CsPbX₃ Quantum Dots for Lighting and Dis Photoluminescence Superiorities, Underlying Origins a

Advanced Functional Materials 26, 2435-2445 DOI: 10.1002/adfm.201600109

Citation Report

#	Article	IF	CITATIONS
1	Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications. Chinese Chemical Letters, 2016, 27, 1124-1130.	4.8	65
2	Healing Allâ€inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	7.8	296
3	Improving the Stability and Performance of Perovskite Lightâ€Emitting Diodes by Thermal Annealing Treatment. Advanced Materials, 2016, 28, 6906-6913.	11.1	111
4	A study on the application of quantum dots film in COB. , 2016, , .		0
5	Quantum Dots-Converted Light-Emitting Diodes Packaging for Lighting and Display: Status and Perspectives. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.2	144
6	Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chemistry of Materials, 2016, 28, 2902-2906.	3.2	152
7	Polarized emission from CsPbX ₃ perovskite quantum dots. Nanoscale, 2016, 8, 11565-11570.	2.8	125
8	Room-temperature and gram-scale synthesis of CsPbX ₃ (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chemical Communications, 2016, 52, 7265-7268.	2.2	330
9	Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence. Journal of the American Chemical Society, 2016, 138, 14202-14205.	6.6	385
10	Efficient and Stable White LEDs with Silica oated Inorganic Perovskite Quantum Dots. Advanced Materials, 2016, 28, 10088-10094.	11.1	765
11	Magnetic Manipulation of Spontaneous Emission from Inorganic CsPbBr ₃ Perovskites Nanocrystals. Advanced Optical Materials, 2016, 4, 2004-2008.	3.6	14
12	Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Science China Materials, 2016, 59, 719-727.	3.5	201
13	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angewandte Chemie - International Edition, 2016, 55, 13887-13892.	7.2	615
14	Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11694-11702.	3.3	465
15	Synthesis, properties, and optical applications of low-dimensional perovskites. Chemical Communications, 2016, 52, 13637-13655.	2.2	252
16	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	11.1	130
17	Shape-Controlled Synthesis of All-Inorganic CsPbBr ₃ Perovskite Nanocrystals with Bright Blue Emission. ACS Applied Materials & Interfaces, 2016, 8, 28824-28830.	4.0	271
18	Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid―Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion. Angewandte Chemie, 2016, 128, 14091-14096.	1.6	54

#	Article	IF	CITATIONS
19	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	2.7	75
20	Shape and phase evolution from CsPbBr ₃ perovskite nanocubes to tetragonal CsPb ₂ Br ₅ nanosheets with an indirect bandgap. Chemical Communications, 2016, 52, 11296-11299.	2.2	210
21	Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. ACS Nano, 2016, 10, 8603-8609.	7.3	190
22	Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021-18026.	2.8	160
23	Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs. RSC Advances, 2016, 6, 79410-79414.	1.7	26
24	Low-Temperature Solution-Grown CsPbBr ₃ Single Crystals and Their Characterization. Crystal Growth and Design, 2016, 16, 5717-5725.	1.4	329
25	Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Letters, 2016, 16, 5866-5874.	4.5	501
26	Enhanced Optical and Electrical Properties of Polymerâ€Assisted Allâ€Inorganic Perovskites for Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 8983-8989.	11.1	326
27	A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition. Scientific Reports, 2016, 6, 37693.	1.6	126
28	Solid-State Anion Exchange Reactions for Color Tuning of CsPbX ₃ Perovskite Nanocrystals. Chemistry of Materials, 2016, 28, 9033-9040.	3.2	182
29	Magnetic/Fluorescent Barcodes Based on Cadmiumâ€Free Nearâ€Infraredâ€Emitting Quantum Dots for Multiplexed Detection. Advanced Functional Materials, 2016, 26, 7581-7589.	7.8	62
30	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
31	Tuning optical properties of perovskite nanocrystals by supermolecular mercapto-β-cyclodextrin. Chemical Communications, 2016, 52, 12342-12345.	2.2	27
32	Versatile Application of Fluorescent Quantum Dot Labels in Super-resolution Fluorescence Microscopy. ACS Photonics, 2016, 3, 1611-1618.	3.2	52
33	Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. ACS Applied Materials & Interfaces, 2016, 8, 19579-19586.	4.0	295
34	CsPbBr ₃ Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium. Journal of Physical Chemistry Letters, 2016, 7, 4253-4258.	2.1	137
35	Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials, 2016, 8, e328-e328.	3.8	385
36	Theoretical perspective of energy harvesting properties of atomically thin Bil ₃ . Journal of Materials Chemistry A, 2016, 4, 19086-19094.	5.2	47

#	Article	IF	CITATIONS
37	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	1.6	134
38	Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4398-4404.	2.1	105
39	Large-scale room-temperature synthesis and optical properties of perovskite-related Cs ₄ PbBr ₆ fluorophores. Journal of Materials Chemistry C, 2016, 4, 10646-10653.	2.7	183
40	Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Scientific Reports, 2016, 6, 30094.	1.6	97
41	Leadâ€Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2016, 55, 15012-15016.	7.2	426
42	Leadâ€Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots. Angewandte Chemie, 2016, 128, 15236-15240.	1.6	48
43	Reprecipitation synthesis of luminescent CH ₃ NH ₃ PbBr ₃ /NaNO ₃ nanocomposites with enhanced stability. Journal of Materials Chemistry C, 2016, 4, 11387-11391.	2.7	85
44	Solventâ€Polarityâ€Engineered Controllable Synthesis of Highly Fluorescent Cesium Lead Halide Perovskite Quantum Dots and Their Use in White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8478-8486.	7.8	129
45	Inorganic and Hybrid Organoâ€Metal Perovskite Nanostructures: Synthesis, Properties, and Applications. Advanced Functional Materials, 2016, 26, 8576-8593.	7.8	92
46	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	7.8	344
47	Robust and Stable Narrow-Band Green Emitter: An Option for Advanced Wide-Color-Gamut Backlight Display. Chemistry of Materials, 2016, 28, 8493-8497.	3.2	164
48	Long-term stable stacked CsPbBr ₃ quantum dot films for highly efficient white light generation in LEDs. Nanoscale, 2016, 8, 19523-19526.	2.8	65
49	Water resistant CsPbX ₃ nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chemical Science, 2016, 7, 5699-5703.	3.7	499
50	High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.	7.3	347
51	Study of Perovskite QD Down-Converted LEDs and Six-Color White LEDs for Future Displays with Excellent Color Performance. ACS Applied Materials & Interfaces, 2016, 8, 18189-18200.	4.0	159
52	Peptideâ€Passivated Lead Halide Perovskite Nanocrystals Based on Synergistic Effect between Amino and Carboxylic Functional Groups. Advanced Functional Materials, 2017, 27, 1604018.	7.8	105
53	Controlled synthesis of all inorganic CsPbBr 2 I perovskite by non-template and aerosol assisted chemical vapour deposition. Materials Letters, 2017, 190, 244-247.	1.3	29
55	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	4.3	96

#	Article	IF	CITATIONS
56	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small, 2017, 13, 1603996.	5.2	537
57	High Defect Tolerance in Lead Halide Perovskite CsPbBr ₃ . Journal of Physical Chemistry Letters, 2017, 8, 489-493.	2.1	899
58	CsPb _{<i>x</i>} Mn _{1–<i>x</i>} Cl ₃ Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano, 2017, 11, 2239-2247.	7.3	496
59	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. ACS Nano, 2017, 11, 2015-2023.	7.3	274
60	Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. National Science Review, 2017, 4, 170-183.	4.6	98
61	White-light emissive materials based on dynamic polymerization in supramolecular chemistry. Polymer, 2017, 128, 257-275.	1.8	32
62	Solutionâ€Processed Low Threshold Vertical Cavity Surface Emitting Lasers from Allâ€Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2017, 27, 1605088.	7.8	242
63	Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr ₃ Perovskite Nanocrystals. Inorganic Chemistry, 2017, 56, 2596-2601.	1.9	55
64	Tuning the Competitive Recombination of Free Carriers and Bound Excitons in Perovskite CH ₃ NH ₃ PbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2017, 121, 6916-6923.	1.5	18
65	Hybridization of CsPbBr 1.5 I 1.5 perovskite quantum dots with 9,9-dihexylfluorene co-oligomer for white electroluminescence. Organic Electronics, 2017, 44, 6-10.	1.4	27
66	Zero-Dimensional Cs ₄ PbBr ₆ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 961-965.	2.1	299
67	High-quality CsPbBr ₃ perovskite nanocrystals for quantum dot light-emitting diodes. RSC Advances, 2017, 7, 10391-10396.	1.7	202
68	A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 12-15.	0.2	6
69	Perovskite CsPbBr1.2I1.8 quantum dot alloying for application in white light-emitting diodes with excellent color rendering index. Journal of Alloys and Compounds, 2017, 708, 517-523.	2.8	38
70	Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. Chemical Communications, 2017, 53, 3046-3049.	2.2	118
71	Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature. Applied Surface Science, 2017, 405, 280-288.	3.1	38
72	Highâ€Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites. Advanced Materials, 2017, 29, 1606859.	11.1	237
73	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	2.7	149

#	Article	IF	CITATIONS
74	Designing of blue, green, and red CsPbX ₃ perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chemical Communications, 2017, 53, 5400-5403.	2.2	100
75	Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX ₃ /ZnS Quantum Dot Heterostructure. Small, 2017, 13, 1604085.	5.2	195
76	Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI ₃ perovskite and NaYF ₄ :Yb,Er quantum dots. Nanoscale, 2017, 9, 6278-6285.	2.8	93
77	Efficient and Stable Luminescence from Mn ²⁺ in Core and Core–Isocrystalline Shell CsPbCl ₃ Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 4265-4272.	3.2	154
78	Up-Conversion Perovskite Nanolaser with Single Mode and Low Threshold. Journal of Physical Chemistry C, 2017, 121, 10071-10077.	1.5	30
79	Enhancing the Performance and Stability of Perovskite Nanocrystal Lightâ€Emitting Diodes with a Polymer Matrix. Advanced Materials Technologies, 2017, 2, 1700003.	3.0	44
80	Solvothermal Synthesis of Highâ€Quality Allâ€Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Advanced Functional Materials, 2017, 27, 1701121.	7.8	283
81	Improved Performance and Stability of Allâ€Inorganic Perovskite Lightâ€Emitting Diodes by Antisolvent Vapor Treatment. Advanced Functional Materials, 2017, 27, 1700338.	7.8	221
82	Lowâ€Voltage Photodetectors with High Responsivity Based on Solutionâ€Processed Micrometerâ€Scale Allâ€Inorganic Perovskite Nanoplatelets. Small, 2017, 13, 1700364.	5.2	119
83	Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr ₃ Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 2316-2321.	2.1	173
84	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	3.6	244
85	Lead Halide Perovskite Nanocrystals: Stability, Surface Passivation, and Structural Control. ChemNanoMat, 2017, 3, 456-465.	1.5	42
86	High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Interfaces, 2017, 9, 18054-18060.	4.0	289
87	Stable and conductive lead halide perovskites facilitated by X-type ligands. Nanoscale, 2017, 9, 7252-7259.	2.8	62
88	Essentially Trap-Free CsPbBr ₃ Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. Journal of the American Chemical Society, 2017, 139, 6566-6569.	6.6	711
89	Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO ₂ Reduction. Chemistry - A European Journal, 2017, 23, 9481-9485.	1.7	225
90	Formation of bright-green-color-emitting perovskite CsPbBr 3 in a bulk state using a simple recrystallization process. Dyes and Pigments, 2017, 144, 151-157.	2.0	9
91	Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.	2.7	28

#	Article	IF	CITATIONS
92	Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. ACS Applied Materials & Interfaces, 2017, 9, 18417-18422.	4.0	137
93	Tunable Anisotropic Photon Emission from Self-Organized CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 4534-4540.	4.5	66
94	Fullyâ€Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials, 2017, 29, 1700775.	11.1	230
95	Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals. Journal of Alloys and Compounds, 2017, 724, 889-896.	2.8	71
96	Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Materials Chemistry C, 2017, 5, 5610-5627.	2.7	60
97	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie, 2017, 129, 8246-8250.	1.6	153
98	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie - International Edition, 2017, 56, 8134-8138.	7.2	355
99	Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horizons, 2017, 2, 225-232.	4.1	77
100	Energy-Down-Shift CsPbCl ₃ :Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1479-1486.	8.8	221
101	Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance. Chemistry of Materials, 2017, 29, 5168-5173.	3.2	253
102	Highâ€Efficiency Solutionâ€Processed Inorganic Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1700579.	11.1	193
103	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	7.2	98
104	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	1.6	31
105	Low-Temperature Photoluminescence Studies of CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 14872-14878.	1.5	132
106	Solvent-Free Mechanosynthesis of Composition-Tunable Cesium Lead Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 1610-1614.	2.1	173
107	Boosting Fiber-Shaped Photodetectors via "Soft―Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 12092-12099.	4.0	30
108	Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines. Chemistry of Materials, 2017, 29, 4167-4171.	3.2	142
109	A CsPbBr ₃ Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 5660-5663.	6.6	946

#	Article	IF	CITATIONS
110	Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. Journal of Physical Chemistry Letters, 2017, 8, 1810-1818.	2.1	97
111	Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX ₃ (X) Tj ETQq1	10.7843 4.5	14 rgBT /Ov
112	Enhanced optoelectronic quality of perovskite films with excess CH ₃ NH ₃ I for high-efficiency solar cells in ambient air. Nanotechnology, 2017, 28, 205401.	1.3	18
113	Ultrafast Solarâ€Blind Ultraviolet Detection by Inorganic Perovskite CsPbX ₃ Quantum Dots Radial Junction Architecture. Advanced Materials, 2017, 29, 1700400.	11.1	129
114	Highâ€Temperature Photoluminescence of CsPbX ₃ (X = Cl, Br, I) Nanocrystals. Advanced Functional Materials, 2017, 27, 1606750.	7.8	242
115	Dynamics of Charged Excitons and Biexcitons in CsPbBr ₃ Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 1413-1418.	2.1	149
116	CH ₃ NH ₃ PbBr ₃ Perovskite Nanocrystals as Efficient Lightâ€Harvesting Antenna for Fluorescence Resonance Energy Transfer. Chemistry - an Asian Journal, 2017, 12, 988-995.	1.7	14
117	Thermal degradation of luminescence in inorganic perovskite CsPbBr ₃ nanocrystals. Physical Chemistry Chemical Physics, 2017, 19, 8934-8940.	1.3	147
118	All-inorganic perovskite quantum dot/mesoporous TiO ₂ composite-based photodetectors with enhanced performance. Dalton Transactions, 2017, 46, 1766-1769.	1.6	97
119	Solution-processed approach to highly luminescent trigonal Cs4PbBr6 nanodisks and their underlying shape evolution. Journal of Alloys and Compounds, 2017, 710, 244-252.	2.8	15
120	Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 2017, 11, 1189-1195.	7.3	245
121	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	2.8	61
122	High-Efficiency and Air-Stable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure. Nano Letters, 2017, 17, 313-321.	4.5	402
123	Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. CrystEngComm, 2017, 19, 1165-1171.	1.3	42
124	Investigation of Energy Levels and Crystal Structures of Cesium Lead Halides and Their Application in Full olor Light‣mitting Diodes. Advanced Electronic Materials, 2017, 3, 1600448.	2.6	67
125	Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017, 8, 2522-2536.	3.7	233
126	Room-Temperature Engineering of All-Inorganic Perovskite Nanocrsytals with Different Dimensionalities. Chemistry of Materials, 2017, 29, 8978-8982.	3.2	174
127	Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr ₃ and CsPb(Br/I) ₃ Quantum Dots at Low Temperature. Journal of Physical Chemistry C, 2017, 121, 26054-26062.	1.5	120

#	Article	IF	CITATIONS
128	A highly efficient and stable green-emitting mesoporous silica (MP)–(Cs0.4Rb0.6)PbBr3 perovskite composite for application in optoelectronic devices. New Journal of Chemistry, 2017, 41, 14076-14079.	1.4	8
129	X-ray radioluminescence effect of all-inorganic halide perovskite CsPbBr3 quantum dots. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 2327-2337.	0.7	45
130	30-Fold efficiency enhancement achieved in the perovskite light-emitting diodes. RSC Advances, 2017, 7, 50571-50577.	1.7	7
131	Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions. ACS Applied Materials & Interfaces, 2017, 9, 40446-40451.	4.0	101
132	Efficient white LEDs with bright green-emitting CsPbBr3 perovskite nanocrystal in mesoporous silica nanoparticles. Journal of Alloys and Compounds, 2017, 729, 526-532.	2.8	66
133	Energy transfer assisted solvent effects on CsPbBr ₃ quantum dots. Journal of Materials Chemistry C, 2017, 5, 11076-11082.	2.7	31
134	Pure zero-dimensional Cs ₄ PbBr ₆ single crystal rhombohedral microdisks with high luminescence and stability. Physical Chemistry Chemical Physics, 2017, 19, 29092-29098.	1.3	86
135	Silica-Coated Mn-Doped CsPb(Cl/Br) ₃ Inorganic Perovskite Quantum Dots: Exciton-to-Mn Energy Transfer and Blue-Excitable Solid-State Lighting. ACS Applied Materials & Interfaces, 2017, 9, 40477-40487.	4.0	140
136	Study on the band alignment of GaN/CH3NH3PbBr3 heterojunction by x-ray photoelectron spectroscopy. Applied Physics Letters, 2017, 111, .	1.5	3
137	Facile Twoâ€Step Synthesis of Allâ€Inorganic Perovskite CsPbX ₃ (X = Cl, Br, and I) Zeoliteâ€Y Composite Phosphors for Potential Backlight Display Application. Advanced Functional Materials, 2017, 27, 1704371.	7.8	223
138	Air-stable and water-resistant all-inorganic perovskite quantum dot films for white-light-emitting applications. New Journal of Chemistry, 2017, 41, 13961-13967.	1.4	54
139	White Light-Emitting Diodes Based on Individual Polymerized Carbon Nanodots. Scientific Reports, 2017, 7, 12146.	1.6	40
140	High Performance Metal Halide Perovskite Lightâ€Emitting Diode: From Material Design to Device Optimization. Small, 2017, 13, 1701770.	5.2	209
141	Highâ€Performance Inorganic Perovskite Quantum Dot–Organic Semiconductor Hybrid Phototransistors. Advanced Materials, 2017, 29, 1704062.	11.1	137
142	Single component Mn-doped perovskite-related CsPb ₂ Cl _x Br _{5â^x} nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale, 2017, 9, 16858-16863.	2.8	56
143	Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. Langmuir, 2017, 33, 12689-12696.	1.6	165
144	Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nature Communications, 2017, 8, 996.	5.8	210
145	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	2.7	138

ARTICLE IF CITATIONS Thinning <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CsPb</mml:mi><mml:min>2</mml:mn></mr 146 perovskite down to monolayers: Cs-dependent stability. Physical Review B, 2017, 96, . Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb₂Br₅ Films for 2.1 Efficient and Stable Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 5415-5421. Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn²⁺-Doped CsPbCl₃ Perovskite Nanocrystals with Varied Dopant 148 3.2 274 Concentration. Chemistry of Materials, 2017, 29, 8003-8011. Enhanced Stability and Performance in Perovskite Nanocrystal Lightâ€Emitting Devices Using a ZnMgO 149 Interfacial Layer. Ádvanced Optical Materials, 2017, 5, 1700377. The evolution of structure, chemical state and photocatalytic performance of 1±-Fe/FeTiO3/TiO2 with 150 2.7 11 the nitridation at different temperatures. Materials Research Bulletin, 2017, 95, 503-508. Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 3.1 1700086. Improving Wearable Photodetector Textiles via Precise Energy Level Alignment and Plasmonic Effect. 152 2.6 33 Advanced Electronic Materials, 2017, 3, 1700281. Use of long-term stable CsPbBr₃ perovskite quantum dots in phospho-silicate glass for 167 highly efficient white LEDs. Chemical Communications, 2017, 53, 11068-11071. Field-Effect Transistors Based on van-der-Waals-Grown and Dry-Transferred All-Inorganic Perovskite 154 2.1 91 Ultrathin Platelets. Journal of Physical Chemistry Letters, 2017, 8, 4785-4792. Robust Cesium Lead Halide Perovskite Microcubes for Frequency Upconversion Lasing. Advanced 3.6 64 Optical Materials, 2017, 5, 1700419. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal 156 7.3458 Quantum Dots. ACS Nano, 2017, 11, 9294-9302. Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling–Shrinking Strategy toward Superior Water Resistance. Advanced Functional Materials, 2017, 27, 1703535. 306 Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China 158 3.5 38 Materials, 2017, 60, 811-818. Microwave-assisted synthesis of high-quality "all-inorganic―CsPbX₃ (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. Journal of Materials Chemistry 159 2.7 180 C, 2017, 5, 10947-10954. Highly stable CsPbBr₃ quantum dots coated with alkyl phosphate for white light-emitting 160 2.8 230 diodes. Nanoscale, 2017, 9, 15286-15290. Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of 292 CsPbBr₃ Perovskite Nanocubes. Journal of Physical Chemistry Letters, 2017, 8, 4988-4994. The peak shift and evolution of upconversion luminescence from CsPbBr₃nanocrystals 162 1.7 45 under femtosecond laser excitation. RSC Advances, 2017, 7, 35757-35764. Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic 2.8 devices. Nanoscale, 2017, 9, 11841-11845.

