Flexible and Stretchable Physical Sensor Integrated Plat Monitoringand Personal Healthcare

Advanced Materials 28, 4338-4372 DOI: 10.1002/adma.201504244

Citation Report

#	Article	IF	CITATIONS
1	Electrical properties of organic field-effect transistors based on ribbon-like tips-pentacene crystals. , 2016, , .		0
2	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	7.8	596
3	Coiled Fiberâ€Shaped Stretchable Thermal Sensors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600170.	5.8	48
4	Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. Journal of Materials Chemistry C, 2016, 4, 10061-10068.	5.5	119
5	High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano, 2016, 10, 7901-7906.	14.6	500
6	Soft Thermal Sensor with Mechanical Adaptability. Advanced Materials, 2016, 28, 9175-9181.	21.0	201
7	Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates. ACS Applied Materials & Interfaces, 2016, 8, 24773-24781.	8.0	175
8	Ultrastretchable Iono-Elastomers with Mechanoelectrical Response. ACS Macro Letters, 2016, 5, 1332-1338.	4.8	20
9	Silver Nanowire Embedded Colorless Polyimide Heater for Wearable Chemical Sensors: Improved Reversible Reaction Kinetics of Optically Reduced Graphene Oxide. Small, 2016, 12, 5826-5835.	10.0	65
10	Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite. ACS Applied Materials & Interfaces, 2016, 8, 18954-18961.	8.0	176
11	Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale, 2016, 8, 19352-19358.	5.6	54
12	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Interfaces, 2016, 8, 16521-16532.	8.0	98
13	Designed to Fail: Flexible, Anisotropic Silver Nanorod Sheets for Low-Cost Wireless Activity Monitoring. Journal of Physical Chemistry C, 2016, 120, 14969-14976.	3.1	6
14	Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Advanced Functional Materials, 2017, 27, 1606066.	14.9	522
15	Flexible All-Inorganic Perovskite CsPbBr ₃ Nonvolatile Memory Device. ACS Applied Materials & Interfaces, 2017, 9, 6171-6176.	8.0	179
16	Microfluidic capacitive sensors with ionic liquid electrodes and CNT/PDMS nanocomposites for simultaneous sensing of pressure and temperature. Journal of Materials Chemistry C, 2017, 5, 1910-1919.	5.5	65
17	Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect. Journal of Materials Chemistry C, 2017, 5, 1231-1239.	5.5	51
18	Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy, 2017, 33, 1-11.	16.0	124

#	Article	IF	CITATIONS
19	Materials and devices for transparent stretchable electronics. Journal of Materials Chemistry C, 2017, 5, 2202-2222.	5.5	118
20	Dual-gate low-voltage organic transistor for pressure sensing. Applied Physics Express, 2017, 10, 021601.	2.4	17
21	Highly Stretchable Microâ€Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes. Advanced Materials Technologies, 2017, 2, 1600282.	5.8	144
22	Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry C, 2017, 5, 2318-2328.	5.5	236
23	A Flexible PMNâ€PT Ribbonâ€Based Piezoelectricâ€Pyroelectric Hybrid Generator for Humanâ€Activity Energy Harvesting and Monitoring. Advanced Electronic Materials, 2017, 3, 1600540.	5.1	75
24	Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Research, 2017, 10, 2021-2033.	10.4	194
25	Flexible heartbeat sensor for wearable device. Biosensors and Bioelectronics, 2017, 94, 250-255.	10.1	117
26	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Interfaces, 2017, 9, 12147-12164.	8.0	359
27	Charge generation by ultra-stretchable elastomeric electrets. Journal of Materials Chemistry C, 2017, 5, 1826-1835.	5.5	14
28	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	31.8	557
29	Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 2017, 5, 2971-2993.	5.5	415
30	High Toughness in Ultralow Density Graphene Oxide Foam. Advanced Materials Interfaces, 2017, 4, 1700030.	3.7	20
31	Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes. Journal of Materials Chemistry C, 2017, 5, 2442-2450.	5.5	33
32	A General Surface Swellingâ€Induced Electroless Deposition Strategy for Fast Fabrication of Copper Circuits on Various Polymer Substrates. Advanced Materials Interfaces, 2017, 4, 1700052.	3.7	24
33	Stretchable and Soft Electronics using Liquid Metals. Advanced Materials, 2017, 29, 1606425.	21.0	1,222
34	A Bioinspired Mineral Hydrogel as a Selfâ€Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Advanced Materials, 2017, 29, 1700321.	21.0	811
35	Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. Journal Physics D: Applied Physics, 2017, 50, 215401.	2.8	54
36	Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38, 28-35.	16.0	194

#	Article	IF	CITATIONS
37	Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 18022-18030.	8.0	143
38	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	14.9	257
39	A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. Journal of Materials Chemistry B, 2017, 5, 4019-4024.	5.8	76
40	High performance flexible copper indium gallium selenide core–shell nanorod array photodetectors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	8
41	3D Printed Stretchable Tactile Sensors. Advanced Materials, 2017, 29, 1701218.	21.0	336
42	Ultrafine Graphene Nanomesh with Large On/Off Ratio for Highâ€Performance Flexible Biosensors. Advanced Functional Materials, 2017, 27, 1604096.	14.9	111
43	Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion. Nanoscale, 2017, 9, 604-612.	5.6	78
44	Novel Variable-Stiffness Robotic Fingers with Built-In Position Feedback. Soft Robotics, 2017, 4, 338-352.	8.0	100
45	Ultrasensitive Multi-Functional Flexible Sensors Based on Organic Field-Effect Transistors with Polymer-Dispersed Liquid Crystal Sensing Layers. Scientific Reports, 2017, 7, 2630.	3.3	57
46	Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors. Advanced Materials, 2017, 29, 1701353.	21.0	208
47	A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie - International Edition, 2017, 56, 9454-9458.	13.8	69
48	A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie, 2017, 129, 9582-9586.	2.0	7
49	A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Materials Horizons, 2017, 4, 694-700.	12.2	234
50	Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin. ACS Sensors, 2017, 2, 828-833.	7.8	224
51	Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Advanced Healthcare Materials, 2017, 6, 1601371.	7.6	217
52	Molecular grafting to improve adhesion of spray-deposited circuits on polymeric surface for flexible electronics. Journal of Industrial and Engineering Chemistry, 2017, 52, 73-81.	5.8	19
53	A self-powered flexible vision electronic-skin for image recognition based on a pixel-addressable matrix of piezophototronic ZnO nanowire arrays. Journal of Materials Chemistry C, 2017, 5, 6005-6013.	5.5	30
54	Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond. Small, 2017, 13, 1700944.	10.0	97

#	Article	IF	CITATIONS
55	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	7.6	155
56	Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret. ACS Applied Materials & Interfaces, 2017, 9, 23716-23722.	8.0	48
57	A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2D Materials, 2017, 4, 025062.	4.4	49
58	Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Applied Physics Letters, 2017, 110, .	3.3	93
59	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	12.2	194
60	Large scale synthesis of an amorphous polyester elastomer with tunable mechanoluminescence and preliminary application in optical strain sensing. Journal of Materials Chemistry C, 2017, 5, 4134-4138.	5.5	15
61	Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Research, 2017, 10, 1560-1583.	10.4	96
62	Enhanced Dielectric Performance of Polymer Nanocomposites Based on CNT/MnO ₂ Nanowire Hybrid Nanostructure. Journal of Physical Chemistry C, 2017, 121, 8327-8334.	3.1	44
63	Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. ACS Applied Materials & Interfaces, 2017, 9, 10128-10135.	8.0	272
64	Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy, 2017, 34, 578-585.	16.0	128
65	Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 13, 1602790.	10.0	690
66	Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity. 2D Materials, 2017, 4, 025049.	4.4	34
67	Porous Organic Fieldâ€Effect Transistors for Enhanced Chemical Sensing Performances. Advanced Functional Materials, 2017, 27, 1700018.	14.9	122
68	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 2017, 3, 1600260.	5.1	358
69	Creep- and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over a wide pressure range. Nanoscale, 2017, 9, 1128-1135.	5.6	36
70	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	14.9	151
71	Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol. Sensors and Actuators A: Physical, 2017, 254, 1-8.	4.1	25
72	Thermoactivated Electrical Conductivity in Perylene Diimide Nanofiber Materials. Journal of Physical Chemistry Letters, 2017, 8, 292-298.	4.6	16

#	Article	IF	Citations
73	Graphene films printable on flexible substrates for sensor applications. 2D Materials, 2017, 4, 015036.	4.4	21
74	Multiâ€Parametric Sensing Platforms Based on Nanoparticles. Advanced Materials Technologies, 2017, 2, 1600206.	5.8	44
75	Side-chain effect of organic semiconductors in OFET-based chemical sensors. Science China Materials, 2017, 60, 977-984.	6.3	18
76	A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow. Nanoscale, 2017, 9, 17821-17828.	5.6	19
77	An Omnidirectionally Stretchable Photodetector Based on Organic–Inorganic Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 35958-35967.	8.0	49
78	Synthesis and comparative charge transfer studies in porphyrin–fullerene dyads: mode of attachment effect. New Journal of Chemistry, 2017, 41, 13276-13286.	2.8	15
79	A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer. Nano Energy, 2017, 41, 527-534.	16.0	101
80	Utilization of self-powered electrochemical systems: Metallic nanoparticle synthesis and lactate detection. Nano Energy, 2017, 42, 241-248.	16.0	100
81	Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites. ACS Applied Materials & Interfaces, 2017, 9, 36206-36219.	8.0	85
82	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	47.7	578
83	Metal–elastomer bilayered switches by utilizing the superexponential behavior of crack widening. Journal of Materials Chemistry C, 2017, 5, 10920-10925.	5.5	15
84	Highly Sensitive, Flexible MEMS Based Pressure Sensor with Photoresist Insulation Layer. Small, 2017, 13, 1702422.	10.0	50
85	Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin. ACS Applied Materials & Interfaces, 2017, 9, 37921-37928.	8.0	230
86	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	14.9	209
87	Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Advances, 2017, 7, 48333-48340.	3.6	12
88	On-skin liquid metal inertial sensor. Lab on A Chip, 2017, 17, 3272-3278.	6.0	79
89	Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics. ACS Applied Materials & Interfaces, 2017, 9, 30171-30176.	8.0	122
90	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Interfaces, 2017, 9, 32054-32064.	8.0	156

#	Article	IF	CITATIONS
91	Facile Fabrication of a Flexible LiNbO ₃ Piezoelectric Sensor through Hot Pressing for Biomechanical Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 34687-34695.	8.0	35
92	2D Hybrid Nanomaterials for Selective Detection of NO ₂ and SO ₂ Using "Light On and Off―Strategy. ACS Applied Materials & Interfaces, 2017, 9, 37191-37200.	8.0	52
93	Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano, 2017, 11, 9614-9635.	14.6	1,245
94	A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Advanced Materials, 2017, 29, 1702517.	21.0	348
95	Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors. Physical Review Applied, 2017, 8, .	3.8	183
96	Lab-on-chip stretchable impedance spectroscopy device for mammalian cells studies. , 2017, , .		2
97	Conducting Polymer Based Visualâ€Aided Smart Thermosensors on Arbitrary Substrates. Advanced Functional Materials, 2017, 27, 1702706.	14.9	23
98	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	6.3	170
99	All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics. Nano Energy, 2017, 39, 590-600.	16.0	99
100	Engineering of Amorphous Polymeric Insulators for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2017, 3, 1700157.	5.1	38
101	Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks. ACS Applied Materials & Interfaces, 2017, 9, 26407-26416.	8.0	158
102	Selfâ€Powered Realâ€Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Advanced Materials, 2017, 29, 1702308.	21.0	495
103	A Highly Stretchable Capacitiveâ€Based Strain Sensor Based on Metal Deposition and Laser Rastering. Advanced Materials Technologies, 2017, 2, 1700081.	5.8	90
104	Batch Fabrication of Customizable Siliconeâ€Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Advanced Materials Technologies, 2017, 2, 1700136.	5.8	301
105	A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit. Applied Physics Letters, 2017, 111, .	3.3	32
106	Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance. Nanoscale, 2017, 9, 11846-11850.	5.6	35
107	Toward Bioelectronic Medicine—Neuromodulation of Small Peripheral Nerves Using Flexible Neural Clip. Advanced Science, 2017, 4, 1700149.	11.2	76
108	A Skinâ€Inspired Integrated Sensor for Synchronous Monitoring of Multiparameter Signals. Advanced Functional Materials, 2017, 27, 1702050.	14.9	65

#	Article	IF	CITATIONS
109	Passive and Space-Discriminative Ionic Sensors Based on Durable Nanocomposite Electrodes toward Sign Language Recognition. ACS Nano, 2017, 11, 8590-8599.	14.6	73
110	High resolution flexible strain sensors for biological signal measurements. , 2017, , .		12
111	Rapid Liquid Recognition and Quality Inspection with Graphene Test Papers. Global Challenges, 2017, 1, 1700037.	3.6	15
112	Stretchable Capacitive Strain Sensors Based on a Novel Polymer Composite Blend. , 2017, , .		7
113	Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater. Advanced Electronic Materials, 2017, 3, 1700193.	5.1	133
114	Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano, 2017, 11, 8830-8837.	14.6	400
115	Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly- <scp>l</scp> -lactic acid nanofibers for non-invasive physiological signal monitoring. Journal of Materials Chemistry B, 2017, 5, 7352-7359.	5.8	104
116	Crack-Enhanced Microfluidic Stretchable E-Skin Sensor. ACS Applied Materials & Interfaces, 2017, 9, 44678-44686.	8.0	54
117	Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Musselâ€Inspired Conductive Hybrid Hydrogel Framework. Advanced Functional Materials, 2017, 27, 1703852.	14.9	617
118	Transparent Perovskite Light-Emitting Touch-Responsive Device. ACS Nano, 2017, 11, 11368-11375.	14.6	39
119	Precise Engineering of Conductive Pathway by Frictional Direct-Writing for Ultrasensitive Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2017, 9, 41078-41086.	8.0	26
120	Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes. ACS Applied Materials & Interfaces, 2017, 9, 40681-40689.	8.0	114
121	Electroactive <i>β</i> -crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO ₂ free-standing nanocomposite film for a nanogenerator and an active nanosensor. Nanotechnology, 2017, 28, 365401.	2.6	31
122	Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Applied Materials & Interfaces, 2017, 9, 26429-26437.	8.0	374
123	Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare. Scientific Reports, 2017, 7, 1753.	3.3	71
124	One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization. Composites Part A: Applied Science and Manufacturing, 2017, 101, 195-198.	7.6	27
125	Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale, 2017, 9, 10897-10905.	5.6	75
126	Singleâ€Threadâ€Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Clothâ€Based Selfâ€Powered Humanâ€Interactive and Biomedical Sensing. Advanced Functional Materials, 2017, 27, 1604462	14.9	327

#	Article	IF	CITATIONS
127	Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components. Advanced Materials, 2017, 29, 1603167.	21.0	367
128	Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Advances, 2017, 7, 5888-5897.	3.6	113
129	An Allâ€Organic Elastomeric Electret Composite. Advanced Materials, 2017, 29, 1603813.	21.0	29
130	Elastic Capacitor Electrode Based on Carbonâ€embedded Polymer Matrix. Electroanalysis, 2017, 29, 676-681.	2.9	1
131	Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 2017, 49, 41-60.	2.7	80
132	Simple CNT nanocomposite piezoresistive press sensor. , 2017, , .		1
133	Graphene-Nickel composite films on flexible PCB for temperature monitoring. , 2017, , .		3
134	Remote tactile sensing system integrated with magnetic synapse. Scientific Reports, 2017, 7, 16963.	3.3	23
135	Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition. Smart Materials and Structures, 2017, 26, 095017.	3.5	110
136	Materials and structure engineering in wearable monitor: Highly stretchable strain sensor developed by structured SWCNTs/CB networks. , 2017, , .		0
137	Dielectric Elastomer Sensors. , 0, , .		13
138	Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 2017, 4, 1285.	9.3	143
139	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	4.5	185
140	Quantification of a Low-Cost Stretchable Conductive Sensor Using an Expansion/Contraction Simulator Machine: A Step towards Validation of a Noninvasive Cardiac and Respiration Monitoring Prototype. Machines, 2017, 5, 22.	2.2	6
141	Flexible Piezoresistive Sensors Embedded in 3D Printed Tires. Sensors, 2017, 17, 656.	3.8	40
142	Effect of Polymer Binder on the Transparent Conducting Electrodes on Stretchable Film Fabricated by Screen Printing of Silver Paste. International Journal of Polymer Science, 2017, 2017, 1-6.	2.7	7
143	Acoustic transducer based on ZnO nanorods. , 2017, , .		0
144	A Wearable Photobiomodulation Patch Using a Flexible Redâ€Wavelength OLED and Its In Vitro Differential Cell Proliferation Effects. Advanced Materials Technologies, 2018, 3, 1700391.	5.8	68

#	Article	IF	CITATIONS
145	Formation of Uniform Water Microdroplets on Wrinkled Graphene for Ultrafast Humidity Sensing. Small, 2018, 14, e1703848.	10.0	109
146	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	10.3	80
147	Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. Journal of Materials Chemistry A, 2018, 6, 5065-5070.	10.3	33
148	Piezoresistive strain sensor array using polydimethylsiloxane-based conducting nanocomposites for electronic skin application. Sensor Review, 2018, 38, 494-500.	1.8	24
150	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	15.6	407
151	Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy and Environmental Science, 2018, 11, 2046-2056.	30.8	188
152	A Polypyrrole Elastomer Based on Confined Polymerization in a Host Polymer Network for Highly Stretchable Temperature and Strain Sensors. Small, 2018, 14, e1800394.	10.0	60
153	Vertical CNT–Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 5132-5139.	5.5	63
154	Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. Journal of Materials Chemistry C, 2018, 6, 5140-5147.	5.5	164
155	A Novel Finger Kinematic Tracking Method Based on Skin-Like Wearable Strain Sensors. IEEE Sensors Journal, 2018, 18, 3010-3015.	4.7	30
156	Hierarchically Structured Selfâ€Healing Sensors with Tunable Positive/Negative Piezoresistivity. Advanced Functional Materials, 2018, 28, 1706658.	14.9	181
157	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	38.1	1,338
158	Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring. Nanotechnology, 2018, 29, 155501.	2.6	30
159	Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale, 2018, 10, 5264-5271.	5.6	144
160	A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots. Sensors and Actuators A: Physical, 2018, 272, 341-348.	4.1	22
161	Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles. Small, 2018, 14, 1703432.	10.0	112
162	A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. Journal of Materials Chemistry C, 2018, 6, 2139-2147.	5.5	52
163	Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Letters, 2018, 3, 501-507.	17.4	226

#	Article	IF	CITATIONS
164	Strategies for Improving the Performance of Sensors Based on Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1705642.	21.0	114
165	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	21.0	349
166	Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano, 2018, 12, 2346-2354.	14.6	579
167	Highly stretchable and sensitive strain sensor based on a simple friction-transfer method. Translational Materials Research, 2018, 5, 015001.	1.2	2
168	Recent progress of flexible and wearable strain sensors for human-motion monitoring. Journal of Semiconductors, 2018, 39, 011012.	3.7	93
169	Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils. Materials Research Express, 2018, 5, 015604.	1.6	5
170	Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions. Smart Materials and Structures, 2018, 27, 035013.	3.5	47
171	Mechanoâ€Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933.	10.0	91
172	A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology, 2018, 29, 115502.	2.6	94
173	Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate. Nanoscale, 2018, 10, 5105-5113.	5.6	67
174	Recent Developments in Grapheneâ€Based Tactile Sensors and Eâ€5kins. Advanced Materials Technologies, 2018, 3, 1700248.	5.8	153
175	Effect of temperature on hysteresis of dipolar dielectric layer based organic field-effect transistors: A temperature sensing mechanism. Sensors and Actuators A: Physical, 2018, 269, 491-499.	4.1	9
176	Self-powered implantable electronic-skin for <i>in situ</i> analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis. Nanoscale, 2018, 10, 2099-2107.	5.6	49
177	Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 177-194.	4.1	475
178	Piezoelectric Performance of Cubicâ€Phase BaTiO ₃ Nanoparticles Vertically Aligned via Electric Field. Advanced Sustainable Systems, 2018, 2, 1700133.	5.3	13
179	A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, <i>in situ</i> monitoring of human motion and sweat. Nanoscale, 2018, 10, 2090-2098.	5.6	130
180	Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. ACS Nano, 2018, 12, 254-262.	14.6	81
181	Transparent and Waterproof Ionic Liquid-Based Fibers for Highly Durable Multifunctional Sensors and Strain-Insensitive Stretchable Conductors. ACS Applied Materials & Interfaces, 2018, 10, 4305-4314.	8.0	85

#	Article	IF	CITATIONS
182	Bioinspired Kirigami Fishâ€Based Highly Stretched Wearable Biosensor for Human Biochemical–Physiological Hybrid Monitoring. Advanced Materials Technologies, 2018, 3, 1700308.	5.8	69
183	Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo. Nano-Micro Letters, 2018, 10, 32.	27.0	68
184	Recent Advances in Wearable Transdermal Delivery Systems. Advanced Materials, 2018, 30, 1704530.	21.0	151
185	Scavenging Wind Energy by Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1702649.	19.5	302
186	Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon, 2018, 130, 137-144.	10.3	54
187	Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics. Journal of Materials Chemistry C, 2018, 6, 6666-6671.	5.5	29
188	Cytotoxicity of Gallium–Indium Liquid Metal in an Aqueous Environment. ACS Applied Materials & Interfaces, 2018, 10, 17448-17454.	8.0	174
189	Full fabric sensing network with large deformation for continuous detection of skin temperature. Smart Materials and Structures, 2018, 27, 105017.	3.5	22
190	Electroluminescent Pressure-Sensing Displays. ACS Applied Materials & Interfaces, 2018, 10, 13757-13766.	8.0	56
191	Dually Synergetic Network Hydrogels with Integrated Mechanical Stretchability, Thermal Responsiveness, and Electrical Conductivity for Strain Sensors and Temperature Alertors. ACS Applied Materials & Interfaces, 2018, 10, 14045-14054.	8.0	156
192	Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sensors and Actuators B: Chemical, 2018, 265, 609-616.	7.8	44
193	Design and Characterization of Screen-Printed Textile Electrodes for ECG Monitoring. IEEE Sensors Journal, 2018, 18, 4097-4107.	4.7	54
194	Preparation of fabric strain sensor based on graphene for human motion monitoring. Journal of Materials Science, 2018, 53, 9026-9033.	3.7	65
195	Multifunctional Wearable Sensing Devices Based on Functionalized Graphene Films for Simultaneous Monitoring of Physiological Signals and Volatile Organic Compound Biomarkers. ACS Applied Materials & Interfaces, 2018, 10, 11785-11793.	8.0	85
196	All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy, 2018, 48, 152-160.	16.0	343
197	Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sensors and Actuators A: Physical, 2018, 274, 109-115.	4.1	110
198	Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018, 126, 360-371.	10.3	367
199	A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Research, 2018, 11, 1938-1955.	10.4	99

	CITATION R	PORT	
#	Article	IF	CITATIONS
200	Large‣cale and Washable Smart Textiles Based on Triboelectric Nanogenerator Arrays for Selfâ€Powered Sleeping Monitoring. Advanced Functional Materials, 2018, 28, 1704112.	14.9	339
201	Polymer-Based Technologies for Sensing Applications. Analytical Chemistry, 2018, 90, 459-479.	6.5	39
202	Nanomaterialâ€Enabled Wearable Sensors for Healthcare. Advanced Healthcare Materials, 2018, 7, 1700889.	7.6	412
203	Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon, 2018, 129, 380-395.	10.3	135
204	Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44.	8.0	84
205	3D Printing of Flexible Electronic Devices. Small Methods, 2018, 2, 1700259.	8.6	126
206	Flexible Piezoresistive Pressure Sensor Using Wrinkled Carbon Nanotube Thin Films for Human Physiological Signals. Advanced Materials Technologies, 2018, 3, 1700158.	5.8	136
207	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 2018, 11, 1124-1134.	10.4	185
208	Contacts with Nanocarbon Structures in Flexible Electronics. , 2018, , .		0
209	Ni-doped Liquid Metal Printed Highly Stretchable and Conformable Strain Sensor for Multifunctional Human-Motion Monitoring. , 2018, 2018, 3276-3279.		10
210	Carbon Based Electrode for Wearable Biosignal Monitoring Patch. , 2018, , .		2
211	Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale, 2018, 10, 19825-19834.	5.6	40
212	Highly sensitive metal-grid strain sensors <i>via</i> water-based solution processing. RSC Advances, 2018, 8, 42153-42159.	3.6	8
213	Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments. Journal of Materials Chemistry A, 2018, 6, 24114-24119.	10.3	75
214	Crisscross-designed piezoresistive strain sensors with a cracked microtectonic architecture for direction-selective tensile perception. Journal of Materials Chemistry C, 2018, 6, 11170-11177.	5.5	15
215	An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 2018, 6, 12446-12467.	5.5	256
216	Al:ZnO Nanosheets on Flexible Stainless Steel Substrate as Impact Sensor. Materials Today: Proceedings, 2018, 5, 10779-10786.	1.8	2
217	Conductive and Stretchable Adhesive Electronics with Miniaturized Octopusâ€Like Suckers against Dry/Wet Skin for Biosignal Monitoring. Advanced Functional Materials, 2018, 28, 1805224.	14.9	111

#	Article	IF	CITATIONS
218	Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 44173-44182.	8.0	36
219	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	5.8	128
220	Thiolated Graphene@Polyester Fabric-Based Multilayer Piezoresistive Pressure Sensors for Detecting Human Motion. ACS Applied Materials & Interfaces, 2018, 10, 41784-41792.	8.0	91
221	A flexible organic reflectance oximeter array. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11015-E11024.	7.1	201
222	Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene. Nano, 2018, 13, 1850126.	1.0	9
223	An Electrothermochromic Fabric Prepared by Electrodeposition of Polypyrrole on Single Side. Fibers and Polymers, 2018, 19, 2344-2350.	2.1	4
224	Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli. Journal of Materials Chemistry C, 2018, 6, 12981-12991.	5.5	95
225	Disposable, stretchable on-skin sensors for posture monitoring. , 2018, , .		1
226	The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly Sensitive Pressure Sensors. Advanced Materials, 2019, 31, e1805630.	21.0	115
227	Graphene: Diversified Flexible 2D Material for Wearable Vital Signs Monitoring. Advanced Materials Technologies, 2019, 4, 1800574.	5.8	67
228	Facile patterning and transferring method for constructing self-powered UV photodetectors. Applied Physics Express, 2018, 11, 116502.	2.4	8
229	Wireless Real-Time Temperature Monitoring of Blood Packages: Silver Nanowire-Embedded Flexible Temperature Sensors. ACS Applied Materials & Interfaces, 2018, 10, 44678-44685.	8.0	58
230	Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nature Communications, 2018, 9, 5161.	12.8	138
231	Direct 3D Printing of Graphene Nanoplatelet/Silver Nanoparticleâ€Based Nanocomposites for Multiaxial Piezoresistive Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800500.	5.8	39
232	Recent Advances in Largeâ€5cale Tactile Sensor Arrays Based on a Transistor Matrix. Advanced Materials Interfaces, 2018, 5, 1801061.	3.7	48
233	Directly Visualizing Tactile Perception and Ultrasensitive Tactile Sensors by Utilizing Bodyâ€Enhanced Induction of Ambient Electromagnetic Waves. Advanced Functional Materials, 2018, 28, 1805277.	14.9	30
234	Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 36483-36492.	8.0	57
235	Highly Sensitive and Flexible Strain–Pressure Sensors with Cracked Paddy-Shaped MoS ₂ /Graphene Foam/Ecoflex Hybrid Nanostructures. ACS Applied Materials & Interfaces 2018 10 36377-36384	8.0	126

