electroreduction of carbon dioxide to C1 liquid products. 2023, 101219	O
51	Structure-evolved YbBiO3 perovskites for highly formate-selective CO2 electroreduction.	O
50	MOF-derived transition metal-based catalysts for the electrochemical reduction of CO2 to CO: a mini review. 2023 , 59, 3523-3535	O
49	Theory-Guided S-Defects Boost Selective Conversion of CO2 to HCOOH over In4SnS8 Nanoflowers. 2023 , 13, 2998-3006	O
48	Active Learning Accelerating to Screen Dual-Metal-Site Catalysts for Electrochemical Carbon Dioxide Reduction Reaction. 2023 , 15, 12986-12997	O
47	Superscalar Phase Boundaries Derived Multiple Active Sites in SnO 2 /Cu 6 Sn 5 /CuO for Tandem Electroreduction of CO 2 to Formic Acid. 2023 , 13,	O
46	Progress on Cu-based metal-organic frameworks for high-efficiency electrochemical CO2 conversion. 2023 , 460, 141803	O
45	Stable CuIn alloy for electrochemical CO2 reduction to CO with high-selectivity. 2023, 33, 101050	O
44	Nanoarchitectonics of 2D-thin and porous Ag-Au nanostructures with controllable alloying degrees toward electrocatalytic CO2 reduction. 2023 , 944, 169155	O

43	Ligands hydrophobicity dependent electrocatalytic CO2 reduction activities of Sn5-oxo clusters. 2023 , 321, 123918	0
42	Electrochemical reduction of CO2 via a CuO/SnO2 heterojunction catalyst. 2023 , 818, 140438	О
41	Electrochemical CO2 reduction to CO facilitated by reduced boron-doped diamond. 2023, 135, 109902	Ο
40	Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. 2023 , 244, 107705	Ο
39	Study on the Structure vs Activity of Designed Non-Precious Metal electrocatalysts for CO2 Conversion. 2023 , 341, 134167	1
38	Facet engineering in Au nanoparticles buried in p-Si photocathodes for enhanced photoelectrochemical CO2 reduction. 2023 , 327, 122438	Ο
37	Hierarchically ordered porous superstructure embedded with readily accessible atomic pair sites for enhanced CO2 electroreduction. 2023 , 330, 122638	О
36	Effect of electrochemical surface area on carbon dioxide electrolysis using anionic electrolyte membrane electrode assembly. 2023 , 346, 128309	Ο
35	Boosting CO2 Electroreduction on Bismuth Nanoplates with a Three-Dimensional Nitrogen-Doped Graphene Aerogel Matrix.	Ο
34	Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO 2 Separation Membranes. 2207313	Ο
33	Anion vacancy correlated photocatalytic CO2 to CO conversion over quantum-confined CdS nanorods under visible light. 2023 , 11, 3937-3941	О
32	Electrocatalytic Reduction of CO2 in Ionic Liquid-Based Electrolytes. 2022 , 343-357	Ο
31	Nickel phthalocyanine modified fruit-peel-derived carbon framework selectively electro-catalyzes CO2-to-CO conversion. 2023 , 376, 121432	О
30	Advances in Designing 3D-Printed Systems for CO 2 Reduction. 2023 , 10, 2201734	Ο
29	Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. 2023 , 13, 393	Ο
28	Electrochemical CN coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. 2023 , 52, 2193-2237	O
27	A Strong Magnetic Field Alters the Activity and Selectivity of the CO2RR by Restraining CII Coupling. 2023 , 9, 65	Ο
26	Advanced electrocatalytic technologies for conversion of carbon dioxide into methanol by electrochemical reduction: Recent progress and future perspectives. 2023 , 482, 215081	Ο

25	Recent advances in the regulation of the coordination structures and environment of single-atom catalysts for carbon dioxide reduction reaction. 2023 , 11, 7949-7986	Ο
24	Theoretical exploration on the activity of copper single-atom catalysts for electrocatalytic reduction of CO2. 2023 , 11, 7735-7745	Ο
23	Rational design and progress of molybdenum-oxo clusters.	О
22	Selective Catalytic Hydrogenation of Nitroarenes to Anilines. 2023, 1479-1524	Ο
21	Fabrication of dual atomic copper-indium (CuIn) catalysts for electrochemical CO2 reduction to methanol. 2023 , 177, 106640	0
20	Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. 2023 , 15, 6456-6475	O
19	Understanding the activity of single atom catalysts for CO2 reduction to C2 products: A high throughput computational screening. 2023 , 47, 7225-7231	O
18	Toward highly active electrochemical CO2 reduction to C2H4 by copper hydroxyphosphate. 2023 , 27, 1279-1287	O
17	Recent advances of bismuth-based electrocatalysts for CO2 reduction: Strategies, mechanism and applications. 2023 , 100191	Ο
16	Recent Progress in Electrocatalytic Reduction of CO2. 2023 , 13, 644	Ο
15	Layered CoD Cluster Applied to Photocatalytic CO2 Reduction. 2023, 62, 5200-5206	Ο
14	Recent Advancements in the Preparation and Application of Copper Single-Atom Catalysts. 2023 , 6, 4987-5	60410
13	Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis.	0
12	Immobilized triatomic CuB2 clusters on 2D carbon nitride: highly selective conversion of CO to ethanol at low potentials.	O
11	Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate. 2023 , 8, 1992-2024	O
10	CopperBupramolecular Pair Catalyst Promoting C2+ Product Formation in Electrochemical CO2 Reduction. 2023 , 13, 5114-5121	O
9	Electrocatalytic reduction of CO2 on size-selected nanoclusters of first-row transition metal nanoclusters: a comprehensive mechanistic investigation.	О
8	Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions. 2023 , 28, 3292	O

CITATION REPORT

7	Electroreduction. 2023 , 13, 1304	O
6	Atomically Dispersed CuAu Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate. 2023 , 13, 5689-5696	0
5	Ruthenium-doped boron nitride nanotubes as promising electrocatalysts for carbon dioxide reduction to methane. 2023 , 109942	0
4	Au Cluster-derived Electrocatalysts for CO2 Reduction.	O
3	An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces. 2023 , 334, 122815	0
2	Temperature-Induced Low-Coordinate Ni Single-Atom Catalyst for Boosted CO2 Electroreduction Activity.	O
1	Biomass and CO2-Derived Fuels Through Carbon-Based Catalysis. Recent Advances and Future Challenges. 2023 , 223-264	0