#	Article	IF	CITATIONS
164	Enhanced photoluminescence of CsPbBr ₃ @Ag hybrid perovskite quantum dots. Journal of Materials Chemistry C, 2017, 5, 8187-8193.	2.7	68
165	Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	41
166	Simple and Fast Patterning Process by Laser Direct Writing for Perovskite Quantum Dots. Advanced Materials Technologies, 2017, 2, 1700132.	3.0	55
167	Stable and brightly luminescent all-inorganic cesium lead halide perovskite quantum dots coated with mesoporous silica for warm WLED. Dyes and Pigments, 2017, 146, 361-367.	2.0	56
168	Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 2017, 29, 1701153.	11.1	139
169	Solutionâ€Grown CsPbBr ₃ /Cs ₄ PbBr ₆ Perovskite Nanocomposites: Toward Temperatureâ€Insensitive Optical Gain. Small, 2017, 13, 1701587.	5.2	134
170	High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl ₃ nanocrystals. RSC Advances, 2017, 7, 36722-36727.	1.7	90
171	Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. Journal of the American Chemical Society, 2017, 139, 11443-11450.	6.6	705
172	Aminoâ€Mediated Anchoring Perovskite Quantum Dots for Stable and Lowâ€Threshold Random Lasing. Advanced Materials, 2017, 29, 1701185.	11.1	269
173	Aluminumâ€Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight. Advanced Science, 2017, 4, 1700335.	5.6	303
174	Inside Perovskites: Quantum Luminescence from Bulk Cs ₄ PbBr ₆ Single Crystals. Chemistry of Materials, 2017, 29, 7108-7113.	3.2	200
175	Alkyl-Thiol Ligand-Induced Shape- and Crystalline Phase-Controlled Synthesis of Stable Perovskite-Related CsPb ₂ Br ₅ Nanocrystals at Room Temperature. Journal of Physical Chemistry Letters, 2017, 8, 3853-3860.	2.1	100
176	Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Advanced Materials, 2017, 29, 1700150.	11.1	112
177	Advances in Small Perovskiteâ€Based Lasers. Small Methods, 2017, 1, 1700163.	4.6	268
178	Leadâ€Free, Airâ€Stable Allâ€Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. Angewandte Chemie, 2017, 129, 12645-12649.	1.6	88
179	Leadâ€Free, Airâ€Stable Allâ€Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 12471-12475.	7.2	487
180	Emission tunable CdZnS/ZnSe core/shell quantum dots for white light emitting diodes. Journal of Luminescence, 2017, 192, 867-874.	1.5	27
181	Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr ₃ Films. Journal of Physical Chemistry Letters, 2017, 8, 4148-4154.	2.1	145

#	Article	IF	CITATIONS
π 182	Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio. Journal of Physical Chemistry Letters, 2017, 8, 4167-4171.	2.1	139
183	Synthetic Manipulation of Hybrid Perovskite Systems in Search of New and Enhanced Functionalities. ChemSusChem, 2017, 10, 3722-3739.	3.6	11
184	From Nonluminescent Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX ₃ Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. Nano Letters, 2017, 17, 5799-5804.	4.5	367
185	Polarized emission effect realized in CH ₃ NH ₃ PbI ₃ perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 8699-8706.	2.7	37
186	High-throughput and tunable synthesis of colloidal CsPbX ₃ perovskite nanocrystals in a heterogeneous system by microwave irradiation. Chemical Communications, 2017, 53, 9914-9917.	2.2	96
187	Nearly 100% Efficiency Enhancement of CH ₃ NH ₃ PbBr ₃ Perovskite Light-Emitting Diodes by Utilizing Plasmonic Au Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 3961-3969.	2.1	75
188	Bright Tail States in Blue-Emitting Ultrasmall Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 6002-6008.	2.1	72
189	One-Step Preparation of Cesium Lead Halide CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals by Microwave Irradiation. ACS Applied Materials & Interfaces, 2017, 9, 42919-42927.	4.0	117
190	Synthesis of all-inorganic CsPb ₂ Br ₅ perovskite and determination of its luminescence mechanism. RSC Advances, 2017, 7, 54002-54007.	1.7	49
191	Vapor-Assisted Solution Approach for High-Quality Perovskite CH ₃ NH ₃ PbBr ₃ Thin Films for High-Performance Green Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2017, 9, 42893-42904.	4.0	46
192	One-pot scalable synthesis of all-inorganic perovskite nanocrystals with tunable morphology, composition and photoluminescence. CrystEngComm, 2017, 19, 7041-7049.	1.3	35
193	Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires. Nanoscale, 2017, 9, 18202-18207.	2.8	65
194	Mechanical and Optical Properties of Cs ₄ BX ₆ (B = Pb, Sn; X = Cl, Br, I) Zero-Dimension Perovskites. Journal of Physical Chemistry C, 2017, 121, 27053-27058.	1.5	61
195	Effect of defects on quantum yield in blue emitting photoluminescent nitrogen doped graphene quantum dots. Journal of Applied Physics, 2017, 122, .	1.1	56
196	Nanocomposites of CsPbBr ₃ perovskite nanocrystals in an ammonium bromide framework with enhanced stability. Journal of Materials Chemistry C, 2017, 5, 7431-7435.	2.7	80
197	Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence. Journal of Physical Chemistry Letters, 2017, 8, 3266-3271.	2.1	108
198	High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr ₃ thin films. Journal of Materials Chemistry C, 2017, 5, 8355-8360.	2.7	182
199	Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes. Nanotechnology, 2017, 28, 365601.	1.3	43

#	Article	IF	CITATIONS
200	In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH ₃ C ₄ H ₉ COO(CH ₃ NH ₃ PbBr ₃) <i Perovskite Films. Advanced Functional Materials, 2017, 27, 1603568.</i 	>< zs8 b>n </td <td>/subø</td>	/subø
201	Perovskite CsPb ₂ Br ₅ Microplate Laser with Enhanced Stability and Tunable Properties. Advanced Optical Materials, 2017, 5, 1600788.	3.6	135
202	Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10, 1584-1594.	5.8	134
203	50â€Fold EQE Improvement up to 6.27% of Solutionâ€Processed Allâ€Inorganic Perovskite CsPbBr ₃ QLEDs via Surface Ligand Density Control. Advanced Materials, 2017, 29, 1603885.	11.1	982
204	Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr ₃ Perovskite Colloidal Nanocrystal Back Layer. Advanced Energy Materials, 2017, 7, 1601773.	10.2	56
205	A high quality and quantity hybrid perovskite quantum dots (CsPbX3, X= Cl, Br and I) powders synthesis via ionic displacement. IOP Conference Series: Earth and Environmental Science, 2017, 100, 012057.	0.2	2
206	MicroLED-pumped perovskite quantum dot color converter for visible light communications. , 2017, , .		2
207	Superbroad near-infrared photoluminescence from bismuth-doped CsPbI_3 perovskite nanocrystals. Optics Express, 2017, 25, 33283.	1.7	31
208	All-inorganic perovskite-based distributed feedback resonator. Optics Express, 2017, 25, A1154.	1.7	22
209	Tunable luminescent CsPb_2Br_5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Research, 2017, 5, 473.	3.4	79
210	Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition. Optical Materials Express, 2017, 7, 3065.	1.6	31
211	Perovskite Quantum Dot Light-Emitting Diodes. , 0, , .		0
212	PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals. Beilstein Journal of Nanotechnology, 2017, 8, 2521-2529.	1.5	8
213	Temperature Dependence of the Amplified Spontaneous Emission from CsPbBr ₃ Nanocrystal Thin Films. Journal of Physical Chemistry C, 2018, 122, 5813-5819.	1.5	71
214	Leadâ€Free Silverâ€Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 5457-5461.	1.6	132
215	Leadâ€Free Silverâ€Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 5359-5363.	7.2	281
216	Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr ₃ single nanocrystals. Nanoscale, 2018, 10, 6393-6401.	2.8	108
217	Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235-242.	8.2	154

#	Article	IF	Citations
218	Localized Surface Plasmon Enhanced Allâ€Inorganic Perovskite Quantum Dot Lightâ€Emitting Diodes Based onÂCoaxial Core/Shell Heterojunction Architecture. Advanced Functional Materials, 2018, 28, 1707031.	7.8	125
219	One-Step Preparation of Long-Term Stable and Flexible CsPbBr ₃ Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 15888-15894.	4.0	163
220	Perovskite nanostructures for photovoltaic and energy storage devices. Journal of Materials Chemistry A, 2018, 6, 9765-9798.	5.2	90
221	Achieving deep-red-to-near-infrared emissions in Sn-doped Cu–In–S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs. Nanoscale, 2018, 10, 9788-9795.	2.8	23
222	Lowâ€Saturationâ€Intensity, Highâ€Photostability, and Highâ€Resolution STED Nanoscopy Assisted by CsPbBr ₃ Quantum Dots. Advanced Materials, 2018, 30, e1800167.	11.1	64
223	Efficient and Stable CsPb(Br/I) ₃ @Anthracene Composites for White Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 16768-16775.	4.0	74
224	Organic–inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange. Nanoscale, 2018, 10, 13356-13367.	2.8	71
225	Quasiâ€2D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	7.8	108
226	Cs ₄ PbBr ₆ /CsPbBr ₃ Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application. ACS Applied Materials & Interfaces, 2018, 10, 15905-15912.	4.0	135
227	A method towards 100% internal quantum efficiency for all-inorganic cesium halide perovskite light-emitting diodes. Organic Electronics, 2018, 58, 88-93.	1.4	11
228	The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 2062-2069.	2.1	74
229	Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy, 2018, 48, 536-542.	8.2	70
230	All-inorganic CsPbBr ₃ perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu ²⁺ detection. Journal of Materials Chemistry C, 2018, 6, 4793-4799.	2.7	98
231	Hot Biexciton Effect on Optical Gain in CsPbl ₃ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 2222-2228.	2.1	67
232	Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448, 400-406.	3.1	65
233	Postsynthesis Potassiumâ€Modification Method to Improve Stability of CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2018, 6, 1701106.	3.6	95
234	Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals. Materials Research Bulletin, 2018, 102, 86-91.	2.7	54
235	Electrode quenching control for highly efficient CsPbBr ₃ perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles. Nanotechnology, 2018, 29, 175203.	1.3	26

	CITATION	Report	
#	Article	IF	CITATIONS
236	Exciton-phonon coupling in a CsPbBr3 single nanocrystal. Applied Physics Letters, 2018, 112, .	1.5	67
237	Centimeterâ€Sized Cs ₄ PbBr ₆ Crystals with Embedded CsPbBr ₃ Nanocrystals Showing Superior Photoluminescence: Nonstoichiometry Induced Transformation and Lightâ€Emitting Applications. Advanced Functional Materials, 2018, 28, 1706567.	7.8	251
238	Hole Transfer Dynamics from Photoexcited Cesium Lead Halide Perovskite Nanocrystals: 1-Aminopyrene as Hole Acceptor. Journal of Physical Chemistry C, 2018, 122, 13617-13623.	1.5	42
239	Broadband hybrid organic/CuInSe ₂ quantum dot photodetectors. Journal of Materials Chemistry C, 2018, 6, 2573-2579.	2.7	44
240	Investigation of sulfur related defects in graphene quantum dots for tuning photoluminescence and high quantum yield. Applied Surface Science, 2018, 449, 363-370.	3.1	81
241	Passivation in perovskite solar cells: A review. Materials Today Energy, 2018, 7, 267-286.	2.5	170
242	Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure. Materials Research Express, 2018, 5, 025014.	0.8	4
243	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 3337-3342.	7.2	223
244	All-Inorganic Perovskite Nanowires–InGaZnO Heterojunction for High-Performance Ultraviolet–Visible Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 7231-7238.	4.0	53
245	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 3395-3400.	1.6	37
246	A Comparative Study of Lightâ€Emitting Diodes Based on Allâ€Inorganic Perovskite Nanoparticles (CsPbBr ₃) Synthesized at Room Temperature and by a Hotâ€Injection Method. ChemPlusChem, 2018, 83, 294-299.	1.3	27
247	Luminescence properties of CsPbBr3 nanocrystals dispersed in a polymer matrix. Journal of Luminescence, 2018, 198, 103-107.	1.5	15
248	Temperature-dependent photoluminescence of CsPbX3 nanocrystal films. Journal of Luminescence, 2018, 198, 350-356.	1.5	72
249	Thermal Effect of Sulfur Doping for Luminescent Graphene Quantum Dots. ECS Journal of Solid State Science and Technology, 2018, 7, M29-M34.	0.9	74
250	Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials. Nano Letters, 2018, 18, 1118-1123.	4.5	394
251	Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2018, 140, 2656-2664.	6.6	490
252	Self-assembly and photoactivation of blue luminescent CsPbBr ₃ mesocrystals synthesized at ambient temperature. Journal of Materials Chemistry C, 2018, 6, 1701-1708.	2.7	17
253	A stable lead halide perovskite nanocrystals protected by PMMA. Science China Materials, 2018, 61, 363-370.	3.5	55

#	Article	IF	CITATIONS
254	All-Ambient Processed Binary CsPbBr ₃ –CsPb ₂ Br ₅ Perovskites with Synergistic Enhancement for High-Efficiency Cs–Pb–Br-Based Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 7145-7154.	4.0	171
255	Crown Ethers Enable Room-Temperature Synthesis of CsPbBr ₃ Quantum Dots for Light-Emitting Diodes. ACS Energy Letters, 2018, 3, 526-531.	8.8	92
256	Brightly luminescent and color-tunable CaMoO4:RE3+ (REÂ=ÂEu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes. Journal of Materials Science, 2018, 53, 4861-4873.	1.7	15
257	Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. Nano Letters, 2018, 18, 1246-1252.	4.5	106
258	Room-Temperature Construction of Mixed-Halide Perovskite Quantum Dots with High Photoluminescence Quantum Yield. Journal of Physical Chemistry C, 2018, 122, 5151-5160.	1.5	79
259	Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 1800010.	1.9	49
260	Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability. Scientific Reports, 2018, 8, 1086.	1.6	215
261	Engineering the Exciton Dissociation in Quantum onfined 2D CsPbBr ₃ Nanosheet Films. Advanced Functional Materials, 2018, 28, 1705908.	7.8	98
262	Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence. Advanced Materials, 2018, 30, e1705011.	11.1	213
263	General Strategy for Rapid Production of Low-Dimensional All-Inorganic CsPbBr ₃ Perovskite Nanocrystals with Controlled Dimensionalities and Sizes. Inorganic Chemistry, 2018, 57, 1598-1603.	1.9	48
264	Improving the Stability of Metal Halide Perovskite Materials and Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1704587.	11.1	368
265	Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557.	1.5	70
266	Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance. Nanoscale, 2018, 10, 4173-4178.	2.8	122
267	Composition-dependent emission linewidth broadening in lead bromide perovskite (APbBr ₃ , A = Cs and CH ₃ NH ₃) nanoparticles. Nanoscale, 2018, 10, 2207-2212.	2.8	15
268	Enhanced Twoâ€Photonâ€Pumped Emission from In Situ Synthesized Nonblinking CsPbBr ₃ /SiO ₂ Nanocrystals with Excellent Stability. Advanced Optical Materials, 2018, 6, 1700997.	3.6	116
269	0D–2D and 1D–2D Semiconductor Hybrids Composed of All Inorganic Perovskite Nanocrystals and Singleâ€Layer Graphene with Improved Light Harvesting. Particle and Particle Systems Characterization, 2018, 35, 1700310.	1.2	22
270	Shape―and Trapâ€Controlled Nanocrystals for Giantâ€Performance Improvement of Allâ€Inorganic Perovskite Photodetectors. Particle and Particle Systems Characterization, 2018, 35, 1700363.	1.2	24
271	Boosting Two-Dimensional MoS ₂ /CsPbBr ₃ Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation. ACS Applied Materials & Interfaces, 2018, 10, 2801-2809.	4.0	207

# 272	ARTICLE Allâ€Solidâ€State Mechanochemical Synthesis and Postâ€Synthetic Transformation of Inorganic Perovskiteâ€type Halides. Chemistry - A European Journal, 2018, 24, 1811-1815.	IF 1.7	Citations
273	Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702073.	10.2	74
274	Metal Halide Perovskite Supercrystals: Gold–Bromide Complex Triggered Assembly of CsPbBr ₃ Nanocubes. Langmuir, 2018, 34, 595-602.	1.6	28
275	Dualâ€Phase CsPbBr ₃ –CsPb ₂ Br ₅ Perovskite Thin Films via Vapor Deposition for Highâ€Performance Rigid and Flexible Photodetectors. Small, 2018, 14, 1702523.	5.2	139
276	Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes. ACS Nano, 2018, 12, 1462-1472.	7.3	331
277	Crystal orientation-dependent optoelectronic properties of MAPbCl ₃ single crystals. Journal of Materials Chemistry C, 2018, 6, 1579-1586.	2.7	78
278	High-Performance CsPbX ₃ Perovskite Quantum-Dot Light-Emitting Devices via Solid-State Ligand Exchange. ACS Applied Nano Materials, 2018, 1, 488-496.	2.4	102
279	Highly Stable and Luminescent Perovskite–Polymer Composites from a Convenient and Universal Strategy. ACS Applied Materials & Interfaces, 2018, 10, 4971-4980.	4.0	176
280	Rb ⁺ cations enable the change of luminescence properties in perovskite (Rb _x Cs _{1â^'x} PbBr ₃) quantum dots. Nanoscale, 2018, 10, 3429-3437.	2.8	55
281	Novel quantum dot enhancement film with a super-wide color gamut for LCD displays. Journal of the Korean Physical Society, 2018, 72, 45-51.	0.3	9
282	Synthesis and characterization of Mn-doped CsPb(Cl/Br) ₃ perovskite nanocrystals with controllable dual-color emission. RSC Advances, 2018, 8, 1940-1947.	1.7	30
283	Employing Polar Solvent Controlled Ionization in Precursors for Synthesis of Highâ€Quality Inorganic Perovskite Nanocrystals at Room Temperature. Advanced Functional Materials, 2018, 28, 1706000.	7.8	82
284	Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles. IEEE Transactions on Electron Devices, 2018, 65, 158-164.	1.6	62
285	Monodisperse and brightly luminescent CsPbBr ₃ /Cs ₄ PbBr ₆ perovskite composite nanocrystals. Nanoscale, 2018, 10, 9840-9844.	2.8	100
286	Hydrogen evolution with CsPbBr3 perovskite nanocrystals under visible light in solution. Materials Today Communications, 2018, 16, 90-96.	0.9	30
287	84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material. RSC Advances, 2018, 8, 15698-15702.	1.7	9
288	Study of the Partial Substitution of Pb by Sn in Cs–Pb–Sn–Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties. Journal of Physical Chemistry C, 2018, 122, 14222-14231.	1.5	38
289	Low dimensional CH3NH3PbBr3 cubes for persistent luminescence: Energy variation of electron excitation. AlP Conference Proceedings, 2018, , .	0.3	2

#	Article	IF	CITATIONS
290	Interfacial Energy-Level Alignment for High-Performance All-Inorganic Perovskite CsPbBr ₃ Quantum Dot-Based Inverted Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 13236-13243.	4.0	44
291	White LED based on CsPbBr3 nanocrystal phosphors via a facile two-step solution synthesis route. Materials Research Bulletin, 2018, 104, 48-52.	2.7	14
292	Ligand removal and photo-activation of CsPbBr ₃ quantum dots for enhanced optoelectronic devices. Nanoscale, 2018, 10, 8591-8599.	2.8	63
293	Fiber‣haped ZnO/Graphene Schottky Photodetector with Strain Effect. Advanced Materials Interfaces, 2018, 5, 1800136.	1.9	31
294	Dendrimer ligands-capped CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water. Nanotechnology, 2018, 29, 235603.	1.3	8
295	Role of Localized States in Photoluminescence Dynamics of High Optical Gain CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2018, 6, 1800109.	3.6	80
296	Toward Highly Luminescent and Stabilized Silica-Coated Perovskite Quantum Dots through Simply Mixing and Stirring under Room Temperature in Air. ACS Applied Materials & Interfaces, 2018, 10, 13053-13061.	4.0	115
297	Halide Composition Controls Electron–Hole Recombination in Cesium–Lead Halide Perovskite Quantum Dots: A Time Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2018, 9, 1872-1879.	2.1	103
298	Tunable CsPbBr ₃ /Cs ₄ PbBr ₆ phase transformation and their optical spectroscopic properties. Dalton Transactions, 2018, 47, 5670-5678.	1.6	67
299	Efficient and Stable CsPbBr ₃ Quantum-Dot Powders Passivated and Encapsulated with a Mixed Silicon Nitride and Silicon Oxide Inorganic Polymer Matrix. ACS Applied Materials & Interfaces, 2018, 10, 11756-11767.	4.0	115
300	Facile synthesis and characterization of \$\$hbox {CsPbBr}_{3}\$\$ CsPbBr 3 and \$\$hbox {CsPb}_{2}hbox {Br}_{5}\$\$. Bulletin of Materials Science, 2018, 41, 1.	0.8	14
301	Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane. Nano Research, 2018, 11, 4654-4663.	5.8	39
302	Carrier Interfacial Engineering by Bismuth Modification for Efficient and Thermoresistant Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703659.	10.2	59
303	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	1.6	12
304	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	7.2	109
305	Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application. Journal of Alloys and Compounds, 2018, 748, 537-545.	2.8	88
306	High-Open-Circuit-Voltage Solar Cells Based on Bright Mixed-Halide CsPbBrI ₂ Perovskite Nanocrystals Synthesized under Ambient Air Conditions. Journal of Physical Chemistry C, 2018, 122, 7621-7626.	1.5	56
307	Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr ₃ nanocrystals and their derivatives. Chemical Communications, 2018, 54, 3863-3866.	2.2	17