	CITATION	Report	
#	Article	IF	CITATIONS
236	Wafer-scale fabrication of microelectrode arrays on optically transparent polymer foils for the integration of flexible nanoscale devices. Flexible and Printed Electronics, 2018, 3, 044001.	2.7	4
237	Fabrication of Strain Gauges via Contact Printing: A Simple Route to Healthcare Sensors Based on Cross-Linked Gold Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 37374-37385.	8.0	42
238	Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat. Analytical Chemistry, 2018, 90, 13081-13087.	6.5	104
239	Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sensors and Actuators A: Physical, 2018, 284, 85-95.	4.1	39
240	Ultra-highly sensitive, low hysteretic and flexible pressure sensor based on porous MWCNTs/Ecoflex elastomer composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 20978-20983.	2.2	32
241	Graphene-based optical waveguide tactile sensor for dynamic response. Scientific Reports, 2018, 8, 16118.	3.3	18
242	Controllable structure design for highly efficient and low cost fabrication of graphite based stretchable strain sensors. Translational Materials Research, 2018, 5, 045001.	1.2	1
243	High-performance flexible metal-on-silicon thermocouple. Scientific Reports, 2018, 8, 13725.	3.3	8
244	Tunable Adhesion for Bio-Integrated Devices. Micromachines, 2018, 9, 529.	2.9	15
245	Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding. Sensors, 2018, 18, 1171.	3.8	33
246	Tunable wrinkled graphene foams for highly reliable piezoresistive sensor. Sensors and Actuators A: Physical, 2018, 281, 141-149.	4.1	17
247	Iono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. ACS Applied Materials & Interfaces, 2018, 10, 32435-32443.	8.0	27
248	Synthesis of percolative hyperelastic conducting composite and demonstrations of application in wearable strain sensors. Materials Letters, 2018, 233, 306-309.	2.6	13
249	Micro additive manufacturing of glucose biosensors: A feasibility study. Analytica Chimica Acta, 2018, 1043, 142-149.	5.4	64
250	A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30, e1804944.	21.0	396
251	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	10.1	47
252	Hierarchical Self-Assembled SnS ₂ Nanoflower/Zn ₂ SnO ₄ Hollow Sphere Nanohybrid for Humidity-Sensing Applications. ACS Applied Materials & Interfaces, 2018, 10, 32631-32639.	8.0	149
253	Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels. ACS Applied Materials & Interfaces, 2018, 10, 32640-32648.	8.0	107

#	Article	IF	CITATIONS
254	Cut-and-Paste Transferrable Pressure Sensing Cartridge Films. Chemistry of Materials, 2018, 30, 6410-6419.	6.7	13
255	Lignin-based highly sensitive flexible pressure sensor for wearable electronics. Journal of Materials Chemistry C, 2018, 6, 6423-6428.	5.5	59
256	Wearable strain sensors based on electrically conductive natural fiber yarns. Materials and Design, 2018, 154, 217-227.	7.0	76
257	High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring. Sensors and Actuators A: Physical, 2018, 278, 1-10.	4.1	60
258	Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel. ACS Applied Materials & Interfaces, 2018, 10, 19097-19105.	8.0	168
259	Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small, 2018, 14, e1800819.	10.0	326
260	Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 2018, 279, 46-52.	4.1	96
261	Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure. ACS Applied Materials & Interfaces, 2018, 10, 20826-20834.	8.0	142
262	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale, 2018, 10, 11524-11530.	5.6	77
263	Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale, 2018, 10, 13599-13606.	5.6	80
264	Soft Robotic Grippers. Advanced Materials, 2018, 30, e1707035.	21.0	1,097
265	Fabrication of a flexible polyimide-based electrostatically actuated MEMS relay. Journal of Microengineering, 2018, 28, 105004.	2.6	5
266	Conductive shear thickening gel/polyurethane sponge: A flexible human motion detection sensor with excellent safeguarding performance. Composites Part A: Applied Science and Manufacturing, 2018, 112, 197-206.	7.6	40
267	Body Compatible Thermometer Based on Green Electrolytes. ACS Sensors, 2018, 3, 1338-1346.	7.8	15
268	Self-Powered Force Sensor Based on Thinned Bulk PZT for Real-Time Cutaneous Activities Monitoring. IEEE Electron Device Letters, 2018, 39, 1226-1229.	3.9	25
269	Graphene-based cellular materials with extremely low density and high pressure sensitivity based on self-assembled graphene oxide liquid crystals. Journal of Materials Chemistry C, 2018, 6, 8717-8725.	5.5	25
270	Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Small, 2018, 14, e1801711.	10.0	144
271	Flexible pressure sensor based on PVDF nanofiber. Sensors and Actuators A: Physical, 2018, 280, 319-325.	4.1	86

#	Article	IF	CITATIONS
272	Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Science Advances, 2018, 4, eaas8772.	10.3	155
273	Recent progress in stretchable supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15478-15494.	10.3	188
274	Ionic Gels and Their Applications in Stretchable Electronics. Macromolecular Rapid Communications, 2018, 39, e1800246.	3.9	112
275	Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation. Materials Horizons, 2018, 5, 920-931.	12.2	37
276	Ultrastretchable Fiber Sensor with High Sensitivity in Whole Workable Range for Wearable Electronics and Implantable Medicine. Advanced Science, 2018, 5, 1800558.	11.2	119
277	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	14.9	357
278	Tunable flexible artificial synapses: a new path toward a wearable electronic system. Npj Flexible Electronics, 2018, 2, .	10.7	32
279	Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Materials and Design, 2018, 156, 528-537.	7.0	144
280	Stretchable, Transparent, Tough, Ultrathin, and Self-limiting Skin-like Substrate for Stretchable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 27297-27307.	8.0	38
281	Transition States of Nanocrystal Thin Films during Ligand-Exchange Processes for Potential Applications in Wearable Sensors. ACS Applied Materials & Interfaces, 2018, 10, 25502-25510.	8.0	9
282	Recent Advances in Tactile Sensing Technology. Micromachines, 2018, 9, 321.	2.9	67
283	Integration of Heterogeneous Materials for Wearable Sensors. Polymers, 2018, 10, 60.	4.5	18
284	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 2018, 18, 5.	3.8	32
285	Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology. Sensors, 2018, 18, 300.	3.8	27
286	A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors, 2018, 18, 1400.	3.8	180
287	Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors, 2018, 18, 645.	3.8	258
288	Coextrusion of Multifunctional Smart Sensors. Advanced Engineering Materials, 2018, 20, 1800206.	3.5	26
289	Recent advances in organic sensors for health self-monitoring systems. Journal of Materials Chemistry C, 2018, 6, 8569-8612.	5.5	110

#	Article	IF	CITATIONS
290	A Highly Skinâ€Conformal and Biodegradable Grapheneâ€Based Strain Sensor. Small Methods, 2018, 2, 1700374.	8.6	41
291	Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 2018, 4, eaar2904.	10.3	395
292	Integration of biocompatible organic resistive memory and photoresistor for wearable image sensing application. Science China Information Sciences, 2018, 61, 1.	4.3	5
293	A skin-like stretchable colorimetric temperature sensor. Science China Materials, 2018, 61, 969-976.	6.3	20
294	Freestanding, Fiberâ€Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring. Advanced Healthcare Materials, 2018, 7, e1800074.	7.6	168
295	Multi-functional stretchable and flexible sensor array to determine the location, shape, and pressure: Application in a smart robot. Science China Technological Sciences, 2018, 61, 1137-1143.	4.0	24
296	Lightâ€Insensitive Organic Fieldâ€Effect Transistors with nâ€Type Conjugated Polymers Containing Dinitrothiophene Units. Advanced Electronic Materials, 2018, 4, 1800375.	5.1	11
297	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano, 2018, 12, 9134-9141.	14.6	455
298	All-Painting Process To Produce Respiration Sensor Using Humidity-Sensitive Nanoparticle Film and Graphite Trace. ACS Sustainable Chemistry and Engineering, 2018, 6, 12217-12223.	6.7	57
299	A self-powered electronic-skin for real-time perspiration analysis and application in motion state monitoring. Journal of Materials Chemistry C, 2018, 6, 9624-9630.	5.5	53
300	Modular force approximating soft robotic pneumatic actuator. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1819-1827.	2.8	5
301	Conductive Polymer Protonated Nanocellulose Aerogels for Tunable and Linearly Responsive Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 27902-27910.	8.0	88
302	Pâ€136: Resistive Type 2D Mapping Positional Strain Sensor Array for Advanced Tactile Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 1909-1912.	0.3	0
303	High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network. ACS Applied Materials & Interfaces, 2018, 10, 19906-19913.	8.0	40
304	Eâ€5kin Tactile Sensor Matrix Pixelated by Positionâ€Registered Conductive Microparticles Creating Pressureâ€5ensitive Selectors. Advanced Functional Materials, 2018, 28, 1801858.	14.9	86
305	Flexible, high-sensitive, and wearable strain sensor based on organic crystal for human motion detection. Organic Electronics, 2018, 61, 304-311.	2.6	32
306	Paperâ€Based Resistive Networks for Scalable Skin‣ike Sensing. Advanced Electronic Materials, 2018, 4, 1800131.	5.1	10
307	Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.	19.5	212

#	Article	IF	CITATIONS
308	Fully Elastic and Metalâ€Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1802989.	14.9	124
309	Organic Flexible Electronics. Small Methods, 2018, 2, 1800070.	8.6	177
310	PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	24.7	478
311	Rational Design of Ultrasensitive Pressure Sensors by Tailoring Microscopic Features. Advanced Materials Interfaces, 2018, 5, 1800403.	3.7	90
312	High Performance Humidity Fluctuation Sensor for Wearable Devices via a Bioinspired Atomic-Precise Tunable Graphene-Polymer Heterogeneous Sensing Junction. Chemistry of Materials, 2018, 30, 4343-4354.	6.7	120
313	Stretchable Ionics – A Promising Candidate for Upcoming Wearable Devices. Advanced Materials, 2018, 30, e1704403.	21.0	234
314	Adaptable pressure textile sensors based on a conductive polymer. Flexible and Printed Electronics, 2018, 3, 034001.	2.7	15
315	Recent progress in silver nanowire based flexible/wearable optoelectronics. Journal of Materials Chemistry C, 2018, 6, 7445-7461.	5.5	125
316	Proposal and Validation of a Knee Measurement System for Patients With Osteoarthritis. IEEE Transactions on Biomedical Engineering, 2019, 66, 319-326.	4.2	18
317	Textileâ€Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Advanced Materials Technologies, 2019, 4, 1900485.	5.8	57
318	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033.	16.0	107
319	Wearable Piezoresistive Sensors with Ultrawide Pressure Range and Circuit Compatibility Based on Conductive-Island-Bridging Nanonetworks. ACS Applied Materials & Interfaces, 2019, 11, 32291-32300.	8.0	29
320	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 643-656.	3.5	30
321	3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors. Advanced Materials Technologies, 2019, 4, 1900452.	5.8	78
322	Polypyrrole Nanocones and Dynamic Piezoelectric Stimulation-Induced Stem Cell Osteogenic Differentiation. ACS Biomaterials Science and Engineering, 2019, 5, 4386-4392.	5.2	29
323	Ultrasensitive Charged Object Detection Based on Rubrene Crystal Sensor. IEEE Transactions on Electron Devices, 2019, 66, 3139-3143.	3.0	6
324	Carbon Nanofiber-Based Wearable Patches for Bio-Potential Monitoring. Journal of Medical and Biological Engineering, 2019, 39, 892-900.	1.8	13
325	Bioâ€Multifunctional Smart Wearable Sensors for Medical Devices. Advanced Intelligent Systems, 2019, 1, 1900040.	6.1	115

#	Article	IF	CITATIONS
326	Silverâ€Nanoparticleâ€Modified Polyimide for Multiple Artificial Skin‧ensing Applications. Advanced Materials Technologies, 2019, 4, 1900426.	5.8	32
327	Ultrafast Selfâ€Healing and Injectable Conductive Hydrogel for Strain and Pressure Sensors. Advanced Materials Technologies, 2019, 4, 1900346.	5.8	56
328	A Structured Design for Highly Stretchable Electronic Skin. Advanced Materials Technologies, 2019, 4, 1900492.	5.8	18
329	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	26.0	421
330	Influence of the porosity of PDMS foams on the performances of flexible capacitive stress sensors. , 2019, , .		3
331	Electrical Percolation in Metal Wire Network-Based Strain Sensors. IEEE Sensors Journal, 2019, 19, 10373-10378.	4.7	4
332	Multifunctional Electronic Textiles Using Silver Nanowire Composites. ACS Applied Materials & Interfaces, 2019, 11, 31028-31037.	8.0	95
333	Three-dimensional out-of-plane geometric engineering of thin films for stretchable electronics: a brief review. Thin Solid Films, 2019, 688, 137435.	1.8	15
334	3Dâ€Printed Coaxial Fibers for Integrated Wearable Sensor Skin. Advanced Materials Technologies, 2019, 4, 1900504.	5.8	58
335	Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications. ACS Applied Materials & Interfaces, 2019, 11, 33347-33355.	8.0	32
336	Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information. Nanoscale Research Letters, 2019, 14, 263.	5.7	172
337	Facile Preparation of Hybrid Structure Based on Mesodome and Micropillar Arrays as Flexible Electronic Skin with Tunable Sensitivity and Detection Range. ACS Applied Materials & Interfaces, 2019, 11, 28060-28071.	8.0	67
338	A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology, 2019, 30, 424002.	2.6	31
339	High strength, anti-freezing and strain sensing carboxymethyl cellulose-based organohydrogel. Carbohydrate Polymers, 2019, 223, 115051.	10.2	65
340	Highly Sensitive Flexible Piezoresistive Pressure Sensor Developed Using Biomimetically Textured Porous Materials. ACS Applied Materials & amp; Interfaces, 2019, 11, 29466-29473.	8.0	171
341	Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. Journal of Materials Chemistry C, 2019, 7, 9609-9617.	5.5	124
342	Recoverable Electrical Breakdown Strength and Dielectric Constant in Ultralow- <i>k</i> Nanolattice Capacitors. Nano Letters, 2019, 19, 5689-5696.	9.1	7
343	Highly stretchable and sensitive liquid-type strain sensor based on a porous elastic rope/elastomer matrix composite structure. Composites Science and Technology, 2019, 182, 107707.	7.8	12

#	Article	IF	CITATIONS
344	Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Advanced Materials, 2020, 32, e1902039.	21.0	127
345	Two-Stage Tunneling-Dominated Electrodeposition for Large-Scale Production of Ultralong Wavy Metal Microstructures on Native Oxide Layer-Passivated Si Electrode with Specific Surface Configuration. Journal of Physical Chemistry C, 2019, 123, 16326-16331.	3.1	0
346	An Adaptable Tough Elastomer with Moistureâ€Triggered Switchable Mechanical and Fluorescent Properties. Advanced Functional Materials, 2019, 29, 1903543.	14.9	70
347	Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. Journal of Materials Science: Materials in Electronics, 2019, 30, 14007-14021.	2.2	46
348	Graphene-based Wearable Sensors for Physiological Signal Monitoring. , 2019, , .		0
349	Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions. RSC Advances, 2019, 9, 22740-22748.	3.6	16
350	Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. Advanced Materials, 2019, 31, e1903446.	21.0	106
351	Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy, 2019, 64, 103920.	16.0	60
352	Stretchable and Designable Textile Pattern Strain Sensors Based on Graphene Decorated Conductive Nylon Filaments. Macromolecular Materials and Engineering, 2019, 304, 1900244.	3.6	20
353	Moisture-Driven Power Generation for Multifunctional Flexible Sensing Systems. Nano Letters, 2019, 19, 5544-5552.	9.1	89
354	Soft Magnetic Skin for Continuous Deformation Sensing. Advanced Intelligent Systems, 2019, 1, 1900025.	6.1	76
355	Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting. Nano Energy, 2019, 64, 103933.	16.0	57
356	Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator. Nano Energy, 2019, 64, 103923.	16.0	129
357	Pixel-free capacitive touch sensor using a single-layer ion gel. Journal of Materials Chemistry C, 2019, 7, 10264-10272.	5.5	16
358	Core–shell structured graphene sphere-silver nanowire hybrid filler embedded polydimethylsiloxane nanocomposites for stretchable conductor. Nanotechnology, 2019, 30, 445706.	2.6	11
359	Graphene nanoparticle strain sensors with modulated sensitivity through tunneling types transition. Nanotechnology, 2019, 30, 425501.	2.6	5
360	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	21.0	82
361	A Flexible and Highly Sensitive Pressure Sensor Based on AgNWs/NRLF for Hand Motion Monitoring. Nanomaterials, 2019, 9, 945.	4.1	18

#	Article	IF	Citations
362	Electronic Skin for Closed-Loop Systems. ACS Nano, 2019, 13, 12287-12293.	14.6	103
363	Transparent and Flexible Mayan-Pyramid-based Pressure Sensor using Facile-Transferred Indium tin Oxide for Bimodal Sensor Applications. Scientific Reports, 2019, 9, 14040.	3.3	24
364	Development of a Biosensor Based on Graphene for Detection of Physiological Signals*. , 2019, 2019, 1131-1134.		0
365	Fundamentals and applications of ion migration induced polymer sensor detecting bending, pressure and shear force. IEEE Instrumentation and Measurement Magazine, 2019, 22, 13-23.	1.6	6
366	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	21.0	936
367	Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy, 2019, 66, 104134.	16.0	149
368	Recent Progress in Wireless Sensors for Wearable Electronics. Sensors, 2019, 19, 4353.	3.8	99
369	Precise Control over Polymer Semiconducting Films by Tuning the Thermal Behavior of the Thin-Film State's Crystalline and Morphological Structures. ACS Applied Materials & Interfaces, 2019, 11, 40358-40365.	8.0	9
370	Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance. Polymers, 2019, 11, 1586.	4.5	42
371	Inspiration from Daily Goods: A Low-Cost, Facilely Fabricated, and Environment-Friendly Strain Sensor Based on Common Carbon Ink and Elastic Core-Spun Yarn. ACS Sustainable Chemistry and Engineering, 2019, 7, 17474-17481.	6.7	76
372	Selfâ€assembled coreâ€shell structured organic nanofibers fabricated by singleâ€nozzle electrospinning for highly sensitive ammonia sensors. InformaÄnÃ-Materiály, 2019, 1, 525-532.	17.3	25
373	Fabrication and Characterization of Wrapped Metal Yarns-based Fabric Temperature Sensors. Polymers, 2019, 11, 1549.	4.5	9
374	Highly Sensitive Microstructure-Based Flexible Pressure Sensor for Quantitative Evaluation of Motor Function Recovery after Spinal Cord Injury. Sensors, 2019, 19, 4673.	3.8	10
375	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	5.8	37
376	Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible pressure sensors. Sensors and Actuators A: Physical, 2019, 299, 111625.	4.1	27
377	Strain-Enhanced Charge-to-Spin Conversion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ta</mml:mi><mml:mo>/</mml:mo><mml:mi>Fe</mml:mi><mml:mo>/</mml:mo>< Multilavers Grown on Flexible Mica Substrate, Physical Review Applied, 2019, 12, .</mml:math 	mml:mi>Pi	t <del 19ml:mi>
378	Development of a Highly Stretchable Strain Sensor Based on Patterned and Rolled Carbon Nanotubes. , 2019, , .		2
379	Effect of glycerol on the mechanical and temperature-sensing properties of pectin films. Applied Physics Letters, 2019, 115, .	3.3	11

#	Article	IF	CITATIONS
380	<p>Temperature Dependence Of AOS Thin Film Nano Transistors For Medical Applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 8685-8691.	6.7	4
381	A comparative study of two graphene based elastomeric composite sensors. Polymer Testing, 2019, 80, 106106.	4.8	30
382	Breathable Nanomesh Humidity Sensor for Real-Time Skin Humidity Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 44758-44763.	8.0	108
383	Versatile Aerogels for Sensors. Small, 2019, 15, e1902826.	10.0	94
384	Organic Multi-Channel Optoelectronic Sensors for Wearable Health Monitoring. IEEE Access, 2019, 7, 128114-128124.	4.2	60
385	Flexible Pressure Sensors with Wide Linearity Range and High Sensitivity Based on Selective Laser Sintering 3D Printing. Advanced Materials Technologies, 2019, 4, 1900679.	5.8	38
386	Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Applied Materials & Interfaces, 2019, 11, 33165-33172.	8.0	58
387	Micro-/nano-voids guided two-stage film cracking on bioinspired assemblies for high-performance electronics. Nature Communications, 2019, 10, 3862.	12.8	38
388	A versatile, cost-effective, and flexible wearable biosensor for <i>in situ</i> and <i>ex situ</i> sweat analysis, and personalized nutrition assessment. Lab on A Chip, 2019, 19, 3448-3460.	6.0	55
389	Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range. Journal of Materials Chemistry C, 2019, 7, 11303-11314.	5.5	65
390	Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare. ACS Applied Materials & Amp; Interfaces, 2019, 11, 33589-33598.	8.0	96
391	Stretchable and Printable Medical Dry Electrode Arrays on Textile for Electrophysiological Monitoring. , 2019, , .		4
392	Impact of Polyimide Film Thickness for Improving the Mechanical Robustness of Stretchable InGaZnO Thin-Film Transistors Prepared on Wavy-Dimensional Elastomer Substrates. ACS Applied Materials & Interfaces, 2019, 11, 34076-34083.	8.0	21
393	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	5.5	90
394	Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change. Science Advances, 2019, 5, eaav4916.	10.3	26
395	Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Materials and Design, 2019, 184, 108176.	7.0	91
396	Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications. ACS Applied Materials & Interfaces, 2019, 11, 35577-35586.	8.0	32
397	Response characteristics of strain sensors based on closely spaced nanocluster films with controlled coverage. Chinese Journal of Chemical Physics, 2019, 32, 213-217.	1.3	5

	CITATION R	EPORT	
# 398	ARTICLE Highly sensitive capacitive pressure sensors based on elastomer composites with carbon filler hybrids. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105614.	IF 7.6	Citations
399	All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy, 2019, 65, 104055.	16.0	83
400	Graphene based Wearable Sensors for Healthcare. , 2019, , .		4
401	Flexible Multimodal Sensors for Electronic Skin: Principle, Materials, Device, Array Architecture, and Data Acquisition Method. Proceedings of the IEEE, 2019, 107, 2065-2083.	21.3	59
402	Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Applied Materials & Interfaces, 2019, 11, 37094-37102.	8.0	116
403	Rapid prototyping of a novel and flexible paper based oxygen sensing patch <i>via</i> additive inkjet printing process. RSC Advances, 2019, 9, 22695-22704.	3.6	30
404	Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors, 2019, 19, 3771.	3.8	60
405	Low-Cost and Highly Sensitive Wearable Sensor Based on Napkin for Health Monitoring. Sensors, 2019, 19, 3427.	3.8	30
406	Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO ₂ E-Textile Gas Sensor. ACS Sensors, 2019, 4, 2809-2818.	7.8	114
407	Sensitivity-Tunable Strain Sensors Based on Carbon Nanotube@Carbon Nanocoil Hybrid Networks. ACS Applied Materials & Interfaces, 2019, 11, 38160-38168.	8.0	28
408	Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale, 2019, 11, 2779-2786.	5.6	72
409	Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. Journal of Materials Chemistry C, 2019, 7, 2353-2360.	5.5	142
410	A Biodegradable and Stretchable Proteinâ€Based Sensor as Artificial Electronic Skin for Human Motion Detection. Small, 2019, 15, e1805084.	10.0	143
411	Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. Small, 2019, 15, e1805453.	10.0	53
412	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	47.7	822
413	Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Applied Materials & Interfaces, 2019, 11, 6685-6704.	8.0	261
414	Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 6483-6490.	8.0	201
415	Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Advanced Functional Materials, 2019, 29, 1808509.	14.9	316

#	Article	IF	CITATIONS
416	Multi-dimensional nanocomposites for stretchable thermoelectric applications. Applied Physics Letters, 2019, 114, .	3.3	20
417	A Transductive Model-based Stress Recognition Method Using Peripheral Physiological Signals. Sensors, 2019, 19, 429.	3.8	11
418	Fully Printed Infrared Photodetectors from PbS Nanocrystals with Perovskite Ligands. ACS Nano, 2019, 13, 2389-2397.	14.6	30
419	Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 7405-7414.	8.0	243
420	Functionalized Carbon Nanomaterial for Artificial Bone Replacement as Filler Material. , 2019, , 783-804.		6
421	3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons, 2019, 6, 767-780.	12.2	165
422	Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Journal of Materials Chemistry B, 2019, 7, 24-29.	5.8	165
423	Advanced electronic skin devices for healthcare applications. Journal of Materials Chemistry B, 2019, 7, 173-197.	5.8	193
424	Construction of a flexible electrochemiluminescence platform for sweat detection. Chemical Science, 2019, 10, 6295-6303.	7.4	49
425	5–31-Hz 188-\$mu\$ W Light-Sensing Oscillator With Two Active Inductors Fully Integrated on Plastic. IEEE Journal of Solid-State Circuits, 2019, 54, 2195-2206.	5.4	9
426	3Dâ€Printed Flexible Tactile Sensor Mimicking the Texture and Sensitivity of Human Skin. Advanced Materials Technologies, 2019, 4, 1900147.	5.8	30
427	High sensitivity and wide sensing range of stretchable sensors with conductive microsphere array structures. Journal of Materials Chemistry C, 2019, 7, 8423-8431.	5.5	10
428	Superhydrophilic, Underwater Superoleophobic, and Highly Stretchable Humidity and Chemical Vapor Sensors for Human Breath Detection. ACS Applied Materials & Interfaces, 2019, 11, 24533-24543.	8.0	70
429	Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Scientific Reports, 2019, 9, 8902.	3.3	39
430	Transient thermomechanical analysis of epidermal electronic devices on human skin. Mechanics of Materials, 2019, 137, 103097.	3.2	3
431	High-performance temperature sensor based on silver nanowires. Materials Today Communications, 2019, 20, 100546.	1.9	21
432	Scalable Manufactured Self-Healing Strain Sensors Based on Ion-Intercalated Graphene Nanosheets and Interfacial Coordination. ACS Applied Materials & amp; Interfaces, 2019, 11, 23527-23534.	8.0	23
433	A Wrinkled Ag/CNTs-PDMS Composite Film for a High-Performance Flexible Sensor and Its Applications in Human-Body Single Monitoring. Nanomaterials, 2019, 9, 850.	4.1	31

#	Article	IF	CITATIONS
434	Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Composites Science and Technology, 2019, 181, 107660.	7.8	26
435	Multifunctional Glycerol–Water Hydrogel for Biomimetic Human Skin with Resistance Memory Function. ACS Applied Materials & Interfaces, 2019, 11, 21117-21125.	8.0	92
436	Flexible plasmonic modulators induced by the thermomechanical effect. Nanoscale, 2019, 11, 11437-11444.	5.6	12
437	Ultrasoft, Adhesive and Millimeter Scale Epidermis Electronic Sensor for Real-Time Enduringly Monitoring Skin Strain. Sensors, 2019, 19, 2442.	3.8	3
438	Skinâ€Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Advanced Functional Materials, 2019, 29, 1901474.	14.9	371
439	Multi-material 3D printing of a soft pressure sensor. Additive Manufacturing, 2019, 28, 629-638.	3.0	58
440	Graphene-Based Sensors for Human Health Monitoring. Frontiers in Chemistry, 2019, 7, 399.	3.6	218
441	Soft and flexible piezoelectric smart patch for vascular graft monitoring based on Aluminum Nitride thin film. Scientific Reports, 2019, 9, 8392.	3.3	48
442	Nanoarchitectonics for Photoelectronics. , 2019, , 197-208.		0
443	Highly Stretchable and Self-Healing "Solid–Liquid―Elastomer with Strain-Rate Sensing Capability. ACS Applied Materials & Interfaces, 2019, 11, 19534-19540.	8.0	76
444	Dynamic Hydrogels and Polymers as Inks for Three-Dimensional Printing. ACS Biomaterials Science and Engineering, 2019, 5, 2688-2707.	5.2	67
445	A novel, stretchable, silverâ€coated polyolefin elastomer nanofiber membrane for strain sensor applications. Journal of Applied Polymer Science, 2019, 136, 47928.	2.6	8
446	Soft Electronic Skin for Multiâ€Site Damage Detection and Localization. Advanced Functional Materials, 2019, 29, 1900160.	14.9	57
447	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€6kin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	21.0	313
448	Highly Sensitive, Stretchable Strain Sensor Based on Ag@COOHâ€Functionalized CNTs for Stroke and Pronunciation Recognition. Advanced Electronic Materials, 2019, 5, 1900227.	5.1	31
449	Influence of the Porosity of Polymer Foams on the Performances of Capacitive Flexible Pressure Sensors. Sensors, 2019, 19, 1968.	3.8	35
450	Advances in Technologies for Purification and Enrichment of Extracellular Vesicles. SLAS Technology, 2019, 24, 477-488.	1.9	29
451	Graphene/Glycerin Solution-Based Multifunctional Stretchable Strain Sensor with Ultra-High Stretchability, Stability, and Sensitivity. Nanomaterials, 2019, 9, 617.	4.1	15