#	Article	IF	CITATIONS
308	Surface Chemistry of All Inorganic Halide Perovskite Nanocrystals: Passivation Mechanism and Stability. Advanced Materials Interfaces, 2018, 5, 1701662.	1.9	230
309	Transient Resistive Switching Memory of CsPbBr ₃ Thin Films. Advanced Electronic Materials, 2018, 4, 1700596.	2.6	60
310	Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9, 1076.	5.8	507
311	All-inorganic CsPbBr ₃ perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers. Nanoscale, 2018, 10, 6704-6711.	2.8	74
312	Tunable cathodoluminescence over the entire visible window from all-inorganic perovskite CsPbX ₃ 1D architecture. Journal of Materials Chemistry C, 2018, 6, 3322-3333.	2.7	70
313	Low temperature synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals in open air and their upconversion luminescence. Journal of Alloys and Compounds, 2018, 730, 62-70.	2.8	35
314	Kolloidale Quantennanostrukturen: neue Materialien für Displayanwendungen. Angewandte Chemie, 2018, 130, 4354-4376.	1.6	14
315	Colloidal Quantum Nanostructures: Emerging Materials for Display Applications. Angewandte Chemie - International Edition, 2018, 57, 4274-4295.	7.2	173
316	Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes and Pigments, 2018, 149, 246-252.	2.0	85
317	Novel CsPbI3 QDs glass with chemical stability and optical properties. Journal of the European Ceramic Society, 2018, 38, 1998-2004.	2.8	87
318	Review—Synthesis, Luminescent Properties, and Stabilities of Cesium Lead Halide Perovskite Nanocrystals. ECS Journal of Solid State Science and Technology, 2018, 7, R3040-R3045.	0.9	40
319	Controlled synthesis of quantum confined CsPbBr3 perovskite nanocrystals under ambient conditions. Nanotechnology, 2018, 29, 055601.	1.3	20
320	Allâ€Inorganic Metal Halide Perovskite Nanostructures: From Photophysics to Lightâ€Emitting Applications. Small Methods, 2018, 2, 1700252.	4.6	83
321	Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment. Nanoscale, 2018, 10, 592-602.	2.8	66
322	Perovskite Quantum Dots and Their Application in Lightâ€Emitting Diodes. Small, 2018, 14, 1702433.	5.2	238
323	Allâ€Inorganic Perovskite Quantum Dots/pâ€Si Heterojunction Lightâ€Emitting Diodes under DC and AC Driving Modes. Advanced Optical Materials, 2018, 6, 1700897.	3.6	39
324	Highly Luminescent CsPbX ₃ (X=Cl, Br, I) Nanocrystals Achieved by a Rapid Anion Exchange at Room Temperature. Chemistry - A European Journal, 2018, 24, 1898-1904.	1.7	25
325	Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass. Ceramics International, 2018, 44, 4496-4499.	2.3	68

#	Article	IF	CITATIONS
326	Nanocrystals of halide perovskite: Synthesis, properties, and applications. Journal of Energy Chemistry, 2018, 27, 622-636.	7.1	43
327	Rod-shaped thiocyanate-induced abnormal band gap broadening in SCNâ^' doped CsPbBr3 perovskite nanocrystals. Nano Research, 2018, 11, 2715-2723.	5.8	44
328	Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. Nanoscale, 2018, 10, 359-365.	2.8	32
329	Room temperature precipitated dual phase CsPbBr ₃ –CsPb ₂ Br ₅ nanocrystals for stable perovskite light emitting diodes. Nanoscale, 2018, 10, 19262-19271.	2.8	48
330	Robust CsPbX ₃ (X = Cl, Br, and I) perovskite quantum dot embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions. Journal of Materials Chemistry C, 2018, 6, 12864-12870.	2.7	148
331	<i>In situ</i> formation of CsPbBr ₃ /ZnO bulk heterojunctions towards photodetectors with ultrahigh responsivity. Journal of Materials Chemistry C, 2018, 6, 12164-12169.	2.7	35
332	A new method to discover the reaction mechanism of perovskite nanocrystals. Dalton Transactions, 2018, 47, 16218-16224.	1.6	28
333	A Synthetic Method for Extremely Stable Thin Film of CsPbBr <inf>3</inf> QDs and its Application on Light-emitting Diodes. , 2018, , .		Ο
334	Tuning the Optical Properties of CsPbBr3 Nanocrystals by Anion Exchange Reactions with CsX Aqueous Solution. Nanoscale Research Letters, 2018, 13, 185.	3.1	23
335	Surface Engineering of Room Temperature-Grown Inorganic Perovskite Quantum Dots for Highly Efficient Inverted Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 42647-42656.	4.0	49
336	Aqueous Synthesis of Lead Halide Perovskite Nanocrystals with High Water Stability and Bright Photoluminescence. ACS Applied Materials & Interfaces, 2018, 10, 43915-43922.	4.0	67
337	Room-Temperature Synthesis of Cesium Lead Halide Perovskite Nanorods. , 2018, , .		0
338	Electroluminescence and photo-response of inorganic halide perovskite bi-functional diodes. Nanophotonics, 2018, 7, 1981-1988.	2.9	11
339	Solvent-Assisted Tuning of the Size and Shape of CsPbBr3 Nanocrystals via Redispersion Process at Ambient Condition. Langmuir, 2018, 34, 15507-15516.	1.6	9
340	Highly Stable Silica-Wrapped Mn-Doped CsPbCl ₃ Quantum Dots for Bright White Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 43978-43986.	4.0	91
341	The degradation of structure and luminescence in CsPbBr3 perovskite nanocrystals under UV light illumination. AIP Conference Proceedings, 2018, , .	0.3	4
342	Sprayâ€Assisted Coil–Clobule Transition for Scalable Preparation of Waterâ€Resistant CsPbBr ₃ @PMMA Perovskite Nanospheres with Application in Live Cell Imaging. Small, 2018, 14, e1803156.	5.2	85
343	PbSe Quantum Dot Passivated Via Mixed Halide Perovskite Nanocrystals for Solar Cells With Over 9% Efficiency. Solar Rrl, 2018, 2, 1800234.	3.1	29

#	Article	IF	CITATIONS
344	Postsynthetic Surface Trap Removal of CsPbX ₃ (X = Cl, Br, or I) Quantum Dots via a ZnX ₂ /Hexane Solution toward an Enhanced Luminescence Quantum Yield. Chemistry of Materials, 2018, 30, 8546-8554.	3.2	267
345	Dual-Emission and Two Charge-Transfer States in Ytterbium-doped Cesium Lead Halide Perovskite Solid Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 26825-26834.	1.5	29
346	Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 42564-42572.	4.0	86
347	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics, 2018, 1, .	2.0	59
349	Design principle of all-inorganic halide perovskite-related nanocrystals. Journal of Materials Chemistry C, 2018, 6, 12484-12492.	2.7	38
350	Synthesis of All-Inorganic Cd-Doped CsPbCl ₃ Perovskite Nanocrystals with Dual-Wavelength Emission. Journal of Physical Chemistry Letters, 2018, 9, 7079-7084.	2.1	92
351	Stabilization of Lead–Tin-Alloyed Inorganic–Organic Halide Perovskite Quantum Dots. ACS Nano, 2018, 12, 12129-12139.	7.3	31
352	Water-Borne Perovskite Quantum Dot-Loaded, Polystyrene Latex Ink. Frontiers in Chemistry, 2018, 6, 453.	1.8	7
353	Photoinstable hybrid all-inorganic halide perovskite quantum dots as single downconverters for white light emitting devices. Organic Electronics, 2018, 63, 318-327.	1.4	6
354	All-inorganic Cs ₂ CuX ₄ (X = Cl, Br, and Br/l) perovskite quantum dots with blue-green luminescence. Chemical Communications, 2018, 54, 11638-11641.	2.2	99
355	High-performance light-emitting diode with poly(ethylene oxide) passivated quasi two dimensional perovskite emitting layer. Organic Electronics, 2018, 63, 216-221.	1.4	22
356	SiO ₂ â€improved stability of Mnâ€doped CsPbBr _{0.5} I _{2.5} <scp>NC</scp> and their application for white <scp>LED</scp> . Journal of the American Ceramic Society, 2019, 102, 930-935.	1.9	15
357	Halide Perovskite Quantum Dots for Lightâ€Emitting Diodes: Properties, Synthesis, Applications, and Outlooks. Advanced Electronic Materials, 2018, 4, 1800335.	2.6	50
358	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	15.6	1,123
359	Spaceâ€Confined Synthesis of 2D Allâ€Inorganic CsPbI ₃ Perovskite Nanosheets for Multiphotonâ€Pumped Lasing. Advanced Optical Materials, 2018, 6, 1800879.	3.6	65
360	PbS Capped CsPbl ₃ Nanocrystals for Efficient and Stable Light-Emitting Devices Using <i>p</i> – <i>i</i> – <i>n</i> Structures. ACS Central Science, 2018, 4, 1352-1359.	5.3	141
361	A stimuli responsive material of perovskite quantum dots composited nano-porous glass. Journal of Materials Chemistry C, 2018, 6, 11184-11192.	2.7	20
362	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 37267-37276.	4.0	82

#	Article	IF	CITATIONS
363	Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245-248.	13.7	2,589
364	Ultrafast Interfacial Charge Transfer of Cesium Lead Halide Perovskite Films CsPbX ₃ (X =) Tj ETQq1	1 9.78431	4 rgBT /Ove
365	NIR to Visible Light Upconversion Devices Comprising an NIR Charge Generation Layer and a Perovskite Emitter. Advanced Optical Materials, 2018, 6, 1801084.	3.6	55
366	Understanding the Role of Lithium Doping in Reducing Nonradiative Loss in Lead Halide Perovskites. Advanced Science, 2018, 5, 1800736.	5.6	59
367	Fast Room-Temperature Cation Exchange Synthesis of Mn-Doped CsPbCl ₃ Nanocrystals Driven by Dynamic Halogen Exchange. ACS Applied Materials & Interfaces, 2018, 10, 39872-39878.	4.0	57
368	Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. Scientific Reports, 2018, 8, 15799.	1.6	26
369	Highly Luminescent and Stable Siâ€Based CsPbBr 3 Quantum Dot Thin Films Prepared by Glow Discharge Plasma with Realâ€Time and In Situ Diagnosis. Advanced Functional Materials, 2018, 28, 1805214.	7.8	14
370	Impurity Ions Codoped Cesium Lead Halide Perovskite Nanocrystals with Bright White Light Emission toward Ultraviolet–White Light-Emitting Diode. ACS Applied Materials & Interfaces, 2018, 10, 39040-39048.	4.0	78
371	High Brightness and Enhanced Stability of CsPbBr ₃ â€Based Perovskite Lightâ€Emitting Diodes by Morphology and Interface Engineering. Advanced Optical Materials, 2018, 6, 1801245.	3.6	57
372	Novel Fluorescence Sensor Based on All-Inorganic Perovskite Quantum Dots Coated with Molecularly Imprinted Polymers for Highly Selective and Sensitive Detection of Omethoate. ACS Applied Materials & Interfaces, 2018, 10, 39056-39063.	4.0	123
373	Hybridization of CsPbBr3 Perovskite Nanocrystals with Polymer Nanofiber to Improve their Luminescence Stability. European Journal of Inorganic Chemistry, 2018, 2018, 4215-4220.	1.0	14
374	All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano, 2018, 12, 10486-10492.	7.3	92
375	Super Ultra-High Resolution Liquid-Crystal-Display Using Perovskite Quantum-Dot Functional Color-Filters. Scientific Reports, 2018, 8, 12881.	1.6	57
376	Organicâ ^{~,} Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission. ACS Applied Materials & Interfaces, 2018, 10, 34363-34369.	4.0	97
377	Highly Stable Perovskite Photodetector Based on Vapor-Processed Micrometer-Scale CsPbBr ₃ Microplatelets. Chemistry of Materials, 2018, 30, 6744-6755.	3.2	89
378	Bright and efficient light-emitting diodes based on perovskite quantum dots with formamidine-methylamine hybrid cations. Journal Physics D: Applied Physics, 2018, 51, 454003.	1.3	6
379	Improved performance of CsPbBr ₃ perovskite light-emitting devices by both boundary and interface defects passivation. Nanoscale, 2018, 10, 18315-18322.	2.8	29
380	Amorphousâ€īiO ₂ â€Encapsulated CsPbBr ₃ Nanocrystal Composite Photocatalyst with Enhanced Charge Separation and CO ₂ Fixation. Advanced Materials Interfaces, 2018, 5, 1801015.	1.9	125

#	Article	IF	CITATIONS
381	Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy, 2018, 53, 559-566.	8.2	45
382	Leadâ€Free Highly Efficient Blueâ€Emitting Cs ₃ Cu ₂ I ₅ with 0D Electronic Structure. Advanced Materials, 2018, 30, e1804547.	11.1	477
383	Self-Assembled High Quality CsPbBr ₃ Quantum Dot Films toward Highly Efficient Light-Emitting Diodes. ACS Nano, 2018, 12, 9541-9548.	7.3	146
384	Longâ€Term Stable and Tunable Highâ€Performance Photodetectors Based on Perovskite Microwires. Advanced Optical Materials, 2018, 6, 1800469.	3.6	19
385	Metal halide perovskites: stability and sensing-ability. Journal of Materials Chemistry C, 2018, 6, 10121-10137.	2.7	131
386	Anion exchange in inorganic perovskite nanocrystal polymer composites. Chemical Science, 2018, 9, 8121-8126.	3.7	24
387	Lowâ€Temperature Absorption, Photoluminescence, and Lifetime of CsPbX ₃ (X = Cl, Br, I) Nanocrystals. Advanced Functional Materials, 2018, 28, 1800945.	7.8	186
388	Boosting spectral response of multi-crystalline Si solar cells with Mn2+ doped CsPbCl3 quantum dots downconverter. Journal of Power Sources, 2018, 395, 85-91.	4.0	34
389	All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges. ACS Central Science, 2018, 4, 668-679.	5.3	298
390	A General Strategy for In Situ Growth of Allâ€Inorganic CsPbX ₃ (X = Br, I, and Cl) Perovskite Nanocrystals in Polymer Fibers toward Significantly Enhanced Water/Thermal Stabilities. Advanced Optical Materials, 2018, 6, 1800346.	3.6	110
391	A Review on Halide Perovskites as Color Conversion Layers in White Light Emitting Diode Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800120.	0.8	73
392	Solvent-Assisted Surface Engineering for High-Performance All-Inorganic Perovskite Nanocrystal Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 19828-19835.	4.0	45
393	Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 2018, 10, 11211-11221.	2.8	67
394	Microfabricable ratiometric gaseous oxygen sensors based on inorganic perovskite nanocrystals and PtTFPP. Sensors and Actuators B: Chemical, 2018, 271, 104-109.	4.0	10
395	Recovery of Shallow Charge-Trapping Defects in CsPbX ₃ Nanocrystals through Specific Binding and Encapsulation with Amino-Functionalized Silanes. ACS Energy Letters, 2018, 3, 1409-1414.	8.8	60
396	Size-tunable CsPbBr ₃ perovskite ring arrays for lasing. Nanoscale, 2018, 10, 10383-10388.	2.8	23
397	Low-voltage all-inorganic perovskite quantum dot transistor memory. Applied Physics Letters, 2018, 112, .	1.5	19
398	Boosting the Photoluminescence of CsPbX ₃ (X = Cl, Br, I) Perovskite Nanocrystals Covering a Wide Wavelength Range by Postsynthetic Treatment with Tetrafluoroborate Salts. Chemistry of Materials, 2018, 30, 3633-3637.	3.2	239

#	Article	IF	CITATIONS
399	Efficient pure green light-emitting diodes based on formamidinium lead bromide perovskite nanocrystals. Organic Electronics, 2018, 60, 64-70.	1.4	10
400	Photodetectors with ultra-high detectivity based on stabilized all-inorganic perovskite CsPb _{0.922} Sn _{0.078} I ₃ nanobelts. Journal of Materials Chemistry C, 2018, 6, 6287-6296.	2.7	47
401	Highly Efficient Blueâ€Emitting Biâ€Doped Cs ₂ SnCl ₆ Perovskite Variant: Photoluminescence Induced by Impurity Doping. Advanced Functional Materials, 2018, 28, 1801131.	7.8	358
402	Synergies of Electrochemical Metallization and Valance Change in Allâ€Inorganic Perovskite Quantum Dots for Resistive Switching. Advanced Materials, 2018, 30, e1800327.	11.1	246
403	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	3.6	95
404	A Perovskite Lightâ€Emitting Device Driven by Lowâ€Frequency Alternating Current Voltage. Advanced Optical Materials, 2018, 6, 1800206.	3.6	29
405	Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application. Journal of Colloid and Interface Science, 2018, 529, 1-10.	5.0	7
406	Two-photon pumped amplified spontaneous emission based on all-inorganic perovskite nanocrystals embedded with gold nanorods. Optical Materials, 2018, 81, 55-58.	1.7	15
407	Facile Method for the Controllable Synthesis of Cs _{<i>x</i>} Pb _{<i>y</i>} Br _{<i>z</i>} Based Perovskites. Inorganic Chemistry, 2018, 57, 6206-6209.	1.9	27
408	Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics. ACS Applied Materials & Interfaces, 2018, 10, 18869-18878.	4.0	78
409	Fabrication of planar heterojunction CsPbBr ₂ 1 perovskite solar cells using ZnO as an electron transport layer and improved solar energy conversion efficiency. New Journal of Chemistry, 2018, 42, 14104-14110.	1.4	55
410	The Role of Metal Halide Perovskites in Next-Generation Lighting Devices. Journal of Physical Chemistry Letters, 2018, 9, 3987-3997.	2.1	53
411	CsPbBr ₃ perovskite quantum dots/ZnO inverse opal electrodes: photoelectrochemical sensing for dihydronicotinamide adenine dinucleotide under visible irradiation. Dalton Transactions, 2018, 47, 10057-10062.	1.6	28
412	Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield. Nanoscale, 2018, 10, 13565-13571.	2.8	49
413	Ultrathin CsPbX ₃ (X = Cl, Br, I) nanoplatelets: solvothermal synthesis and optical spectroscopic properties. Dalton Transactions, 2018, 47, 9845-9849.	1.6	34
414	All-Solution-Processed Perovskite Quantum Dots Light-Emitting Diodes Based on the Solvent Engineering Strategy. ACS Applied Materials & Interfaces, 2018, 10, 27374-27380.	4.0	40
415	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	4.6	36
416	The Many "Facets―of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals. Chemical Reviews, 2018, 118, 7804-7864.	23.0	209

#	Article	IF	CITATIONS
417	In Situ Passivation of PbBr ₆ ^{4–} Octahedra toward Blue Luminescent CsPbBr ₃ Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Letters, 2018, 3, 2030-2037.	8.8	402
418	All-inorganic perovskite quantum dots stabilized blue phase liquid crystals. Optics Express, 2018, 26, 18310.	1.7	18
419	Highly Emissive and Color-Tunable Perovskite Cross-linkers for Luminescent Polymer Networks. ACS Applied Materials & Interfaces, 2018, 10, 28971-28978.	4.0	20
420	Template-Free Synthesis of High-Yield Fe-Doped Cesium Lead Halide Perovskite Ultralong Microwires with Enhanced Two-Photon Absorption. Journal of Physical Chemistry Letters, 2018, 9, 4878-4885.	2.1	73
421	Continuous low temperature synthesis of MAPbX ₃ perovskite nanocrystals in a flow reactor. Reaction Chemistry and Engineering, 2018, 3, 640-644.	1.9	41
422	Temperature-dependent photoluminescence of Mn doped CsPbCl3 perovskite nanocrystals in mesoporous silica. Journal of Luminescence, 2018, 204, 10-15.	1.5	22
423	Ultrafast Spectral Dynamics of CsPb(Br _{<i>x</i>} Cl _{1–<i>x</i>}) ₃ Mixed-Halide Nanocrystals. ACS Photonics, 2018, 5, 3575-3583.	3.2	44
424	In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale, 2018, 10, 15436-15441.	2.8	69
425	Metal Halide Perovskites: Synthesis, Ion Migration, and Application in Fieldâ€Effect Transistors. Small, 2018, 14, e1801460.	5.2	88
426	Broadband femtosecond nonlinear optical properties of CsPbBr_3 perovskite nanocrystals. Optics Letters, 2018, 43, 603.	1.7	64
427	Confining Mn ²⁺ -Doped Lead Halide Perovskite in Zeolite-Y as Ultrastable Orange-Red Phosphor Composites for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 24656-24664.	4.0	107
428	Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor. Materials, 2018, 11, 371.	1.3	15
429	11â€1: Bright Organic—Inorganic Perovskite Quantum Dots Fabricated With Simple Ultrasonic Treatment. Digest of Technical Papers SID International Symposium, 2018, 49, 1952-1955.	0.1	1
430	Brightly luminescent and color-tunable green-violet-emitting halide perovskite CH ₃ NH ₃ PbBr ₃ colloidal quantum dots: an alternative to lighting and display technology. Physical Chemistry Chemical Physics, 2018, 20, 19950-19957.	1.3	16
431	Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 4166-4173.	2.1	108
432	Considerably enhanced exciton emission of CsPbCl ₃ perovskite quantum dots by the introduction of potassium and lanthanide ions. Nanoscale, 2018, 10, 14067-14072.	2.8	100
433	One-Pot Synthesis of Highly Stable CsPbBr ₃ @SiO ₂ Core–Shell Nanoparticles. ACS Nano, 2018, 12, 8579-8587.	7.3	447
434	Tuning Exciton–Mn ²⁺ Energy Transfer in Mixed Halide Perovskite Nanocrystals. Chemistry of Materials, 2018, 30, 5346-5352.	3.2	97

#	Article	IF	CITATIONS
435	Pressure-Induced Topological Nontrivial Phase and Tunable Optical Properties in All-Inorganic Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 17718-17725.	1.5	40
436	Shape control in the synthesis of colloidal semiconductor nanocrystals. , 2018, , 37-54.		5
437	Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. Journal of Materials Chemistry C, 2018, 6, 5957-5963.	2.7	34
438	In Situ Crystallization Synthesis of CsPbBr ₃ Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. ACS Applied Materials & Interfaces, 2018, 10, 18918-18926.	4.0	307
439	Surfaceâ€Passivated Cesium Lead Halide Perovskite Quantum Dots: Toward Efficient Lightâ€Emitting Diodes with an Inverted Sandwich Structure. Advanced Optical Materials, 2018, 6, 1800007.	3.6	44
440	Solvothermal Synthesis of Ultrathin Cesium Lead Halide Perovskite Nanoplatelets with Tunable Lateral Sizes and Their Reversible Transformation into Cs ₄ PbBr ₆ Nanocrystals. Chemistry of Materials, 2018, 30, 3714-3721.	3.2	108
441	Stable CsPbBr ₃ perovskite quantum dots with high fluorescence quantum yields. New Journal of Chemistry, 2018, 42, 9496-9500.	1.4	71
442	Reverse synthesis of CsPb _x Mn _{1â^{~°}x} (Cl/Br) ₃ perovskite quantum dots from CsMnCl ₃ precursors through cation exchange. Journal of Materials Chemistry C, 2018, 6, 5908-5915.	2.7	20
443	Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. ACS Nano, 2018, 12, 5504-5517.	7.3	138
444	Green Light-Emitting Devices Based on Perovskite CsPbBr3 Quantum Dots. Frontiers in Chemistry, 2018, 6, 381.	1.8	27
445	Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes. Science China Chemistry, 2018, 61, 1047-1061.	4.2	29
446	Anisotropic Optoelectronic Properties of Melt-Grown Bulk CsPbBr ₃ Single Crystal. Journal of Physical Chemistry Letters, 2018, 9, 5040-5046.	2.1	84
447	Structural effects on optoelectronic properties of halide perovskites. Chemical Society Reviews, 2018, 47, 7045-7077.	18.7	108
448	Preparation of perovskite-embedded monodisperse copolymer particles and their application for high purity down-conversion LEDs. Materials Horizons, 2018, 5, 1120-1129.	6.4	12
449	Lead halide perovskite quantum dots for light-emitting devices. Journal of Materials Chemistry C, 2018, 6, 11868-11877.	2.7	47
450	Halide exchange and surface modification of metal halide perovskite nanocrystals with alkyltrichlorosilanes. Nanoscale, 2018, 10, 16919-16927.	2.8	26
451	Ellipsometric study of the complex optical constants of a CsPbBr ₃ perovskite thin film. Journal of Materials Chemistry C, 2018, 6, 10450-10455.	2.7	71
452	CsPbBr ₃ /Cs ₄ PbBr ₆ Nanocomposites: Formation Mechanism, Large-scale and Green Synthesis, and Application in White Light-Emitting Diodes. Crystal Growth and Design, 2018, 18, 6133-6141.	1.4	61

#	Article	IF	CITATIONS
453	Enhanced Solar-Driven Gaseous CO ₂ Conversion by CsPbBr ₃ Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst. ACS Applied Energy Materials, 2018, 1, 5083-5089.	2.5	135
454	Electron-rich heterocycle induced tunable emitting fluorescence of graphitic carbon nitride quantum dots. Applied Surface Science, 2018, 462, 303-309.	3.1	24
455	Lattice Dynamics and Thermal Stability of Cubic-Phase CsPbI ₃ Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 4915-4920.	2.1	33
456	CsPbBr ₃ /EuPO ₄ dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry. Journal of Materials Chemistry C, 2018, 6, 9964-9971.	2.7	68
457	Polymer-assisted room-temperature synthesis of highly luminescent perovskite nanocrystals with superior water resistance for WLED. Materials Letters, 2018, 232, 138-141.	1.3	12
458	Mn-Doped CsPbCl ₃ perovskite nanocrystals: solvothermal synthesis, dual-color luminescence and improved stability. Journal of Materials Chemistry C, 2018, 6, 8990-8998.	2.7	85
459	Perovskite quantum dots as fluorescent materials for multi-colored lighting. Journal of Materials Science, 2018, 53, 15430-15441.	1.7	20
460	Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals: Preparation, Water-Triggered Transformation Behavior, and Anti-Counterfeiting Application. Langmuir, 2018, 34, 10363-10370.	1.6	53
461	High stability luminophores: fluorescent CsPbX ₃ (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method. Optics Express, 2018, 26, 20649.	1.7	24
462	Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs. Chemistry of Materials, 2018, 30, 6099-6107.	3.2	217
463	Enhancing Luminescence and Photostability of CsPbBr ₃ Nanocrystals via Surface Passivation with Silver Complex. Journal of Physical Chemistry C, 2018, 122, 12994-13000.	1.5	72
464	Tunable morphologies, multicolor properties and applications of RE ³⁺ doped NaY(MoO ₄) ₂ nanocrystals <i>via</i> a facile ligand-assisted reprecipitation process. Dalton Transactions, 2018, 47, 8697-8705.	1.6	8
465	Targeting Cooling for Quantum Dots in White QDs‣EDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. Advanced Functional Materials, 2018, 28, 1801407.	7.8	83
466	Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Progress in Quantum Electronics, 2018, 60, 1-29.	3.5	41
467	Influence of Eu-substitution on luminescent CH ₃ NH ₃ PbBr ₃ quantum dots. Nanoscale, 2018, 10, 11452-11459.	2.8	15
468	Pâ€204: <i>Lateâ€News Poster:</i> Enhanced Brightness and Stability of Blueâ€emitting Perovskite Quantum Dots. Digest of Technical Papers SID International Symposium, 2018, 49, 1685-1687.	0.1	0
469	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 9798-9802.	1.6	9
470	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 9650-9654.	7.2	85

#	Article	IF	CITATIONS
471	Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615-622.	8.2	103
472	Stable Blue Luminescent CsPbBr ₃ Perovskite Nanocrystals Confined in Mesoporous Thin Films. Angewandte Chemie - International Edition, 2018, 57, 8881-8885.	7.2	138
473	Highâ€Efficiency Pureâ€Color Inorganic Halide Perovskite Emitters for Ultrahighâ€Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods, 2018, 2, 1700382.	4.6	47
474	Postsynthesis Phase Transformation for CsPbBr ₃ /Rb ₄ PbBr ₆ Core/Shell Nanocrystals with Exceptional Photostability. ACS Applied Materials & Interfaces, 2018, 10, 23303-23310.	4.0	98
475	Zero-dimensional Cs ₄ EuX ₆ (X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6, 6647-6655.	2.7	66
476	Stable Blue Luminescent CsPbBr ₃ Perovskite Nanocrystals Confined in Mesoporous Thin Films. Angewandte Chemie, 2018, 130, 9019-9023.	1.6	51
477	CsPbX ₃ (X = Br, I) perovskite quantum dot embedded low-melting phosphosilicate glasses: controllable crystallization, thermal stability and tunable emissions. Journal of Materials Chemistry C, 2018, 6, 6832-6839.	2.7	134
478	White perovskite based lighting devices. Chemical Communications, 2018, 54, 8150-8169.	2.2	70
479	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	11.1	431
480	Liquid-type inorganic perovskite CsPbBr _{1.2} 1 _{1.8} quantum dots for white light-emitting diode. Materials Research Express, 2018, 5, 066206.	0.8	2
481	Defect States Induced in GaN-Based Green Light Emitting Diodes by Electron Irradiation. ECS Journal of Solid State Science and Technology, 2018, 7, P323-P328.	0.9	13
482	Spontaneous Silver Doping and Surface Passivation of CsPbl ₃ Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%. ACS Energy Letters, 2018, 3, 1571-1577.	8.8	205
483	Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. Journal of Physical Chemistry C, 2018, 122, 15799-15818.	1.5	70
484	Near-infrared-excitable perovskite quantum dots <i>via</i> coupling with upconversion nanoparticles for dual-model anti-counterfeiting. New Journal of Chemistry, 2018, 42, 12353-12356.	1.4	24
485	Tunable photoluminescence of CsPbBr3 perovskite quantum dots for their physical research. Applied Surface Science, 2019, 465, 656-664.	3.1	54
486	Doping manganese into CsPb(Cl/Br) ₃ quantum dots glasses: Dualâ€color emission and super thermal stability. Journal of the American Ceramic Society, 2019, 102, 1090-1100.	1.9	27
487	<i>In situ</i> growth of ultrasmall cesium lead bromine quantum dots in a mesoporous silica matrix and their application in flexible light-emitting diodes. Nanoscale, 2019, 11, 16499-16507.	2.8	47
488	Luminescent perovskites: recent advances in theory and experiments. Inorganic Chemistry Frontiers, 2019, 6, 2969-3011.	3.0	185

ARTICLE IF CITATIONS # CsPbBr₃interconnected microwire structure: temperature-related photoluminescence 489 2.7 15 properties and its lasing action. Journal of Materials Chemistry C, 2019, 7, 10454-10459. Influence of shape on the carrier relaxation dynamics of CsPbBr₃ perovskite 1.3 nanocrystals. Physical Chemistry Chemical Physics, 2019, 21, 19318-19326. Roomâ€Temperature Stimulated Emission and Lasing in Recrystallized Cesium Lead Bromide Perovskite 491 11.1 148 Thin Films. Advanced Materials, 2019, 31, e1903717. Single-Step Synthesis of Dual Phase Bright Blue-Green Emitting Lead Halide Perovskite Nanocrystal Thin Films. Chemistry of Materials, 2019, 31, 6824-6832. Controllable synthesis of CsPbI₃ nanorods with tunable photoluminescence emission. 493 1.7 15 RSC Advances, 2019, 9, 24928-24934. White light-emitting devices based on ZnCdS/ZnS and perovskite nanocrystal heterojunction. 494 1.3 Nanotechnology, 2019, 30, 465201. Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 495 8.2 26 104029. Spinodal Decomposition During Anion Exchange in Colloidal Mn²⁺-Doped 496 3.2 36 CsPbX < sub > 3 < /sub > (X = Cl, Br) Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 7711-7722. Localized exciton emission in CsPbBr₃nanocrystals synthesized with excess bromide ions. 497 2.7 8 Journal of Materials Chemistry C, 2019, 7, 10783-10788. MOF-Confined Sub-2 nm Stable CsPbX3 Perovskite Quantum Dots. Nanomaterials, 2019, 9, 1147. Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InformaÄnÃ-499 72 8.5 MateriÃ; ly, 2019, 1, 430-459. Dual Emission of Waterâ€Stable 2D Organic–Inorganic Halide Perovskites with Mn(II) Dopant. Advanced 7.8 Functional Materials, 2019, 29, 1904768. Impeding anion exchange to improve composition stability of CsPbX₃ (X = Cl, Br) nanocrystals through facilely fabricated Cs₄Pb X₆ shell*. Chinese Physics B, 501 0.7 7 2019, 28, 086102. Ultra-high stability of cesium lead halide nanocrystals synthesized by a simple one-pot method. Materials and Design, 2019, 181, 108100. 3.3 <i>In situ</i> growth of luminescent perovskite fibers in natural hollow templates. Chemical 503 2.2 6 Communications, 2019, 55, 11056-11058. Size dependent charge separation and recombination in CsPbI3 perovskite quantum dots. Journal of 504 Chemical Physics, 2019, 151, 074705. Orange to Red, Emission-Tunable Mn-Doped Two-Dimensional Perovskites with High Luminescence and 505 4.0 75 Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 34109-34116. Synthesis and photoluminescence properties of CsPbBr3 quantum dots by using para-xylene as the 1.5 anti-solvent. Journal of Luminescence, 2019, 215, 116584.

#	Article	IF	CITATIONS
507	Tuning from Quantum Dots to Magic Sized Clusters of CsPbBr ₃ Using Novel Planar Ligands Based on the Trivalent Nitrate Coordination Complex. Journal of Physical Chemistry Letters, 2019, 10, 4409-4416.	2.1	23
508	Organic–inorganic hybrid perovskite quantum dot light-emitting diodes using a graphene electrode and modified PEDOT:PSS. RSC Advances, 2019, 9, 20931-20940.	1.7	5
509	Color-Tunable All-Inorganic CsPbBr ₃ Perovskites Nanoplatelet Films for Photovoltaic Devices. ACS Applied Nano Materials, 2019, 2, 5149-5155.	2.4	3
510	CsPb(Br,I)3 embedded glass: Fabrication, tunable luminescence, improved stability and wide-color gamut LCD application. Chemical Engineering Journal, 2019, 378, 122255.	6.6	65
511	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
512	Intraband Cooling in Allâ€Inorganic and Hybrid Organic–Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2019, 29, 1901725.	7.8	42
513	Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing. Nanoscale, 2019, 11, 15010-15016.	2.8	110
514	Surface pre-optimization of a mixed halide perovskite toward high photoluminescence quantum yield in the blue spectrum range. Nanoscale, 2019, 11, 15206-15215.	2.8	43
515	Perovskite nanocrystals for energy conversion and storage. Nanophotonics, 2019, 8, 1607-1640.	2.9	78
516	Reducing the Exciton Binding Energy of Donor–Acceptorâ€Based Conjugated Polymers to Promote Chargeâ€Induced Reactions. Angewandte Chemie, 2019, 131, 10342-10346.	1.6	32
517	Instantaneous, room-temperature, open-air atmosphere, solution-phase synthesis of perovskite quantum dots through halide exchange employing non-metal based inexpensive HCl/HI: ensemble and single particle spectroscopy. Nanoscale Advances, 2019, 1, 3506-3513.	2.2	17
518	Mg ²⁺ â€Alloyed Allâ€Inorganic Halide Perovskites for White Lightâ€Emitting Diodes by 3Dâ€Printing Method. Advanced Optical Materials, 2019, 7, 1900916.	3.6	52
519	Recent Progress on Cesium Lead Halide Perovskites for Photodetection Applications. ACS Applied Electronic Materials, 2019, 1, 1348-1366.	2.0	42
520	White Light Emission from Thin-Film Samples of ZnO Nanocrystals, Eu3+ and Tb3+ Ions Embedded in an SiO2 Matrix. Materials, 2019, 12, 1997.	1.3	7
521	Aqueous Phase Exfoliating Quasiâ€2D CsPbBr ₃ Nanosheets with Ultrahigh Intrinsic Water Stability. Small, 2019, 15, e1901994.	5.2	45
522	Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. Journal of Materials Chemistry C, 2019, 7, 8969-8974.	2.7	8
523	Solutionâ€Processed Perovskite Microdisk for Coherent Light Emission. Advanced Optical Materials, 2019, 7, 1900678.	3.6	12
524	All Inorganic Mixed Halide Perovskite Nanocrystal–Graphene Hybrid Photodetector: From Ultrahigh Gain to Photostability. ACS Applied Materials & Interfaces, 2019, 11, 27064-27072.	4.0	37

#	Article	IF	CITATIONS
525	Recent advances and prospects toward blue perovskite materials and lightâ€emitting diodes. InformaÄnÃ- Materiály, 2019, 1, 211-233.	8.5	84
526	Visible-to-UV Photon Upconversion Sensitized by Lead Halide Perovskite Nanocrystals. Chemistry Letters, 2019, 48, 1347-1350.	0.7	42
527	Enhanced UV–visible detection of InGaZnO phototransistors via CsPbBr ₃ quantum dots. Semiconductor Science and Technology, 2019, 34, 125013.	1.0	25
528	Delayed Photoluminescence and Modified Blinking Statistics in Alumina-Encapsulated Zero-Dimensional Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6780-6787.	2.1	31
529	Ultrasonication-Assisted Ambient-Air Synthesis of Monodispersed Blue-Emitting CsPbBr ₃ Quantum Dots for White Light Emission. ACS Applied Nano Materials, 2019, 2, 6874-6879.	2.4	22
530	Halogenâ€Hotâ€Injection Synthesis of Mnâ€Đoped CsPb(Cl/Br) ₃ Nanocrystals with Blue/Orange Dual olor Luminescence and High Photoluminescence Quantum Yield. Advanced Optical Materials, 2019, 7, 1901082.	3.6	41
531	Ligand induced anomalous emission shift of size-controlled CsPbBr3 nanocrystals. Applied Physics Letters, 2019, 115, .	1.5	16
532	Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Applied Physics Letters, 2019, 115, 121106.	1.5	27
533	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760
534	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227.	1.6	16
535	Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. Small, 2019, 15, e1902079.	5.2	81
536	Pâ€5.1: Enhanced Nickel Oxide Hole Injection Layer via the rGO Combustion Method for Perovskite QDs Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 724-727.	0.1	0
537	Novel Bromide Quaternary Ammonium Ligand for Synthesizing High Fluorescence Efficiency CsPbBn Perovskite Quantum Dots and Their Fabrication of White Light-Emitting Diodes with Wide Color Gamut. IOP Conference Series: Materials Science and Engineering, 2019, 563, 022047.	0.3	0
538	Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via Star-like Molecular Bottlebrush Trilobe Nanoreactors. Nano Letters, 2019, 19, 9019-9028.	4.5	70
539	Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals. Nature Communications, 2019, 10, 4962.	5.8	63
540	CsPbBr ₃ –Cs ₄ PbBr ₆ composite nanocrystals for highly efficient pure green light emission. Nanoscale, 2019, 11, 22899-22906.	2.8	35
541	Unusual electric field-induced optical behaviors in cesium lead bromide perovskites. Applied Physics Letters, 2019, 115, .	1.5	5
542	Preparation of Eu3+-doped CsPbBr3 quantum-dot microcrystals and their luminescence properties. Optical Materials, 2019, 97, 109454.	1.7	13

#	Article	IF	CITATIONS
543	Advances in the Stability of Halide Perovskite Nanocrystals. Materials, 2019, 12, 3733.	1.3	33
544	Rapid Route to Polar Solvent-Directed Growth of Perovskite Nanowires. ACS Applied Nano Materials, 2019, 2, 7910-7915.	2.4	9
545	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie - International Edition, 2019, 58, 16077-16081.	7.2	49
546	Facile Room-Temperature Synthesis of High-Chemical-Stability Nitrogen-Doped Graphene Quantum Dot/CsPbBr ₃ Composite. ACS Applied Electronic Materials, 2019, 1, 2244-2252.	2.0	19
547	The Role of Thickness Control and Interface Modification in Assembling Efficient Planar Perovskite Solar Cells. Molecules, 2019, 24, 3466.	1.7	14
548	Integration of Environmental Friendly Perovskites for High-efficiency White Light-emitting Diodes. Nanoscale Research Letters, 2019, 14, 152.	3.1	7
549	A facile method to fabricate high-quality perovskite nanocrystals based on single crystal powder. Nano Research, 2019, 12, 2640-2645.	5.8	12
550	Cesium tin halide perovskite quantum dots as an organic photoluminescence probe for lead ion. Journal of Luminescence, 2019, 216, 116711.	1.5	21
551	Anion- and Cation-Codoped All-Inorganic Blue-Emitting Perovskite Quantum Dots for Light-Emitting Diodes. ACS Applied Nano Materials, 2019, 2, 5655-5662.	2.4	27
552	Significantly improving the moisture-, oxygen- and thermal-induced photoluminescence in all-inorganic halide perovskite CsPbI3 crystals by coating the SiO2 layer. Journal of Luminescence, 2019, 216, 116722.	1.5	22
553	Promoting photoluminescence quantum yields of glass-stabilized CsPbX ₃ (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale, 2019, 11, 17216-17221.	2.8	127
554	High-performance and stable CsPbBr ₃ light-emitting diodes based on polymer additive treatment. RSC Advances, 2019, 9, 27684-27691.	1.7	25
555	Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies. Journal of Materials Chemistry A, 2019, 7, 20494-20518.	5.2	62
556	Impact of Host Composition, Codoping, or Tridoping on Quantum-Cutting Emission of Ytterbium in Halide Perovskite Quantum Dots and Solar Cell Applications. Nano Letters, 2019, 19, 6904-6913.	4.5	100
557	The preparation and up-conversion properties of full spectrum CsPbX ₃ (X = Cl, Br, I) quantum dot glasses. Nanoscale, 2019, 11, 18009-18014.	2.8	47
558	Synthesis of Highly Photoluminescent All-Inorganic CsPbX3 Nanocrystals via Interfacial Anion Exchange Reactions. Nanomaterials, 2019, 9, 1296.	1.9	12
559	Rapid synthesis of quantum-confined CsPbBr ₃ perovskite nanowires using a microfluidic reactor. Nanoscale, 2019, 11, 18790-18796.	2.8	35
560	Assessment for Anion-Exchange Reaction in CsPbX ₃ (X = Cl, Br, I) Nanocrystals from Bond Strength of Inorganic Salt. Journal of Physical Chemistry C, 2019, 123, 24313-24320.	1.5	32