#	Article	IF	CITATIONS
452	Local wrinkling versus global buckling of stiff film bonded to finite-thick substrate. Extreme Mechanics Letters, 2019, 29, 100453.	4.1	10
453	Two-dimensional, few-layer NiPS ₃ for flexible humidity sensor with high selectivity. Journal of Materials Chemistry A, 2019, 7, 14545-14551.	10.3	53
454	A Brief Review on E-skin and its Multifunctional Sensing Applications. Current Smart Materials, 2019, 4, 3-14.	0.5	24
455	FEP Encapsulated Crack-Based Sensor for Measurement in Moisture-Laden Environment. Materials, 2019, 12, 1516.	2.9	12
456	A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Applied Surface Science, 2019, 486, 249-256.	6.1	39
457	Facile preparation of graphene nanowalls/EVA hybrid film for ultraflexible transparent electrodes. Journal of Solid State Electrochemistry, 2019, 23, 1473-1480.	2.5	2
458	Biomimetic Water-Responsive Self-Healing Epoxy with Tunable Properties. ACS Applied Materials & Interfaces, 2019, 11, 17853-17862.	8.0	48
459	Nanostructured electrically conductive hydrogels obtained <i>via</i> ultrafast laser processing and self-assembly. Nanoscale, 2019, 11, 9176-9184.	5.6	31
460	Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 17796-17803.	8.0	292
461	Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing. ACS Applied Materials & Interfaces, 2019, 11, 17501-17512.	8.0	42
462	Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors. ACS Applied Materials & Interfaces, 2019, 11, 19350-19362.	8.0	41
463	Multifunctional sensing platform with pulsed-laser-deposited silver nanoporous structures. Sensors and Actuators A: Physical, 2019, 293, 136-144.	4.1	6
464	Flexible Sensors—From Materials to Applications. Technologies, 2019, 7, 35.	5.1	139
465	Accurate, hysteresis-free temperature sensor for health monitoring using a magnetic sensor and pristine polymer. RSC Advances, 2019, 9, 7885-7889.	3.6	15
466	Characterization of a Soft Pressure Sensor on the Basis of Ionic Liquid Concentration and Thickness of the Piezoresistive Layer. IEEE Sensors Journal, 2019, 19, 6076-6084.	4.7	21
467	Flexible Breathable Nanomesh Electronic Devices for Onâ€Demand Therapy. Advanced Functional Materials, 2019, 29, 1902127.	14.9	108
468	Interactive Skin Display with Epidermal Stimuli Electrode. Advanced Science, 2019, 6, 1802351.	11.2	68
469	Monitoring of physiological body signals and human activity based on ultra-sensitive tactile sensor and artificial electronic skin by direct growth of ZnSnO3 on silica cloth. Materials Science in Semiconductor Processing, 2019, 99, 125-133	4.0	12

#	Article	IF	CITATIONS
470	Water-Resistant and Skin-Adhesive Wearable Electronics Using Graphene Fabric Sensor with Octopus-Inspired Microsuckers. ACS Applied Materials & Interfaces, 2019, 11, 16951-16957.	8.0	74
471	Highly Sensitive and Stretchable CNTâ€Bridged AgNP Strain Sensor Based on TPU Electrospun Membrane for Human Motion Detection. Advanced Electronic Materials, 2019, 5, 1900241.	5.1	96
472	Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy, 2019, 62, 475-506.	16.0	238
473	A flexible and skin-mountable elastic fiber-based sensor patch for healthcare monitoring. Biomedical Physics and Engineering Express, 2019, 5, 045011.	1.2	9
474	Wearable and Skinâ€Mountable Fiberâ€Optic Strain Sensors Interrogated by a Freeâ€Running, Dualâ€Comb Fiber Laser. Advanced Optical Materials, 2019, 7, 1900086.	7.3	76
475	Self-powered, flexible and remote-controlled breath monitor based on TiO ₂ nanowire networks. Nanotechnology, 2019, 30, 325503.	2.6	24
476	Flourishing Smart Flexible Membranes Beyond Paper. Analytical Chemistry, 2019, 91, 4224-4234.	6.5	13
477	Three-dimensional printed embedded channel–based resistive strain sensor: Fabrication and experimental characterization. Journal of Intelligent Material Systems and Structures, 2019, 30, 1518-1526.	2.5	4
478	Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS. ACS Applied Nano Materials, 2019, 2, 2222-2229.	5.0	58
479	Polyacrylonitrileâ€carbon Nanotubeâ€polyacrylonitrile: A Versatile Robust Platform for Flexible Multifunctional Electronic Devices in Medical Applications. Macromolecular Materials and Engineering, 2019, 304, 1900014.	3.6	17
481	Fingertipâ€6kinâ€Inspired Highly Sensitive and Multifunctional Sensor with Hierarchically Structured Conductive Graphite/Polydimethylsiloxane Foams. Advanced Functional Materials, 2019, 29, 1808829.	14.9	157
482	From Microbial Fuel Cells to Biobatteries: Moving toward Onâ€Demand Micropower Generation for Smallâ€Scale Singleâ€Use Applications. Advanced Materials Technologies, 2019, 4, 1900079.	5.8	29
483	Multifunctional Skinâ€Inspired Flexible Sensor Systems for Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1800628.	5.8	431
484	Processing, Structure, and Transistor Performance: Combustion versus Pulsed Laser Growth of Amorphous Oxides. ACS Applied Electronic Materials, 2019, 1, 548-557.	4.3	15
485	CdSSe nanowire-chip based wearable sweat sensor. Journal of Nanobiotechnology, 2019, 17, 42.	9.1	14
486	Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. Microsystems and Nanoengineering, 2019, 5, 9.	7.0	35
487	Motion sensors achieved from a conducting polymer-metal Schottky contact. RSC Advances, 2019, 9, 6576-6582.	3.6	7
488	Wearable Leather-Based Electronics for Respiration Monitoring. ACS Applied Bio Materials, 2019, 2, 1427-1431.	4.6	39

#	Article	IF	CITATIONS
489	High-throughput physical vapour deposition flexible thermoelectric generators. Scientific Reports, 2019, 9, 4393.	3.3	36
490	Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes. Nanomaterials, 2019, 9, 496.	4.1	31
491	Highly Stretchable, Adaptable, and Durable Strain Sensing Based on a Bioinspired Dynamically Crossâ€Linked Graphene/Polymer Composite. Small, 2019, 15, e1900848.	10.0	58
492	The use of complex impedance spectroscopy measurements for improving strain sensor performance. Sensors and Actuators A: Physical, 2019, 293, 101-107.	4.1	4
493	Epitaxial Liftoff of Wafer‣cale VO ₂ Nanomembranes for Flexible, Ultrasensitive Tactile Sensors. Advanced Materials Technologies, 2019, 4, 1800695.	5.8	30
494	Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chemical Engineering Journal, 2019, 371, 452-460.	12.7	135
495	All-range flexible and biocompatible humidity sensor based on poly lactic glycolic acid (PLGA) and its application in human breathing for wearable health monitoring. Journal of Materials Science: Materials in Electronics, 2019, 30, 9455-9465.	2.2	43
496	Detection of Physiological Signals Based on Graphene Using a Simple and Low-Cost Method. Sensors, 2019, 19, 1656.	3.8	9
497	Microchannel Structural Design For a Room-Temperature Liquid Metal Based Super-stretchable Sensor. Scientific Reports, 2019, 9, 5908.	3.3	59
498	Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale, 2019, 11, 10229-10238.	5.6	111
499	Flexible semi-transparent organic transistors and circuits based on easily prepared polyphenyleneoxide dielectric. Organic Electronics, 2019, 69, 308-312.	2.6	11
500	All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics. Sensors and Actuators B: Chemical, 2019, 290, 293-301.	7.8	26
501	Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. Npj Flexible Electronics, 2019, 3, .	10.7	124
502	Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale, 2019, 11, 3916-3924.	5.6	21
503	A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. Journal of Materials Science, 2019, 54, 7048-7061.	3.7	46
504	Low Operating Voltage and Highly Pressure-Sensitive Printed Sensor for Healthcare Monitoring with Analogic Amplifier Circuit. ACS Applied Electronic Materials, 2019, 1, 246-252.	4.3	38
505	From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Materials, 2019, 7, .	5.1	116
506	Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. Composites Science and Technology, 2019, 174, 42-49.	7.8	21

#	Article	IF	CITATIONS
507	Metal Mesh as a Transparent Omnidirectional Strain Sensor. Advanced Materials Technologies, 2019, 4, 1800698.	5.8	26
508	How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chemical Society Reviews, 2019, 48, 1448-1464.	38.1	172
509	Highly Bendable and Rotational Textile Structure with Prestrained Conductive Sewing Pattern for Human Joint Monitoring. Advanced Functional Materials, 2019, 29, 1808369.	14.9	47
510	A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for micro-vibration detection in non-contact mode. Nanoscale, 2019, 11, 5737-5745.	5.6	19
511	Investigation of Lightweight and Flexible Carbon Nanofiber/Poly Dimethylsiloxane Nanocomposite Sponge for Piezoresistive Sensor Application. Advanced Engineering Materials, 2019, 21, 1801068.	3.5	47
512	Lowâ€Power, Flexible Nonvolatile Organic Transistor Memory Based on an Ultrathin Bilayer Dielectric Stack. Advanced Electronic Materials, 2019, 5, 1800799.	5.1	23
513	Bio-inspired intelligent structural color materials. Materials Horizons, 2019, 6, 945-958.	12.2	213
514	Manufacturing and characterizing of CCTO/SEBS dielectric elastomer as capacitive strain sensors. Rare Metals, 2023, 42, 2344-2349.	7.1	3
515	Materials and Designs for Wearable Photodetectors. Advanced Materials, 2019, 31, e1808138.	21.0	279
516	Bioinspired Self-Healing Liquid Films for Ultradurable Electronics. ACS Nano, 2019, 13, 3225-3231.	14.6	36
517	Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Small, 2019, 15, e1805120.	10.0	144
518	Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chemical Engineering Journal, 2019, 366, 62-71.	12.7	84
519	Highly stretchable and bio-based sensors for sensitive strain detection of angular displacements. Cellulose, 2019, 26, 3401-3413.	4.9	31
520	Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Advances, 2019, 9, 5674-5681.	3.6	111
521	Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti ₃ C ₂ T <i>_x</i> (MXene) Nanoparticle–Nanosheet Hybrid Network. Advanced Functional Materials, 2019, 29, 1807882.	14.9	187
522	Toward wearable electronics: A lightweight all-solid-state supercapacitor with outstanding transparency, foldability and breathability. Energy Storage Materials, 2019, 22, 402-409.	18.0	33
523	Fabrication and Characterization of a Solution Processed Flexible Thermal Sensor by Using Chemically Synthesized GO and rGO. , 2019, , .		1
524	Fabrication of a Flexible Capacitive Pressure Sensor Using Full Inkjet Printing. , 2019, , .		2

#	Article	IF	CITATIONS
525	Aluminium Nitride based bio-MEMS for vascular graft monitoring. , 2019, , .		1
526	Highly Stretchable Strain Sensors Based on AgNWs/PV A Nanocomposite Hydrogels. , 2019, , .		0
J20	Tignly Stretchable Strain Sensors based on Agrivish V A Nanocomposite Hydrogeis. , 2017, , .		U
527	Advancements in Non-Invasive Biological Surface Sampling and Emerging Applications. Separations, 2019, 6, 52.	2.4	10
528	Piezoresistive Chopped Carbon Fiber Rubber Silicone Sensors for Shedding Frequency Detection in Alternating Vortex Streets. , 2019, , .		3
529	Highly Flexible and Stretchable Structure Based on Au/Graphene Film and Polyurethane Yarn. , 2019, , .		1
530	Investigation on Nonlinear Electromechanical Behavior of Conductive Polymer Composites-based Flexible Strain Sensor. , 2019, , .		1
531	Preparing Polypyrrole-Coated Stretchable Textile via Low-Temperature Interfacial Polymerization for Highly Sensitive Strain Sensor. Micromachines, 2019, 10, 788.	2.9	29
532	Dry-Coated Graphite onto Sandpaper for Triboelectric Nanogenerator as an Active Power Source for Portable Electronics. Nanomaterials, 2019, 9, 1585.	4.1	20
533	Integration of temperature sensors in fabrics. , 2019, , .		5
534	Bladder Inflation Stretch Test Method for Reliability Characterization of Wearable Electronics. , 2019, , .		5
535	A Humid-Air-Operable, NO ₂ -Responsive Polymer Transistor Series Circuit with Improved Signal-to-Drift Ratio Based on Polymer Semiconductor Oxidation. ACS Sensors, 2019, 4, 3240-3247.	7.8	22
536	One-step solution deposited all-inorganic perovskite CsPbBr3 film for flexible resistive switching memories. Applied Physics Letters, 2019, 115, .	3.3	24
537	Anodized Aluminum Oxide-Assisted Low-Cost Flexible Capacitive Pressure Sensors Based on Double-Sided Nanopillars by a Facile Fabrication Method. ACS Applied Materials & Interfaces, 2019, 11, 48594-48603.	8.0	130
538	Extremely Fast Self-Healable Bio-Based Supramolecular Polymer for Wearable Real-Time Sweat-Monitoring Sensor. ACS Applied Materials & Interfaces, 2019, 11, 46165-46175.	8.0	110
539	Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. Journal of Materials Chemistry A, 2019, 7, 27278-27288.	10.3	79
540	Topological Design of Microchannel of EGaln based Super Stretchable Sensors. , 2019, , .		0
541	Introductory Chapter: Wearable Technologies for Healthcare Monitoring. , 2019, , .		2
542	A fully inkjet-printed transparent humidity sensor based on a Ti ₃ C ₂ /Ag hybrid for touchless sensing of finger motion. Nanoscale, 2019, 11, 21522-21531.	5.6	68

ARTICLE IF CITATIONS Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated 3.6 6 three-dimensional graphene foams for wearable electronics. RSC Advances, 2019, 9, 39958-39964. Preparation and electroactive phase adjustment of Ag-doped poly(vinylidene fluoride) (PVDF) films. 3.6 RSC Advances, 2019, 9, 40286-40291. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable 15.6 52 Strain Sensors. Accounts of Chemical Research, 2019, 52, 82-90. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. 164 Nano Energy, 2019, 57, 440-449. Highly stretchable and transparent dielectric gels for high sensitivity tactile sensors. Smart 3.5 10 Materials and Structures, 2019, 28, 024003. Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture. Advanced Functional Materials, 2019, 29, 1807569. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Advanced 21.0 438 Materials, 2019, 31, e1805921. High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator. ACS Sustainable Chemistry and 6.7 151 Engineering, 2019, 7, 979-985. Organic Field-Effect Transistor-Based Ultrafast, Flexible, Physiological-Temperature Sensors with Hexagonal Barium Titanate Nanocrystals in Amorphous Matrix as Sensing Material. ACS Applied 8.0 25 Materials & amp; Interfaces, 2019, 11, 4193-4202. Three-Dimensional Stretchable and Transparent Conductors with Controllable Strain-Distribution 8.0 Based on Template Assisted Transfer Printing. ACS Applied Materials & amp; Interfaces, 2019, 11, 2140-2148. Microstructure, magnetic-dielectric properties of flexible composite film for high frequency 4.8 11 applications. Ceramics International, 2019, 45, 6350-6355. A Stretchable Strain-Insensitive Temperature Sensor Based on Free-Standing Elastomeric Composite Fibers for On-Body Monitoring of Skin Temperature. ACS Applied Materials & amp; Interfaces, 2019, 11, 8.0 2317-2327. Polyelectrolyte Dielectrics for Flexible Lowâ€Voltage Organic Thinâ€Film Transistors in Highly Sensitive 14.9 71 Pressure Sensing. Advanced Functional Materials, 2019, 29, 1806092. Piezoresistive Sensors Based on rGO 3D Microarchitecture: Coupled Properties Tuning in 5.1 Local/Integral Deformation. Advanced Electronic Materials, 2019, 5, 1800461. Flexible and stretchable metal oxide gas sensors for healthcare. Science China Technological 4.0 44 Sciences, 2019, 62, 209-223. Design of Helically Double-Leveled Gaps for Stretchable Fiber Strain Sensor with Ultralow Detection Limit, Broad Sensing Range, and High Repeatability. ACS Applied Materials & amp; Interfaces, 2019, 11, 4345-4352. Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials 5.8 221 Technologies, 2019, 4, 1800626.

CITATION REPORT

Modulating the sensing behaviors of poly(styrene-ethylene-butylene-styrene)/carbon nanotubes with low-dimensional fillers for large deformation sensors. Composites Part B: Engineering, 2019, 160, 12.0 33 605-614.

543

544

545

546

547

548

549

550

551

553

554

555

557

CITATION REPORT

#	Article	IF	CITATIONS
561	Development of a Highly Sensitive, Broad-Range Hierarchically Structured Reduced Graphene Oxide/PolyHIPE Foam for Pressure Sensing. ACS Applied Materials & Interfaces, 2019, 11, 4318-4327.	8.0	83
562	Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology, 2019, 30, 132001.	2.6	32
563	Bioinspired Electronics for Artificial Sensory Systems. Advanced Materials, 2019, 31, e1803637.	21.0	195
564	Microfluidicsâ€Based Biomaterials and Biodevices. Advanced Materials, 2019, 31, e1805033.	21.0	102
565	In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: Synergistic enhancement of mechanical properties and piezoresistivity. Composites Part A: Applied Science and Manufacturing, 2019, 116, 106-113.	7.6	42
566	Highly Conductive Polydimethylsiloxane/Carbon Nanofiber Composites for Flexible Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800398.	5.8	72
567	Polymer Microelectromechanical System-Integrated Flexible Sensors for Wearable Technologies. IEEE Sensors Journal, 2019, 19, 443-450.	4.7	11
568	Engineering Precision Medicine. Advanced Science, 2019, 6, 1801039.	11.2	55
569	Strain sensing fabric integrated with carbon nanotube yarn for wearable applications. Textile Reseach Journal, 2019, 89, 3048-3055.	2.2	10
570	Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy, 2019, 55, 151-163.	16.0	129
571	Impedimetric microsensors for biomedical applications. Current Opinion in Biomedical Engineering, 2019, 9, 1-7.	3.4	6
572	3D-Printed Graphene/Polydimethylsiloxane Composites for Stretchable and Strain-Insensitive Temperature Sensors. ACS Applied Materials & amp; Interfaces, 2019, 11, 1344-1352.	8.0	141
573	Stretchable electronics: functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials, 2019, 20, 187-224.	6.1	245
574	Flexible dual-mode surface acoustic wave strain sensor based on crystalline LiNbO ₃ thin film. Journal of Micromechanics and Microengineering, 2019, 29, 025003.	2.6	17
575	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	21.0	779
576	Rollâ€toâ€Roll (R2R) Production of Ultrasensitive, Flexible, and Transparent Pressure Sensors Based on Vertically Aligned Lead Zirconate Titanate and Graphene Nanoplatelets. Advanced Materials Technologies, 2019, 4, 1800425.	5.8	21
577	Largeâ€Area Allâ€Printed Temperature Sensing Surfaces Using Novel Composite Thermistor Materials. Advanced Electronic Materials, 2019, 5, 1800605.	5.1	68
578	Highly stretchable sensors for wearable biomedical applications. Journal of Materials Science, 2019, 54, 5187-5223.	3.7	49

#	Article	IF	CITATIONS
579	Stretchable and multifunctional strain sensors based on 3D graphene foams for active and adaptive tactile imaging. Science China Materials, 2019, 62, 555-565.	6.3	25
580	Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 2019, 48, 1465-1491.	38.1	855
581	Soft and flexible material-based affinity sensors. Biotechnology Advances, 2020, 39, 107398.	11.7	60
582	Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals. Advanced Functional Materials, 2020, 30, 1903100.	14.9	265
583	Flexible Hybrid Electronics for Digital Healthcare. Advanced Materials, 2020, 32, e1902062.	21.0	345
584	Microparticleâ€Based Soft Electronic Devices: Toward Oneâ€Particle/Oneâ€Pixel. Advanced Functional Materials, 2020, 30, 1901810.	14.9	8
585	Kirigamiâ€Inspired Stretchable Conjugated Electronics. Advanced Electronic Materials, 2020, 6, 1900929.	5.1	18
586	Closed-Loop Haptic Feedback Control Using a Self-Sensing Soft Pneumatic Actuator Skin. Soft Robotics, 2020, 7, 22-29.	8.0	98
587	In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing. Chemical Engineering Journal, 2020, 382, 123036.	12.7	63
588	Organic Photodetectors for Nextâ€Generation Wearable Electronics. Advanced Materials, 2020, 32, e1902045.	21.0	401
589	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	14.9	247
590	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	21.0	575
591	Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small, 2020, 16, e1901124.	10.0	97
592	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	14.2	110
593	Crafting NiCo2O4@Co9S8 nanotrees on carbon cloth as flexible pressure sensors for effectively monitoring human motion. Applied Nanoscience (Switzerland), 2020, 10, 861-867.	3.1	7
594	Telecommunications and Data Processing in Flexible Electronic Systems. Advanced Materials Technologies, 2020, 5, .	5.8	25
595	Highly stretchable, breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics. Journal of Materials Science, 2020, 55, 2439-2453.	3.7	35
596	Selfâ€Powered Sensor Based on Bionic Antennae Arrays and Triboelectric Nanogenerator for Identifying Noncontact Motions. Advanced Materials Technologies, 2020, 5, 1900789.	5.8	33

#	Article	IF	CITATIONS
597	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	21.0	198
598	High recovery NO2 sensors of α-6T organic thin film transistors based on interface inducing growth. Applied Surface Science, 2020, 505, 144436.	6.1	9
599	Hybrid systems of threeâ€dimensional carbon nanostructures with low dimensional fillers for piezoresistive sensors. Polymer Composites, 2020, 41, 468-477.	4.6	24
600	Healing, flexible, high thermal sensitive dual-network ionic conductive hydrogels for 3D linear temperature sensor. Materials Science and Engineering C, 2020, 107, 110310.	7.3	51
601	A Fractal-designed stretchable and transparent microsupercapacitor as a Skin-attachable energy storage device. Chemical Engineering Journal, 2020, 387, 124076.	12.7	58
602	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	2.9	74
603	Toward a Stretchable Organic Lightâ€Emitting Diode on 3D Microstructured Elastomeric Substrate and Transparent Hybrid Anode. Advanced Materials Technologies, 2020, 5, 1900995.	5.8	24
604	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	14.2	262
605	Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chemical Engineering Journal, 2020, 386, 123998.	12.7	125
606	Untethered Disposable Health Monitoring Electronic Patches with an Integrated Ag ₂ O–Zn Battery, a AgInGa Current Collector, and Hydrogel Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 3407-3414.	8.0	43
607	Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. ACS Applied Materials & Interfaces, 2020, 12, 4944-4953.	8.0	250
608	A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy, 2020, 70, 104436.	16.0	344
609	A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring. Journal of Materials Chemistry C, 2020, 8, 935-942.	5.5	16
610	Highly Morphology ontrollable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermisâ€Đermisâ€Inspired Interlocked Asymmetricâ€Nanocone Arrays for Detection of Tiny Pressure. Small, 2020, 16, e1904774.	10.0	166
611	Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523.	31.8	215
612	Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy, 2020, 69, 104417.	16.0	47
613	Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks. ACS Applied Materials & Interfaces, 2020, 12, 10908-10917.	8.0	64
614	Recent progress on the fabrication and applications of flexible ferroelectric devices. Journal of Materials Chemistry C, 2020, 8, 14-27.	5.5	29

#	Article	IF	CITATIONS
615	Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Progress in Materials Science, 2020, 114, 100617.	32.8	267
616	Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. International Journal of Biological Macromolecules, 2020, 155, 1569-1577.	7.5	60
617	Foldable and washable fully textile-based pressure sensor. Smart Materials and Structures, 2020, 29, 055010.	3.5	26
618	An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 2020, 12, 4110-4118.	5.6	75
619	Recent innovations in artificial skin. Biomaterials Science, 2020, 8, 776-797.	5.4	38
620	An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as a multimodal sensor. Polymer Chemistry, 2020, 11, 1327-1336.	3.9	32
621	Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 2020, 25, 9-24.	1.9	106
622	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	17.3	159
623	CNT yarn-based supercapacitors. , 2020, , 243-270.		8
624	Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting. Nano Energy, 2020, 69, 104390.	16.0	70
625	Allâ€Fiber Structured Electronic Skin with High Elasticity and Breathability. Advanced Functional Materials, 2020, 30, 1908411.	14.9	170
626	Highâ€Performance Flexible Sensors of Selfâ€Healing, Reversibly Adhesive, and Stretchable Hydrogels for Monitoring Large and Subtle Strains. Macromolecular Materials and Engineering, 2020, 305, 1900621.	3.6	19
627	Flexible and Degradable Multimodal Sensor Fabricated by Transferring Laser-Induced Porous Carbon on Starch Film. ACS Sustainable Chemistry and Engineering, 2020, 8, 527-533.	6.7	45
628	A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chemical Engineering Journal, 2020, 392, 123733.	12.7	212
629	Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors. Composites Communications, 2020, 17, 134-140.	6.3	70
630	A Naturally Integrated Smart Textile for Wearable Electronics Applications. Advanced Materials Technologies, 2020, 5, 1900781.	5.8	40
631	Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy. Nanotechnology, 2020, 31, 125302.	2.6	54
632	Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 332-341.	3.8	9