#	Article	IF	CITATIONS
561	All-inorganic lead halide perovskites: a promising choice for photovoltaics and detectors. Journal of Materials Chemistry C, 2019, 7, 12415-12440.	2.7	95
562	High-Quality All-Inorganic Perovskite CsPbBr3 Quantum Dots Emitter Prepared by a Simple Purified Method and Applications of Light-Emitting Diodes. Energies, 2019, 12, 3507.	1.6	16
563	Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Research, 2019, 12, 2858-2865.	5.8	11
564	Red-emitting CsPbBrI2/PbSe heterojunction nanocrystals with high luminescent efficiency and stability for bright light-emitting diodes. Nano Energy, 2019, 66, 104142.	8.2	40
565	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
566	Perovskite quantum dots for light-emitting devices. Nanoscale, 2019, 11, 19119-19139.	2.8	97
567	Precipitating tunable-emission CsPb(Cl/Br) ₃ QDs in boro-germanate glass for wide-color-gamut liquid crystal displays. Journal of Information Display, 2019, 20, 193-200.	2.1	10
568	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	7.9	42
569	Broadband White Emission in Cs ₂ AgIn _{1–<i>x</i>} Bi _{<i>x</i>} Cl ₆ Phosphors. Inorganic Chemistry, 2019, 58, 13403-13410.	1.9	58
570	CdSe/ZnS Quantum-Dot Light-Emitting Diodes With Spiro-OMeTAD as Buffer Layer. IEEE Transactions on Electron Devices, 2019, 66, 4901-4906.	1.6	8
571	<i>In situ</i> inclusion of thiocyanate for highly luminescent and stable CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals. Nanoscale, 2019, 11, 1319-1325.	2.8	29
572	Hydroxyl terminated mesoporous silica-assisted dispersion of ligand-free CsPbBr ₃ /Cs ₄ PbBr ₆ nanocrystals in polymer for stable white LED. Nanoscale, 2019, 11, 1335-1342.	2.8	27
573	Transition metal halide-doped, highly stable all-inorganic perovskite nanocrystals for fabrication of white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1690-1695.	2.7	22
574	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	11.1	92
575	Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Research, 2019, 12, 785-789.	5.8	99
576	Photoreversible luminescence switching of CsPbl ₃ nanocrystals sensitized by photochromic Agl nanocrystals. Nanoscale, 2019, 11, 3193-3199.	2.8	24
577	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Small, 2019, 15, e1804947.	5.2	23
578	On the structure, synthesis, and characterization of ultrafast blue-emitting CsPbBr3 nanoplatelets. APL Materials, 2019, 7, .	2.2	38

#	Article	IF	CITATIONS
579	Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crystals, 2019, 9, 59.	1.0	51
580	Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer. Journal of Luminescence, 2019, 209, 251-257.	1.5	9
581	Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Applied Catalysis B: Environmental, 2019, 247, 57-69.	10.8	133
582	Cs ₂ NaBiCl ₆ :Mn ²⁺ —A New Orange-Red Halide Double Perovskite Phosphor. Chemistry of Materials, 2019, 31, 1738-1744.	3.2	221
583	Room-Temperature Synthesis of Two-Dimensional Hexagonal Boron Nitride Nanosheet-Stabilized CsPbBr ₃ Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 8242-8249.	4.0	50
584	Effects of Oleic Acid on the Stability of Perovskite CsPbBr ₃ Quantum Dot Dispersions. Chemistry Letters, 2019, 48, 349-352.	0.7	16
585	Comparison of superstar CsPbBr3 and classical LaPO4:Tb3+,Ce3+ green-emitting nanophosphors. Materials Research Express, 2019, 6, 055017.	0.8	1
586	Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs. Journal of Materials Science, 2019, 54, 6917-6929.	1.7	51
587	Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Organic Electronics, 2019, 68, 76-84.	1.4	21
588	Stimuli-Responsive Inks Based on Perovskite Quantum Dots for Advanced Full-Color Information Encryption and Decryption. ACS Applied Materials & amp; Interfaces, 2019, 11, 8210-8216.	4.0	92
589	Ethanolâ€Precipitable, Silicaâ€Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Longâ€Term Storage and Reusage. Angewandte Chemie, 2019, 131, 2825-2829.	1.6	16
590	Synthesis of stable and phase-adjustable CsPbBr ₃ @Cs ₄ PbBr ₆ nanocrystals <i>via</i> novel anion–cation reactions. Nanoscale Advances, 2019, 1, 980-988.	2.2	67
591	Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes <i>via</i> FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295-1303.	2.8	36
592	All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. Journal of Materials Chemistry C, 2019, 7, 757-789.	2.7	193
593	Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019, 7, 1413-1446.	2.7	182
594	Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7, 1741-1791.	2.7	353
595	Highly luminescent CsPbBr ₃ nanorods synthesized by a ligand-regulated reaction at the water–oil interface. Journal of Materials Chemistry C, 2019, 7, 1854-1858.	2.7	43
596	Inorganic antimony halide hybrids with broad yellow emissions. Science Bulletin, 2019, 64, 904-909.	4.3	31

ARTICLE IF CITATIONS Ultraviolet Light-Induced Degradation of Luminescence in Mn-Doped CsPbCl₃ 597 1.5 28 Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 14849-14857. Highly Luminescent Violet- and Blue-Emitting Stable Perovskite Nanocrystals., 2019, 1, 116-122. ZnX₂ mediated post-synthetic transformation of zero dimensional 599 Cs₄PbBr₆ nanocrystals for opto-electronic applications. Nanoscale 2.2 8 Advances, 2019, 1, 2502-2509. Chlorine-additive-promoted incorporation of Mn²⁺ dopants into CsPbCl₃ 600 perovskite nanocrystals. Nanoscale, 2019, 11, 12465-12470. Chemical Transformation of Lead Halide Perovskite into Insoluble, Less Cytotoxic, and Brightly 601 Luminescent CsPbBr₃/CsPb₂Br₅ Composite Nanocrystals for Cell 4.0 81 Imaging. ACS Applied Materials & amp; Interfaces, 2019, 11, 24241-24246. Wavelengthâ€Tunable Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 1900275. 3.6 One Stone, Two Birds: High-Efficiency Blue-Emitting Perovskite Nanocrystals for LED and Security Ink 603 3.2 66 Applications. Chemistry of Materials, 2019, 31, 5116-5123. Nanoconfining Optoelectronic Materials for Enhanced Performance and Stability. Chemistry of Materials, 2019, 31, 4953-4970. 604 3.2 Phase Regulation Strategy of Perovskite Nanocrystals from 1D Orthomorphic NH₄Pbl₃ to 3D Cubic 605 7.2 75 (NH₄)_{0.5}Cs_{0.5}Pb(I_{0.5}Br_{0.5})₃ Phase Enhances Photoluminescence. Angewandte Chemie - International Edition, 2019, 58, 11642-11646. Mechanistic Exploration of Dodecanethiol-Treated Colloidal CsPbBr₃ Nanocrystals with Photoluminescence Quantum Yields Reaching Near 100%. Journal of Physical Chemistry C, 2019, 123, 1.5 18103-18112. Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving 607 2.7 6 layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711. Silica encapsulation of metal perovskite nanocrystals in a photoluminescence type display application. 608 1.3 Nanotechnology, 2019, 30, 395702. Enhanced photoresponse of n-ZnO/p-GaN heterojunction ultraviolet photodetector with high-quality 609 2.8 57 CsPbBr3 films grown by pulse laser deposition. Journal of Alloys and Compounds, 2019, 802, 70-75. Rareâ€Earthâ€Elementâ€Ytterbiumâ€Substituted Leadâ€Free Inorganic Perovskite Nanocrystals for 11.1 Optoelectronic Applications. Advanced Materials, 2019, 31, e1901716. 611 Ultra-stable CsPbBr3 Perovskite Nanosheets for X-Ray Imaging Screen. Nano-Micro Letters, 2019, 11, 52. 14.4 75 Improved thermal stability of photoluminescence in Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals. Journal of Colloid and Intérface Science, 2019, 554, 133-141. (INVITED) Stability: A desiderated problem for the lead halide perovskites. Optical Materials: X, 2019, 1, 613 0.335 Ì00023. Phase Regulation Strategy of Perovskite Nanocrystals from 1D Orthomorphic NH 4 PbI 3 to 3D Cubic (NH 4) 0.5 Cs 0.5 Pb(I 0.5 Br 0.5) 3 Phase Enhances Photoluminescence. Angewandte Chemie, 2019, 131, 614 1.6 <u>11768-1</u>1772.

#	Article	IF	CITATIONS
615	Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21%. Journal of the American Chemical Society, 2019, 141, 10324-10330.	6.6	76
616	Tackling the Defects, Stability, and Photoluminescence of CsPbX ₃ Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 1610-1618.	8.8	227
617	Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. Journal of Materials Chemistry C, 2019, 7, 8287-8293.	2.7	11
618	Revealing the Effects of Defects on Ultrafast Carrier Dynamics of CsPbl ₃ Nanocrystals in Glass. Journal of Physical Chemistry C, 2019, 123, 15851-15858.	1.5	21
619	High-Efficient NUV Emission with Excellent Thermal Stability in Cd/Pb-Free AS-ZnO QDs by ALD without Surface Passivation. ACS Photonics, 2019, 6, 1715-1727.	3.2	2
620	Upconversion Luminescence in Yb/Ln (Ln = Er, Tm) Doped Oxyhalide Glasses Containing CsPbBr3 Perovskite Nanocrystals. Journal of the European Ceramic Society, 2019, 39, 4275-4282.	2.8	41
621	Improvement of Optical and Thermal Properties for Quantum Dots WLEDs by Controlling Layer Location. IEEE Access, 2019, 7, 77642-77648.	2.6	26
623	Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence. Optical Materials, 2019, 94, 41-46.	1.7	15
624	Pâ€124: Perovskite Quantum Dots Display: Challenges and Opportunities. Digest of Technical Papers SID International Symposium, 2019, 50, 1712-1715.	0.1	7
625	Stable and Efficient Green Perovskite Nanocrystal–Polysilazane Films for White LEDs Using an Electrospray Deposition Process. ACS Applied Materials & Interfaces, 2019, 11, 22510-22520.	4.0	11
626	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
627	Highly efficient organic-inorganic hybrid perovskite quantum dot/nanocrystal light-emitting diodes using graphene electrode and modified PEDOT:PSS. Organic Electronics, 2019, 72, 30-38.	1.4	20
628	An Improved Strategy for High-Quality Cesium Bismuth Bromine Perovskite Quantum Dots with Remarkable Electrochemiluminescence Activities. Analytical Chemistry, 2019, 91, 8607-8614.	3.2	66
629	Thermally stable and hydrophilic CsPbBr ₃ /mPEG-NH ₂ nanocrystals with enhanced aqueous fluorescence for cell imaging. Journal of Materials Chemistry B, 2019, 7, 4153-4160.	2.9	31
630	Enhancing the efficiency of CsPbX ₃ (X = Cl, Br, I) nanocrystals <i>via</i> simultaneous surface peeling and surface passivation. Nanoscale, 2019, 11, 11464-11469.	2.8	48
631	Reversible ON/OFF switching of photoluminescence from CsPbX ₃ quantum dots coated with silica using photochromic diarylethene. Chemical Communications, 2019, 55, 8060-8063.	2.2	30
632	Improving electron injection in all-inorganic perovskite light-emitting diode via electron transport layer modulation. Optik, 2019, 191, 68-74.	1.4	2
633	Synthetic Evolution of Colloidal Metal Halide Perovskite Nanocrystals. Langmuir, 2019, 35, 11609-11628.	1.6	47

#	Article	IF	CITATIONS
634	Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots. Nanoscale Horizons, 2019, 4, 1227-1231.	4.1	85
635	CsPbBr ₃ Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Advanced Materials, 2019, 31, e1900767.	11.1	329
636	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	11.1	119
637	Reducing the Exciton Binding Energy of Donor–Acceptorâ€Based Conjugated Polymers to Promote Chargeâ€Induced Reactions. Angewandte Chemie - International Edition, 2019, 58, 10236-10240.	7.2	278
638	Ligand-free all-inorganic metal halide nanocubes for fast, ultra-sensitive and self-powered ozone sensors. Nanoscale Advances, 2019, 1, 2699-2706.	2.2	44
639	LEDs using halide perovskite nanocrystal emitters. Nanoscale, 2019, 11, 11402-11412.	2.8	41
640	The Rise of Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 3035-3042.	2.1	101
641	L-Type Ligand-Assisted Acid-Free Synthesis of CsPbBr ₃ Nanocrystals with Near-Unity Photoluminescence Quantum Yield and High Stability. Nano Letters, 2019, 19, 4151-4157.	4.5	177
642	Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. ACS Omega, 2019, 4, 9150-9159.	1.6	26
643	Spontaneous Selfâ€Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission. Advanced Science, 2019, 6, 1900462.	5.6	69
644	Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Research, 2019, 12, 1461-1465.	5.8	56
645	High-Efficiency Violet-Emitting All-Inorganic Perovskite Nanocrystals Enabled by Alkaline-Earth Metal Passivation. Chemistry of Materials, 2019, 31, 3974-3983.	3.2	90
646	Hybrid Chloroantimonates(III): Thermally Induced Tripleâ€Mode Reversible Luminescent Switching and Laserâ€Printable Rewritable Luminescent Paper. Angewandte Chemie, 2019, 131, 10079-10083.	1.6	21
647	Hybrid Chloroantimonates(III): Thermally Induced Tripleâ€Mode Reversible Luminescent Switching and Laserâ€Printable Rewritable Luminescent Paper. Angewandte Chemie - International Edition, 2019, 58, 9974-9978.	7.2	176
648	Optical tuning of plasmon-enhanced photoluminescence. Nanoscale, 2019, 11, 10589-10594.	2.8	27
649	Highly efficient CsPbBr ₃ perovskite nanocrystals induced by structure transformation between CsPbBr ₃ and Cs ₄ PbBr ₆ phases. Journal of Materials Chemistry C, 2019, 7, 7548-7553.	2.7	38
650	Exploiting Twoâ€Step Processed Mixed 2D/3D Perovskites for Bright Green Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900465.	3.6	18
651	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	11.1	134

#	Article	IF	CITATIONS
652	Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434-441.	8.2	103
653	A Facile Approach to Solid-State White Emissive Carbon Dots and Their Application in UV-Excitable and Single-Component-Based White LEDs. Nanomaterials, 2019, 9, 725.	1.9	25
654	Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. Advanced Materials, 2019, 31, e1900682.	11.1	270
655	Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Research, 2019, 12, 1733-1738.	5.8	22
656	Hexamethyldisilazane-triggered room temperature synthesis of hydrophobic perovskite nanocrystals with enhanced stability for light-emitting diodes. Journal of Colloid and Interface Science, 2019, 552, 101-110.	5.0	13
657	Photoconversion of carbon dioxide into fuels using semiconductors. Journal of CO2 Utilization, 2019, 33, 72-82.	3.3	28
658	Correlation of near-unity quantum yields with photogenerated excitons in X-type ligand passivated CsPbBr ₃ perovskite quantum dots. Nanoscale Advances, 2019, 1, 2828-2834.	2.2	17
659	Sodium Doping-Enhanced Emission Efficiency and Stability of CsPbBr ₃ Nanocrystals for White Light-Emitting Devices. Chemistry of Materials, 2019, 31, 3917-3928.	3.2	141
660	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	11.1	94
661	Highâ€Efficiency Perovskite Lightâ€Emitting Diodes with Synergetic Outcoupling Enhancement. Advanced Materials, 2019, 31, e1901517.	11.1	188
662	Spectra stable blue perovskite light-emitting diodes. Nature Communications, 2019, 10, 1868.	5.8	344
663	47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance. Organic Electronics, 2019, 70, 264-271.	1.4	10
664	Formation and Encapsulation of All-Inorganic Lead Halide Perovskites at Room Temperature in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 2270-2277.	2.1	77
665	Metal Doping/Alloying of Cesium Lead Halide Perovskite Nanocrystals and their Applications in Lightâ€Emitting Diodes with Enhanced Efficiency and Stability. Israel Journal of Chemistry, 2019, 59, 695-707.	1.0	23
666	Room temperature synthesis of Mn-doped Cs ₃ Pb _{6.48} Cl ₁₆ perovskite nanocrystals with pure dopant emission and temperature-dependent photoluminescence. CrystEngComm, 2019, 21, 3568-3575.	1.3	8
667	A Novel Phototransistor Device with Dual Active Layers Composited of CsPbBr3 and ZnO Quantum Dots. Materials, 2019, 12, 1215.	1.3	12
668	A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano, 2019, 6, 100036.	2.3	118
669	Preparation and Photopolymerization Kinetics of UV-Curable Fluorescent Inks Doped with Quantum Dots. Lecture Notes in Electrical Engineering, 2019, , 769-777.	0.3	1

#	Article	IF	CITATIONS
670	Recent advances with optical upconverters made from all-organic and hybrid materials. Science and Technology of Advanced Materials, 2019, 20, 497-510.	2.8	22
671	Scalable room-temperature synthesis of plum-pudding-like Cs ₄ PbBr ₆ /CsPbBr ₃ microcrystals exhibiting excellent photoluminescence. Journal of Materials Chemistry C, 2019, 7, 4733-4739.	2.7	31
672	Trivalent ion mediated abnormal growth of all-inorganic perovskite nanocrystals and their divergent emission properties. Nanoscale, 2019, 11, 7903-7912.	2.8	29
673	All-inorganic RbxCs1-xPbBrl2 perovskite nanocrystals with wavelength-tunable properties for red light-emitting. Inorganic Chemistry Communication, 2019, 103, 47-52.	1.8	8
674	Complete Suppression of Detrimental Polymorph Transitions in All-Inorganic Perovskites via Nanoconfinement. ACS Applied Energy Materials, 2019, 2, 2948-2955.	2.5	17
675	One-pot <i>in situ</i> synthesis of CsPbX ₃ @h-BN (X = Cl, Br, I) nanosheet composites with superior thermal stability for white LEDs. Journal of Materials Chemistry C, 2019, 7, 4038-4042.	2.7	47
676	Bright-Exciton Splittings in Inorganic Cesium Lead Halide Perovskite Nanocrystals. Physical Review Applied, 2019, 11, .	1.5	40
677	Oxygen vacancy-rich BiO2-x ultra-thin nanosheet for efficient full-spectrum responsive photocatalytic oxygen evolution from water splitting. Solar Energy Materials and Solar Cells, 2019, 195, 309-317.	3.0	60
678	NIR-excited all-inorganic perovskite quantum dots (CsPbBr ₃) for a white light-emitting device. Journal of Materials Chemistry C, 2019, 7, 3751-3755.	2.7	34
679	Tunable Halide Perovskites for Miniaturized Solidâ€ S tate Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	3.6	47
680	Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Israel Journal of Chemistry, 2019, 59, 649-660.	1.0	25
681	Light diffusing, down-converting perovskite-on-polymer microspheres. Journal of Materials Chemistry C, 2019, 7, 6527-6533.	2.7	15
682	Low-temperature anomalous spin correlations and Kondo effect in ferromagnetic SrRuO3/LaNiO3/La0.7Sr0.3MnO3 trilayers. Physical Review B, 2019, 99, .	1.1	14
683	Influence of All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix. Materials, 2019, 12, 985.	1.3	33
684	Synthesis of highly luminescent CsPbxMn1â^'xCl3 perovskite nanocrystals via using metal-organic Mn-Complex as precursor. Journal of Alloys and Compounds, 2019, 791, 621-627.	2.8	9
685	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX ₃ Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276.	3.6	138
686	One pot gram-scale synthesis of CsPbBr3 nanocrystals and their application in green LED. Journal of Luminescence, 2019, 210, 464-471.	1.5	14
687	Anorganische CsPbX ₃ â€Perowskitâ€Solarzellen: Fortschritte und Perspektiven. Angewandte Chemie, 2019, 131, 15742-15765.	1.6	20

#	Article	IF	CITATIONS
688	Allâ€Inorganic CsPbX ₃ Perovskite Solar Cells: Progress and Prospects. Angewandte Chemie - International Edition, 2019, 58, 15596-15618.	7.2	425
689	Strategies for Air‣table and Tunable Monolayer MoS ₂ â€Based Hybrid Photodetectors with High Performance by Regulating the Fully Inorganic Trihalide Perovskite Nanocrystals. Advanced Optical Materials, 2019, 7, 1801744.	3.6	43
690	Design Optimization of Lead-Free Perovskite Cs ₂ AgInCl ₆ :Bi Nanocrystals with 11.4% Photoluminescence Quantum Yield. Chemistry of Materials, 2019, 31, 3333-3339.	3.2	225
691	Investigating the transformation of CsPbBr ₃ nanocrystals into highly stable CsPbBr ₃ /Cs ₄ PbBr ₆ nanocrystals using ethyl acetate in a microchannel reactor. Nanotechnology, 2019, 30, 295603.	1.3	32
692	Europium-Doped Lead-Free Cs ₃ Bi ₂ Br ₉ Perovskite Quantum Dots and Ultrasensitive Cu ²⁺ Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 8397-8404.	3.2	114
693	QLED goes to be both bright and efficient. Science Bulletin, 2019, 64, 464-465.	4.3	5
694	Engineering the Photoluminescence of CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm. ACS Applied Materials & Interfaces, 2019, 11, 14256-14265.	4.0	66
695	Strong Blue Emission from Sb ³⁺ -Doped Super Small CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 1750-1756.	2.1	94
696	Cesium lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy, 2019, 60, 557-566.	8.2	121
697	Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Research, 2019, 12, 1155-1166.	5.8	49
698	Mechanochemical synthesis of 0D and 3D cesium lead mixed halide perovskites. Chemical Communications, 2019, 55, 5079-5082.	2.2	78
699	Electron-beam irradiation-hard metal-halide perovskite nanocrystals. Journal of Materials Chemistry A, 2019, 7, 10912-10917.	5.2	30
700	Strainâ€Mediated Phase Stabilization: A New Strategy for Ultrastable α sPbl ₃ Perovskite by Nanoconfined Growth. Small, 2019, 15, e1900219.	5.2	74
701	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals Stabilized in Glasses for Lightâ€Emitting Applications. Advanced Optical Materials, 2019, 7, 1801663.	3.6	206
702	Ligandâ€Exchange of Lowâ€Temperature Synthesized CsPbBr ₃ Perovskite toward Highâ€Efficiency Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1800489.	4.6	38
703	Epitaxial Growth of CsPbX ₃ (X = Cl, Br, I) Perovskite Quantum Dots via Surface Chemical Conversion of Cs ₂ GeF ₆ Double Perovskites: A Novel Strategy for the Formation of Leadless Hybrid Perovskite Phosphors with Enhanced Stability. Advanced Materials, 2019, 31. e1807592.	11.1	81
704	Excitation-tailored dual-color emission of manganese(II)-doped perovskite nanocrystals. Applied Physics Letters, 2019, 114, .	1.5	15
705	Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI3 and CsPb2Br5 nanocrystals and fabrication of all-inorganic perovskite solar cells. Journal of Alloys and Compounds, 2019, 787, 17.26	2.8	43

#	Article	IF	CITATIONS
706	Temperature-dependent photoluminescence of pure and Mn-doped CsPbCl3 nanocrystals. Journal of Alloys and Compounds, 2019, 787, 165-172.	2.8	57
707	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	10.3	303
708	Tin-assisted growth of all-inorganic perovskite nanoplatelets with controllable morphologies and complementary emissions. CrystEngComm, 2019, 21, 2388-2397.	1.3	14
709	Controlled synthesis and photostability of blue emitting Cs ₃ Bi ₂ Br ₉ perovskite nanocrystals by employing weak polar solvents at room temperature. Journal of Materials Chemistry C, 2019, 7, 3688-3695.	2.7	50
710	Luminescent perovskite nanocrystal-epoxy resin composite with high stability against water and air. Journal of Alloys and Compounds, 2019, 789, 209-214.	2.8	17
711	Convenient preparation of CsSnI ₃ quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. Journal of Materials Chemistry A, 2019, 7, 7683-7690.	5.2	116
712	Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Applied Physics Letters, 2019, 114, .	1.5	25
713	Structure optimization of perovskite quantum dot light-emitting diodes. Nanoscale, 2019, 11, 5021-5029.	2.8	48
714	The role of deep-red emission CuInS2/ZnS QDs in white light emitting diodes. Semiconductor Science and Technology, 2019, 34, 035025.	1.0	8
715	Realizing Visible Light Excitation of Tb ³⁺ via Highly Efficient Energy Transfer from Ce ³⁺ for LEDâ€Based Applications. Advanced Optical Materials, 2019, 7, 1801677.	3.6	53
716	IIIâ€Nitride Nanowires as Building Blocks for Advanced Light Emitting Diodes. Physica Status Solidi (B): Basic Research, 2019, 256, 1800589.	0.7	7
717	Grinding Synthesis of APbX ₃ (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 10059-10067.	4.0	67
718	Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chemical Reviews, 2019, 119, 3296-3348.	23.0	1,181
719	Interfacial Synthesis of Monodisperse CsPbBr ₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583.	3.2	78
720	Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission. Journal of Physical Chemistry Letters, 2019, 10, 943-952.	2.1	274
721	The contrast ratio improvement of perovskite nanocrystals LEDs devices based on carbon nanotubes. , 2019, , .		0
722	Incorporating CsPbBr ₃ Nanocrystals into Porous AlO(OH) Matrices to Improve their Stability in Backlit Displays. Nano, 2019, 14, 1950156.	0.5	2
723	CsPbI3 Perovskite Nanoparticles: Room-Temperature Synthesis and Optical Study. Russian Journal of Inorganic Chemistry, 2019, 64, 1587-1591.	0.3	3

#	Article	IF	CITATIONS
724	Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Research, 2019, 12, 3129-3134.	5.8	23
725	Vacuum-Deposited Blue Inorganic Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 47083-47090.	4.0	68
726	Effective Control of the Growth and Photoluminescence Properties of CsPbBr ₃ /Cs ₄ PbBr ₆ Nanocomposites by Solvent Engineering. ACS Omega, 2019, 4, 19641-19646.	1.6	20
727	Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots—Polymer nanofibers through biaxial electrospinning. APL Materials, 2019, 7, .	2.2	42
728	Recent advances and perspectives on light emitting diodes fabricated from halide metal perovskite nanocrystals. Journal of Materials Chemistry C, 2019, 7, 14412-14440.	2.7	29
729	Understanding the mechanism of metal-induced degradation in perovskite nanocrystals. Nanoscale, 2019, 11, 19543-19550.	2.8	12
730	Bromobenzene aliphatic nucleophilic substitution guided controllable and reproducible synthesis of high quality cesium lead bromide perovskite nanocrystals. Inorganic Chemistry Frontiers, 2019, 6, 3577-3582.	3.0	18
731	Two-dimensional black phosphorous induced exciton dissociation efficiency enhancement for high-performance all-inorganic CsPbI ₃ perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 22539-22549.	5.2	35
732	Exploring Energy Transfer in a Metal/Perovskite Nanocrystal Antenna to Drive Photocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 7797-7803.	2.1	17
733	Tunable and Stable White Light Emission in Bi ³⁺ -Alloyed Cs ₂ AgInCl ₆ Double Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 10063-10070.	3.2	113
734	In Situ Compositing CsPbBr ₃ with Exfoliated Layered-Perovskite CsCa ₂ Ta ₃ O ₁₀ : Interfacial Interaction and Enhanced Stability. ACS Applied Materials & Interfaces, 2019, 11, 47227-47236.	4.0	9
735	An Investigation on Stable and Continuous Operation of Hybrid Perovskite Quantum Dot Light Emitting Diodes. , 2019, , .		0
736	Controllable Synthesis of All Inorganic Lead Halide Perovskite Nanocrystals with Various Appearances in Multiligand Reaction System. Nanomaterials, 2019, 9, 1751.	1.9	13
737	Zn-Alloyed All-Inorganic Halide Perovskite-Based White Light-Emitting Diodes with Superior Color Quality. Scientific Reports, 2019, 9, 18636.	1.6	49
738	Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes. RSC Advances, 2019, 9, 34506-34511.	1.7	15
739	Solvothermal synthesis of Mn-doped CsPbCl ₃ perovskite nanocrystals with tunable morphology and their size-dependent optical properties. RSC Advances, 2019, 9, 39315-39322.	1.7	16
740	Cs ₄ PbBr ₆ /CsPbBr ₃ perovskite composites for WLEDs: pure white, high luminous efficiency and tunable color temperature. RSC Advances, 2019, 9, 42430-42437.	1.7	14
741	Highly Efficient and Stable Inorganic Perovskite Quantum Dots by Embedding into a Polymer Matrix. ChemNanoMat, 2019, 5, 346-351.	1.5	38

#	Article	IF	CITATIONS
742	Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Research, 2019, 12, 77-84.	5.8	16
743	Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system. Nano Research, 2019, 12, 121-127.	5.8	55
744	Efficient CsPbBr ₃ Perovskite Lightâ€Emitting Diodes Enabled by Synergetic Morphology Control. Advanced Optical Materials, 2019, 7, 1801534.	3.6	117
745	A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites. Nano Energy, 2019, 57, 74-93.	8.2	122
746	Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes. Journal of Energy Chemistry, 2019, 37, 97-110.	7.1	52
747	Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chemical Engineering Journal, 2019, 361, 937-944.	6.6	95
748	Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles. Journal of Luminescence, 2019, 208, 402-407.	1.5	28
749	Trimethylsilyl Iodine-Mediated Synthesis of Highly Bright Red-Emitting CsPbl ₃ Perovskite Quantum Dots with Significantly Improved Stability. Chemistry of Materials, 2019, 31, 881-889.	3.2	88
750	Synthesis and Luminescence Properties of CsPbX ₃ @Uio-67 Composites toward Stable Photoluminescence Convertors. Inorganic Chemistry, 2019, 58, 1690-1696.	1.9	65
751	Highly Stable Luminous "Snakes―from CsPbX ₃ Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires. ACS Applied Nano Materials, 2019, 2, 258-266.	2.4	14
752	Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering Reports, 2019, 137, 38-65.	14.8	300
753	Integrating Properties Modification in the Synthesis of Metal Halide Perovskites. Advanced Materials Technologies, 2019, 4, 1800321.	3.0	5
754	Quantum dots for light conversion, therapeutic and energy storage applications. Journal of Solid State Chemistry, 2019, 270, 71-84.	1.4	16
755	Allâ€Inorganic Perovskite Nanocrystalsâ€Based Light Emitting Diodes and Solar Cells. ChemNanoMat, 2019, 5, 266-277.	1.5	18
756	Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 32-39.	8.8	330
757	Si, N-codoped carbon dots: preparation and application in iron overload diagnosis. Journal of Materials Science, 2019, 54, 4297-4305.	1.7	13
758	Improving performance of Cs-based perovskite light-emitting diodes by dual additives consisting of polar polymer and n-type small molecule. Organic Electronics, 2019, 67, 294-301.	1.4	30
759	Structural characterization of bulk and nanoparticle lead halide perovskite thin films by (S)TEM techniques. Nanotechnology, 2019, 30, 135701.	1.3	5

#	Article	IF	CITATIONS
760	Ethanolâ€Precipitable, Silicaâ€Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Longâ€Term Storage and Reusage. Angewandte Chemie - International Edition, 2019, 58, 2799-2803.	7.2	29
761	Enhanced Luminescence and Stability of Cesium Lead Halide Perovskite CsPbX ₃ Nanocrystals by Cu ²⁺ -Assisted Anion Exchange Reactions. Journal of Physical Chemistry C, 2019, 123, 2353-2360.	1.5	65
762	Growth of perovskite nanocrystals in poly-tetra fluoroethylene based microsystem: on-line and off-line measurements. Nanotechnology, 2019, 30, 145602.	1.3	9
763	Zero-dimensional cesium lead halide perovskites: Phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 2019, 271, 361-377.	1.4	28
764	Synthesis of Ti4+-doped ZnWO4 phosphors for enhancing photocatalytic activity. Journal of Luminescence, 2019, 206, 267-272.	1.5	22
765	LaF3: Pr3+ hollow hexagon nanostructures via green and eco-friendly synthesis and their photoluminescence properties. Journal of Materials Science, 2019, 54, 2897-2907.	1.7	7
766	Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes. Nano Research, 2019, 12, 171-176.	5.8	34
767	Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chemical Engineering Journal, 2019, 358, 1287-1295.	6.6	280
768	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	18.7	845
769	Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites. ACS Energy Letters, 2019, 4, 242-248.	8.8	166
770	Cesium Oleate Precursor Preparation for Lead Halide Perovskite Nanocrystal Synthesis: The Influence of Excess Oleic Acid on Achieving Solubility, Conversion, and Reproducibility. Chemistry of Materials, 2019, 31, 62-67.	3.2	55
771	Polar-Solvent-Free Synthesis of Highly Photoluminescent and Stable CsPbBr ₃ Nanocrystals with Controlled Shape and Size by Ultrasonication. Chemistry of Materials, 2019, 31, 365-375.	3.2	67
772	Saponification Precipitation Method for CsPbBr3Nanocrystals with Blue-Green Tunable Emission. Journal of Physical Chemistry C, 2019, 123, 1406-1412.	1.5	23
773	High quality quantum dots polymeric films as color converters for smart phone display technology. Materials Research Express, 2019, 6, 035015.	0.8	13
774	Vaporâ€Phase Growth of CsPbBr ₃ Microstructures for Highly Efficient Pure Green Light Emission. Advanced Optical Materials, 2019, 7, 1801336.	3.6	30
775	Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxl3-x nanocrystals. Journal of Alloys and Compounds, 2019, 780, 318-325.	2.8	25
776	Size controlled synthesis of CsPbBr ₃ QDs by two-phase emulsion extraction. Functional Materials Letters, 2019, 12, 1950012.	0.7	4
777	Spontaneous morphology reconfiguration of luminescent CH3NH3PbBr3 perovskites from monodispersed nanocrystals to discontinuous rings by dewetting-triggered solute migration. Journal of Materials Science, 2019, 54, 1248-1254.	1.7	1

#	Article	IF	CITATIONS
778	Synthesis and photoluminescence study of flexible PMMA/ Eu and Tb complex nanotube arrays. Optics and Lasers in Engineering, 2020, 124, 105829.	2.0	5
779	Self-assembled template-confined growth of ultrathin CsPbBr3 nanowires. Applied Materials Today, 2020, 18, 100449.	2.3	10
780	Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation. Chemical Engineering Journal, 2020, 381, 122692.	6.6	51
781	Room-temperature synthesis of excellent-performance CsPb1-Sn Br3 perovskite quantum dots and application in light emitting diodes. Materials and Design, 2020, 185, 108246.	3.3	38
782	Highly efficient Mn-doped CsPb(Cl/Br) ₃ quantum dots for white light-emitting diodes. Nanotechnology, 2020, 31, 065603.	1.3	11
783	Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. Small, 2020, 16, e1903398.	5.2	120
784	All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chemical Engineering Journal, 2020, 379, 122360.	6.6	61
785	Organicâ€Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar Rrl, 2020, 4, 1900200.	3.1	43
786	Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Materials Research Bulletin, 2020, 121, 110608.	2.7	32
787	Efficient Allâ€Solutionâ€Processed Perovskite Lightâ€Emitting Diodes Enabled by Smallâ€Molecule Doped Electron Injection Layers. Advanced Optical Materials, 2020, 8, 1900567.	3.6	25
788	Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14, 82-88.	15.6	326
789	Pink all-inorganic halide perovskite nanocrystals with adjustable characteristics: Fully reversible cation exchange, improving the stability of dopant emission and light-emitting diode application. Journal of Alloys and Compounds, 2020, 818, 152913.	2.8	16
790	Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46, 8-15.	7.1	89
791	UV Resin Enhanced Stability of Metal Halide Perovskite Nanocrystals for White Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 35-40.	2.0	18
792	High perovskite-to-manganese energy transfer efficiency in single-component white-emitting Mn-doped halide perovskite quantum dots. Journal of Materials Science, 2020, 55, 2984-2993.	1.7	6
793	Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chemical Physics, 2020, 530, 110627.	0.9	19
794	Reinforcing effects of waterproof substrate on the photo-, thermal and pH stabilities of perovskite nanocrystals. Journal of Alloys and Compounds, 2020, 817, 152693.	2.8	9
795	Synthesis and luminescent properties of polymerâ€silica multilayerâ€encapsulated perovskite quantum dots for optoelectronics. Journal of the Chinese Chemical Society, 2020, 67, 109-115.	0.8	8

#	Article	IF	CITATIONS
796	Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices. Nanoscale, 2020, 12, 3637-3645.	2.8	118
797	Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes. Nano Energy, 2020, 70, 104467.	8.2	56
798	X-ray excited CsPb(Cl,Br)3 perovskite quantum dots-glass composite with long-lifetime. Journal of the European Ceramic Society, 2020, 40, 2234-2238.	2.8	55
799	A microwave-assisted template-free route for large-scale synthesis of photoluminescent single crystal CsPbl ₃ nanotubes. CrystEngComm, 2020, 22, 623-627.	1.3	2
800	A high performance UV–visible dual-band photodetector based on an inorganic Cs ₂ SnI ₆ perovskite/ZnO heterojunction structure. Journal of Materials Chemistry C, 2020, 8, 1819-1825.	2.7	29
801	Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. Journal of Materials Chemistry C, 2020, 8, 1413-1420.	2.7	23
802	Luminescence enhancement of CsPbBr ₃ quantum dot glasses induced by two unexpected methods: mechanical and hydration crystallization. Journal of Materials Chemistry C, 2020, 8, 473-480.	2.7	35
803	Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials, 2020, 32, 308-314.	3.2	57
804	Synthesis of Perovskite CsPbBr ₃ Quantum Dots/Porous Boron Nitride Nanofiber Composites with Improved Stability and Their Reversible Optical Response to Ammonia. Inorganic Chemistry, 2020, 59, 1234-1241.	1.9	21
805	2D Nanoplates and Scaled-Up Bulk Polycrystals of Ruddlesden–Popper Cs ₂ PbI ₂ Cl ₂ for Optoelectronic Applications. ACS Applied Nano Materials, 2020, 3, 877-886.	2.4	28
806	Femtosecond-Laser-Induced Precipitation of CsPbBr ₃ Perovskite Nanocrystals in Glasses for Solar Spectral Conversion. ACS Applied Nano Materials, 2020, 3, 850-857.	2.4	28
807	Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag–In–Zn–S for High-CRI white light-emitting diodes. Nano Energy, 2020, 67, 104279.	8.2	197
808	Light Down-Converter Based on Luminescent Nanofibers from the Blending of Conjugated Rod-Coil Block Copolymers and Perovskite through Electrospinning. Polymers, 2020, 12, 84.	2.0	10
809	Trivalentâ€Neodymium Additive Modulated MAPbBr ₃ Perovskite Nucleation and Growth: Ultrawide Processing Window for Oneâ€6tep Fabrication of Efficient Lightâ€Emitting Perovskites. Advanced Electronic Materials, 2020, 6, 1901162.	2.6	9
810	A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability. Journal of Alloys and Compounds, 2020, 818, 153307.	2.8	53
811	Highly Efficient and Thermally Stable QD-LEDs Based on Quantum Dots-SiO ₂ -BN Nanoplate Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 1539-1548.	4.0	18
812	All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization. ACS Energy Letters, 2020, 5, 290-320.	8.8	183
813	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Interfaces, 2020, 12, 914-924.	4.0	55

#	Article	IF	CITATIONS
814	Tracking the Fluorescence Lifetimes of Cesium Lead Halide Perovskite Nanocrystals During Their Synthesis Using a Fully Automated Optofluidic Platform. Chemistry of Materials, 2020, 32, 27-37.	3.2	41
815	Facile, low-cost, and large-scale synthesis of CsPbBr3 nanorods at room-temperature with 86 % photoluminescence quantum yield. Materials Research Bulletin, 2020, 124, 110731.	2.7	12
816	A new whole family perovskites quantum dots (CsPbX3, X=Cl, Br, I) phosphate glasses with full spectral emissions. Journal of Alloys and Compounds, 2020, 817, 153338.	2.8	33
817	Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr3 perovskite quantum dots. Journal of Luminescence, 2020, 219, 116897.	1.5	49
818	Singleâ€Solvent, Ligandâ€Free, Gramâ€Scale Synthesis of Cs 4 PbBr 6 Perovskite Solids with Robust Green Photoluminescence. ChemNanoMat, 2020, 6, 258-266.	1.5	11
819	Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor. Nanotechnology, 2020, 31, 105203.	1.3	30
820	Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs ₃ Sb ₂ Br ₉ Quantum Dots. ACS Energy Letters, 2020, 5, 385-394.	8.8	169
821	Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31, 152002.	1.3	31
822	Recent Developments in Leadâ€Free Double Perovskites: Structure, Doping, and Applications. Chemistry - an Asian Journal, 2020, 15, 242-252.	1.7	74
823	Dual-emitting CsPbX3@ZJU-28 (XÂ=ÂCl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chemical Engineering Journal, 2020, 391, 123622.	6.6	73
824	Improving the Lifetime of CsPbBr3 Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix. Frontiers in Chemistry, 2020, 8, 766.	1.8	8
825	Surface Passivation Strategies for Improving Photoluminescence and Stability of Cesium Lead Halide Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1730-1742.	1.5	44
826	Influence of the rate of radiation energy on the charge-carrier kinetics application of all-inorganic CsPbBr ₃ perovskite nanocrystals. RSC Advances, 2020, 10, 34651-34657.	1.7	14
827	Perovskite Quantum Dots for Application in High Color Gamut Backlighting Display of Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 3374-3396.	8.8	162
828	Growth mechanistic insights into perovskite nanocrystals: dimensional growth. Nanoscale Advances, 2020, 2, 5305-5311.	2.2	4
829	Lead-free cesium tin halide nanocrystals for light-emitting diodes and color down conversion. RSC Advances, 2020, 10, 37161-37167.	1.7	16
830	CH ₃ NH ₃ PbBr _{3–<i>x</i>} I _{<i>x</i>} Quantum Dots Enhance Bulk Crystallization and Interface Charge Transfer for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 48861-48873.	4.0	17
831	Unveiling the Excited‣tate Dynamics of Mn ²⁺ in 0D Cs ₄ PbCl ₆ Perovskite Nanocrystals. Advanced Science, 2020, 7, 2002210.	5.6	66