#	ARTICLE	IF	CITATIONS
633	A Dualâ€Mode Wearable Sensor Based on Bacterial Cellulose Reinforced Hydrogels for Highly Sensitive Strain/Pressure Sensing. Advanced Electronic Materials, 2020, 6, 1900934.	5.1	83
634	Textile-Based Stretchable and Flexible Glove Sensor for Monitoring Upper Extremity Prosthesis Functions. IEEE Sensors Journal, 2020, 20, 1754-1760.	4.7	28
635	Human Motion Recognition of Knitted Flexible Sensor in Walking Cycle. Sensors, 2020, 20, 35.	3.8	26
636	Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor. Polymer, 2020, 211, 123095.	3.8	38
637	Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy, 2020, 77, 105295.	16.0	82
638	Ascertaining service quality and medical practitioners' sensitivity towards surgical instruments using SERVQUAL. Benchmarking, 2021, 28, 370-405.	4.6	4
639	Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy, 2020, 77, 105242.	16.0	72
640	Untraditional Deformationâ€Driven Pressure Sensor with High Sensitivity and Ultraâ€Large Sensing Range up to MPa Enables Versatile Applications. Advanced Materials Technologies, 2020, 5, 2000677.	5.8	23
641	Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 19756-19763.	2.2	5
642	Ultrasonically Patterning Silver Nanowire–Acrylate Composite for Highly Sensitive and Transparent Strain Sensors Based on Parallel Cracks. ACS Applied Materials & Interfaces, 2020, 12, 47729-47738.	8.0	41
643	Fabrication of piezoelectric poly(l-lactic acid)/BaTiO3 fibre by the melt-spinning process. Scientific Reports, 2020, 10, 16339.	3.3	34
644	Highly aligned carbon nanotubes and their sensor applications. Nanoscale, 2020, 12, 21447-21458.	5.6	31
645	A Skinâ€Inspired Substrate with Spaghettiâ€Like Multiâ€Nanofiber Network of Stiff and Elastic Components for Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2003540.	14.9	25
646	Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. ACS Nano, 2020, 14, 9605-9612.	14.6	166
647	Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Materials Horizons, 2020, 7, 2450-2459.	12.2	47
648	High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing. RSC Advances, 2020, 10, 26188-26196.	3.6	11
649	Wearable Temperature Sensors with Enhanced Sensitivity by Engineering Microcrack Morphology in PEDOT:PSS–PDMS Sensors. ACS Applied Materials & Interfaces, 2020, 12, 36578-36588.	8.0	93
650	Performance evaluation of conductive tracks in fabricating e-textiles by lock-stitch embroidery. Journal of Industrial Textiles, 2020, , 152808372093728.	2.4	15

	CITATION R	EPORT	
#	ARTICLE Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor <i>via</i>	IF 12.2	CITATIONS
031	superaligned carbon nanotube-based strain engineering. Materials Horizons, 2020, 7, 2662-2672.	12.2	04
652	Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosensors and Bioelectronics, 2020, 166, 112460.	10.1	129
653	Highly sensitive ionic pressure sensor with broad sensing range based on interlaced ridge-like microstructure. Sensors and Actuators A: Physical, 2020, 313, 112173.	4.1	10
654	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	3.7	57
655	Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis. Polymers, 2020, 12, 2630.	4.5	34
656	Research progress of MXenes-based wearable pressure sensors. APL Materials, 2020, 8, .	5.1	31
657	Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Frontiers in Chemistry, 2020, 8, 577327.	3.6	45
658	Polyurethane-Carbon Nanotubes Composite Dual Band Antenna for Wearable Applications. Polymers, 2020, 12, 2759.	4.5	4
659	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	10.3	106
660	Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Research Letters, 2020, 15, 200.	5.7	116
661	Thin-Film Flexible Wireless Pressure Sensor for Continuous Pressure Monitoring in Medical Applications. Sensors, 2020, 20, 6653.	3.8	21
662	3D motion tracking display enabled by magneto-interactive electroluminescence. Nature Communications, 2020, 11, 6072.	12.8	27
663	Piezoelectric PVDF-based sensors with high pressure sensitivity induced by chemical modification of electrode surfaces. Sensors and Actuators A: Physical, 2020, 316, 112424.	4.1	9
664	Deoxyribonucleic Acid as a Universal Electrolyte for Bioâ€Friendly Lightâ€Emitting Electrochemical Cells. Advanced Sustainable Systems, 2021, 5, 2000203.	5.3	5
665	Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Applied Physics Reviews, 2020, 7, .	11.3	46
666	Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. Sensors, 2020, 20, 6835.	3.8	25
667	A highly sensitive polydopamine@hybrid carbon nanofillers based nanocomposite sensor for acquiring high-frequency ultrasonic waves. Carbon, 2020, 170, 403-413.	10.3	9
668	Liquid Metal Based Flexible and Implantable Biosensors. Biosensors, 2020, 10, 170.	4.7	46

#	Article	IF	CITATIONS
669	Screen-Printed Ferroelectric P(VDF-TrFE)- <i>co</i> -PbTiO ₃ and P(VDF-TrFE)- <i>co</i> -NaBiTi ₂ O ₆ Nanocomposites for Selective Temperature and Pressure Sensing. ACS Applied Materials & Interfaces, 2020, 12, 38614-38625.	8.0	9
670	Freestanding Multi-Gate Amorphous Oxide-Based TFTs on Graphene Oxide Enhanced Electrolyte Membranes. IEEE Electron Device Letters, 2020, 41, 1360-1363.	3.9	7
671	3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Composites Part B: Engineering, 2020, 200, 108244.	12.0	34
672	Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electronic Skin Pressure Sensors: A Review of Recent Advances. Sensors, 2020, 20, 4407.	3.8	35
673	Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring. Sensors and Actuators A: Physical, 2020, 314, 112251.	4.1	49
674	Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Performance Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37597-37606.	8.0	92
675	Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring. ACS Applied Electronic Materials, 2020, 2, 2282-2300.	4.3	64
676	Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy, 2020, 78, 105155.	16.0	105
677	A Highly Sensitive, Reliable, and Highâ€Temperatureâ€Resistant Flexible Pressure Sensor Based on Ceramic Nanofibers. Advanced Science, 2020, 7, 2000258.	11.2	91
678	Highly Integrated Elastic Island-Structured Printed Circuit Board with Controlled Young's Modulus for Stretchable Electronics. Micromachines, 2020, 11, 617.	2.9	1
679	Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber. Sensors, 2020, 20, 4266.	3.8	50
680	Stretchable chipless RFID multi-strain sensors using direct printing of aerosolised nanocomposite. Sensors and Actuators A: Physical, 2020, 313, 112224.	4.1	26
681	Intrinsically Stretchable and Selfâ€Healing Electroconductive Composites Based on Supramolecular Organic Polymer Embedded with Copper Microparticles. Advanced Electronic Materials, 2020, 6, 2000527.	5.1	8
682	Bioinspired, Self-Powered, and Highly Sensitive Electronic Skin for Sensing Static and Dynamic Pressures. ACS Applied Materials & Interfaces, 2020, 12, 37239-37247.	8.0	36
683	Fabrication of porous polymer based pressure sensors using sacrificial PVA 3D scaffolds for the refined tuning of sensor performances. , 2020, , .		4
684	Portable electrochemical carbon cloth analysis device for differential pulse anodic stripping voltammetry determination of Pb2+. Mikrochimica Acta, 2020, 187, 613.	5.0	8
685	Self-powered flexible pressure sensors based on nanopatterned polymer films. Sensor Review, 2020, 40, 629-635.	1.8	4
686	Elastic Aerogel with Tunable Wettability for Self-Cleaning Electronic Skin. , 2020, 2, 1575-1582.		14

#	Article	IF	CITATIONS
687	Self-Sealing Carbon Patterns by One-Step Direct Laser Writing and Their Use in Multifunctional Wearable Sensors. ACS Applied Materials & Interfaces, 2020, 12, 50600-50609.	8.0	9
688	High sensitivity, broad linearity range and low detection limit flexible pressure sensors based on irregular surface microstructure. Organic Electronics, 2020, 87, 105920.	2.6	8
689	Graphene Fiber-Based Strain-Insensitive Wearable Temperature Sensor. , 2020, 4, 1-4.		11
690	Digital and Analog Switching Characteristics of InGaZnO Memristor Depending on Top Electrode Material for Neuromorphic System. IEEE Access, 2020, 8, 192304-192311.	4.2	23
691	High-k Boron Nitride Sheets/Polyimide Hybrid Dielectric Layers for the Fabrication of Flexible Organic Transistors on Commercial Graphite Paper. Nano, 2020, 15, 2050145.	1.0	1
692	Direct Embedment and Alignment of Silver Nanowires by Inkjet Printing for Stretchable Conductors. ACS Applied Electronic Materials, 2020, 2, 3289-3298.	4.3	31
693	Preparation of autonomously self-healing electrode based on double network supramolecular elastomer. , 2020, , .		0
694	Correlation of Accelerated Tests with Human Body Measurements for Flexible Electronics in Wearable Applications. , 2020, , .		2
695	Sensing-range-tunable pressure sensors realized by self-patterned-spacer design and vertical CNT arrays embedded in PDMS. RSC Advances, 2020, 10, 33558-33565.	3.6	5
696	Hydroprinted Liquidâ€Alloyâ€Based Morphing Electronics for Fastâ€Growing/Tender Plants: From Physiology Monitoring to Habit Manipulation. Small, 2020, 16, e2003833.	10.0	41
697	Wrinkle-Enabled Highly Stretchable Strain Sensors for Wide-Range Health Monitoring with a Big Data Cloud Platform. ACS Applied Materials & Interfaces, 2020, 12, 43009-43017.	8.0	60
698	Highly Stretchable Fiber-Based Potentiometric Ion Sensors for Multichannel Real-Time Analysis of Human Sweat. ACS Sensors, 2020, 5, 2834-2842.	7.8	50
699	Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Advanced Functional Materials, 2020, 30, 2005703.	14.9	85
700	M13 Bacteriophage-Assisted Morphological Engineering of Crack-Based Sensors for Highly Sensitive and Wide Linear Range Strain Sensing. ACS Applied Materials & amp; Interfaces, 2020, 12, 45590-45601.	8.0	16
701	Hierarchically Surfaceâ€Textured Ultrastable Hybrid Film for Largeâ€Scale Triboelectric Nanogenerators. Advanced Functional Materials, 2020, 30, 2005610.	14.9	28
702	Organic Thin Film Transistors in Mechanical Sensors. Advanced Functional Materials, 2020, 30, 2004700.	14.9	21
703	WS ₂ Quantum Dots on e-Textile as a Wearable UV Photodetector: How Well Reduced Graphene Oxide Can Serve as a Carrier Transport Medium?. ACS Applied Materials & Interfaces, 2020, 12, 39730-39744.	8.0	45
704	Cross‣inked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors. Advanced Functional Materials, 2020, 30, 2003381.	14.9	20

#	Article	IF	CITATIONS
705	Engineered Microstructure Derived Hierarchical Deformation of Flexible Pressure Sensor Induces a Supersensitive Piezoresistive Property in Broad Pressure Range. Advanced Science, 2020, 7, 2000154.	11.2	100
706	CNT@leather-based electronic bidirectional pressure sensor. Science China Technological Sciences, 2020, 63, 2137-2146.	4.0	8
707	Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Applied Materials & Interfaces, 2020, 12, 42140-42152.	8.0	78
708	Formulation, printing, and poling method for piezoelectric films based on PVDF–TrFE. Journal of Applied Physics, 2020, 128, .	2.5	15
709	Wearable Sensors for On-Leaf Monitoring of Volatile Organic Compounds Emissions from Plants. , 2020, , .		2
710	Biodegradable Amino acid-based Pressure Sensor. , 2020, , .		3
711	Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture. Micromachines, 2020, 11, 1103.	2.9	9
712	Polymerizations of Diketopyrrolopyrrole-Type Dyes in Unconventional Orientation. ACS Applied Polymer Materials, 2020, 2, 5698-5704.	4.4	5
713	Integrating Carbon Fiber Based Piezoresistive Composites for Flow Characterization in In-vitro Cell Research Equipment. Procedia CIRP, 2020, 91, 864-868.	1.9	1
714	Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chemistry of Materials, 2020, 32, 10296-10320.	6.7	101
715	Snakeskin-Inspired Elastomers with Extremely Low Coefficient of Friction under Dry Conditions. ACS Applied Materials & Interfaces, 2020, 12, 57450-57460.	8.0	14
716	A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 2020, 8, 11010-11020.	5.8	66
717	Superhydrophobic, stretchable and conductive elastomeric strip for human motion detection. Materials Letters, 2020, 280, 128591.	2.6	3
718	Development of Wearable Tactile Sensor Based on Galinstan Liquid Metal for Both Temperature and Contact Force Sensing. , 2020, , .		5
719	Stress concentration analysis and fabrication of silicon (100) based ultra-stretchable structures with parylene coating. Extreme Mechanics Letters, 2020, 41, 101052.	4.1	3
720	A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. Journal of Materials Chemistry A, 2020, 8, 24175-24183.	10.3	106
721	Bending strain tailored exchange bias in epitaxial NiMn/ <i>γ</i> ′-Fe4N bilayers. Applied Physics Letters, 2020, 117, .	3.3	12
722	Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sensing and Bio-Sensing Research, 2020, 29, 100348.	4.2	83

ARTICLE IF CITATIONS Flexible Piezoresistive Sensors with Wide-Range Pressure Measurements Based on a Graded Nest-like 723 8.0 103 Architecture. ACS Applied Materials & amp; Interfaces, 2020, 12, 26137-26144. Organic field-effect transistor-based flexible sensors. Chemical Society Reviews, 2020, 49, 3423-3460. 724 38.1 Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, 725 3.5 93 and Applications. Advanced Engineering Materials, 2020, 22, 2000312. Flexible and transparent sensors for ultra-low NO₂ detection at room temperature under visible light illumination. Journal of Materials Chemistry A, 2020, 8, 14482-14490. Flexible and Highly Sensitive Pressure Sensors with Surface Discrete Microdomes Made from Selfâ€Assembled Polymer Microspheres Array. Macromolecular Chemistry and Physics, 2020, 221, 727 2.2 30 2000073. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect. ACS Applied Materials & amp; Interfaces, 2020, 12, 28669-28680. 728 8.0 Tunable flexible pressure sensor based on bioinspired capillary-driven method. Microelectronic 729 2.4 10 Engineering, 2020, 231, 111370. Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System 14.6 Integration. ACS Nano, 2020, 14, 6449-6469. Single-layer graphene-based surface plasmon resonance sensor with dynamic evanescent field 731 1.3 11 enhancement for biomarker study. Journal of Modern Optics, 2020, 67, 671-681. Self-cross-linked arrays enabled flexible mechanical sensors for monitoring the body tremor. Npj Flexible Electronics, 2020, 4, . Design and Integration of a Wireless Stretchable Multimodal Sensor Network in a Composite Wing. 733 3.8 8 Sensors, 2020, 20, 2528. Electronic biopolymers: From molecular engineering to functional devices. Chemical Engineering 734 Journal, 2020, 397, 125499. Plasma-jet-induced programmable wettability on stretchable carbon nanotube films. Materials Today 735 6.0 10 Physics, 2020, 14, 100227. A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy, 16.0 2020, 74, 104814. Performance characterization of ionic-hydrogel based strain sensors. Science China Technological 737 4.0 12 Sciences, 2020, 63, 923-930. Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Advances, 2020, 10, 18694-18703. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure 739 16.0 85 based on a triboelectric nanogenerator. Nano Energy, 2020, 75, 105073. Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare 740 devices. RSC Advances, 2020, 10, 22222-22229.

#	Article	IF	CITATIONS
741	Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces. Advanced Materials Technologies, 2020, 5, .	5.8	80
742	Flexoelectronics of centrosymmetric semiconductors. Nature Nanotechnology, 2020, 15, 661-667.	31.5	175
743	An electrical resistance degradation model for thin film under fatigue loading. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2582-2596.	3.4	7
744	Capacitive pressure sensor inlaid a porous dielectric layer of superelastic polydimethylsiloxane in conductive fabrics for detection of human motions. Sensors and Actuators A: Physical, 2020, 312, 112106.	4.1	47
745	Ionically Conductive Hydrogel with Fast Selfâ€Recovery and Low Residual Strain as Strain and Pressure Sensors. Macromolecular Rapid Communications, 2020, 41, e2000185.	3.9	62
746	Wearable Strain Sensor Using Conductive Yarn Sewed on Clothing for Human Respiratory Monitoring. IEEE Sensors Journal, 2020, 20, 12628-12636.	4.7	11
747	Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir, 2020, 36, 3029-3037.	3.5	45
748	Highâ€Accuracy Photoplethysmography Array Using Nearâ€Infrared Organic Photodiodes with Ultralow Dark Current. Advanced Optical Materials, 2020, 8, 1901989.	7.3	34
749	A Supersensitive, Multidimensional Flexible Strain Gauge Sensor Based on Ag/PDMS for Human Activities Monitoring. Scientific Reports, 2020, 10, 4639.	3.3	29
750	Smart Textileâ€Based Personal Thermal Comfort Systems: Current Status and Potential Solutions. Advanced Materials Technologies, 2020, 5, 1901155.	5.8	82
751	Highly Customizable Transparent Silver Nanowire Patterning via Inkjetâ€Printed Conductive Polymer Templates Formed on Various Surfaces. Advanced Materials Technologies, 2020, 5, 2000042.	5.8	35
752	Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy, 2020, 72, 104663.	16.0	103
753	Review—Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and Integrations. Journal of the Electrochemical Society, 2020, 167, 037573.	2.9	74
755	A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosensors and Bioelectronics, 2020, 156, 112133.	10.1	107
756	Self-powered triboelectric/pyroelectric multimodal sensors with enhanced performances and decoupled multiple stimuli. Nano Energy, 2020, 72, 104671.	16.0	44
757	Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: the effect of environmental factors on strain sensing performance. Journal of Materials Chemistry C, 2020, 8, 6185-6195.	5.5	60
758	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	47.7	644
759	Synthetic strategy for thienothiophene-benzotriazole-based polymers with high backbone planarity and solubility for field-effect transistor applications. Journal of Industrial and Engineering Chemistry, 2020, 86, 150-157.	5.8	12

ARTICLE IF CITATIONS # Piezofibers to smart textiles: a review on recent advances and future outlook for wearable 760 10.3 102 technology. Journal of Materials Chemistry A, 2020, 8, 9496-9522. Hybrid Integrated Photomedical Devices for Wearable Vital Sign Tracking. ACS Sensors, 2020, 5, 761 1582-1588. Identification and Control of a Nonlinear Soft Actuator and Sensor System. IEEE Robotics and 762 5.1 17 Automation Letters, 2020, 5, 3783-3790. Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies. Nano Energy, 2020, 72, 104675. Flexible piezoelectric PVDF/NDs nanocomposite films: improved electroactive properties at low concentration of nanofiller and numerical simulation using finite element method. Journal of 765 2.4 14 Polymer Research, 2020, 27, 1. Paper-Based Sensors for Gas, Humidity, and Strain Detections: A Review. ACS Applied Materials & amp; Interfaces, 2020, 12, 31037-31053. 8.0 296 A Flexible Pressure Sensor With Sandwiched Carpets of Vertically Aligned Carbon Nanotubes Partially 767 4.7 16 Embedded in Polydimethylsiloxane Substrates. IEEE Sensors Journal, 2020, 20, 12146-12153. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber 10.3 589 triboelectric nanogenerators. Science Advances, 2020, 6, eaba9624. 769 Metallic Nanoislands on Graphene for Biomechanical Sensing. ACS Omega, 2020, 5, 15763-15770. 3.5 7 Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel 8.0 Brittle–Stretchable Conductive Network. ACS Applied Materials & Interfaces, 2020, 12, 35282-35290. Wearable and Semitransparent Pressure-Sensitive Light-Emitting Sensor Based on 771 14.6 43 Electrochemiluminescence. ACS Nano, 2020, 14, 8716-8723. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy, 2020, 76, 104966. 16.0 Characterizing the Resistance Relaxation of the Fabric-based Resistive Sensors Based on an 773 4.1 17 Electro-mechanical Model. Sensors and Actuators A: Physical, 2020, 310, 112041. Deepâ€Learningâ€Enabled MXeneâ€Based Artificial Throat: Toward Sound Detection and Speech Recognition. 774 5.8 Advanced Materials Technologies, 2020, 5, 2000262. Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 775 10.7 25 2020, 4, . Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Scientific Reports, 2020, 10, 10854. A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous 777 5.5 61 monitoring of human motions. Journal of Materials Chemistry C, 2020, 8, 11525-11531. Printed Flexible Strain Sensor Array for Bendable Interactive Surface. Advanced Functional Materials, 14.9 69 2020, 30, 2003214.

#	Article	IF	CITATIONS
779	A Wearable Tactile Sensor Array for Large Area Remote Vibration Sensing in the Hand. IEEE Sensors Journal, 2020, 20, 6612-6623.	4.7	26
780	Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chemical Society Reviews, 2020, 49, 1812-1866.	38.1	310
781	Molecularly engineered copolyimide film for capacitive humidity sensor. Materials Letters, 2020, 268, 127565.	2.6	4
782	Skin-like Ultrasensitive Strain Sensor for Full-Range Detection of Human Health Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 13287-13295.	8.0	85
783	Flexible potentiometric pH sensors for wearable systems. RSC Advances, 2020, 10, 8594-8617.	3.6	144
784	Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers. Journal of Materials Chemistry C, 2020, 8, 4542-4548.	5.5	26
785	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	8.0	67
786	Transparent Body-Attachable Multifunctional Pressure, Thermal, and Proximity Sensor and Heater. Scientific Reports, 2020, 10, 2701.	3.3	28
787	A highly sensitive, stable, scalable pressure sensor based on a facile baking-inspired foaming process for a human–computer interface. Journal of Materials Chemistry C, 2020, 8, 4271-4278.	5.5	24
788	Highly stretchable strain sensor with wide linear region via hydrogen bond-assisted dual-mode cooperative conductive network for gait detection. Composites Science and Technology, 2020, 191, 108070.	7.8	17
789	Omnidirectional stretchability of freestanding interconnects for stretchable electronics. Smart Materials and Structures, 2020, 29, 045019.	3.5	0
790	Simultaneous Sensing of Touch and Pressure by Using Highly Elastic e-Fabrics. Applied Sciences (Switzerland), 2020, 10, 989.	2.5	10
791	Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chemical Reviews, 2020, 120, 2879-2949.	47.7	213
792	A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection. Sensors, 2020, 20, 1154.	3.8	60
793	Lead Zirconate Titanate (a piezoelectric ceramic)-Based thermal and tactile bimodal organic transistor sensors. Organic Electronics, 2020, 80, 105673.	2.6	14
794	Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring. ACS Applied Polymer Materials, 2020, 2, 1325-1334.	4.4	47
795	Recent Developments of Flexible and Stretchable Electrochemical Biosensors. Micromachines, 2020, 11, 243.	2.9	57
796	Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values. Sensors and Actuators A: Physical, 2020, 305, 111939.	4.1	43

#	Article	IF	CITATIONS
797	Oxide Synaptic Transistors Coupled With Triboelectric Nanogenerators for Bio-Inspired Tactile Sensing Application. IEEE Electron Device Letters, 2020, 41, 617-620.	3.9	51
798	Flexible inorganic bioelectronics. Npj Flexible Electronics, 2020, 4, .	10.7	134
799	Multi-axial electro-mechanical testing methodology for highly stretchable freestanding micron-sized structures. Journal of Micromechanics and Microengineering, 2020, 30, 055002.	2.6	1
800	2D Percolation Design with Conductive Microparticles for Lowâ€Strain Detection in a Stretchable Sensor. Advanced Functional Materials, 2020, 30, 1908514.	14.9	25
801	Fully Printed PEDOT:PSS-based Temperature Sensor with High Humidity Stability for Wireless Healthcare Monitoring. Scientific Reports, 2020, 10, 2467.	3.3	159
802	A flexible and high temperature tolerant strain sensor of La0.7Sr0.3MnO3/Mica. Journal of Materials Science and Technology, 2020, 44, 42-47.	10.7	14
803	Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor. ACS Applied Polymer Materials, 2020, 2, 862-878.	4.4	141
804	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	17.3	34
805	The Role and Challenges of Body Channel Communication in Wearable Flexible Electronics. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 283-296.	4.0	28
806	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0
807	Giant Uniaxial Strain Ferroelectric Domain Tuning in Freestanding PbTiO ₃ Films. Advanced Materials Interfaces, 2020, 7, 1901604.	3.7	41
808	A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance. Journal of Materials Chemistry A, 2020, 8, 3509-3516.	10.3	128
809	A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures <i>via</i> laser marking. Journal of Materials Chemistry C, 2020, 8, 3088-3096.	5.5	54
810	Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. Journal of Materials Chemistry A, 2020, 8, 3667-3675.	10.3	170
811	Dualâ€Mode Wearable Strain Sensor Based on Graphene/Colloidal Crystal Films for Simultaneously Detection of Subtle and Large Human Motions. Advanced Materials Technologies, 2020, 5, 1901056.	5.8	23
812	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	21.0	64
813	Interfacial Phenomena of Advanced Composite Materials toward Wearable Platforms for Biological and Environmental Monitoring Sensors, Armor, and Soft Robotics. Advanced Materials Interfaces, 2020, 7, 1901851.	3.7	18
814	Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. Journal of the Electrochemical Society, 2020, 167, 037561.	2.9	105

#	Article	IF	CITATIONS
815	Strain Sensing Properties of Graphene/Elastic Fabric. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012122.	0.6	1
816	Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. ACS Nano, 2020, 14, 5798-5805.	14.6	181
817	Mechanical analysis and design of flexible beads-and-thread lithium-ion battery. Extreme Mechanics Letters, 2020, 37, 100717.	4.1	6
819	Simultaneously Achieving Ultrahigh Sensitivity and Wide Detection Range for Stretchable Strain Sensors with an Interface‣ocking Strategy. Advanced Materials Technologies, 2020, 5, 2000008.	5.8	24
820	Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105898.	7.6	30
821	Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy, 2020, 73, 104773.	16.0	135
822	Facile Fabrication of High-Performance Pen Ink-Decorated Textile Strain Sensors for Human Motion Detection. ACS Applied Materials & Interfaces, 2020, 12, 19874-19881.	8.0	74
823	Bioinspired, High-Sensitivity Mechanical Sensors Realized with Hexagonal Microcolumnar Arrays Coated with Ultrasonic-Sprayed Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 18813-18822.	8.0	29
824	Cost-Efficient Flexible Supercapacitive Tactile Sensor With Superior Sensitivity and High Spatial Resolution for Human-Robot Interaction. IEEE Access, 2020, 8, 64836-64845.	4.2	16
825	Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect. Journal of Materials Chemistry A, 2020, 8, 10310-10317.	10.3	28
826	A high gauge-factor wearable strain sensor array via 3D printed mold fabrication and size optimization of silver-coated carbon nanotubes. Nanotechnology, 2020, 31, 305501.	2.6	14
827	The Electrical-Triggered High Contrast and Reversible Color-Changing Janus Fabric Based on Double Side Coating. ACS Applied Materials & Interfaces, 2020, 12, 21854-21862.	8.0	25
828	A soft robotic finger with self-powered triboelectric curvature sensor based on multi-material 3D printing. Nano Energy, 2020, 73, 104772.	16.0	54
829	Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers. Macromolecules, 2020, 53, 3591-3601.	4.8	41
830	Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices. ACS Applied Materials & Interfaces, 2020, 12, 21871-21882.	8.0	34
831	Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. Journal of Materials Chemistry A, 2020, 8, 10291-10300.	10.3	130
832	All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. Journal of Materials Chemistry C, 2020, 8, 7436-7446.	5.5	8
833	Invisible Silver Nanomesh Skin Electrode via Mechanical Press Welding. Nanomaterials, 2020, 10, 633.	4.1	14