#	Article	IF	CITATIONS
832	Enhancing quantum yield of CsPb(BrxCl1-x)3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes. Nano Energy, 2020, 77, 105302.	8.2	55
833	Cyclodextrin-mediated colloidal synthesis of highly luminescent and stable CsPbBr ₃ perovskite nanocrystals. New Journal of Chemistry, 2020, 44, 17368-17373.	1.4	4
834	Blue electroluminescent metal halide perovskites. Journal of Applied Physics, 2020, 128, 120901.	1.1	4
835	Resolving the discrepancies in the reported optical absorption of low-dimensional non-toxic perovskites, Cs ₃ Bi ₂ Br ₉ and Cs ₃ BiBr ₆ . Journal of Materials Chemistry C, 2020, 8, 10456-10463.	2.7	34
836	Organic solvent-free lyophilization assisted recrystallization synthesis of high-purity green emissive Cs3MnX5 (XÂ= I, Br). Journal of Alloys and Compounds, 2020, 845, 156324.	2.8	24
837	Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to Iodide Ion Migration. Journal of Physical Chemistry Letters, 2020, 11, 6168-6175.	2.1	11
838	All-inorganic dual-phase halide perovskite nanorings. Nano Research, 2020, 13, 2994-3000.	5.8	18
839	Zero-Dimensional Perovskite Open Cavities for Low-Threshold Stimulated Emissions. Journal of Physical Chemistry C, 2020, 124, 25499-25508.	1.5	10
840	Ultra-stable Eu3+-doped CsPbCl2Br1 perovskite quantum dots glass for optical temperature sensing. Journal of Rare Earths, 2021, 39, 1497-1505.	2.5	27
841	Dynamics of anion exchange in cesium lead halide (CsPbX ₃) perovskite nanocrystals. New Journal of Chemistry, 2020, 44, 20592-20599.	1.4	11
842	Controlling Mn Emission in CsPbCl ₃ Nanocrystals via Ion Exchange toward Enhanced and Tunable White Photoluminescence. Journal of Physical Chemistry C, 2020, 124, 27032-27039.	1.5	27
843	Photophysical Properties of Zn-Alloyed CsPbl ₃ Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 27169-27175.	1.5	9
844	Photoâ€Modulated Reversible Switching of Fluorescence from ZnO Quantum Dots with a Photochromic Diarylethene. ChemistrySelect, 2020, 5, 13919-13924.	0.7	6
845	Alloy CsCd <i>_x</i> Pb _{1–<i>x</i>} Br ₃ Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission. Chemistry of Materials, 2020, 32, 10641-10652.	3.2	45
846	Local Phonon Modes Concerned with the Self-Trapped Exciton State in CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 27130-27135.	1.5	9
847	Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr ₃ with In Situ Zn ²⁺ Addition. ACS Applied Electronic Materials, 2020, 2, 4002-4011.	2.0	33
848	Vacuum Dual-Source Thermal-Deposited Lead-Free Cs ₃ Cu ₂ I ₅ Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 52967-52975.	4.0	50
849	Cesium Lead Bromide (CsPbBr ₃) Thinâ€Filmâ€Based Solidâ€State Neutron Detector Developed by a Solutionâ€Free Sublimation Process. Advanced Materials Technologies, 2020, 5, 2000534.	3.0	14

#	Article	IF	CITATIONS
850	Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells. Nanoscale, 2020, 12, 18621-18628.	2.8	14
851	Cu doping-enhanced emission efficiency of Mn2+ in cesium lead halide perovskite nanocrystals for efficient white light-emitting diodes. Journal of Luminescence, 2020, 227, 117586.	1.5	30
852	Progress and perspective on CsPbX3 nanocrystals for light emitting diodes and solar cells. Journal of Applied Physics, 2020, 128, .	1.1	20
853	In-situ stabilization strategy for CsPbX3-Silicone resin composite with enhanced luminescence and stability. Nano Energy, 2020, 78, 105150.	8.2	18
854	An efficient and stable fluorescent sensor based on APTES-functionalized CsPbBr ₃ perovskite quantum dots for ultrasensitive tetracycline detection in ethanol. Journal of Materials Chemistry C, 2020, 8, 12196-12203.	2.7	59
855	Hydraulic shear-induced rapid mass production of CsPbBr ₃ /Cs ₄ PbBr ₆ perovskite composites. New Journal of Chemistry, 2020, 44, 13279-13284.	1.4	1
856	Improving Stability of CIS/ZnS-Based White Light-Emitting Diodes by Silica Coating. IOP Conference Series: Materials Science and Engineering, 2020, 739, 012026.	0.3	0
857	Synthesis of Perovskite Nanocrystals and Their Photon-Emission Application in Conjunction With Liquid Crystals. Frontiers in Chemistry, 2020, 8, 574.	1.8	5
858	The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 2020, 5, 809-827.	23.3	224
859	A lead-free Cs ₂ PdBr ₆ perovskite-based humidity sensor for artificial fruit waxing detection. Journal of Materials Chemistry A, 2020, 8, 17675-17682.	5.2	45
860	Meeting High Stability and Efficiency in Hybrid Lightâ€Emitting Diodes Based on SiO ₂ /ZrO ₂ Coated CsPbBr ₃ Perovskite Nanocrystals. Advanced Functional Materials, 2020, 30, 2005401.	7.8	63
861	Optical Property Behaviors of CsPbBr ₃ Colloidal Nanoparticles in a Ligand-Assisted Reprecipitation Process. Crystal Growth and Design, 2020, 20, 4855-4860.	1.4	12
862	Improving Stability of Cesium Lead Iodide Perovskite Nanocrystals by Solution Surface Treatments. ACS Omega, 2020, 5, 18013-18020.	1.6	13
863	The postsynthetic anion exchange of CsPbl ₃ nanocrystals for photoluminescence tuning and enhanced quantum efficiency. Journal of Materials Chemistry C, 2020, 8, 12302-12307.	2.7	18
864	Lead Halide Perovskite Nanocrystals: Room Temperature Syntheses toward Commercial Viability. Advanced Energy Materials, 2020, 10, 2001349.	10.2	63
865	A Phosphine Oxide Route to Formamidinium Lead Tribromide Nanoparticles. Chemistry of Materials, 2020, 32, 7172-7180.	3.2	8
866	<i>In situ</i> synthesis of high-efficiency CsPbBr ₃ /CsPb ₂ Br ₅ composite nanocrystals in aqueous solution of microemulsion. Green Chemistry, 2020, 22, 5257-5261.	4.6	16
867	Flexible translucent chitosan–glycerin/QD nanocomposite glue for anti-counterfeiting films with strong adhesion and stability. RSC Advances, 2020, 10, 23410-23416.	1.7	8

#	Article	IF	CITATIONS
868	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	1.9	25
869	Carbon-based fully printable self-powered ultraviolet perovskite photodetector: Manganese-assisted electron transfer and enhanced photocurrent. Nanomaterials and Nanotechnology, 2020, 10, 184798042092567.	1.2	6
870	Efficient and Highâ€Luminance Perovskite Lightâ€Emitting Diodes Based on CsPbBr ₃ Nanocrystals Synthesized from a Dualâ€Purpose Organic Lead Source. Small, 2020, 16, e2003939.	5.2	18
871	Composition-dependent optical limiting behavior of all-inorganic halide perovskite quantum dots. Optical Materials, 2020, 110, 110521.	1.7	16
872	Growth of Perovskite CsPbBr ₃ Nanocrystals and Their Formed Superstructures Revealed by In Situ Spectroscopy. Chemistry of Materials, 2020, 32, 8877-8884.	3.2	39
873	Nano Ballâ€Milling Using Titania Nanoparticles to Anchor Cesium Lead Bromine Nanocrystals and Energy Transfer Characteristics in TiO ₂ @CsPbBr ₃ Architecture. Small, 2020, 16, e2004126.	5.2	28
874	Effect of Washing Solvents on the Properties of Air-Synthesized Perovskite CsPbBr ₃ Quantum Dots for Quantum Dot-Based Light-Emitting Devices. IEEE Access, 2020, 8, 159415-159423.	2.6	8
875	Metal Halide Perovskite Nanocrystal Solar Cells: Progress and Challenges. Small Methods, 2020, 4, 2000419.	4.6	30
876	Optically Active Perovskite CsPbBr ₃ Nanocrystals Helically Arranged on Inorganic Silica Nanohelices. Nano Letters, 2020, 20, 8453-8460.	4.5	68
877	Lattice marginal reconstruction-enabled high ambient-tolerance perovskite quantum dot phototransistors. Journal of Materials Chemistry C, 2020, 8, 16001-16009.	2.7	6
878	Energy Upconversion in Rareâ€Earthâ€Doped Tinâ€Based Double Halo Perovskites, A 2 SnCl 6 (A = K, Rb, and) 1	ј ето _д о о 1.0	0 rgBT /Over
879	Hot Carrier Relaxation in CsPbBr ₃ -Based Perovskites: A Polaron Perspective. Journal of Physical Chemistry Letters, 2020, 11, 8765-8776.	2.1	24
880	Vinyleneâ€Linked Covalent Organic Frameworks (COFs) with Symmetryâ€Tuned Polarity and Photocatalytic Activity. Angewandte Chemie, 2020, 132, 24053-24061.	1.6	39
881	Comparative Study on Methods for the Synthesis of CsPbBr3 Perovskite Nanoparticles at Room Temperature. High Energy Chemistry, 2020, 54, 328-335.	0.2	2
882	Vinyleneâ€Linked Covalent Organic Frameworks (COFs) with Symmetryâ€Tuned Polarity and Photocatalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 23845-23853.	7.2	197
883	Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light: Science and Applications, 2020, 9, 162.	7.7	32
884	ZnO–Ti ₃ C ₂ MXene Electron Transport Layer for High External Quantum Efficiency Perovskite Nanocrystal Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001562.	5.6	49
885	Ultra-fast synthesis of water soluble MoO3â^'x quantum dots with controlled oxygen vacancies and their near infrared fluorescence sensing to detect H2O2. Nanoscale Horizons, 2020, 5, 1538-1543.	4.1	16

#	Article	IF	CITATIONS
886	Synthesis of lead halide perovskite nanocrystals by melt crystallization in halide salts. Chemical Communications, 2020, 56, 11291-11294.	2.2	12
887	Perovskite Quantum Dots with Atomic Crystal Shells for Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Energy Letters, 2020, 5, 2927-2934.	8.8	55
888	Self-defect-passivation by Br-enrichment in FA-doped Cs1â^'xFAxPbBr3 quantum dots: towards high-performance quantum dot light-emitting diodes. Scientific Reports, 2020, 10, 14758.	1.6	9
889	Selfâ€Assembled Perovskite Nanowire Clusters for High Luminance Red Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2005990.	7.8	67
890	Completely Amineâ€Free Openâ€Atmospheric Synthesis of Highâ€Quality Cesium Lead Bromide (CsPbBr ₃) Perovskite Nanocrystals. Chemistry - A European Journal, 2020, 26, 17195-17202.	1.7	26
891	Rapid synthesis of cesium lead halide perovskite nanocrystals by <scp>l</scp> -lysine assisted solid-phase reaction at room temperature. RSC Advances, 2020, 10, 34215-34224.	1.7	9
892	Water triggered interfacial synthesis of highly luminescent CsPbX3:Mn2+ quantum dots from nonluminescent quantum dots. Nano Research, 2020, 13, 3387-3395.	5.8	42
893	Water-Stable and Photoelectrochemically Active CsPbBr ₃ /Polyaniline Composite by a Photocatalytic Polymerization Process. Journal of Physical Chemistry C, 2020, 124, 22228-22234.	1.5	22
894	Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules. Journal of the American Chemical Society, 2020, 142, 15219-15229.	6.6	79
895	Designing a Multifunctional Magnetic Microtube with Enhanced Conductivity through Local Heterojunction Decoration of CsPbBr3 Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 28580-28588.	1.5	0
896	Geopolymer-Encapsulated Cesium Lead Bromide Perovskite Nanocrystals for Potential Display Applications. ACS Applied Nano Materials, 2020, 3, 11695-11700.	2.4	6
897	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
898	Two-Step Hybrid Passivation Strategy for Ultrastable Photoluminescence Perovskite Nanocrystals. Chemistry of Materials, 2020, 32, 10653-10662.	3.2	37
899	Enhancing the Water Resistance and Stability of CsPbBr ₃ Perovskite Quantum Dots for Light-Emitting-Diode Applications through Encapsulation in Waterproof Polymethylsilsesquioxane Aerogels. ACS Applied Materials & Interfaces, 2020, 12, 58049-58059.	4.0	34
900	Facile In Situ Fabrication of Cs ₄ PbBr ₆ /CsPbBr ₃ Nanocomposite Containing Polymer Films for Ultrawide Color Gamut Displays. Advanced Optical Materials, 2020, 8, 2000232.	3.6	45
901	Dual Passivation of CsPbI ₃ Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells. Small, 2020, 16, e2001772.	5.2	127
902	Spaceâ€Confined Growth of 2D InI Showing High Sensitivity in Photodetection. Advanced Electronic Materials, 2020, 6, 2000284.	2.6	14
903	Improving the Quality and Luminescence Performance of Allâ€Inorganic Perovskite Nanomaterials for Lightâ€Emitting Devices by Surface Engineering. Small, 2020, 16, e1907089.	5.2	54

#	Article	IF	CITATIONS
904	Stable green and red dual-color emission in all-inorganic halide-mixed perovskite single microsheets. RSC Advances, 2020, 10, 18368-18376.	1.7	2
905	Enhancing the performance of LARP-synthesized CsPbBr ₃ nanocrystal LEDs by employing a dual hole injection layer. RSC Advances, 2020, 10, 17653-17659.	1.7	13
907	Morphological and Optoelectronic Investigations of CsPbBr ₃ Nanocrystals Chelating Diphenylammonium Halide Ligands via Low-Temperature Synthesis. ACS Applied Electronic Materials, 2020, 2, 1619-1627.	2.0	7
908	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
909	Facile synthesis of a dual-phase CsPbBr3–CsPb2Br5 single crystal and its photoelectric performance. RSC Advances, 2020, 10, 20745-20752.	1.7	13
910	Perovskite nanomaterials as optical and electrochemical sensors. Inorganic Chemistry Frontiers, 2020, 7, 2702-2725.	3.0	91
911	Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects. Joule, 2020, 4, 1160-1185.	11.7	211
912	Fluorescent variations during the phase conversion of Cs–Pb–Br compounds. Journal of Alloys and Compounds, 2020, 830, 154731.	2.8	14
913	Encapsulation of CsPbBr3 perovskite quantum dots into PPy conducting polymer: Exceptional water stability and enhanced charge transport property. Applied Surface Science, 2020, 526, 146735.	3.1	41
914	Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display. Chemical Engineering Journal, 2020, 398, 125616.	6.6	71
915	Unveiling the Two-Step Formation Pathway of Cs ₄ PbBr ₆ Nanocrystals. Chemistry of Materials, 2020, 32, 4574-4583.	3.2	21
916	Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures. Scientific Reports, 2020, 10, 8601.	1.6	59
917	All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Materials, 2020, 8, .	2.2	28
918	Cation-doping matters in caesium lead halide perovskite nanocrystals: from physicochemical fundamentals to optoelectronic applications. Nanoscale, 2020, 12, 12228-12248.	2.8	37
919	Highly Thermotolerant Metal Halide Perovskite Solids. Advanced Materials, 2020, 32, e2002495.	11.1	29
920	Systematic study of optoelectronic and transport properties of cesium lead halide (Cs2PbX6; X=Cl, Br,) Tj ETQq1	1 0,78431 2.3	.4 ₃₂ gBT /Ov
921	Reversible Luminescence Photoswitching of Colloidal CsPbBr ₃ Nanocrystals Hybridized with a Diarylethene Photoswitch. , 2020, 2, 727-735.		17
922	Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2020, 14, 6999-7007.	7.3	57

#	Article	IF	CITATIONS
923	High-stability inorganic perovskite quantum dot–cellulose nanocrystal hybrid films. Nanotechnology, 2020, 31, 324002.	1.3	10
924	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.	18.7	269
925	Room-temperature one-pot synthesis of highly stable SiO2-coated Mn-doped all-inorganic perovskite CsPb0.7Mn0.3Br0.75Cl2.25 quantum dots for bright white light-emitting diodes. Journal of Luminescence, 2020, 223, 117236.	1.5	15
926	Crystalline phase-controlled synthesis of regular and stable endotaxial cesium lead halide nanocrystals. Journal of Materials Chemistry C, 2020, 8, 9358-9365.	2.7	10
927	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	10.2	62
928	Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr ₃ Nanoplatelets with Enhanced Stability and Charge Transport. ACS Applied Materials & Interfaces, 2020, 12, 31863-31874.	4.0	37
929	Lead-free all-inorganic halide perovskite quantum dots: review and outlook. Journal of the Korean Ceramic Society, 2020, 57, 455-479.	1.1	45
930	Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite. Journal of Luminescence, 2020, 226, 117471.	1.5	20
931	Investigation on violet/blue all-inorganic light-emitting diodes based on CsPbCl3 films. Journal of Luminescence, 2020, 226, 117422.	1.5	12
932	Large-scale synthesis of cesium lead halide perovskite nanocrystals for zinc ion detection. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	6
933	Internally-externally defects-tailored MAPbI3 perovskites with highly enhanced air stability and quantum yield. Chemical Engineering Journal, 2020, 399, 125715.	6.6	28
934	How organic ligands affect the phase transition and fluorescent stability of perovskite nanocrystals. Journal of Materials Chemistry C, 2020, 8, 8999-9004.	2.7	20
935	Semiconducting quantum dots: Modification and applications in biomedical science. Science China Materials, 2020, 63, 1631-1650.	3.5	33
936	Enhanced stability and performance of light-emitting diodes based on <i>in situ</i> fabricated FAPbBr ₃ nanocrystals <i>via</i> ligand compensation with <i>n</i> -octylphosphonic acid. Journal of Materials Chemistry C, 2020, 8, 9936-9944.	2.7	11
937	Quantum yield enhancement of Mn-doped CsPbCl3 perovskite nanocrystals as luminescent down-shifting layer for CIGS solar cells. Solar Energy, 2020, 206, 473-478.	2.9	21
938	Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 29344-29356.	4.0	16
939	Modifying the Crystal Field of CsPbCl ₃ :Mn ²⁺ Nanocrystals by Co-doping to Enhance Its Red Emission by a Hundredfold. ACS Applied Materials & Interfaces, 2020, 12, 30711-30719.	4.0	41
940	Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light: Science and Applications, 2020, 9, 44.	7.7	122

#	Article	IF	CITATIONS
941	Synergistic effects of charge transport engineering and passivation enabling efficient inverted perovskite quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5572-5579.	2.7	21
942	Facile Synthesis of Stable CsPbBr ₃ /SiO ₂ Solids Via 3-(Dimethoxymethylsilyl)propylamine: Coordination of Silica Encapsulation and Surface Passivation. ECS Journal of Solid State Science and Technology, 2020, 9, 036003.	0.9	3
943	Doping Induces Structural Phase Transitions in All-Inorganic Lead Halide Perovskite Nanocrystals. , 2020, 2, 367-375.		42
944	CsPbBr ₃ Thin Films on LYSO:Ce Substrates. IEEE Transactions on Nuclear Science, 2020, 67, 933-938.	1.2	8
945	Ultrafast Thermodynamic Control for Stable and Efficient Mixed Halide Perovskite Nanocrystals. Advanced Functional Materials, 2020, 30, 2000026.	7.8	68
946	Room-Temperature in Situ Synthesis of Highly Efficient CsPbBr ₃ /SiO ₂ Sol in Entirely Ethanol Solvent by Constructing Amine-Functionalized Silica Micelles. Langmuir, 2020, 36, 3565-3572.	1.6	8
947	Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots. Journal of Alloys and Compounds, 2020, 831, 154834.	2.8	21
948	Enhancing the stability and water resistance of CsPbBr3 perovskite nanocrystals by using tetrafluoride and zinc oxide as protective capsules. Journal of Materials Science, 2020, 55, 9739-9747.	1.7	14
949	Ultrastable Laurionite Spontaneously Encapsulates Reduced-dimensional Lead Halide Perovskites. Nano Letters, 2020, 20, 2316-2325.	4.5	20
950	Blue-emitting and self-assembled thinner perovskite CsPbBr3 nanoplates: synthesis and formation mechanism. Nanoscale, 2020, 12, 9231-9239.	2.8	30
951	Ionic liquid assisted preparation and modulation of the photoluminescence kinetics for highly efficient CsPbX ₃ nanocrystals with improved stability. Nanoscale, 2020, 12, 9569-9580.	2.8	21
952	Methanol-induced fast CsBr release results in phase-pure CsPbBr ₃ perovskite nanoplatelets. Nanoscale Advances, 2020, 2, 1973-1979.	2.2	16
953	Highly efficient and stable CsPbBr ₃ perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs. Inorganic Chemistry Frontiers, 2020, 7, 2060-2071.	3.0	41
954	Dual-Modal Photon Upconverting and Downshifting Emissions from Ultra-stable CsPbBr3 Perovskite Nanocrystals Triggered by Co-Growth of Tm:NaYbF4 Nanocrystals in Glass. ACS Applied Materials & Interfaces, 2020, 12, 18705-18714.	4.0	42
955	Halide Double Perovskite Ferroelectrics. Angewandte Chemie - International Edition, 2020, 59, 9305-9308.	7.2	60
956	Recent processes on light-emitting lead-free metal halide perovskites. Chemical Engineering Journal, 2020, 393, 124757.	6.6	65
957	Controllable synthesis of CsxPbyBrz-based perovskites by a polar solvent-triggered transformation method and its application as an invisible security ink. Journal of Materials Science, 2020, 55, 6826-6833.	1.7	5
958	Visualizing the Redox Reaction Dynamics of Perovskite Nanocrystals in Real and Reciprocal Space. Journal of Physical Chemistry Letters, 2020, 11, 2550-2558.	2.1	7