#	Article	IF	CITATIONS
834	Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chemical Engineering Journal, 2020, 394, 124855.	12.7	40
835	Flexible Capacitive Curvature Sensor with One-Time Calibration for Amphibious Gait Monitoring. Soft Robotics, 2021, 8, 164-174.	8.0	21
836	Butterfly wing architectures inspire sensor and energy applications. National Science Review, 2021, 8, nwaa107.	9.5	32
837	Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angewandte Chemie - International Edition, 2021, 60, 2757-2767.	13.8	66
838	Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angewandte Chemie, 2021, 133, 2789-2799.	2.0	12
839	Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different measurements locations. Journal of Clinical Monitoring and Computing, 2021, 35, 453-462.	1.6	15
840	Conductive and adhesive gluten ionic skin for eco-friendly strain sensor. Journal of Materials Science, 2021, 56, 3970-3980.	3.7	10
841	Ultraconformable organic devices. , 2021, , 437-478.		3
842	Selective Bragg reflection of visible light from coaxial electrospun fiber mats. Journal of Applied Polymer Science, 2021, 138, 49647.	2.6	4
843	Technology evolution from self-powered sensors to AloT enabled smart homes. Nano Energy, 2021, 79, 105414.	16.0	177
844	Wearable piezoresistive pressure sensors based on 3D graphene. Chemical Engineering Journal, 2021, 406, 126777.	12.7	191
845	Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chemical Engineering Journal, 2021, 406, 126898.	12.7	304
846	A new approach for an ultra-thin piezoresistive sensor based on solidified carbon ink film. Journal of Materials Science, 2021, 56, 607-614.	3.7	20
847	Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skinâ€Like Highly Sensitive Selfâ€Powered Haptic Sensors. Advanced Functional Materials, 2021, 31, .	14.9	155
848	3D-Printed Strain Sensors: Electro-Mechanical Simulation and Design Analysis Using Nonlinear Material Model and Experimental Investigation. IEEE Sensors Journal, 2021, 21, 1675-1685.	4.7	3
849	Work function-tunable ZnO/Ag/ZnO film as an effective hole injection electrode prepared via nickel doping for thermally activated delayed fluorescence-based flexible blue organic light-emitting diodes. Applied Surface Science, 2021, 538, 148202.	6.1	26
850	Flexible, Highly Sensitive, and Ultrafast Responsive Pressure Sensor with Stochastic Microstructures for Human Health Monitoring. Advanced Engineering Materials, 2021, 23, 2000902.	3.5	20
851	Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for multifunctional wearable devices. Carbon, 2021, 171, 758-767.	10.3	29

#	Article	IF	CITATIONS
852	Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting, 2021, 21, e00116.	5.8	87
853	Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.	11.4	207
854	Nanoengineered highly sensitive and stable soft strain sensor built from cracked carbon nanotube network/composite bilayers. Carbon, 2021, 173, 849-856.	10.3	17
855	Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chemical Engineering Journal, 2021, 407, 127960.	12.7	54
856	Tough Double Metal-ion Cross-linked Elastomers with Temperature-adaptable Self-healing and Luminescence Properties. Chinese Journal of Polymer Science (English Edition), 2021, 39, 554-565.	3.8	23
857	Review of flexible strain sensors based on cellulose composites for multi-faceted applications. Cellulose, 2021, 28, 615-645.	4.9	39
858	Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection. Composites Science and Technology, 2021, 203, 108617.	7.8	85
859	Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Applied Electronic Materials, 2021, 3, 68-100.	4.3	46
860	Ultrasoft and Highâ€Mobility Block Copolymers for Skinâ€Compatible Electronics. Advanced Materials, 2021, 33, e2005416.	21.0	51
861	Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Research, 2021, 14, 1202-1209.	10.4	23
862	A Windâ€Ðriven Poly(tetrafluoroethylene) Electret and Polylactide Polymerâ€Based Hybrid Nanogenerator for Selfâ€Powered Temperature Detection System. Advanced Sustainable Systems, 2021, 5,	5.3	10
863	Multifunctional and Ultrasensitive-Reduced Graphene Oxide and Pen Ink/Polyvinyl Alcohol-Decorated Modal/Spandex Fabric for High-Performance Wearable Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2100-2109.	8.0	43
864	Energy Scavenging From Low Frequency Vibrations Through a Multi-Pole Thin Magnet and a High-Aspect-Ratio Array Coil. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 139-150.	4.9	7
865	Wearable temperature sensors based on lanthanum-doped aluminum-oxide dielectrics operating at low-voltage and high-frequency for healthcare monitoring systems. Ceramics International, 2021, 47, 4579-4586.	4.8	17
866	Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices. Nano Energy, 2021, 80, 105537.	16.0	55
867	Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy, 2021, 80, 105549.	16.0	153
868	Wearable Stretchable Dry and Selfâ€Adhesive Strain Sensors with Conformal Contact to Skin for Highâ€Quality Motion Monitoring. Advanced Functional Materials, 2021, 31, 2007495.	14.9	160
869	Large-Area, Flexible SnS/Paper-Based Piezoresistive Pressure Sensor for Artificial Electronic Skin Application. IEEE Sensors Journal, 2021, 21, 5143-5150.	4.7	21

#	Article	IF	CITATIONS
870	Liquid Metal-Based Wearable Tactile Sensor for Both Temperature and Contact Force Sensing. IEEE Sensors Journal, 2021, 21, 1694-1703.	4.7	45
871	Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy, 2021, 79, 105394.	16.0	56
872	Wearable Sensing Devices for Point of Care Diagnostics. ACS Applied Bio Materials, 2021, 4, 47-70.	4.6	58
873	MoS ₂ -Based Multifunctional Sensor for Both Chemical and Physical Stimuli and Their Classification Using Machine Learning Algorithms. IEEE Sensors Journal, 2021, 21, 3694-3701.	4.7	6
874	Interface chemistry of atomic-scale structures for building bioinspired 3D light-weight and porous architectures. , 2021, , 115-141.		0
875	Review of progress in Artificial General Intelligence and Human Brain inspired Cognitive Architecture. , 2021, , .		1
876	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	4.2	40
877	Electrically conductive NBR/CB flexible composite film for ultrastretchable strain sensors: fabrication and modeling. Applied Nanoscience (Switzerland), 2021, 11, 429-439.	3.1	15
878	Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials. National Science Review, 2022, 9, nwab184.	9.5	4
879	Flexible, Equipment-Wearable Piezoelectric Sensor With Piezoelectricity Calibration Enabled by In-Situ Temperature Self-Sensing. IEEE Transactions on Industrial Electronics, 2022, 69, 6381-6390.	7.9	17
880	Recent advances in printed flexible heaters for portable and wearable thermal management. Materials Horizons, 2021, 8, 1634-1656.	12.2	62
881	Improved anisotropy and piezoelectricity by applying in-plane deformation in monolayer WS ₂ . Journal of Materials Chemistry C, 2021, 9, 1396-1400.	5.5	8
882	Humidity Effects According to the Type of Carbon Nanotubes. IEEE Access, 2021, 9, 6810-6816.	4.2	9
883	Flexible Capacitive Pressure Sensor Based on Laser–Induced Graphene and Polydimethylsiloxane Foam. IEEE Sensors Journal, 2021, 21, 12048-12056.	4.7	25
884	Dynamic tuning of metal–ligand coordination through water molecules to induce multicolor fluorescence variations for humidity monitoring and anti-counterfeiting applications. Journal of Materials Chemistry C, 2021, 9, 5945-5951.	5.5	11
885	A Flexible Pain Sensor Based on PDMS-AgNWs. IEEE Nanotechnology Magazine, 2021, 20, 137-142.	2.0	2
886	Advanced applications of green materials in bioelectronics applications. , 2021, , 631-661.		1
887	Piezoelectric polymers and composites for multifunctional materials. , 2021, , 239-282.		5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
888	Paper-based flexible metamaterial for microwave applications. EPJ Applied Metamaterials, 2	021, 8, 6.	1.5	3
889	Flexible Organic Field-Effect Transistors Using Barium Titanate as Temperature-Sensitive Die Layer. , 2021, , 113-135.	electric		0
890	Advances in flexible piezoresistive pressure sensor. Wuli Xuebao/Acta Physica Sinica, 2021,	70, 100703.	0.5	5
891	ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-pov healthcare monitoring. Sustainable Energy and Fuels, 2021, 5, 4389-4400.	wered	4.9	21
892	Flexible ferroelectric wearable devices for medical applications. IScience, 2021, 24, 101987		4.1	29
893	Smart Health Care for Societies: An Insight into the Implantable and Wearable Devices for F Health Monitoring. , 2021, , 89-113.	Remote		3
894	Nanoscale Analysis of Surface Bending Strain in Film Substrates for Preventing Fracture in F Electronic Devices. Advanced Materials Interfaces, 2021, 8, 2001662.	lexible	3.7	20
895	Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating a sensing multifunctions. Nano Research, 2021, 14, 2456.	nd	10.4	9
896	Cost-Effective, Disposable, Flexible, and Printable MWCNT-Based Wearable Sensor for Hum Temperature Monitoring. IEEE Sensors Journal, 2022, 22, 16756-16763.	an Body	4.7	13
897	Micro-Fabricated RTD Based Sensor for Breathing Analysis and Monitoring. Sensors, 2021, 2	21, 318.	3.8	17
898	Unique Noncontact Monitoring of Human Respiration and Sweat Evaporation Using a CsPb ₂ Br ₅ -Based Sensor. ACS Applied Materials & Interfaces 5602-5613.	, 2021, 13,	8.0	25
899	Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretcha applications. Materials Horizons, 2021, 8, 2123-2150.	ble	12.2	61
900	A hierarchical porous carbon-nanotube skeleton for sensing films with ultrahigh sensitivity, stretchability, and mechanical compliance. Journal of Materials Chemistry A, 2021, 9, 4317-	4325.	10.3	11
901	Knittable and Sewable Spandex Yarn with Nacre-Mimetic Composite Coating for Wearable Monitoring and Thermo- and Antibacterial Therapies. ACS Applied Materials & amp; Interface 9053-9063.		8.0	52
902	Extending Porous Silicone Capacitive Pressure Sensor Applications into Athletic and Physio Monitoring. Sensors, 2021, 21, 1119.	ogical	3.8	9
903	Flexible Piezoelectric Chitosan and Barium Titanate Biocomposite Films for Sensor Applicati European Journal of Inorganic Chemistry, 2021, 2021, 792-803.	ions.	2.0	18
904	Research and Application Progress of Intelligent Wearable Devices. Chinese Journal of Analy Chemistry, 2021, 49, 159-171.	rtical	1.7	21
905	Photocurrent in Metal-Halide Perovskite/Organic Semiconductor Heterostructures: Impact Microstructure on Charge Generation Efficiency. ACS Applied Materials & Materials & 10231-10238.		8.0	14

#	Article	IF	CITATIONS
906	Tuned Transport Behavior of the IPA-Treated PEDOT:PSS Flexible Temperature Sensor via Screen Printing. Journal of Electronic Materials, 2021, 50, 2356-2364.	2.2	12
907	Stretchable and Ultrasensitive Intelligent Sensors for Wireless Human–Machine Manipulation. Advanced Functional Materials, 2021, 31, 2009466.	14.9	41
908	Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Research, 2021, 14, 3669-3689.	10.4	78
909	Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Advanced Engineering Materials, 2021, 23, 2001187.	3.5	115
910	Extraction and Analysis of Respiratory Motion Using a Comprehensive Wearable Health Monitoring System. Sensors, 2021, 21, 1393.	3.8	11
911	Flexible textile ion sensors based on reduced graphene oxide/fullerene and their potential applications of sweat characterization. Cellulose, 2021, 28, 3123-3133.	4.9	11
912	Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research, 2021, 2021, 9143762.	5.7	32
913	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	14.9	100
914	Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sensors, 2021, 6, 1174-1186.	7.8	101
915	Supersonically Sprayed Washable, Wearable, Stretchable, Hydrophobic, and Antibacterial rGO/AgNW Fabric for Multifunctional Sensors and Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 10013-10025.	8.0	70
916	Recent Advancements in Development of Wearable Gas Sensors. Advanced Materials Technologies, 2021, 6, .	5.8	109
917	Recycled Iontronic from Discarded Chewed Gum for Personalized Healthcare Monitoring and Intelligent Information Encryption. ACS Applied Materials & Interfaces, 2021, 13, 6731-6738.	8.0	29
918	Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review. IEEE Sensors Journal, 2021, 21, 4030-4043.	4.7	40
920	Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 2021, 48, 135-154.	14.2	46
921	Flexible pressure sensors with microstructures. Nano Select, 2021, 2, 1874-1901.	3.7	16
922	Mechanoluminescence Rebrightening the Prospects of Stress Sensing: A Review. Advanced Materials, 2021, 33, e2005925.	21.0	181
923	Flexible Noncontact Sensing for Human–Machine Interaction. Advanced Materials, 2021, 33, e2100218.	21.0	185
924	Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 14479-14488.	8.0	25

ARTICLE IF CITATIONS Highly Conductive Silicone Elastomers via Environmentâ€Friendly Swelling and In Situ Synthesis of 925 3.7 10 Silver Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2100137. An electrochemically actuated drug delivery device with in-situ dosage sensing. Smart Materials and 3.5 9 Structures, 2021, 30, 055003. Material Design for 3D Multifunctional Hydrogel Structure Preparation. Macromolecular Materials 927 3.6 5 and Engineering, 2021, 306, 2100007. Printed Structural Temperature Monitoring Embedded in Multi-Process Hybrid Additive 2.5 Manufacturing. Journal of Materials Engineering and Performance, 2021, 30, 5093-5099. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive 929 10.1 100 technologies. Biosensors and Bioelectronics, 2021, 176, 112946. Environmentally Stable, Highly Conductive, and Mechanically Robust Metallized Textiles. ACS Applied Electronic Materials, 2021, 3, 1477-1488. 4.3 MXene materials based printed flexible devices for healthcare, biomedical and energy storage 932 14.2 107 applications. Materials Today, 2021, 43, 99-131. The Principle and Architectures of Optical Stress Sensors and the Progress on the Development of 934 Microbend Optical Sensors. Advanced Optical Materials, 2021, 9, 2001693. Stretchable and Healable Conductive Elastomer Based on PEDOT:PSS/Natural Rubber for Self-Powered 935 8.0 73 Temperature and Strain Sensing. ACS Applied Materials & amp; Interfaces, 2021, 13, 14599-14611. Operation of a low-temperature differential heat engine for power generation via hybrid 10.1 nanogenerators. Applied Energy, 2021, 285, 116385. Fusing Stretchable Sensing Technology with Machine Learning for Human–Machine Interfaces. 937 14.9 84 Advanced Functional Materials, 2021, 31, 2008807. MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, . 11.3 Fiber-junction design for directional bending sensors. Npj Flexible Electronics, 2021, 5, . 939 10.7 10 Ultraâ€Wide Range Pressure Sensor Based on a Microstructured Conductive Nanocomposite for 940 Wearable Workout Monitoring. Advanced Healthcare Materials, 2021, 10, e2001461. Development of Conformable Substrates for OLEDs Using Highly Transparent Bacterial Cellulose 941 5.313 Modified with Recycled Polystyrene. Advanced Sustainable Systems, 0, , 2000258. Construction of 3D carbon fiber/carbon nanotube/silicone rubber nanocomposites for stretchable 942 conductors through interface host-guest dendrimers. Composites Science and Technology, 2021, 205, 108692. Noninterference Wearable Strain Sensor: Near-Zero Temperature Coefficient of Resistance 943 14.6 25 Nanoparticle Arrays with Thermal Expansion and Transport Engineering. ACS Nano, 2021, 15, 8120-8129. Stretch Sensor-Based Facial Expression Recognition and Classification Using Machine Learning. 944 International Journal of Computational Intelligence and Applications, 2021, 20, .

#	ARTICLE	IF	Citations
945	Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam. Materials, 2021, 14, 1743.	2.9	1
946	Piezo-tribo dual effect hybrid nanogenerators for health monitoring. Nano Energy, 2021, 82, 105691.	16.0	38
947	Conformal, Ultraâ€ŧhin Skin ontactâ€Actuated Hybrid Piezo/Triboelectric Wearable Sensor Based on AlN and Paryleneâ€Encapsulated Elastomeric Blend. Advanced Functional Materials, 2021, 31, 2101047.	14.9	65
948	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	14.2	65
949	Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating. Polymers, 2021, 13, 1435.	4.5	6
950	Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Research, 2021, 14, 3096-3111.	10.4	37
951	Using Folding Structure to Enhance Measurement Range, Sensitivity of the Flexible Sensors: A Simple, Ecoâ€Friendly, and Effective Method. Advanced Materials Technologies, 2021, 6, 2001216.	5.8	9
952	Wireless Battery-Free Broad-Band Sensor for Wearable Multiple Physiological Measurement. ACS Applied Electronic Materials, 2021, 3, 1681-1690.	4.3	7
953	Ionic Elastomers for Electric Actuators and Sensors. Engineering, 2021, 7, 581-602.	6.7	44
954	Research on intelligent perception and human activity monitoring for people with inconvenient movement. Journal of Physics: Conference Series, 2021, 1883, 012177.	0.4	0
955	A harmless thin film elastic modulus measurement method through bending the nonlinear sliding cantilever beam. Measurement: Journal of the International Measurement Confederation, 2021, 175, 108984.	5.0	2
956	Recent advances in electrode development for biomedical applications. Biomedical Engineering Letters, 2021, 11, 107-115.	4.1	10
957	A Robust Wearable Pointâ€ofâ€Care CNTâ€Based Strain Sensor for Wirelessly Monitoring Throatâ€Related Illnesses. Advanced Functional Materials, 2021, 31, 2103375.	14.9	67
958	Highly sensitive and stretchable strain sensor based on self-aligned and periodic cracking of wavy metal nanowire/elastomer composite film. Smart Materials and Structures, 2021, 30, 065022.	3.5	6
959	High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23038-23048.	8.0	25
960	3D-printed interdigital electrodes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4489-4507.	2.6	11
961	Application of a sub–0.1-mm ³ implantable mote for in vivo real-time wireless temperature sensing. Science Advances, 2021, 7, .	10.3	59
962	2D Materials for Skinâ€Mountable Electronic Devices. Advanced Materials, 2021, 33, e2005858.	21.0	51

#	Article	IF	CITATIONS
963	Biocompatible Blends of an Intrinsically Conducting Polymer as Stretchable Strain Sensors for Realâ€īime Monitoring of Starchâ€Based Food Processing. Advanced Functional Materials, 2021, 31, 2102745.	14.9	17
964	Empowering Things With Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet of Things Journal, 2021, 8, 7789-7817.	8.7	288
965	Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chemical Engineering Journal, 2021, 412, 128649.	12.7	125
966	Highly Sensitive Onâ€5kin Temperature Sensors Based on Biocompatible Hydrogels with Thermoresponsive Transparency and Resistivity. Advanced Healthcare Materials, 2021, 10, e2100469.	7.6	42
968	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nano-Micro Letters, 2021, 13, 122.	27.0	74
969	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	7.6	71
970	Promising Development of Thin Film and Flexible Thermoelectric Devices. Nanobiotechnology Reports, 2021, 16, 392-400.	0.6	2
971	Biomedical Catheters With Integrated Miniature Piezoresistive Pressure Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10241-10290.	4.7	27
972	A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sensors and Actuators A: Physical, 2021, 322, 112611.	4.1	30
973	Flexible Microwave Plasmonic Sensor for Noninvasive Measurement of Blood Glucose. , 2021, , .		0
974	Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. Advanced Materials Technologies, 2021, 6, 2100107.	5.8	81
975	Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS Applied Materials & Interfaces, 2021, 13, 26394-26403.	8.0	16
976	Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods, 2021, 5, e2100409.	8.6	67
977	Physical Sensors Based on Laser-Induced Graphene: A Review. IEEE Sensors Journal, 2021, 21, 12426-12443.	4.7	50
978	Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosensors and Bioelectronics, 2021, 182, 113192.	10.1	62
979	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	4.1	60
980	Advanced collagen nanofibers-based functional bio-composites for high-value utilization of leather: A review. Journal of Science: Advanced Materials and Devices, 2021, 6, 153-166.	3.1	12
981	Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. International Journal of Biological Macromolecules, 2021, 181, 418-425.	7.5	29

	CITATION R	EPORT	
#	Article	IF	CITATIONS
982	Objective Evaluation of Therapeutic Effects of ADHD Medication by Analyzing Movements Using a Smart Chair with Piezoelectric Material. Applied Sciences (Switzerland), 2021, 11, 5478.	2.5	1
983	A Porous Microstructured Dielectric Layer Based Pressure Sensor for Wearable Applications. , 2021, , .		4
984	3D Printable and Biocompatible longels for Body Sensor Applications. Advanced Electronic Materials, 2021, 7, 2100178.	5.1	30
985	Direct Fabrication of VIA Interconnects by Electrohydrodynamic Printing for Multi‣ayer 3D Flexible and Stretchable Electronics. Advanced Materials Technologies, 2021, 6, 2100280.	5.8	22
986	GİYİLEBİLİR DOKU ELEKTRONİĞİ. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 0, , .	0.7	2
987	Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Applied Materials Today, 2021, 23, 101025.	4.3	64
988	Highly Sensitive Flexible Capacitive Pressure Sensor with ZnO NW interlayers. , 2021, , .		4
989	Wearable electrochemical flexible biosensors: With the focus on affinity biosensors. Sensing and Bio-Sensing Research, 2021, 32, 100403.	4.2	29
990	Flexible and Stretchable Capacitive Sensors with Different Microstructures. Advanced Materials, 2021, 33, e2008267.	21.0	196
991	Inkjet Printed Textile Force Sensitive Resistors for Wearable and Healthcare Devices. Advanced Healthcare Materials, 2021, 10, e2100893.	7.6	21
992	Flexible printed temperature sensor with high humidity stability using bilayer passivation. Flexible and Printed Electronics, 2021, 6, 034002.	2.7	5
993	Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method. International Journal of Smart and Nano Materials, 2021, 12, 256-268.	4.2	17
994	Enhanced skin adhesive property of α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex film. Carbohydrate Polymers, 2021, 263, 117993.	10.2	6
995	Highly Sensitive Capacitive Flexible Pressure Sensor Based on a High-Permittivity MXene Nanocomposite and 3D Network Electrode for Wearable Electronics. ACS Sensors, 2021, 6, 2630-2641.	7.8	61
996	Nanocellulose Coupled 2D Graphene Nanostructures: Emerging Paradigm for Sustainable Functional Applications. Industrial & Engineering Chemistry Research, 2021, 60, 10882-10916.	3.7	25
998	Ferrite ceramic filled poly-dimethylsiloxane composite with enhanced magnetic-dielectric properties as substrate material for flexible electronics. Ceramics International, 2021, 47, 18246-18251.	4.8	19
999	Advances in transparent and stretchable strain sensors. Advanced Composites and Hybrid Materials, 2021, 4, 435-450.	21.1	109
1000	Compliant three-dimensional thermoelectric generator filled with porous PDMS for power generation and solid-state cooling. Composites Communications, 2021, 26, 100793.	6.3	15

#	Article	IF	CITATIONS
1001	Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution. ACS Applied Materials & Interfaces, 2021, 13, 38105-38113.	8.0	16
1002	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	10.2	86
1003	Graphene Decorated Fiber for Wearable Strain Sensor with High Sensitivity at Tiny Strain. Advanced Materials Technologies, 2021, 6, 2100421.	5.8	24
1004	A Soft Pressure Sensor Array Based on a Conducting Nanomembrane. Micromachines, 2021, 12, 933.	2.9	4
1005	Effect of the Gate Dielectric Layer of Flexible InGaZnO Synaptic Thin-Film Transistors on Learning Behavior. ACS Applied Electronic Materials, 2021, 3, 3972-3979.	4.3	15
1006	Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wideâ€Range Pressure Detection. Advanced Intelligent Systems, 2021, 3, 2100070.	6.1	21
1007	Mechanics analysis of ultra-thin chip peeling from substrate under multi-needle-ejecting and vacuum-absorbing. International Journal of Solids and Structures, 2021, 224, 111009.	2.7	1
1008	Selfâ€Healing Allâ€inâ€One Energy Storage for Flexible Selfâ€Powering Ammonia Smartsensors. Energy and Environmental Materials, 2022, 5, 986-995.	12.8	26
1009	Porous Ion Gel: A Versatile Ionotronic Sensory Platform for High-Performance, Wearable Ionoskins with Electrical and Optical Dual Output. ACS Nano, 2021, 15, 15132-15141.	14.6	48
1010	Optical Hemodynamic Imaging of Jugular Venous Dynamics During Altered Central Venous Pressure. IEEE Transactions on Biomedical Engineering, 2021, 68, 2582-2591.	4.2	5
1011	Deep Eutectic Solvent Induced Porous Conductive Composite for Fully Printed Piezoresistive Pressure Sensor. Advanced Materials Technologies, 2021, 6, 2100731.	5.8	15
1012	Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chemistry of Materials, 2021, 33, 6731-6742.	6.7	48
1013	Design and Construction of Deformable Heaters: Materials, Structure, and Applications. Advanced Electronic Materials, 2021, 7, 2100452.	5.1	25
1014	Rheological conductor from liquid metal-polymer composites. Matter, 2021, 4, 3001-3014.	10.0	33
1015	Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydrate Polymers, 2021, 267, 118198.	10.2	73
1016	Wearable breath monitoring based on a flexible fiber-optic humidity sensor. Sensors and Actuators B: Chemical, 2021, 349, 130794.	7.8	39
1017	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	4.1	103
1018	Three-Dimensional Printing of a Flexible Capacitive Pressure Sensor Array in the Assembly Network of Carbon Fiber Electrodes and Interlayer of a Porous Polyurethane Dielectric. ACS Applied Electronic Materials, 2021, 3, 3999-4008.	4.3	16

#	Article	IF	CITATIONS
1019	Transferred Laserâ€Scribed Grapheneâ€Based Durable and Permeable Strain Sensor. Advanced Materials Interfaces, 2021, 8, 2100625.	3.7	5
1020	A Superhydrophobic Hydrogel for <scp>Selfâ€Healing</scp> and Robust Strain Sensor with Liquid Impalement Resistance. Chinese Journal of Chemistry, 2021, 39, 3393-3398.	4.9	20
1021	Double Network Glycerol Gel: A Robust, Highly Sensitive, and Adaptive Temperature Sensor. Macromolecular Materials and Engineering, 2021, 306, 2100465.	3.6	3
1022	Molecular Ferroelectricâ€Based Flexible Sensors Exhibiting Supersensitivity and Multimodal Capability for Detection. Advanced Materials, 2021, 33, e2104107.	21.0	29
1023	Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nanotubes/Ag nanoparticles. Nanotechnology, 2021, 32, 505509.	2.6	6
1024	Recent Advances in Functional Bacterial Cellulose for Wearable Physical Sensing Applications. Advanced Materials Technologies, 2022, 7, 2100617.	5.8	23
1025	Graphene foam pressure sensor based on fractal electrode with high sensitivity and wide linear range. Carbon, 2021, 182, 497-505.	10.3	35
1026	Stretchable Thin Film Mechanicalâ€Strainâ€Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier. Advanced Materials, 2021, 33, e2104769.	21.0	10
1027	MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy, 2021, 87, 106151.	16.0	82
1028	A Flexible Force-sensitive Film with Ultra-high Sensitivity and Wide Linear Range and Its Sensor. Journal of Alloys and Compounds, 2021, , 162026.	5.5	4
1029	Bioinspired Photonic Ionogels as Interactively Visual Ionic Skin with Optical and Electrical Synergy. Small, 2021, 17, e2103271.	10.0	33
1030	A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods. Sensors and Actuators B: Chemical, 2021, 345, 130373.	7.8	39
1031	Engineering crystal phase of Nylon-11 films for ferroelectric device and piezoelectric sensor. Nano Energy, 2021, 88, 106244.	16.0	11
1032	A Zwitterionic-Aromatic Motif-Based ionic skin for highly biocompatible and Glucose-Responsive sensor. Journal of Colloid and Interface Science, 2021, 600, 561-571.	9.4	21
1033	Direct Fabrication of Stretchable Electronics on a Programmable Stiffness Substrate With 100% Strain Isolation. IEEE Electron Device Letters, 2021, 42, 1484-1487.	3.9	6
1034	Low cost and highly sensitive flexible pressure sensor based on branched micro-structures. Materials Letters, 2022, 307, 130977.	2.6	3
1035	Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88, 106199.	16.0	130
1036	Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. Chemical Engineering Journal, 2021, 422, 130091.	12.7	36

	CITATION R	EPORT	
#	ARTICLE Flexible supercapacitor: Overview and outlooks. Journal of Energy Storage, 2021, 42, 103053.	IF 8.1	CITATIONS
1037		0.1	1/1
1038	Radial alignment of carbon nanotubes for directional sensing application. Composites Part B: Engineering, 2021, 222, 109038.	12.0	10
1039	Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel. Nano Energy, 2021, 88, 106272.	16.0	58
1040	Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy, 2021, 89, 106418.	16.0	40
1041	Metal grid technologies for flexible transparent conductors in large-area optoelectronics. Current Applied Physics, 2021, 31, 105-121.	2.4	15
1042	Humidity sensors based on metal organic frameworks derived polyelectrolyte films. Journal of Colloid and Interface Science, 2021, 602, 646-653.	9.4	17
1043	Self-powered strain sensor based on the piezo-transmittance of a mechanical metamaterial. Nano Energy, 2021, 89, 106447.	16.0	30
1044	A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron. Sensors and Actuators B: Chemical, 2021, 346, 130463.	7.8	29
1045	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	12.7	65
1046	Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chemical Engineering Journal, 2021, 426, 130870.	12.7	31
1047	A dual-mode electronic skin textile for pressure and temperature sensing. Chemical Engineering Journal, 2021, 425, 130599.	12.7	44
1048	Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric. Journal of Materials Science and Technology, 2022, 100, 254-264.	10.7	18
1049	Precision cutting of PDMS film with UV-nanosecond laser based on heat generation-diffusion regulation. Optics and Laser Technology, 2022, 145, 107462.	4.6	9
1050	Wearable biomolecule smart sensor based on Au@PB NPs with high electrochemical activity. Journal of Alloys and Compounds, 2022, 891, 161983.	5.5	7
1051	Material and configuration design strategies towards flexible and wearable power supply devices: a review. Journal of Materials Chemistry A, 2021, 9, 8950-8965.	10.3	43
1052	Eco-friendly biogenic hydrogel for wearable skin-like iontronics. Journal of Materials Chemistry A, 2021, 9, 4692-4699.	10.3	24
1053	Brittle-layer-tuned microcrack propagation for high-performance stretchable strain sensors. Journal of Materials Chemistry C, 2021, 9, 7319-7327.	5.5	12
1054	Wearable strain sensor for real-time sweat volume monitoring. IScience, 2021, 24, 102028.	4.1	41

#	Article	IF	CITATIONS
1055	Investigating the Electrochemical Performance of Smart Selfâ€Powered Bionic Skin Fragment Based on Bioelectricity Generation. Advanced Materials Technologies, 2021, 6, 2000848.	5.8	5
1056	All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli. Journal of Materials Chemistry C, 2021, 9, 13789-13798.	5.5	34
1057	Bending Analysis of Polymer-Based Flexible Antennas for Wearable, General IoT Applications: A Review. Polymers, 2021, 13, 357.	4.5	54
1058	Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency. Journal of Materials Chemistry C, 2021, 9, 9309-9318.	5.5	30
1059	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	14.9	322
1060	Highâ€Performance Flexible Bioelectrocatalysis Bioassay System Based on a Triphase Interface. Advanced Materials Interfaces, 2020, 7, 1902172.	3.7	6
1061	A Highly Sensitive Capacitiveâ€Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer. Advanced Materials Technologies, 2018, 3, 1700237.	5.8	233
1062	Flexible and Printed Electronics. , 2017, , 813-854.		2
1063	Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sensors and Actuators B: Chemical, 2020, 320, 128325.	7.8	96
1065	Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. Journal of Materials Chemistry A, 2020, 8, 6776-6784.	10.3	220
1066	Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Optics Letters, 2019, 44, 5747.	3.3	24
1067	E-health-IoT Universe: A Review. International Journal on Advanced Science, Engineering and Information Technology, 2017, 7, 2328.	0.4	46
1068	Closing the Wearable Gap—Part V: Development of a Pressure-Sensitive Sock Utilizing Soft Sensors. Sensors, 2020, 20, 208.	3.8	17
1069	Measurement and Assessment of Physical Activity by Information and Communication Technology. Biomedical and Environmental Sciences, 2017, 30, 465-472.	0.2	3
1070	Trends in Epidermal Stretchable Electronics for Noninvasive Long-term Healthcare Applications. International Journal of Automation and Smart Technology, 2017, 7, 37-52.	0.4	10
1071	Properties of Stretchable Electrode Pattern Printed on Urethane Film. Journal of Power System Engineering, 2018, 22, 64-71.	0.4	3
1072	Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications. IEEE Reviews in Biomedical Engineering, 2023, 16, 152-170.	18.0	9
1073	High-precision, stretchable kirigami-capacitive sensor with ultra-low cross-sensitivity for body temperature monitoring. Journal of Materials Chemistry A, 2021, 9, 24874-24886.	10.3	22

#	Article	IF	CITATIONS
1074	Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Transactions on Antennas and Propagation, 2022, 70, 2223-2233.	5.1	30
1075	Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 2021, 5, .	10.7	30
1076	Flexible Hybrid Nanogenerator for Selfâ€Powered Weather and Healthcare Monitoring Sensor. Advanced Electronic Materials, 2021, 7, 2100785.	5.1	14
1077	Emerging Wearable Sensors for Plant Health Monitoring. Advanced Functional Materials, 2021, 31, 2106475.	14.9	65
1078	Eâ€Skin Piezoresistive Pressure Sensor Combining Laser Engraving and Shrinking Polymeric Films for Health Monitoring Applications. Advanced Materials Interfaces, 2021, 8, 2100877.	3.7	3
1079	Fabrication and Performance of Graphene Flexible Pressure Sensor with Micro/Nano Structure. Sensors, 2021, 21, 7022.	3.8	4
1080	Highly Durable and Stretchable Ti ₃ C ₂ T <i>_x</i> /PPyâ€Fabricâ€Based Strain Sensor for Humanâ€Motion Detection. Advanced Materials Technologies, 2022, 7, 2100675.	5.8	8
1081	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	10.0	188
1082	Waterborne Polyurethane Enhanced, Adhesive, and Ionic Conductive Hydrogel for Multifunctional Sensors. Macromolecular Rapid Communications, 2021, 42, e2100457.	3.9	22
1083	βâ€Phaseâ€Rich Laserâ€Induced Hierarchically Interactive MXene Reinforced Carbon Nanofibers for Multifunctional Breathable Bioelectronics. Advanced Functional Materials, 2022, 32, 2107969.	14.9	16
1084	Rational Design of Polycationic Hydrogel with Excellent Combination Functions for Flexible Wearable Electronic Devices. Macromolecular Materials and Engineering, 2022, 307, 2100593.	3.6	4
1085	Hybrid strategy of graphene/carbon nanotube hierarchical networks for highly sensitive, flexible wearable strain sensors. Scientific Reports, 2021, 11, 21006.	3.3	16
1086	Ultrathin and Highly Tough Hydrogel Films for Multifunctional Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 50411-50421.	8.0	31
1087	Soft wearable sensors for monitoring symptoms of COVID-19 and other respiratory diseases: a review. Progress in Biomedical Engineering, 2022, 4, 012001.	4.9	12
1088	Stretchable Broadband Plasmonic Photodetector Based on a Hybrid and Composite of Metal Nanoparticles and Organic Semiconductor. Advanced Materials Interfaces, 2021, 8, 2101128.	3.7	4
1089	Recent Advances in Highâ€Mobility and Highâ€Stretchability Organic Fieldâ€Effect Transistors: From Materials, Devices to Applications. Small Methods, 2021, 5, e2100676.	8.6	44
1090	Microstructured biphasic hydrogels for highly sensitive and asymmetric sensors with <scp>temperatureâ€dependent</scp> sensitivity. Journal of Polymer Science, 2022, 60, 2701-2709.	3.8	2
1091	Simple route to performance modulation of resistive strain sensor based on strain-engineered stretchable substrate with customized hard template. Composites Science and Technology, 2022, 217, 109111.	7.8	12

#	Article	IF	CITATIONS
1092	Smart personal protective equipment (PPE): current PPE needs, opportunities for nanotechnology and e-textiles. Flexible and Printed Electronics, 2021, 6, 043004.	2.7	11
1093	Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Advanced Drug Delivery Reviews, 2021, 179, 113997.	13.7	35
1094	Hierarchical network structural composites for extraordinary energy dissipation inspired by the cat paw. Applied Materials Today, 2021, 25, 101222.	4.3	9
1095	Introduction to SiC and Thermoelectrical Properties. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-9.	0.4	2
1096	Barriers to Adoptions of IoT-Based Solutions for Disease Screening. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 50-68.	0.1	0
1097	Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284.		1
1098	Development of Elemental Technology for Arbitrary Shape IoT Sensor and Its Future Development of the Technology. Journal of Japan Institute of Electronics Packaging, 2019, 22, 476-479.	0.1	0
1100	Ultrahigh Skin-Conformal and Biodegradable Graphene-based Flexible Sensor for Measuring ECG Signal. International Journal of Information and Electronics Engineering, 2020, 10, 52-56.	0.2	1
1101	Wearable Devices for Monitoring Work related Musculoskeletal and Gait Disorders. , 2020, , .		1
1102	Highly Sensitive and Flexible M-Tooth Based Hybrid Micro-Structured Capacitive Pressure Sensor. , 2020, , .		9
1103	Electronic Skin Based on a Cellulose/Carbon Nanotube Fiber Network for Large-Area 3D Touch and Real-Time 3D Surface Scanning. ACS Applied Materials & Interfaces, 2021, 13, 53111-53119.	8.0	18
1104	Nature inspired emerging sensing technology: Recent progress and perspectives. Materials Science and Engineering Reports, 2021, 146, 100647.	31.8	18
1105	Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature. Science China Chemistry, 2022, 65, 145-152.	8.2	7
1106	Nano Foldaway Skin-like E-interface for Detecting Human Bioelectrical Signals. ACS Applied Materials & Interfaces, 2021, 13, 148-154.	8.0	7
1107	Flexible and Stretchable Sensor Arrays. , 2020, , 275-294.		0
1108	Flexible Sensor on the Basis of Aligned Piezoelectric Nanofibers for Measurement of Small Deformations and its Application to Pulse Monitoring. Journal of the Korean Society for Precision Engineering, 2020, 37, 125-131.	0.2	0
1110	Flexible and highly pressure-sensitive ternary composites-wrapped polydimethylsiloxane sponge based on synergy of multi-dimensional components. Composites Part B: Engineering, 2022, 229, 109466.	12.0	17
1111	Metal Micropatterning by Triboelectric Spark Discharge. Advanced Functional Materials, 2022, 32, .	14.9	7

#	Article	IF	CITATIONS
1112	Phosphorescence-based temperature and tactile multi-functional flexible sensing skin. Sensors and Actuators A: Physical, 2021, 332, 113205.	4.1	2
1113	Conducting Polymer-Reinforced Laser-Irradiated Graphene as a Heterostructured 3D Transducer for Flexible Skin Patch Biosensors. ACS Applied Materials & Interfaces, 2021, 13, 54456-54465.	8.0	26
1114	Ultrahigh Sensitive Auâ€Đoped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision. Advanced Materials, 2022, 34, e2105865.	21.0	69
1115	Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceramics International, 2022, 48, 4977-4985.	4.8	29
1116	Acceleration Factor Modeling of Flexible Electronic Substrates From Actual Human Body Measurements. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.8	0
1117	Bio-inspired structural colors and their applications. Chemical Communications, 2021, 57, 13448-13464.	4.1	43
1118	Stencil Printing of Liquid Metal upon Electrospun Nanofibers Enables High-Performance Flexible Electronics. ACS Nano, 2021, 15, 19364-19376.	14.6	97
1119	Allâ€inorganic flexible highâ€temperature strain sensor based on SrRuO 3 /muscovite heteroepitaxy. Journal of the American Ceramic Society, 0, , .	3.8	3
1120	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€skin: A Delicate Design for Versatile Sensing. Small, 2022, 18, e2103734.	10.0	76
1121	Multiprocess Laser Liftingâ€Off for Nanostructured Semiconductive Hydrogels. Advanced Materials Interfaces, 0, , 2101250.	3.7	7
1122	Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor. Science Advances, 2021, 7, eabj4273.	10.3	19
1123	Preparation of Polyvinyl alcohol Hydrogel Braided Wire Reinforced by Soluble starch Granules Based on Magnetoionic induction and Piezoelectric sensing. ChemistrySelect, 2021, 6, 11931-11938.	1.5	1
1124	Printed Strain Sensors for Onâ \in Skin Electronics. Small Structures, 2022, 3, 2100131.	12.0	29
1125	Temporary Tattoo pH Sensor with pHâ€Responsive Hydrogel via Initiated Chemical Vapor Deposition. Advanced Materials Technologies, 2022, 7, 2100717.	5.8	16
1126	Stretchable MoS ₂ Artificial Photoreceptors for E‣kin. Advanced Functional Materials, 2022, 32, 2107524.	14.9	24
1127	A Flexible Temperature Sensor for Noncontact Human-Machine Interaction. Materials, 2021, 14, 7112.	2.9	5
1128	Paper-based field-effect transistor sensors. Talanta, 2022, 239, 123085.	5.5	11
1129	Conductive Polymer Composites for Soft Tactile Sensors. Macromolecular Research, 2021, 29, 761-775.	2.4	15

#	Article	IF	CITATIONS
1130	Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoTâ€Based Smart Healthcare Applications. Advanced Science, 2022, 9, e2103694.	11.2	143
1133	A Flexible and Ultra-Highly Sensitive Tactile Sensor through a Parallel Circuit by a Magnetic Aligned Conductive Composite. ACS Nano, 2022, 16, 746-754.	14.6	31
1134	Flexible capacitive pressure sensors for wearable electronics. Journal of Materials Chemistry C, 2022, 10, 1594-1605.	5.5	82
1135	Hemodynamic Modeling, Medical Imaging, and Machine Learning and Their Applications to Cardiovascular Interventions. IEEE Reviews in Biomedical Engineering, 2023, 16, 403-423.	18.0	21
1136	Recent advances on energy storage microdevices: From materials to configurations. Energy Storage Materials, 2022, 45, 741-767.	18.0	15
1137	High-Resolution Extrusion Printing of Ti ₃ C ₂ -Based Inks for Wearable Human Motion Monitoring and Electromagnetic Interference Shielding. SSRN Electronic Journal, 0, , .	0.4	Ο
1138	Heart Rate Monitor Based on IPMC Sensor. , 2021, , .		4
1139	Ultrasensitive strain sensor enhanced by Bonded Light Emitting Diodes. , 2021, , .		0
1140	Smartphone-based chemical sensors and biosensors for biomedical applications. , 2022, , 307-332.		0
1141	Nickel oxide-based flexible thin-film NTC thermistors by using reverse offset printing. Flexible and Printed Electronics, 2022, 7, 015003.	2.7	6
1142	Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi2Te3 nanofibers by electrospinning. Journal of Materials Science, 2022, 57, 3309-3321.	3.7	9
1143	Contact resistance based tactile sensor using covalently cross-linked graphene aerogels. Nanoscale, 2022, 14, 1440-1451.	5.6	6
1144	Soft Capacitive Pressure Sensor With Enhanced Sensitivity Assisted by ZnO NW Interlayers and Airgap. IEEE Sensors Journal, 2022, 22, 3974-3982.	4.7	34
1145	Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion. Sensors, 2022, 22, 772.	3.8	16
1146	Functionalized carbon material-based electrochemical sensors for day-to-day applications. , 2022, , 97-111.		6
1147	Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity. ACS Applied Materials & Interfaces, 2022, 14, 5101-5111.	8.0	40
1148	Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human Respiratory Monitoring. ACS Nano, 2022, 16, 2811-2821.	14.6	102
1149	Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies. Frontiers in Robotics and Al, 2021, 8, 705662.	3.2	26

#	Article	IF	CITATIONS
1150	Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea. Sensors, 2022, 22, 610.	3.8	5
1151	A Selfâ€Powered Triboelectric Hybrid Coder for Human–Machine Interaction. Small Methods, 2022, 6, e2101529.	8.6	53
1152	Carbon Cloth-Based Electrochemical Device for Specific and Sensitive Detection of Ascorbic Acid and Tryptophan. IEEE Sensors Journal, 2022, 22, 6072-6079.	4.7	1
1153	Recent advances on fiber-reinforced multifunctional composites for structural supercapacitors. Functional Composites and Structures, 2022, 4, 012001.	3.4	13
1154	Facile fabrication of flexible and conductive AuNP/DWCNT fabric with enhanced Joule heating efficiency via spray coating route. Microelectronic Engineering, 2022, 255, 111718.	2.4	11
1155	Iron oxide supercapacitor of high volumetric energy and power density using binder-free supersonic spraying and self-healing rGO. Ceramics International, 2022, 48, 13684-13694.	4.8	10
1156	A high anti-impact STF/Ecoflex composite structure with a sensing capacity for wearable design. Composites Part B: Engineering, 2022, 233, 109656.	12.0	24
1157	A flexible humidity sensor based on self-supported polymer film. Sensors and Actuators B: Chemical, 2022, 358, 131438.	7.8	36
1158	Solid state ionics – Selected topics and new directions. Progress in Materials Science, 2022, 126, 100921.	32.8	39
1159	Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy, 2022, 95, 106970.	16.0	37
1160	MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy, 2022, 95, 106986.	16.0	58
1161	Nanoarchitectonics of Stretchable Organic Electronics Materials. RSC Nanoscience and Nanotechnology, 2022, , 518-545.	0.2	0
1162	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	47.7	187
1163	Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing. Composites Science and Technology, 2022, 221, 109313.	7.8	31
1164	Polyimide-Sputtered and Polymerized Films with Ultrahigh Moisture Sensitivity for Respiratory Monitoring and Contactless Sensing. ACS Applied Materials & Interfaces, 2022, 14, 11842-11853.	8.0	19
1165	Wearable Multi-Functional Sensing Technology for Healthcare Smart Detection. Micromachines, 2022, 13, 254.	2.9	24
1166	Fully Printed Stretchable and Multifunctional Eâ€Textiles for Aesthetic Wearable Electronic Systems. Small, 2022, 18, e2107298.	10.0	50
1167	Flexible Temperature Sensors Constructed with Fiber Materials. Advanced Materials Technologies, 2022, 7, .	5.8	82

#	Article	IF	CITATIONS
1168	High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding. Carbon, 2022, 191, 277-289.	10.3	47
1169	A non-contact flexible pyroelectric sensor for wireless physiological monitoring system. Science China Information Sciences, 2022, 65, 1.	4.3	10
1170	Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Advanced Materials Technologies, 2022, 7, .	5.8	42
1171	Biorecognition elements. , 2022, , 41-70.		2
1172	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	38.1	145
1173	Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity. Journal of Materials Chemistry B, 2022, 10, 3434-3443.	5.8	8
1174	A Wearable Tactile Sensor Array forÂLarge Area Remote Vibration Sensing inÂtheÂHand. Springer Series on Touch and Haptic Systems, 2022, , 79-103.	0.3	0
1175	Nanomaterials for soft wearable electronics. , 2022, , .		2
1176	Wearable microfluidic-based e-skin sweat sensors. RSC Advances, 2022, 12, 8691-8707.	3.6	30
1177	A stretchable ultraviolet-to-NIR broad spectral photodetector using organic–inorganic vertical multiheterojunctions. Nanoscale, 2022, 14, 5102-5111.	5.6	5
1178	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	21.0	211
1179	Progress in Organic Photodiodes through Physical Process Insights. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	9
1180	Synergistic Enhancement Properties of a Flexible Integrated PAN/PVDF Piezoelectric Sensor for Human Posture Recognition. Nanomaterials, 2022, 12, 1155.	4.1	17
1181	Wearables and their applications for the rehabilitation of elderly people. Medical and Biological Engineering and Computing, 2022, 60, 1239-1252.	2.8	5
1182	An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter, 2022, 5, 1547-1562.	10.0	23
1183	Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nature Communications, 2022, 13, 1119.	12.8	79
1184	Perspective about Cellulose-Based Pressure and Strain Sensors for Human Motion Detection. Biosensors, 2022, 12, 187.	4.7	12
1185	Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromolecular Rapid Communications, 2022, 43, e2100867.	3.9	14

#	Article	IF	CITATIONS
1186	Radio Frequency Resonator-Based Flexible Wireless Pressure Sensor with MWCNT-PDMS Bilayer Microstructure. Micromachines, 2022, 13, 404.	2.9	7
1187	NiO-Based Electronic Flexible Devices. Applied Sciences (Switzerland), 2022, 12, 2839.	2.5	12
1188	Controlling Response of Polyaniline Towards Humidity by Self-Assembly Fatty Acids. ECS Journal of Solid State Science and Technology, 2022, 11, 037001.	1.8	2
1189	Flameâ€Retardant PEDOT:PSS/LDHs/Leather Flexible Strain Sensor for Human Motion Detection. Macromolecular Rapid Communications, 2022, 43, e2100873.	3.9	17
1190	Sliding Cyclodextrin Molecules along Polymer Chains to Enhance the Stretchability of Conductive Composites. Small, 2022, 18, e2200533.	10.0	15
1191	Study of charged object sensing properties via an organic nanobelt. Organic Electronics, 2022, 103, 106473.	2.6	3
1192	A Hybrid Generator with Electromagnetic Transduction for Improving the Power Density of Triboelectric Nanogenerators and Scavenging Wind Energy. Advanced Materials Technologies, 2022, 7,	5.8	6
1193	An all-elastomer pressure sensor utilizing printed carbon nanotube patterns with high sensitivity. Micro and Nano Engineering, 2022, 14, 100113.	2.9	2
1194	Design of All-Fused-Ring Nonfullerene Acceptor for Highly Sensitive Self-Powered Near-Infrared Organic Photodetectors. , 2022, 4, 882-890.		27
1195	Soft Wireless Bioelectronics Designed for Realâ€Time, Continuous Health Monitoring of Farmworkers. Advanced Healthcare Materials, 2022, 11, e2200170.	7.6	19
1196	A flexible micro direct methanol fuel cells array based on FPCB. Energy Conversion and Management, 2022, 258, 115469.	9.2	6
1197	Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators. International Journal of Biological Macromolecules, 2022, 208, 324-332.	7.5	14
1198	Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy, 2022, 96, 107137.	16.0	112
1199	Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy, 2022, 97, 107182.	16.0	40
1200	A flexible and sensitive strain sensor with three-dimensional reticular structure using biomass Juncus effusus for monitoring human motions. Chemical Engineering Journal, 2022, 438, 135600.	12.7	41
1201	Emotion-interactive empathetic transparent skin cushion with tailored frequency-dependent hydrogel–plasticized nonionic polyvinyl chloride interconnections. Chemical Engineering Journal, 2022, 442, 136142.	12.7	5
1202	Reliability Issues of Thin Film Transistors Subject to Electrostatic Discharge Stresses: An Overview. Advanced Electronic Materials, 2022, 8, .	5.1	4
1203	Flexible and Stretchable Strategies for Electronic Skins: Materials, Structure, and Integration. ACS Applied Electronic Materials, 2022, 4, 1-26.	4.3	20

	Сітатіої	CITATION REPORT	
#	Article	IF	Citations
1204	Smart E-Textile Systems: A Review for Healthcare Applications. Electronics (Switzerland), 2022, 11, 99.	3.1	36
1205	Laser-Processed Stretchable-Gradient Interconnection-Based Temperature Sensor for a Real-Time Monitoring System. ACS Applied Electronic Materials, 2021, 3, 5601-5607.	4.3	5
1206	3D Printed Skinâ€Inspired Flexible Pressure Sensor with Gradient Porous Structure for Tunable High Sensitivity and Wide Linearity Range. Advanced Materials Technologies, 2022, 7, .	5.8	26
1207	Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. Sensors, 2021, 21, 8422.	3.8	14
1208	Polyacrylamide/carboxymethyl chitosan doubleâ€network hydrogels with high conductivity and mechanical toughness for flexible sensors. Journal of Applied Polymer Science, 2022, 139, .	2.6	13
1209	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	38.1	85
1210	Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chemical Reviews, 2022, 122, 10319-10392.	47.7	89
1211	Preparation and characterization of PVA/PVP conductive hydrogels formed by freeze–thaw processes as a promising material for sensor applications. Journal of Materials Science, 2022, 57, 8029-8038.	3.7	10
1212	Humidity response of a capacitive sensor based on auxeticity of carbon nanotube-paper composites. Nano Express, 2022, 3, 025001.	2.4	4
1213	Laser-Sculptured Hierarchical Spinous Structures for Ultra-High-Sensitivity lontronic Sensors with a Broad Operation Range. ACS Applied Materials & Interfaces, 2022, 14, 19672-19682.	8.0	18
1214	A wearable and fully-textile capacitive sensor based on flat-knitted spacing fabric for human motions detection. Sensors and Actuators A: Physical, 2022, 340, 113558.	4.1	8
1215	Skin-Inspired Textile-Based Tactile Sensors Enable Multifunctional Sensing of Wearables and Soft Robots. SSRN Electronic Journal, 0, , .	0.4	1
1216	Carbon Fiber/Polymer-Based Composites for Wearable Sensors: A Review. IEEE Sensors Journal, 2022, 22, 10235-10245.	4.7	8
1217	High-Strength Mxene Sheets Through Interlayer Cross-Linking for Self-Healing Flexible Pressure Sensor. SSRN Electronic Journal, 0, , .	0.4	0
1218	Sensing and Stimulating Electrodes for Electroceuticals. Frontiers in Sensors, 2022, 3, .	3.3	0
1219	High-Sensitivity Pressure Sensors Based on a Low Elastic Modulus Adhesive. Sensors, 2022, 22, 3425.	3.8	0
1220	Copper Nanowire-Sealed Titanium Dioxide/Poly(dimethylsiloxane) Electrode with an In-Plane Wavy Structure for a Stretchable Capacitive Strain Sensor. ACS Applied Nano Materials, 2022, 5, 7150-7160.	5.0	6
1221	Improved dielectric properties of rGO/PDMS composites by incorporation of Ag nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 12334-12350.	2.2	3

#	Article	IF	CITATIONS
1222	Ionic Gelatin-Based Flexible Thermoelectric Generator with Scalability for Human Body Heat Harvesting. Energies, 2022, 15, 3441.	3.1	4
1223	Ionically conductive gelatin-based hybrid composite hydrogels with high mechanical strength, self-healing, and freezing-tolerant properties. European Polymer Journal, 2022, 172, 111230.	5.4	10
1224	All Inkjet-Printed Temperature Sensors Based on PEDOT:PSS. IEEE Access, 2022, 10, 61094-61100.	4.2	9
1225	Integration of filter membrane and Ca2Nb3O10 nanosheets for high performance flexible UV photodetectors. Journal of Materials Science and Technology, 2022, 129, 108-114.	10.7	20
1226	Silicone-Textile Composite Resistive Strain Sensors for Human Motion-Related Parameters. Sensors, 2022, 22, 3954.	3.8	9
1227	Marangoni-flow-assisted assembly of single-walled carbon nanotube films for human motion sensing. Fundamental Research, 2022, , .	3.3	1
1228	Flexible Transparent Highâ€Efficiency Photoelectric Perovskite Resistive Switching Memory. Advanced Functional Materials, 2022, 32, .	14.9	24
1229	Metallic glass nanostructures: Forming strategies and functional applications. Materials Today Advances, 2022, 15, 100253.	5.2	3
1230	Recent Progress in Cellulose-Based Flexible Sensors. Journal of Renewable Materials, 2022, 10, 2319-2334.	2.2	3
1231	Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. Sensors, 2022, 22, 4178.	3.8	21
1232	Two-dimensional material inks. Nature Reviews Materials, 2022, 7, 717-735.	48.7	71
1233	Long/Short chain Crosslinkers-optimized and PEDOT:PSS-enhanced covalent double network hydrogels rapidly prepared under green LED irradiation as flexible strain sensor. European Polymer Journal, 2022, 174, 111327.	5.4	12
1234	Fabrication of flexible temperature sensors to explore indeterministic data analysis for robots as an application of Internet of Things. RSC Advances, 2022, 12, 17138-17145.	3.6	13
1235	Strain-ultrasensitive surface wrinkles for visual optical sensors. Materials Horizons, 2022, 9, 2233-2242.	12.2	10
1236	Bioinspired flexible and highly responsive PVDF-based humidity sensors for respiratory monitoring. Polymer, 2022, 254, 125103.	3.8	12
1237	Mechanical Modulation of 2D Electronic Devices at Attoâ€Joule Energy via Flexotronic Effect. Advanced Functional Materials, 2022, 32, .	14.9	12
1238	Uptake Route Altered the Bioavailability of Graphene in <i>Misgurnus anguillicaudatus</i> : Comparing Waterborne and Sediment Exposures. Environmental Science & Technology, 2022, 56, 9435-9445.	10.0	2
1239	Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers, 2022, 14, 2373.	4.5	12

#	Article	IF	Citations
1240	3D Printed Flexible Photoplethysmography Sensor Array for Tissue Oximetry. , 2022, , .		0
1241	Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics. Journal of Colloid and Interface Science, 2022, 625, 197-209.	9.4	23
1242	Superior Performances Via Designed Multiple Sub-Hierarchical Embossments within Interfaces for Flexible Sensors. SSRN Electronic Journal, 0, , .	0.4	0
1244	A Novel Stretchable and Flexible Sensor Using Graphite-Added Optical Waveguide for Human Motion Detection. IEEE Sensors Journal, 2022, 22, 14929-14936.	4.7	4
1245	Human body IoT systems based on the triboelectrification effect: energy harvesting, sensing, interfacing and communication. Energy and Environmental Science, 2022, 15, 3688-3721.	30.8	93
1246	Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zincâ€lon Batteries and Capacitors. Energy and Environmental Materials, 2023, 6, .	12.8	34
1247	Why is graphene an extraordinary material? A review based on a decade of research. Frontiers of Materials Science, 2022, 16, .	2.2	11
1248	High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure. Journal of Bionic Engineering, 2022, 19, 1439-1448.	5.0	10
1249	NaCl Ionization-Based Moisture Sensor Prepared by Aerosol Deposition for Monitoring Respiratory Patterns. Sensors, 2022, 22, 5178.	3.8	4
1250	Real-time monitoring of serotonin with highly selective aptamer-functionalized conducting polymer nanohybrids. Nano Convergence, 2022, 9, .	12.1	8
1251	A review on bending analysis of polymer-based flexible patch antenna for IoT and wireless applications. Materials Today: Proceedings, 2022, 66, 3511-3516.	1.8	5
1252	Time-evolution of electrical resistance-strain hysteresis curve of embroidered stretch sensors and their application in reliable human motion tracking. Journal of Mechanical Science and Technology, 2022, 36, 3573-3584.	1.5	1
1253	Serpentineâ€Inspired Strain Sensor with Predictable Cracks for Remote Bioâ€Mechanical Signal Monitoring. Macromolecular Rapid Communications, 2022, 43, .	3.9	5
1254	Novel optical temperature and phase change sensor based on the response of hydroxypyrene to sucrose in water ice. Sensors and Actuators A: Physical, 2022, 344, 113711.	4.1	4
1255	A lead-free flexible energy harvesting device. Microsystem Technologies, 2022, 28, 2061-2070.	2.0	4
1256	Improved Stretchable and Sensitive Fe Nanowire-Based Strain Sensor by Optimizing Areal Density of Nanowire Network. Molecules, 2022, 27, 4717.	3.8	2
1257	Multiwalled Carbon Nanotube/Graphite Powder Film for Wearable Pressure Sensors with High Sensing Performance. Nanomaterials, 2022, 12, 2637.	4.1	7
1259	Single-input single-output multi-touch soft sensor systems using band-pass filters. Npj Flexible Electronics, 2022, 6, .	10.7	9

#	Article	IF	CITATIONS
1260	Piezoresistive Properties of 3D-Printed Polylactic Acid (PLA) Nanocomposites. Polymers, 2022, 14, 2981.	4.5	3
1261	Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. Micromachines, 2022, 13, 1220.	2.9	6
1262	Objective Diagnosis of ADHD Through Movement Analysis by Using a Smart Chair With Piezoelectric Material. Pediatrics and Neonatology, 2022, , .	0.9	0
1263	A Sorting Fuzzy Min-Max Model in an Embedded System for Atrial Fibrillation Detection. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18, 1-18.	4.3	15
1264	Dual‣cale Porous Composite for Tactile Sensor with High Sensitivity over an Ultrawide Sensing Range. Small, 2022, 18, .	10.0	17
1265	MsWH: A Multi-Sensory Hardware Platform for Capturing and Analyzing Physiological Emotional Signals. Sensors, 2022, 22, 5775.	3.8	4
1266	Printed temperature sensor array for high-resolution thermal mapping. Scientific Reports, 2022, 12, .	3.3	9
1267	A Wearable Flexible Acceleration Sensor for Monitoring Human Motion. Biosensors, 2022, 12, 620.	4.7	10
1268	Optical fiber sensor based on upconversion luminescence for synchronous temperature and curvature sensing. Optics Express, 2022, 30, 33136.	3.4	5
1269	Emerging Strategies Based on Sensors for Chronic Wound Monitoring and Management. Chemosensors, 2022, 10, 311.	3.6	1
1270	Green synthesis of Ag-doped cellulose aerogel for highly sensitive, flame retardant strain sensors. Cellulose, 2022, 29, 8719-8731.	4.9	6
1271	Numerical simulation of fatigue behavior of flexible metal films in multiphysics fields. Fatigue and Fracture of Engineering Materials and Structures, 0, , .	3.4	0
1272	Preparation of gradient hydrogel for pressure sensing by combining freezing and directional diffusion processes. Chemical Engineering Journal, 2023, 451, 138335.	12.7	24
1273	Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers, 2022, 14, 3730.	4.5	17
1274	Preparation and mechanism investigation of highly sensitive humidity sensor based on Ag/TiO2. Current Applied Physics, 2022, 43, 57-65.	2.4	10
1275	Geometrical and electrical modulation of cracked metal films based on metal nanowire/elastomer composites for high-performance wearable strain sensing. Composites Science and Technology, 2022, 230, 109738.	7.8	5
1276	Electrospun flexible PVDF/GO piezoelectric pressure sensor for human joint monitoring. Diamond and Related Materials, 2022, 129, 109358.	3.9	14
1277	Flexible multifunctional pressure sensors based on Cu-CAT@CNFN and ZnS:Cu/PDMS composite electrode films for visualization and quantification of human motion. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107177.	7.6	12

#	Article	IF	Citations
1278	Silver-Hydrogel/PDMS film with high mechanical strength for anti-interference strain sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130071.	4.7	9
1279	Ultrastrong-polar polyacrylonitrile organic-inorganic architected nanogenerators with synergistic triboelectric behavior for efficient biomechanical energy harvesting and self-powered sensing. Nano Energy, 2022, 103, 107833.	16.0	8
1280	Nanocrack-based ultrasensitive wearable and skin-mountable strain sensors for human motion detection. Materials Advances, 2022, 3, 8665-8676.	5.4	6
1281	Wearable Supercapacitors. Engergy Systems in Electrical Engineering, 2022, , 285-325.	0.7	0
1282	Highly-stable flexible pressure sensor using piezoelectric polymer film on metal oxide TFT. RSC Advances, 2022, 12, 21014-21021.	3.6	7
1283	Poly(<i>N</i> , <i>N</i> -dimethyl)acrylamide-based ion-conductive gel with transparency, self-adhesion and rapid self-healing properties for human motion detection. Soft Matter, 2022, 18, 6115-6123.	2.7	7
1284	Styrene-ethylene-butadiene-styrene copolymer/carbon nanotubes composite fiber based strain sensor with wide sensing range and high linearity for human motion detection. Journal of Industrial Textiles, 2022, 52, 152808372211219.	2.4	0
1285	Hydrogelâ€Based Flexible Electronics. Advanced Materials, 2023, 35, .	21.0	116
1286	Printed Low-Hysteresis Stretchable Strain Sensor Based on a Self-Segregating Conductive Composite. , 2023, 1, 50-58.		11
1287	Smart Eutectic Gallium–Indium: From Properties to Applications. Advanced Materials, 2023, 35, .	21.0	54
1288	Homogeneity Characterization of Textile-Integrated Wearable Sensors based on Impedance Spectroscopy. Sensors, 2022, 22, 6530.	3.8	0
1289	Silver-Reduced Poly(Ethylene Glycol) Diacrylate Composites with Microline Arrays for Directional Bending Sensors. ACS Applied Materials & Interfaces, 2022, 14, 44869-44877.	8.0	0
1290	Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one?. Nano Materials Science, 2023, 5, 392-403.	8.8	9
1291	Nucleation of electroâ€active β and γâ€phases in P(V <scp>DF</scp> â^' <scp>HF</scp> P) for manufacturing energy harvesting device and self powered weight measuring device. Polymer Engineering and Science, 2022, 62, 3858-3867.	3.1	2
1293	Carbon Dotsâ€Based Ultrastretchable and Conductive Hydrogels for Highâ€Performance Tactile Sensors and Selfâ€Powered Electronic Skin. Small, 2023, 19, .	10.0	37
1294	Recent Advances in Silver Nanowire Based Flexible Capacitive Pressure Sensors: From Structure, Fabrication to Emerging Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	11
1295	A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules, 2022, 27, 5709.	3.8	24
1296	Effect of Martensitic Transformation of NiTi Particles on Temperature Sensitivity of Flexible VGCF/PDMS Films. Macromolecular Materials and Engineering, 2022, 307, .	3.6	0

#	Article	IF	CITATIONS
1297	Review of Flexible Piezoresistive Strain Sensors in Civil Structural Health Monitoring. Applied Sciences (Switzerland), 2022, 12, 9750.	2.5	11
1298	Mussel Byssus Inspired Ionic Skin with Damageâ€Resistant Signal for Human–Machine Interaction. Advanced Materials Interfaces, 2022, 9, .	3.7	2
1299	Flexible sensor patch for continuous carbon dioxide monitoring. Frontiers in Chemistry, 0, 10, .	3.6	7
1300	Wave Analysis of Thick Rectangular Graphene Sheets: Thickness and Small-Scale Effects on Natural and Bifurcation Frequencies. Sustainability, 2022, 14, 12329.	3.2	3
1302	Development and Application of A New Graphene Sensing Exoskeleton Device System for Lower Extremity Walking. Procedia Computer Science, 2022, 208, 501-508.	2.0	0
1303	Copper inks for printed electronics: a review. Nanoscale, 2022, 14, 16003-16032.	5.6	18
1304	Graphene-based strain sensor with sandwich structure and its application in bowel sounds monitoring. RSC Advances, 2022, 12, 29103-29112.	3.6	1
1305	Balancing the performance and stability of organic photodiodes with all-polymer active layers. Journal of Materials Chemistry C, 2022, 10, 17502-17511.	5.5	7
1306	Laser-Patterned Hierarchical Aligned Micro-/Nanowire Network for Highly Sensitive Multidimensional Strain Sensor. ACS Applied Materials & Interfaces, 2022, 14, 48276-48284.	8.0	12
1307	Conductive Membranes Based on Cotton Fabric Coated with Polymers for Electrode Applications. Materials, 2022, 15, 7286.	2.9	0
1308	A Piezoresistive Sensor with High Sensitivity and Flexibility Based on Porous Sponge. Nanomaterials, 2022, 12, 3833.	4.1	5
1309	Design and Fabrication of a Robust Chitosan/Polyvinyl Alcohol-Based Humidity Sensor energized by a Piezoelectric Generator. Energies, 2022, 15, 7609.	3.1	4
1310	Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Letters, 2022, 14, .	27.0	67
1311	Stretchable Electrochemical Sensors: From Electrode Fabrication to Cell Mechanotransduction Monitoring ^{â€} . Chinese Journal of Chemistry, 2023, 41, 443-457.	4.9	4
1312	Hydrophobic deep eutectic solventâ€based ionic conductive gels with highly stretchable, fatigueâ€resistant and adhesive performances for reliable flexible strain sensors. Journal of Applied Polymer Science, 2023, 140, .	2.6	2
1313	Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. Polymer, 2022, 261, 125411.	3.8	2
1314	Thermal and infrared light self-repairing, high sensitivity, and large strain sensing range shape memory MXene/CNTs/EVA composites fiber strain sensor for human motion monitoring. Sensors and Actuators A: Physical, 2022, 347, 113939.	4.1	29
1315	Double-layered laser induced graphene (LIG) porous composites with interlocked wave-shaped array for large linearity range and highly pressure-resolution sensor. Composites Science and Technology, 2022, 230, 109790.	7.8	6

#	Article	IF	CITATIONS
1316	Multifunctional sensors for respiration monitoring and antibacterial activity based on piezoelectric PVDF/BZT-0.5BCT nanoparticle composite nanofibers. Smart Materials and Structures, 2022, 31, 125002.	3.5	4
1317	High performance flexible thermoelectric generator using bulk legs and integrated electrodes for human energy harvesting. Energy Conversion and Management, 2022, 272, 116337.	9.2	8
1318	3D-Printed Soft Wearable Electronics: Techniques, Materials, and Applications. , 2023, , 1-49.		0
1319	A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107269.	7.6	16
1320	Multifunctional ultrastretchable and ultrasoft electronics enabled by uncrosslinked polysiloxane elastomers patterned with rheologically modified liquid metal electrodes: Beyond current soft and stretchable electronics. Chemical Engineering Journal, 2023, 453, 139832.	12.7	6
1321	High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor. Chemical Engineering Journal, 2023, 453, 139823.	12.7	32
1322	Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chemical Engineering Journal, 2023, 454, 139990.	12.7	6
1323	Temperature Sensing System With Flexible Electronics Using Oxide TFTs. , 2022, , .		0
1324	Enabling Durable Ultralow― <i>k</i> capacitors with Enhanced Breakdown Strength in Densityâ€Variant Nanolattices. Advanced Materials, 0, , 2208409.	21.0	1
1325	Ambilateral convergent directional freeze casting meta-structured foams with a negative Poisson's ratio for high-performance piezoresistive sensors. Chemical Engineering Journal, 2023, 454, 140436.	12.7	12
1326	Multistimuli-Responsive PNIPAM-Based Double Cross-Linked Conductive Hydrogel with Self-Recovery Ability for Ionic Skin and Smart Sensor. Biomacromolecules, 2022, 23, 5239-5252.	5.4	6
1327	Smart electronics based on 2D materials for wireless healthcare monitoring. Applied Physics Reviews, 2022, 9, .	11.3	7
1328	Characterization and optimization of 3D-printed, flexible vibration strain sensors with triply periodic minimal surfaces. Additive Manufacturing, 2023, 61, 103274.	3.0	1
1329	Stretchable Composite Conductive Fibers for Wearables. Advanced Materials Technologies, 2023, 8, .	5.8	6
1330	Imperceptible, designable, and scalable braided electronic cord. Nature Communications, 2022, 13, .	12.8	34
1331	Wearable Supercapacitive Temperature Sensors with High Accuracy Based on Ionically Conductive Organogel and Macroâ€Kirigami Electrode. Advanced Materials Technologies, 2023, 8, .	5.8	1
1332	Silicon-Based Stretchable Structure via Parylene Kirigami Interconnection. Journal of Microelectromechanical Systems, 2023, 32, 82-90.	2.5	3
1333	Dispersed VO ₂ phases in a flexible sensor for recognizing tensile and compressive stress. Journal of Materials Chemistry C, 2023, 11, 513-519.	5.5	4

#	Article	IF	CITATIONS
1334	Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy, 2023, 105, 108041.	16.0	27
1335	Merkel cell-inspired skin-like hybrid hydrogels for wearable health monitoring. Chemical Engineering Journal, 2023, 456, 140976.	12.7	21
1336	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	38.1	18
1337	Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature monitoring with superlative temperature range and sensitivity. Composites Science and Technology, 2023, 232, 109881.	7.8	19
1338	Self-powered pressure sensor for detecting static and dynamic stimuli through electrochemical reactions. Nano Energy, 2023, 107, 108109.	16.0	4
1339	Integration of a humidity sensor with power electronic applications. , 2022, , .		0
1340	Antimicrobial MXene-based conductive alginate hydrogels as flexible electronics. Chemical Engineering Journal, 2023, 455, 140546.	12.7	6
1341	Humidity Sensors Based on Metal–Organic Frameworks. Nanomaterials, 2022, 12, 4208.	4.1	5
1342	Stretchable nanogenerators for scavenging mechanical energy. Nano Research, O, , .	10.4	1
1343	Transparent, Stretchable, and Recyclable Triboelectric Nanogenerator Based on an Acid- and Alkali-Resistant Hydrogel. ACS Applied Electronic Materials, 2023, 5, 216-226.	4.3	4
1344	Vibration motor stimulation device in smart leggings that promotes motor performance in older people. Medical and Biological Engineering and Computing, 2023, 61, 635-649.	2.8	1
1345	Nonpatterned Soft Piezoresistive Films with Filamentous Conduction Paths for Mimicking Multiple-Resolution Receptors of Human Skin. ACS Applied Materials & Interfaces, 2022, 14, 55088-55097.	8.0	3
1346	Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications. Sensors, 2023, 23, 114.	3.8	1
1347	Tough, Bioâ€disintegrable and Stretchable Substrate Reinforced with Nanofibers for Transient Wearable Electronics. Advanced Functional Materials, 2023, 33, .	14.9	10
1348	Printable lightweight polymer-based energy harvesting systems: materials, processes, and applications. Materials Today Sustainability, 2023, 21, 100292.	4.1	4
1349	Smart Fibers for Self-Powered Electronic Skins. Advanced Fiber Materials, 2023, 5, 401-428.	16.1	49
1350	Fully Printed Temperature Sensor Array Comprising 625 60×60 µm ² pixels. , 2023, 2, .		2
1351	Wearable LIG Flexible Stress Sensor Based on Spider Web Bionic Structure. Coatings, 2023, 13, 155.	2.6	5

#	Article	IF	CITATIONS
1352	Piezoresistive Pressure Sensor Based on a Conductive 3D Sponge Network for Motion Sensing and Human–Machine Interface. ACS Applied Materials & Interfaces, 2023, 15, 3131-3140.	8.0	21
1353	Advances in Carbon-Based Resistance Strain Sensors. ACS Applied Electronic Materials, 2023, 5, 674-689.	4.3	11
1354	Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications. Micromachines, 2023, 14, 167.	2.9	15
1355	All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. Nanoscale, 2023, 15, 3263-3272.	5.6	10
1356	Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Analytical Chemistry, 2023, 95, 490-514.	6.5	18
1357	Celluloseâ€Derived Wearable Carbon Nanoflake Sensors Customized by Semiconductor Laser Photochemistry. , 0, , 2200020.		1
1358	Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring. Nano Energy, 2023, 108, 108197.	16.0	25
1359	Flexible temperature sensors based on two-dimensional materials for wearable devices. Journal Physics D: Applied Physics, 2023, 56, 063001.	2.8	6
1360	Wide-Range Humidity–Temperature Hybrid Flexible Sensor Based on Strontium Titanate and Poly 3,4 Ethylenedioxythiophene Polystyrene Sulfonate for Wearable 3D-Printed Mask Applications. Sensors, 2023, 23, 401.	3.8	3
1361	Organic Photodiodes with Thermally Reliable Dark Current and Excellent Detectivity Enabled by Low Donor Concentration. ACS Applied Materials & Interfaces, 2023, 15, 7175-7183.	8.0	5
1362	Flexible strain sensor with a hat-shaped structure for <i>in situ</i> measurement of 3D deformation. Applied Physics Letters, 2023, 122, .	3.3	4
1363	Configurationâ€dependent stretchable allâ€solidâ€state supercapacitors and hybrid supercapacitors. , 2023, 5, .		36
1364	Biodegradable Cellulose Nanocomposite Substrate for Recyclable Flexible Printed Electronics. Advanced Electronic Materials, 2023, 9, .	5.1	9
1365	Recent progress in stretchable organic field-effect transistors: key materials, fabrication and applications. New Journal of Chemistry, 2023, 47, 5086-5109.	2.8	3
1366	Wearable strain sensors: state-of-the-art and future applications. Materials Advances, 2023, 4, 1444-1459.	5.4	7
1367	Development of Low Cost, Fast, and Highly Stable Piezoresistive Strain Sensors to Monitor Human Movement. IEEE Sensors Journal, 2023, 23, 5299-5306.	4.7	0
1368	Self-Healing Composite Dielectric Elastomer Sensor for Inflatable Space Structures. , 2023, , .		0
1369	Ultrasensitive Mg ²⁺ -Modulated Carbon Nanotube/Tannic Acid Aerogels for High-Performance Wearable Pressure Sensors. ACS Sustainable Chemistry and Engineering, 2023, 11, 2186-2197.	6.7	3

~		<u> </u>	
CITATI	ION	KEDC	JDL

#	Article	IF	CITATIONS
1370	Highly Electronegative V ₂ CT <i>_x</i> /Silicone Nanocompositeâ€Based Serpentine Triboelectric Nanogenerator for Wearable Selfâ€Powered Sensors and Sign Language Interpretation. Advanced Energy Materials, 2023, 13, .	19.5	14
1371	3D Printed Ionogels In Sensors. Polymer-Plastics Technology and Materials, 2023, 62, 632-654.	1.3	1
1372	An IoT Rehab Device: HHI-based NMES System for Motion Stimulation. , 2022, , .		0
1373	Materials for Developing Future Flexible Electronic Device. , 2023, , 517-526.		1
1374	Strain visualization enabled in dual-wavelength InGaN/GaN multiple quantum wells Micro-LEDs by piezo-phototronic effect. Nano Energy, 2023, 109, 108283.	16.0	4
1375	Robust polyethylene sensor complex for multi-dimensional monitoring. Chemical Engineering Journal, 2023, 463, 142407.	12.7	1
1376	DS-guided deposition of PEDOT onto silk fabrics for rapid photothermal antibacterial and respiratory sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131285.	4.7	1
1377	Flexible piezoelectric generator based on PLLA/ZnO oriented fibers for wearable self-powered sensing. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107518.	7.6	5
1378	Forearm Dual-Triboelectric Sensor (FDTS) for assistive Human-Machine-Interfaces (HMIs) and robotic control with potential uses in prosthetic devices. Nano Energy, 2023, 111, 108366.	16.0	2
1379	Flexible strain sensors based on gold nanowire dominoes for human motion detection. Materials Today Communications, 2023, 35, 105703.	1.9	1
1380	Flexible and transparent MXene-platformed ultrafast photodetector for encrypted signal communication in self-powered operation. Nano Energy, 2023, 109, 108331.	16.0	8
1381	Process ambient effects on defect state generation in Cul films: Toward multimodal sensor application via patternable Cul arrays. Applied Surface Science, 2023, 626, 157251.	6.1	3
1382	Structural Engineering of Flexible Electronics. , 2022, , 1-26.		0
1383	3D Printed Nonuniform Auxetic Structure: Programmable Local Stiffness to Improve Mechanical Property by Avoiding Buckling. International Journal of Applied Mechanics, 2022, 14, .	2.2	5
1384	Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback. Biosensors, 2023, 13, 174.	4.7	2
1385	Flexible Plasmonic Optical Tactile Sensor for Health Monitoring and Artificial Haptic Perception. Advanced Materials Technologies, 2023, 8, .	5.8	11
1386	Investigation on highly flexible CZTS solar cells using transparent conductive ZnO/Cu/ZnO films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131084.	4.7	2
1387	Development of Nafion/single-walled carbon nanotube integrated arrays for the rapid detection of salbutamol doping. Analytica Chimica Acta, 2023, 1249, 340907.	5.4	4

	CITA	TION REPORT	
#	ARTICLE Selfâ€powered highâ€resolution smart insole system for plantar pressure mapping. , 2023, 1, .	IF	CITATIONS
1389	Wearable Organic Electrochemical Transistor Array for Skinâ€Surface Electrocardiogram Mapping Above a Human Heart. Advanced Functional Materials, 2023, 33, .	14.9	8
1390	Pt/MoS ₂ /Polyaniline Nanocomposite as a Highly Effective Room Temperature Flexible Gas Sensor for Ammonia Detection. ACS Applied Materials & Interfaces, 2023, 15, 9604-9617.	8.0	17
1391	High-sensitivity gradient porous ionic polymer pressure sensor in charge-sensing mode. Applied Physics Letters, 2023, 122, 074101.	3.3	0
1392	A Multi-model, Large-range Flexible Strain Sensor Based on Carbonized Silk Habotai for Human Health Monitoring. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1238-1249.	3.8	4
1393	Sensing Technology to Improve the Quality of Life. ACS Symposium Series, 0, , 387-409.	0.5	0
1394	Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Letters, 2023, 15, .	27.0	21
1395	A Wearable Flexible Tactile Sensor with Textile Microstructure for Wirelessly Recognizing Human Activity. , 2023, 2, .		3
1396	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	14.9	31
1397	Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy, 2023, 109, 108291.	16.0	14
1398	Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Materials Today Chemistry, 2023, 29, 101428.	3.5	18
1399	A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics, 2023, 13, 916.	2.6	8
1400	Temperature sensing properties of a flexible organic single-crystal field-effect transistor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
1401	Materials and device architecture towards a multimodal electronic skin. Materials Today, 2023, 64, 165-179.	14.2	12
1403	Flexible Strain Sensor Enabled by Carbon Nanotubesâ€Decorated Electrospun TPU Membrane for Huma Motion Monitoring. Advanced Materials Interfaces, 2023, 10, .	in 3.7	9
1404	Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. Nanomaterials, 2023, 13, 1110.	4.1	5
1405	Advances in graphene-based flexible and wearable strain sensors. Chemical Engineering Journal, 2023, 464, 142576.	12.7	52
1406	Multi-Functional Systems Based on Shear Thickening Fluid. , 2023, , 53-75.		2

#	Article	IF	CITATIONS
1407	Heterogeneous Multi-Material Flexible Piezoresistive Sensor with High Sensitivity and Wide Measurement Range. Micromachines, 2023, 14, 716.	2.9	1
1408	Ultrasmall barium titanate nanoparticles modulated stretchable dielectric elastomer sensors with large deformability and high sensitivity. InformaÄnÄ-MateriÄ¡ly, 2023, 5, .	17.3	7
1409	Functional Carbon from Nature: Biomassâ€Derived Carbon Materials and the Recent Progress of Their Applications. Advanced Science, 2023, 10, .	11.2	30
1410	A 17.6-bit 800-SPS Energy-Efficient Read-Out IC with Input Impedance Boosting. IEEE Sensors Journal, 2023, , 1-1.	4.7	2
1411	Conductive chromotropic fiber filament sensors with ultrahigh stretchability for wearable sensing textiles toward 3D optical motion capture. Journal of Materials Chemistry A, 2023, 11, 9597-9607.	10.3	6
1412	A novel micro-scaled multi-layered optical stress sensor for force sensing. Journal of Computational Electronics, 2023, 22, 768-782.	2.5	Ο
1413	A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. Sensors, 2023, 23, 3673.	3.8	7
1414	Highly Reliable Temperature Sensor Based on p-GaN/AlGaN/GaN Hybrid Anode Diode with Wide Operation Temperature from 73 K to 573 K. Crystals, 2023, 13, 620.	2.2	1
1415	Silicon flexoelectronic transistors. Science Advances, 2023, 9, .	10.3	11
1416	Wearable cotton fabric-based single-electrode-mode triboelectric nanogenerator for self‑powered human motion monitoring. Cellulose, 2023, 30, 5355-5371.	4.9	7
1417	Manufacturing of Highly Sensitive Piezoresistive Two-Substances Auxetic Strain Sensor Using Composite Approach. Fibers and Polymers, 2023, 24, 1789-1797.	2.1	4
1418	All-polymer dynamical ionogel-like materials with benzyl-mediated ultra-strong adhesion for flexible sensor application. Chemical Engineering Journal, 2023, 465, 143072.	12.7	6
1419	Robust, Ultrathin, and Highly Sensitive Reduced Graphene Oxide/Silk Fibroin Wearable Sensors Responded to Temperature and Humidity for Physiological Detection. Biomacromolecules, 2023, 24, 2606-2617.	5.4	4
1420	Functionalized nanofibers for piezoelectric energy harvesting applications. , 2023, , 719-751.		0
1421	A Lowâ€Hysteresis and Highly Stretchable Ionogel Enabled by Well Dispersed Slidable Cross‣inker for Rapid Humanâ€Machine Interaction. Advanced Functional Materials, 2023, 33, .	14.9	14
1422	Optically Transparent and Mechanically Robust Ionic Hydrogel Electrodes for Bright Electroluminescent Devices Achieving High Stretchability Over 1400%. Advanced Functional Materials, 2023, 33, .	14.9	13
1423	Stretchable and Biocompatible Transparent Electrodes for Multimodal Biosignal Sensing from Exposed Skin. Advanced Electronic Materials, 2023, 9, .	5.1	3
1424	Flexible and Stretchable Piezoresistive Sensor with Decoupled Pressure Sensing Capability. Advanced Materials Technologies, 2023, 8, .	5.8	1

#	Article	IF	CITATIONS
1425	In-situ etching activation towards flexible carbonized paper-supported electrode with transition-metal oxides embedded into carbonized cellulose fibers. Industrial Crops and Products, 2023, 201, 116894.	5.2	2
1426	Preparation and characterization of highly conductive lignin aerogel based on tunicate nanocellulose framework. International Journal of Biological Macromolecules, 2023, 242, 125010.	7.5	4
1427	Passive and Wireless Allâ€Textile Wearable Sensor System. Advanced Science, 2023, 10, .	11.2	5
1428	Construction of TiO2@ZnO nanofibers with beads-on-a-string heterostructures for photoelectrochemical detection of lactic acid. Journal of Alloys and Compounds, 2023, 960, 170659.	5.5	6
1429	Evolution of 2D materials conducive to the wearable physical sensors for structural health assessment. Microelectronic Engineering, 2023, 276, 112013.	2.4	1
1430	Nanocarbon Black and Molybdenum Disulfide Hybrid Filler System for the Enhancement of Fracture Toughness and Electromechanical Sensing Properties in the Silicone Rubber-Based Energy Harvester. Polymers, 2023, 15, 2189.	4.5	1
1431	Ionic Gel Based Multifunctional Sensor for Body Temperature Monitoring and Joint Motion Detection. Advanced Materials Technologies, 2023, 8, .	5.8	4
1432	lsotropic auxetic structure with fixed Poisson's ratio for piezo-resistive strain sensor to detect human body motion. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237, 2177-2189.	1.1	3
1434	Highly stretchable, adhesive and antibacterial double-network hydrogels toward flexible strain sensor. Polymer Testing, 2023, 124, 108087.	4.8	6
1435	Polyaniline-graphite on cellulose substrate: a flexible, low-cost, use-and-throw sensor for glucose concentration detection. Cellulose, 2023, 30, 6423-6433.	4.9	2
1436	Drug Delivery Systems for Personal Healthcare by Smart Wearable Patch System. Biomolecules, 2023, 13, 929.	4.0	2
1437	Synthesized silver nanoparticles decorated reduced graphene oxide/silver ink for aerosol jet printed conformal temperature sensor with a wide sensing range and excellent stability. Journal of Materials Research and Technology, 2023, 25, 873-886.	5.8	5
1438	Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. Nano-Micro Letters, 2023, 15, .	27.0	15
1439	Additively fabricated on-skin sensors for mechanical and thermal bio-signal monitoring. Flexible and Printed Electronics, 0, , .	2.7	0
1440	Advances in electronic skin research: a bibliometric analysis. Frontiers in Materials, 0, 10, .	2.4	0
1441	3D Printing of Ionic Liquid Polymer Networks for Stretchable Conductive Sensors. Advanced Materials Technologies, 2023, 8, .	5.8	2
1442	Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization. Polymers, 2023, 15, 2635.	4.5	1
1443	Highly Stretchable, Ultra-Sensitive, and Self-Healable Multifunctional Flexible Conductive Hydrogel Sensor for Motion Detection and Information Transmission. ACS Applied Materials & Interfaces, 2023, 15, 29499-29510.	8.0	11

#	Article	IF	CITATIONS
1444	Revealing the trends in the academic landscape of the health care system using contextual topic modeling. Data Intelligence, 0, , 1-23.	1.5	0
1445	Recent progress in piezotronic sensors based on one-dimensional zinc oxide nanostructures and its regularly ordered arrays: From design to application. Nano Energy, 2023, 113, 108606.	16.0	2
1446	Anisotropic Free-Standing Aerogels Based on Graphene/Silk for Pressure Sensing and Efficient Adsorption. ACS Applied Materials & amp; Interfaces, 2023, 15, 30630-30642.	8.0	3
1447	Graphene-based physical sensors for humidity, temperature and strain detections. Microelectronic Engineering, 2023, 279, 112055.	2.4	1
1448	Ultra-highly sensitive and self-healing flexible strain sensor with a wide measuring range based on a bilayer structure. Sensors and Actuators A: Physical, 2023, 360, 114510.	4.1	2
1449	High-Sensitivity and Low-Cost Wearable Flexible Pressure Sensor Based on MOFs. ACS Applied Electronic Materials, 2023, 5, 3851-3858.	4.3	3
1450	Polymer-mixed Sb ₂ Te ₃ /Te nanocomposites exhibiting p-type to n-type conduction reversal and thermal conductivity reduction. Materials Research Express, 0, , .	1.6	0
1451	Ultraflexible Organic Active Matrix Sensor Sheet for Tactile and Biosignal Monitoring. Advanced Electronic Materials, 2023, 9, .	5.1	4
1452	Multifunctional MXene Conductive Zwitterionic Hydrogel for Flexible Wearable Sensors and Arrays. ACS Applied Materials & Interfaces, 2023, 15, 24933-24947.	8.0	14
1453	3D printing of polymer composites to fabricate wearable sensors: A comprehensive review. Materials Science and Engineering Reports, 2023, 154, 100734.	31.8	22
1454	Fatigue-Resistant and Hysteresis-Free Composite Fibers with a Heterogeneous Hierarchical Structure. Advanced Fiber Materials, 2023, 5, 1643-1656.	16.1	1
1455	Preparation and performance optimization of resistive flexible temperature sensors prepared by inkjet printing method. Flexible and Printed Electronics, 2023, 8, 025016.	2.7	0
1456	Printed Directional Bending Sensor with High Sensitivity and Low Hysteresis for Human Motion Detection and Soft Robotic Perception. Sensors, 2023, 23, 5041.	3.8	3
1457	Tailoring mechanical and electrical properties of polydimethylsiloxane nanocomposites With graphene and carbon nanotubes for wearable electronics. Polymers and Polymer Composites, 2023, 31, .	1.9	0
1458	Recent advances in ultrathin materials and their applications in eâ€skin. InformaÄnÃ-Materiály, 2023, 5, .	17.3	6
1460	Novel PTC Composites for Temperature Sensors (and Related Applications). , 0, , .		0
1461	Effects of organic additives on film characteristics of flexible PEDOT:PSS/latex. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
1462	MXene Fibers for Flexible and Wearable Electronics: Recent Progress and Future Perspectives. Chemistry - an Asian Journal, 2023, 18, .	3.3	4

#	Article	IF	CITATIONS
1463	Trends in Graphene-Based E-Skin and Artificial Intelligence for Biomedical Applications—A Review. IEEE Sensors Journal, 2023, 23, 18963-18976.	4.7	6
1464	Fatigueâ€Resistant Conducting Polymer Hydrogels as Strain Sensor for Underwater Robotics. Advanced Functional Materials, 2023, 33, .	14.9	22
1465	A high-precision strain seeding spacing monitoring system based on a combined bionic strain sensor and strain peak recognition algorithm. Computers and Electronics in Agriculture, 2023, 212, 108061.	7.7	0
1466	Lignocellulosic Bionanomaterials for Biosensor Applications. Micromachines, 2023, 14, 1450.	2.9	3
1467	Flexible, Wearable, and Ultralow-Power-Consumption Electronic Skins Based on a Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Film. ACS Applied Electronic Materials, 2023, 5, 4451-4461.	4.3	2
1468	A Simple and Effective Physical Ballâ€Milling Strategy to Prepare Superâ€Tough and Stretchable PVA@MXene@PPy Hydrogel for Flexible Capacitive Electronics. Small, 2023, 19, .	10.0	12
1469	Flexoelectric Effect. Microtechnology and MEMS, 2023, , 529-550.	0.2	1
1470	Smart Detecting and Versatile Wearable Electrical Sensing Mediums for Healthcare. Sensors, 2023, 23, 6586.	3.8	8
1471	The design of highly conductive and stretchable polymer conductors with low-load nanoparticles. Soft Matter, 0, , .	2.7	0
1472	Tremella polysaccharide-based conductive hydrogel with anti-freezing and self-healing ability for motion monitoring and intelligent interaction. International Journal of Biological Macromolecules, 2023, 248, 125987.	7.5	3
1473	Photonic Hydrogel Sensing System for Wearable and Noninvasive Cortisol Monitoring. ACS Applied Polymer Materials, 0, , .	4.4	0
1474	Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromolecular Rapid Communications, 0, , .	3.9	1
1475	Single-Line Multi-Channel Flexible Stress Sensor Arrays. Micromachines, 2023, 14, 1554.	2.9	0
1476	Bioinspired dry-state polylactic acid adhesives-based wearable sensor with reversible adhesive performance in harsh environments via building hierarchical liquid metal bead structure. Composites Science and Technology, 2023, 242, 110207.	7.8	2
1477	A CNFs/MWCNTs aerogel film-based humidity sensor with directionally aligned porous structure for substantially enhancing both sensitivity and response speed. Chemical Engineering Journal, 2023, 473, 145304.	12.7	7
1478	Graphene-Based Wearable Temperature Sensors: A Review. Nanomaterials, 2023, 13, 2339.	4.1	0
1479	Soft-template synthesis of hierarchically porous structured polydimethylsiloxane toward flexible capacitive pressure sensor. Science China Technological Sciences, 2023, 66, 2696-2706.	4.0	4
1480	Wearable Chemosensors in Physiological Monitoring. Chemosensors, 2023, 11, 459.	3.6	0

#	Article	IF	CITATIONS
1481	Self-powered physiological monitoring strategy enabled by adaptive dual-network thermogalvanic hydrogels. Sensors and Actuators A: Physical, 2023, 361, 114604.	4.1	2
1482	Construction of Graphene-Paper Flexible Pressure Sensor. Journal of Physics: Conference Series, 2023, 2553, 012072.	0.4	0
1483	Multifunctional fluorescent nanocomposite of PVDF-TrFE and europium barium titanate. Journal of Applied Physics, 2023, 134, .	2.5	1
1484	Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. Advanced Materials, 0, , .	21.0	5
1485	Flexible piezoresistive sensors and triboelectric nanogenerators based on 3D porous structure PDMS/PPy composites materials. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
1486	Bimodal Gating Mechanism in Hybrid Thinâ€Film Transistors Based on Dynamically Reconfigurable Nanoscale Biopolymer Interfaces. Advanced Materials, 2023, 35, .	21.0	1
1487	Highâ€Performance Flexible MoS ₂ Transistors Using Au/Cr/Al/Au as Source/Drain Electrodes. Advanced Electronic Materials, 2023, 9, .	5.1	2
1488	Flexible thermocouple using a thermoelectric graphene fiber with a seamless junction. Journal of Materials Science and Technology, 2024, 172, 15-22.	10.7	5
1489	Effect of spatial structure and aggregation state of silk fibers in fabric on strain sensing performance and mechanism. Sensors and Actuators B: Chemical, 2023, 396, 134632.	7.8	0
1490	A flexible wearable self-supporting hybrid supercapacitor device based on hierarchical nickel cobalt sulfide@C electrode. Scientific Reports, 2023, 13, .	3.3	1
1491	A waterproof, environmentâ€friendly, multifunctional, and stretchable thermoelectric fabric for continuous selfâ€powered personal health signal collection at high humidity. SusMat, 2023, 3, 709-720.	14.9	8
1492	Tuning moduli of hybrid bottlebrush elastomers by molecular architecture. Materials and Design, 2023, 234, 112326.	7.0	1
1493	Alignment of Fe3O4/CNT electrodes via magnetic blade printing for wireless stress-direction-recognizing strain sensor. Chemical Engineering Journal, 2023, 474, 145825.	12.7	1
1494	Multifunctional wearable electronic textile based on fabric modified by MXene/Ag NWs for pressure sensing, EMI and personal thermal management. Composites Part B: Engineering, 2023, 266, 110999.	12.0	6
1495	Recent trend in stretchable composite sensors for wearable robot applications. Advanced Composite Materials, 0, , 1-22.	1.9	1
1496	Temperature Detection System Using Oxide TFTs on a Flexible Substrate. , 2023, , 1-1.		0
1497	Energy Conversion Performance and Optimization of Wearable Annular Thermoelectric Generators. Journal of Electronic Materials, 2023, 52, 7325-7336.	2.2	0
1498	Helical Microfilamentâ€Electrodeâ€Based Semiâ€Implantable Biosensors for In Vivo Electrochemical Detection. Advanced Engineering Materials, 2023, 25, .	3.5	0

#	Article	IF	CITATIONS
1499	Flexible capacitive and piezoresistive pressure sensors based on screen-printed parylene C/polyurethane composites in low-pressure range. Flexible and Printed Electronics, 2023, 8, 035015.	2.7	1
1500	A Free-Standing Polymer Polypyrrole/Cellulose Composite Film via Spatial-Confined Interfacial Electrodeposition for Flexible Supercapacitors. Materials, 2023, 16, 6476.	2.9	0
1501	Assessment of electromechanical performances of PDMS-based flexible capacitive pressure sensors. , 2023, , .		0
1502	Photocurable 3D printing high-strength gels for flexible wearable devices and surgical models. Polymer, 2023, 286, 126392.	3.8	0
1503	Harnessing Flexoelectric and Piezoelectric Effects for Self-Charging Power Systems. ACS Energy Letters, 2023, 8, 4634-4642.	17.4	2
1504	Multifunctional breathable electronic devices for smart wearable healthcare applications. Chemical Engineering Journal, 2023, 476, 146559.	12.7	1
1505	Skin-like and highly elastic optical fiber strain sensor based on a knot-bend shape for human motion monitoring. Applied Optics, 2023, 62, 8958.	1.8	1
1506	Fabrication of Biomass-Based Flexible Sensors by Hydrogen-Bond-Enhanced Epoxidized Natural Rubber. ACS Applied Polymer Materials, 0, , .	4.4	0
1507	Rapid Radiation Synthesis of a Flexible, Self-Healing, and Adhesive Ionogel with Environmental Tolerance for Multifunctional Strain Sensors. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1508	Advances in E-Skin research: materials, functions and applications. Journal of Physics: Conference Series, 2023, 2608, 012020.	0.4	0
1509	Recent advances in smart wearable sensors as electronic skin. Journal of Materials Chemistry B, 2023, 11, 10332-10354.	5.8	0
1510	Knittle Pressure Sensor Based on Graphene/Polyvinylidene Fluoride Nanocomposite Coated on Polyester Fabric. Materials, 2023, 16, 7087.	2.9	0
1511	Printing conformal and flexible copper networks for multimodal pressure and flow sensing. Nanoscale, 2023, 15, 18660-18666.	5.6	0
1512	Printable Polar Silicone Elastomers for Healable Supercapacitive Strain Sensors. Advanced Materials Technologies, 2023, 8, .	5.8	1
1513	Fabrication of wearable sensors for medical applications. , 2023, , .		0
1514	Emerging dissolving strategy of cellulose nanomaterial for flexible electronics sensors in wearable devices: a review. Cellulose, 2024, 31, 27-60.	4.9	1
1515	Stretchable and Lithography-Compatible Interconnects Enabled by Self-Assembled Nanofilms with Interlocking Interfaces. ACS Applied Materials & amp; Interfaces, 2023, 15, 56233-56241.	8.0	0
1516	A Novel Flexible Centralized Force Sensor Based on Triâ€Axis Force Refactoring Method for Arbitrary Force Components Measurement. Advanced Intelligent Systems, 2024, 6, .	6.1	2

ARTICLE IF CITATIONS # Cartilageâ€Inspired Multidirectional Strain Sensor with High Elasticity and Anisotropy Based on 1517 14.9 1 Segmented Embedded Strategy. Advanced Functional Materials, 2024, 34, . Human Activity Behavioural Pattern Recognition in Smart Home with Long-Hour Data Collection. SN 3.6 Computer Science, 2023, 4, . Pre-Strain Method for Stretchable Strain Sensors With Linear Sensitivity Using Acrylic Elastomer and 1519 4.2 0 CNTs Powder. IEEE Access, 2023, 11, 125790-125799. Flexible Piezoresistive Sensor with High Strain Sensitivity and Pressure Insensitivity for Motion Monitoring., 2023, , 1-1. Systematic Literature Review on the Advances of Wearable Technologies. Lecture Notes in Computer 1521 1.3 0 Ścience, 2023, , 78-95. Optically transparent dual-band antenna for UHF and S-band applications. Optical Materials, 2024, 147, 3.6 114615. Synthesis of gallic acid-grafted epoxidized natural rubber and its role in self-healable flexible 1523 2.7 0 temperature sensors. Soft Matter, 0, , . Experimental study on the effects of dielectric layer thickness and elastic modulus on the 0.5 performance of flexible capacitive sensor films. Journal of Biorheology, 2023, 37, 105-111. Short-wave infrared Janus metastructure with multitasking of wide-range pressure detection and 1525 high-resolution biosensing based on photonic spin Hall effect. IEEE Transactions on Instrumentation 0 4.7 and Measurement, 2023, , 1-1. High-resolution printing of micrometer-scale copper electrode: From ink formulation and process 5.8 optimization to application. Journal of Materials Research and Technology, 2024, 28, 131-138. A Self-Powered Flexible Displacement Sensor Based on Triboelectric Effect for Linear Feed System. 1527 4.1 1 Nanomaterials, 2023, 13, 3100. Novel Strain Release Self-Assembly Design of Silver Nanowires and Application in Flexible Strain Sensors., 2023,,. Open-source controller for dynamic cardiovascular models. HardwareX, 2024, 17, e00500. 1529 2.2 0 Recent Developments in Impedance-based Tactile Sensors: A Review. IEEE Sensors Journal, 2023, , 1-1. 4.7 A multifunctional wearable electronic skin: Wide range temperature sensing based on copper 1531 nanoclusters organo-hydrogel with self-healable, self-adhesive, anti-freezing properties. Sensors and 0 4.1 Actuators A: Physical, 2024, 365, 114885. Printed rGO-Based Temperature Sensor for Wireless Body Area Network Applications., 2024, , 181-205. Self-Adhesive, Conductive, and Antibacterial Hydrogel Nanofiber Composite as a Flexible Strain 1533 4.3 0 Sensor. ACS Applied Electronic Materials, 0, , . Inkjet-printed sub-zero temperature sensor for real-time monitoring of cold environments. 1534 International Journal of Biological Macromolecules, 2024, 258, 128774.

#	Article	IF	CITATIONS
1535	A Biomimetic Nanogenerator to Enhance Bone Regeneration by Restoring Electric Microenvironments. ACS Biomaterials Science and Engineering, 0, , .	5.2	0
1536	Design of a Honey Pasteurization Machine Based on Touch Screen User Interface to Control Honey Content Using the Pugh Method. E3S Web of Conferences, 2023, 465, 02021.	0.5	0
1538	Wearable flexible pressure sensors: an intriguing design towards microstructural functionalization. Journal of Materials Chemistry A, 0, , .	10.3	0
1539	Advanced function, design and application of skin substitutes for skin regeneration. Materials Today Bio, 2024, 24, 100918.	5.5	1
1542	Printed Composite Film with Microporous/Micropyramid Hybrid Conductive Architecture for Multifunctional Flexible Force Sensors. Nanomaterials, 2024, 14, 63.	4.1	0
1543	Metal oxide -based electrical/electrochemical sensors for health monitoring systems. TrAC - Trends in Analytical Chemistry, 2024, 171, 117509.	11.4	1
1544	New dimensions of electrospun nanofiber material designs for biotechnological uses. Trends in Biotechnology, 2023, , .	9.3	0
1545	Facile fabrication and characterization of MXene/cellulose composites for electrical properties, electric heating performance. Fashion and Textiles, 2024, 11, .	2.4	0
1546	Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chemical Society Reviews, 2024, 53, 1316-1353.	38.1	3
1547	Piezoelectric Nanocompositeâ€Based Multifunctional Wearable Bioelectronics for Mental Stress Analysis Utilizing Physiological Signals. Advanced Materials Technologies, 2024, 9, .	5.8	1
1548	Cavitas Biosensors (Body Cavity Sensors). , 2024, , 3-17.		0
1549	3D Printable Hydrogel Bioelectronic Interfaces for Healthcare Monitoring and Disease Diagnosis: Materials, Design Strategies, and Applications. Advanced Materials Technologies, 2024, 9, .	5.8	0
1550	Soft and Stretchable Humidityâ€insensitive Thermoresistive Temperature Sensor with A Tensile Strain Modulated Sensitivity. Macromolecular Materials and Engineering, 2024, 309, .	3.6	0
1551	Recent Advances in Smart Tactile Sensory Systems with Brainâ€Inspired Neural Networks. Advanced Intelligent Systems, 2024, 6, .	6.1	0
1552	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024, 124, 455-553.	47.7	2
1553	A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. , 0, 4, .		0
1554	Distinguishing thermoelectric and photoelectric modes enables intelligent real-time detection of indoor electrical safety hazards. Materials Horizons, 2024, 11, 1679-1688.	12.2	2
1555	Substantial enhancement of optoelectronics and piezoelectric properties of novel hollow ZnO nanorods towards efficient flexible touch and bending sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685, 133232.	4.7	Ο

#	Article	IF	CITATIONS
1556	Design and Characterization of Piezoresistive Sensors for Non-Planar Surfaces and Pressure Mapping: A Case Study on Kayak Paddle. Sensors, 2024, 24, 222.	3.8	0
1558	Urban Sensing of Virtual Internet of Things for Metaverse. IEEE Sensors Journal, 2024, 24, 5675-5686.	4.7	0
1560	A dual-mode wearable sensor with coupled ion and pressure sensing. , 0, 4, .		0
1561	Stretchable silicon array with stretchability at 66.1% ± 2.9% and silicon areal coverage of 71.5% enabled by wafer-level microfabrication strategy. Applied Physics Letters, 2024, 124, .	3.3	0
1562	An All-Quartz Integrated Resonant Accelerometer With High Sensitivity and Stability: Design, Fabrication, and Measurement. IEEE Sensors Journal, 2024, 24, 5936-5949.	4.7	0
1563	Structure Regulation of Singleâ \in atom Catalysts for Electrocatalytic Sensing. ChemCatChem, 0, , .	3.7	0
1564	Strain Sensors for Human Movement Detection Based on Fibrous Membranes Comprising Thermoplastic Polyurethane, Ag Nanoparticles, and Carbon Nanotubes. ACS Applied Nano Materials, 2024, 7, 2051-2061.	5.0	0
1565	Kirigami-inspired gas sensors for strain-insensitive operation. Results in Engineering, 2024, 21, 101805.	5.1	0
1566	Large strain, tissue-like and self-healing conductive double-network hydrogel for underwater information transmission. Chemical Engineering Journal, 2024, 482, 148863.	12.7	0
1567	Privacy-preserving human activity sensing: A survey. High-Confidence Computing, 2024, 4, 100204.	3.7	0
1568	Boron Minerals with Different Crystal Structures as Performance Manipulators in Triboelectric Nanogenerators. Energy Technology, 2024, 12, .	3.8	0
1569	Multi-Level Pyramidal Microstructure-Based Pressure Sensors with High Sensitivity and Wide Linear Range for Healthcare Monitoring. ACS Sensors, 2024, 9, 726-735.	7.8	1
1570	Facile Graphene Oxide Modification Method via Hydroxyl-yne Click Reaction for Ultrasensitive and Ultrawide Monitoring Pressure Sensors. ACS Applied Materials & Interfaces, 2024, 16, 6198-6207.	8.0	0
1571	High-Performance Flexible Temperature Sensors Based on Laser-Irradiated Ag-MWCNTs/PEDOT:PSS. ACS Applied Materials & Interfaces, 2024, 16, 6078-6087.	8.0	0
1573	3D microprinting of QR-code integrated hydrogel tactile sensor for real-time E-healthcare. Chemical Engineering Journal, 2024, 484, 149375.	12.7	0
1574	A double-crack structure for bionic wearable strain sensors with ultra-high sensitivity and a wide sensing range. Nanoscale, 2024, 16, 5409-5420.	5.6	0
1575	Terahertz stretchable metamaterials with deformable dolmen resonators for uniaxial strain measurement. Optics Express, 2024, 32, 12024.	3.4	0
1576	Biochipping in forensic medicine as a technology for determining readiness to cause harm: a review. Russian Journal of Forensic Medicine, 2024, 10, 47-55.	0.2	0

#	Article	IF	Citations
1578	Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition. ACS Applied Materials & Interfaces, 2024, 16, 9551-9560.	8.0	0
1579	Performance-Enhanced Flexible Self-Powered Tactile Sensor Arrays Based on Lotus Root-Derived Porous Carbon for Real-Time Human–Machine Interaction of the Robotic Snake. ACS Applied Materials & Interfaces, 2024, 16, 9333-9342.	8.0	0
1580	Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sensors, 2024, 9, 1104-1133.	7.8	0
1581	Nanofibers enabled advanced gas sensors: A review. , 2024, 3, 100093.		0
1582	MXene-Based Chemo-Sensors and Other Sensing Devices. Nanomaterials, 2024, 14, 447.	4.1	0
1583	A Low ost and Doâ€ltâ€Yourself Pressure Sensor Enable Human Motion Detection and Human–Machine Interface Applications. , 0, , .		0
1584	Advances in gas-sensitive materials based on polyurethane film, foam, and fiber. Materials Today Communications, 2024, 38, 108528.	1.9	0
1585	Micromesh reinforced strain sensor with high stretchability and stability for fullâ€range and periodic human motions monitoring. InformaÄnÃ-Materiály, 2024, 6, .	17.3	0
1586	Highly conductive and sensitive acrylamide-modified carboxymethyl cellulose/polyvinyl alcohol composite hydrogels for flexible sensors. Sensors and Actuators A: Physical, 2024, 370, 115258.	4.1	0
1587	Graphene oxide and carbon black synergistic coated cotton fabric for enhancing energy harvesting from water droplets. Carbon, 2024, 223, 119008.	10.3	0
1588	Development and application of electrospun fiber-based multifunctional sensors. Chemical Engineering Journal, 2024, 486, 150204.	12.7	0
1589	An ultra-lightweight and hydrophobic piezoresistive foam with super-wide strain and pressure detection range. Composites Part B: Engineering, 2024, 277, 111412.	12.0	0
1590	Highly reliable and stretchable OLEDs based on facile patterning method: toward stretchable organic optoelectronic devices. Npj Flexible Electronics, 2024, 8, .	10.7	0
1591	Stretchable Metalâ€Air Batteries Through Sliding Electrodes. Advanced Functional Materials, 0, , .	14.9	0
1592	Physical Properties of Paste Synthesized from Wet- and Dry-Processed Silver Powders. Materials, 2024, 17, 1273.	2.9	0
1593	Evaluation and Trend of Smart Clothing Research: Visualization Analysis Based on Bibliometric Analysis and Quantitative Statistics. Fibers and Polymers, 2024, 25, 1479-1511.	2.1	0
1594	Recent developments in wearable breath sensors for healthcare monitoring. Communications Materials, 2024, 5, .	6.9	0