#	Article	IF	CITATIONS
959	Lowâ€Dimensionalâ€Networked Cesium Lead Halide Perovskites: Properties, Fabrication, and Applications. Small Methods, 2020, 4, 2000303.	4.6	38
960	Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nature Catalysis, 2020, 3, 649-655.	16.1	427
961	High-Performance Deep Ultraviolet Photodetector Based on a One-Dimensional Lead-Free Halide Perovskite CsCu ₂ 1 ₃ Film with High Stability. Journal of Physical Chemistry Letters, 2020, 11, 6880-6886.	2.1	79
962	Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy, 2020, 77, 105043.	8.2	52
963	Interface Matters: Enhanced Photoluminescence and Long-Term Stability of Zero-Dimensional Cesium Lead Bromide Nanocrystals <i>via</i> Gas-Phase Aluminum Oxide Encapsulation. ACS Applied Materials & Interfaces, 2020, 12, 35598-35605.	4.0	14
964	Advances in Quantum-Dot-Based Displays. Nanomaterials, 2020, 10, 1327.	1.9	72
965	Ultra-stable Tb3+: CsPbI3 nanocrystal glasses for wide-range high-sensitivity optical temperature sensing. Journal of the European Ceramic Society, 2020, 40, 6023-6030.	2.8	49
966	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10
967	Perovskite nanogels: synthesis, properties, and applications. Journal of Materials Chemistry C, 2020, 8, 12355-12379.	2.7	7
968	Stable Mn-Doped CsPbCl ₃ Nanocrystals inside Mesoporous Alumina Films for Display and Catalytic Applications. ACS Applied Nano Materials, 2020, 3, 2941-2951.	2.4	7
969	Ambient processed CsPbX3 perovskite cubes for photocatalysis. Materials Letters, 2020, 267, 127501.	1.3	26
970	Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes. Nanoscale, 2020, 12, 6522-6528.	2.8	17
971	Stabilizing CsPbBr3 quantum dots with conjugated aromatic ligands and their regulated optical behaviors. Chemical Engineering Journal, 2020, 389, 124453.	6.6	39
972	Electrically controlled white laser emission through liquid crystal/polymer multiphases. Light: Science and Applications, 2020, 9, 19.	7.7	31
973	Solutionâ€Processed Highâ€Quality Cesium Lead Bromine Perovskite Photodetectors with High Detectivity for Application in Visible Light Communication. Advanced Optical Materials, 2020, 8, 1901735.	3.6	38
974	Lightâ€Emitting Electrochemical Cells Based on Colorâ€Tunable Inorganic Colloidal Quantum Dots. Advanced Functional Materials, 2020, 30, 1907349.	7.8	40
975	Nonlinear optical properties of colloidal CdSe/ZnS quantum dots in PMMA. Nanotechnology, 2020, 31, 195703.	1.3	14
976	Composition-, Size-, and Surface Functionalization-Dependent Optical Properties of Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 2079-2085.	2.1	37

#	Article	IF	CITATIONS
977	Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 13087-13095.	4.0	62
978	Size-selected and surface-passivated CsPbBr ₃ perovskite nanocrystals for self-enhanced electrochemiluminescence in aqueous media. Nanoscale, 2020, 12, 7321-7329.	2.8	28
979	Environmentally friendly CsPbBr3 QDs multicomponent glass with super-stability for optoelectronic devices and up-converted lasing. Journal of the European Ceramic Society, 2020, 40, 3270-3278.	2.8	32
980	Ultrahigh photo-stable all-inorganic perovskite nanocrystals and their robust random lasing. Nanoscale Advances, 2020, 2, 888-895.	2.2	6
981	Heating-up synthesis of cesium bismuth bromide perovskite nanocrystals with tailored composition, morphology, and optical properties. RSC Advances, 2020, 10, 7126-7133.	1.7	20
982	Stable CsPbBr ₃ :Sn@SiO ₂ and Cs ₄ PbBr ₆ :Sn@SiO ₂ Core–Shell Quantum Dots with Tunable Color Emission for Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 3019-3027.	2.4	35
983	Enhanced luminescence of Mn doped CsPbCl3 and CsPb(Cl/Br)3 perovskite nanocrystals stabilized in glasses. Journal of Alloys and Compounds, 2020, 827, 154349.	2.8	27
984	Enhanced aqueous stability and radiative-charge-transfer of CsPbBr3/Ag2S perovskite nanocrystal hybrids. Journal of Electroanalytical Chemistry, 2020, 858, 113835.	1.9	12
985	Enhanced photoluminescence and stability of ZnSe microspheres/Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals composites. Chinese Chemical Letters, 2020, 31, 2499-2502.	4.8	8
986	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	18.7	211
987	Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201.	2.0	16
988	Improvement in quantum yield by suppression of trions in room temperature synthesized CsPbBr ₃ perovskite quantum dots for backlight displays. Nanoscale, 2020, 12, 3820-3826.	2.8	34
989	Surface functionalization on nanoparticles via atomic layer deposition. Science Bulletin, 2020, 65, 678-688.	4.3	32
990	Scalable synthesis of colloidal CsPbBr ₃ perovskite nanocrystals with high reaction yields through solvent and ligand engineering. Nanoscale, 2020, 12, 4859-4867.	2.8	44
991	Room temperature synthesis of cesium lead bromide perovskite magic sized clusters with controlled ratio of carboxylic acid and benzylamine capping ligands. Solar Energy Materials and Solar Cells, 2020, 208, 110341.	3.0	23
992	Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity. Chemical Engineering Journal, 2020, 388, 124205.	6.6	72
993	Efficient CsPbBr ₃ Inorganic Perovskite Light-Emitting Diodes via Lewis Acid–Base Reaction with Organic Small Molecule mCP. ACS Applied Electronic Materials, 2020, 2, 597-603.	2.0	5
994	Photoluminescence Mechanisms of Allâ€Inorganic Cesium Lead Bromide Perovskites Revealed by Single Particle Spectroscopy. ChemNanoMat, 2020, 6, 327-335.	1.5	16

#	Article	IF	CITATIONS
995	Dynamic Passivation in Perovskite Quantum Dots for Specific Ammonia Detection at Room Temperature. Small, 2020, 16, e1904462.	5.2	58
996	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Based on Potassium Passivated Nanocrystals. Advanced Functional Materials, 2020, 30, 1908760.	7.8	134
997	Ni and K ion doped CsPbX3 NCs for the improvement of luminescence properties by a facile synthesis method in ambient air. Journal of Luminescence, 2020, 221, 117044.	1.5	20
998	Tunable electrochemiluminescence properties of CsPbBr3perovskite nanocrystals using mixed-monovalent cations. New Journal of Chemistry, 2020, 44, 3323-3329.	1.4	4
999	Highly luminescent CsPbI3 quantum dots and their fast anion exchange at oil/water interface. Chemical Physics Letters, 2020, 741, 137096.	1.2	4
1000	Highâ€Efficiency Formamidinium Lead Bromide Perovskite Nanocrystalâ€Based Lightâ€Emitting Diodes Fabricated via a Surface Defect Selfâ€Passivation Strategy. Advanced Optical Materials, 2020, 8, 1901390.	3.6	44
1001	Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application. Applied Surface Science, 2020, 512, 145655.	3.1	65
1002	Mn-doped CsPb(Br/Cl) ₃ mixed-halide perovskites for CO ₂ photoreduction. Nanotechnology, 2020, 31, 215605.	1.3	27
1003	Lowâ€dimensional metal halide perovskites and related optoelectronic applications. InformaÄnÃ- Materiály, 2020, 2, 341-378.	8.5	72
1004	Recent Advances in Electrochemiluminescence of Halide Perovskites. Chinese Journal of Analytical Chemistry, 2020, 48, e20021-e20031.	0.9	5
1005	Effect of chemical nature of atoms on the electronic, dielectric, and dynamical properties of ABX 3 halide perovskite. International Journal of Quantum Chemistry, 2020, 120, e26172.	1.0	11
1006	Magenta-Emitting Cesium Lead Halide Nanocrystals Encapsulated in Dimethicone for White Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 4886-4892.	2.4	10
1007	The nature of the methylamine–MAPbI ₃ complex: fundamentals of gas-induced perovskite liquefaction and crystallization. Journal of Materials Chemistry A, 2020, 8, 9788-9796.	5.2	28
1008	Possible Charge-Transfer-Induced Conductivity Enhancement in TiO ₂ Microtubes Decorated with Perovskite CsPbBr ₃ Nanocrystals. Langmuir, 2020, 36, 5408-5416.	1.6	5
1009	Highly Luminescent and Stable Green Quasiâ€⊋D Perovskiteâ€Embedded Polymer Sheets by Inkjet Printing. Advanced Functional Materials, 2020, 30, 1910817.	7.8	58
1010	Photoluminescence tuning from glass-stabilized CsPbX3 (XÂ=ÂCl, Br, I) perovskite nanocrystals triggered by upconverting Tm: KYb2F7 nanoparticles for high-level anti-counterfeiting. Chemical Engineering Journal, 2020, 395, 125214.	6.6	75
1011	Increasing photoluminescence yield of CsPbCl3 nanocrystals by heterovalent doping with Pr3+. Materials Research Bulletin, 2020, 129, 110907.	2.7	12
1012	Cesium–Lead Bromide Perovskite Nanoribbons with Two-Unit-Cell Thickness and Large Lateral Dimension for Deep-Blue Light Emission. ACS Applied Nano Materials, 2020, 3, 4826-4836.	2.4	8

#	Article	IF	Citations
1013	Simultaneous Optimization of Phase and Morphology of CsPbBr 3 Films via Controllable Ostwald Ripening by Ethylene Glycol Monomethylether/Isopropanol Biâ€Solvent Engineering. Advanced	1.6	19
1013	Engineering Materials, 2020, 22, 2000162.	1.0	19
1014	Cellulose-Based Photoluminescent Nanocomposites. , 2020, , 117-170.		3
1015	In situ growth of aligned CsPbBr3 nanorods in polymer fibers with tailored aspect ratios. Ceramics International, 2020, 46, 18352-18357.	2.3	13
1016	Spatial and chemical confined ultra-small CsPbBr3 perovskites in dendritic mesoporous silica nanospheres with enhanced stability. Microporous and Mesoporous Materials, 2020, 302, 110229.	2.2	19
1017	Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757.	8.2	77
1018	Energy-transfer-mediated oxygen activation in carbonyl functionalized carbon nitride nanosheets for high-efficient photocatalytic water disinfection and organic pollutants degradation. Water Research, 2020, 177, 115798.	5.3	68
1019	Enriched Photophysical Properties and Thermal Stability of Tin(II) Substituted Lead-Based Perovskite Nanocrystals with Mixed Organic–Inorganic Cations. Journal of Physical Chemistry C, 2020, 124, 9611-9621.	1.5	21
1020	Water-Stable 1D Hybrid Tin(II) lodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. Journal of the American Chemical Society, 2020, 142, 9028-9038.	6.6	57
1021	A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale, 2020, 12, 9727-9732.	2.8	62
1022	High-performance blue perovskite light-emitting diodes based on the "far-field plasmonic effect―of gold nanoparticles. Journal of Materials Chemistry C, 2020, 8, 6615-6622.	2.7	11
1023	Enhancement of Photoluminescence Quantum Yield and Stability in CsPbBr3 Perovskite Quantum Dots by Trivalent Doping. Nanomaterials, 2020, 10, 710.	1.9	23
1024	Excellent exciton luminescence of CsPbI3 red quantum dots in borate glass. Journal of Non-Crystalline Solids, 2020, 541, 120066.	1.5	21
1025	Electrochemically switchable electrochemiluminescent sensor constructed based on inorganic perovskite quantum dots synthesized with microwave irradiation. Journal of Electroanalytical Chemistry, 2020, 867, 114181.	1.9	16
1026	In Situ Growth of Allâ€Inorganic Perovskite Single Crystal Arrays on Electron Transport Layer. Advanced Science, 2020, 7, 1902767.	5.6	21
1027	Halide Double Perovskite Ferroelectrics. Angewandte Chemie, 2020, 132, 9391-9394.	1.6	17
1028	Review on recent advances of core-shell structured lead halide perovskites quantum dots. Journal of Alloys and Compounds, 2020, 834, 155246.	2.8	28
1029	Down-Shifting and Anti-Reflection Effect of CsPbBr3 Quantum Dots/Multicrystalline Silicon Hybrid Structures for Enhanced Photovoltaic Properties. Nanomaterials, 2020, 10, 775.	1.9	19
1030	Flexible and Selfâ€Powered Photodetector Arrays Based on Allâ€Inorganic CsPbBr ₃ Quantum Dots. Advanced Materials, 2020, 32, e2000004.	11.1	134

CITATION DEI	DODT
CITATION REI	PURI

#	Article	IF	CITATIONS
1031	Atomic Layer Deposition Assisted Encapsulation of Quantum Dot Luminescent Microspheres toward Display Applications. Advanced Optical Materials, 2020, 8, 1902118.	3.6	22
1032	Revealing the Role of Tin(IV) Halides in the Anisotropic Growth of CsPbX 3 Perovskite Nanoplates. Angewandte Chemie, 2020, 132, 11598-11606.	1.6	3
1033	Revealing the Role of Tin(IV) Halides in the Anisotropic Growth of CsPbX ₃ Perovskite Nanoplates. Angewandte Chemie - International Edition, 2020, 59, 11501-11509.	7.2	22
1034	Moleculeâ€Induced pâ€Doping in Perovskite Nanocrystals Enables Efficient Colorâ€Saturated Red Lightâ€Emitting Diodes. Small, 2020, 16, e2001062.	5.2	53
1035	Strategic separation of metal sulfides from residual wet-chemical precursors for synchronous production of pure water and nanostructured photocatalysts. Applied Nanoscience (Switzerland), 2020, 10, 2303-2314.	1.6	2
1036	Simultaneous enhancement of luminescence and stability of CsPbBr3 perovskite nanocrystals via formation of perhydropolysilazane-derived nanopatterned film. Chemical Engineering Journal, 2020, 393, 124767.	6.6	15
1037	In situ observation of δ phase suppression by lattice strain in all-inorganic perovskite solar cells. Nano Energy, 2020, 73, 104803.	8.2	32
1038	Perovskite CsPbBr ₃ crystals: growth and applications. Journal of Materials Chemistry C, 2020, 8, 6326-6341.	2.7	87
1039	Metal halide perovskites for blue light emitting materials. APL Materials, 2020, 8, .	2.2	15
1040	A timeâ€dependent density functional study on optical response in allâ€inorganic leadâ€halide perovskite nanostructures. International Journal of Quantum Chemistry, 2020, 120, e26232.	1.0	6
1041	Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. Journal of Energy Chemistry, 2021, 54, 770-785.	7.1	75
1042	Raman spectra and vibrational analysis of CsPbI3: A fast and reliable technique to identify lead halide perovskite polymorphs. Journal of Materiomics, 2021, 7, 127-135.	2.8	13
1043	Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures. Journal of Materials Science and Technology, 2021, 68, 216-226.	5.6	37
1044	Facial synthesis of highly stable and bright CsPbX3 (X=Cl, Br, I) perovskite nanocrystals via an anion exchange at the water-oil interface. Science China Materials, 2021, 64, 158-168.	3.5	10
1045	Selfâ€Healing Lithographic Patterning of Perovskite Nanocrystals for Largeâ€Area Singleâ€Mode Laser Array. Advanced Functional Materials, 2021, 31, .	7.8	46
1046	Color-adjustable CsPbBr3-xIx quantum dots glasses for wide color gamut display. Journal of Non-Crystalline Solids, 2021, 551, 120432.	1.5	17
1047	Enhancing Mn Emission of CsPbCl3 Perovskite Nanocrystals via Incorporation of Rubidium Ions. Materials Research Bulletin, 2021, 133, 111080.	2.7	20
1048	Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy and Environmental Science, 2021, 14, 224-261.	15.6	94

ARTICLE IF CITATIONS CsPbCl1.5Br1.5 perovskite nanocrystals glasses powder optimized by Zn2+ for photocatalytic hydrogen 1049 1.0 4 production. Molecular Catalysis, 2021, 499, 111305. Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices?. 2.5 Materials Today Energy, 2021, 19, 100601. Enhanced performance of perovskite light-emitting-diodes based on ionic liquid modified CsPbBr3 1051 1.7 3 nanocrystals. Optical Materials, 2021, 111, 110620. Luminescent and Robust Perovskite–Silicone Elastomers Prepared by Light Induced Thiol–Ene 2.0 Reaction. Macromolecular Rapid Communications, 2021, 42, e2000606. Emerging Perovskite Materials with Different Nanostructures for Photodetectors. Advanced Optical 1053 3.6 40 Materials, 2021, 9, 2001637. Solution-processed all-inorganic perovskite CsPbBr3 thin films for optoelectronic application. 1054 2.8 Journal of Alloys and Compounds, 2021, 864, 158125. High performance single-mode vertical cavity surface emitting lasers based on CsPbBr3 nanocrystals 1055 6.6 14 with simplified processing. Chemical Engineering Journal, 2021, 420, 127660. Fluorescenceâ€enhanced Cs 4 PbBr 6 /CsPbBr 3 composites films synthesized by doubleâ€films solid phase 1056 1.5 reaction method. Luminescence, 2021, 36, 631-641. Recent research on the luminous mechanism, synthetic strategies, and applications of 1057 3.0 33 CulnS₂ quantum dots. Inorganic Ćhemistry Frontiers, 2021, 8, 880-897. Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical 2.4 properties, and application. Frontiers of Physics, 2021, 16, 1 Cubic-cubic perovskite quantum dots/PbS mixed dimensional materials for highly efficient CO2 1059 4.025 reduction. Journal of Power Sources, 2021, 481, 228838. Development of structure and tuning ability of the luminescence of lead-free halide perovskite 6.6 nanocrystals (NCs). Chemical Engineering Journal, 2021, 420, 127603. Simultaneous enhancement of luminescence and stability of lead halide perovskites by a diatomite 1061 6.6 17 microcavity for light-emitting diodes. Chemical Engineering Journal, 2021, 417, 128056. Blue-green tunable luminescence mechanism of a novel Tb3+ doped Cs4PbBr6 quantum dots tellurite 1062 1.5 glass. Journal of Luminescence, 2021, 231, 117799. Capping-ligand free grinding synthesis of luminescent lead halide perovskite nanocrystals. Materials 1063 0.9 1 Today Communications, 2021, 26, 101926. Fluorescence enhancement of perovskite nanocrystals using photonic crystals. Journal of Materials 1064 Chemistry C, 2021, 9, 908-915. Novel perovskite quantum dots and hydroxyapatite nanocomposites: Enhanced thermal stability, 1065 improved emission intensity, and color-tunable luminescence. Journal of Alloys and Compounds, 2021, 2.8 12 861, 157989. CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation 3.1 48 from CsPbBr3 to CsPb2Br5. Applied Surface Science, 2021, 543, 148782.

#	Article	IF	CITATIONS
1067	All-inorganic CsPbBr ₃ perovskite: a promising choice for photovoltaics. Materials Advances, 2021, 2, 646-683.	2.6	100
1068	Blinking CsPbBr3 perovskite nanocrystals for the nanoscopic imaging of electrospun nanofibers. Nano Research, 2021, 14, 1397-1404.	5.8	17
1069	Synthesis of CsPbBr ₃ perovskite nanocrystals with acoustically actuated millisecond mixing. Journal of Materials Chemistry C, 2021, 9, 313-321.	2.7	11
1070	Mixed halide CsPb(Br1-xlx)3 nanocrystals for green, orange, and red light-emitting diodes. Journal of Alloys and Compounds, 2021, 858, 157643.	2.8	11
1071	Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy, 2021, 79, 105486.	8.2	29
1072	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	6.9	71
1073	New Phase Transitions Driven by Soft Phonon Modes for CsPbBr 3 : Density Functional Theory Study. Physica Status Solidi (B): Basic Research, 2021, 258, 2000289.	0.7	7
1074	Highly emissive halide perovskite nanocrystals: from lead to lead-free. CrystEngComm, 2021, 23, 3619-3630.	1.3	5
1075	Lanthanide-doping enables kinetically controlled growth of deep-blue two-monolayer halide perovskite nanoplatelets. Nanoscale, 2021, 13, 11552-11560.	2.8	16
1076	Armor-like passivated CsPbBr ₃ quantum dots: boosted stability with hand-in-hand ligands and enhanced performance of nuclear batteries. Journal of Materials Chemistry A, 2021, 9, 8772-8781.	5.2	13
1077	Bromopropane as a novel bromine precursor for the completely amine free colloidal synthesis of ultrastable and highly luminescent green-emitting cesium lead bromide (CsPbBr ₃) perovskite nanocrystals. Nanoscale, 2021, 13, 13142-13151.	2.8	27
1078	Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628.	18.7	32
1079	Postsynthetic Surface-Treatment of CsPbX ₃ (X = Cl, Br, or I) Nanocrystals via CdX ₂ Precursor Solution toward High Photoluminescence Quantum Yield. Langmuir, 2021, 37, 1183-1193.	1.6	23
1080	Luminance efficiency roll-off mechanism in CsPbBr _{3â^'x} Cl _x mixed-halide perovskite quantum dot blue light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 3608-3619.	2.7	32
1081	Tunable ultra-uniform Cs ₄ PbBr ₆ perovskites with efficient photoluminescence and excellent stability for high-performance white light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12811-12818.	2.7	4
1082	Using design of experiment to obtain a systematic understanding of the effect of synthesis parameters on the properties of perovskite nanocrystals. Reaction Chemistry and Engineering, 2021, 6, 709-719.	1.9	10
1083	Ligand and adjuvant dual-assisted synthesis of highly luminescent and stable Cs ₄ PbBr ₆ nanoparticles used in LEDs. RSC Advances, 2021, 11, 21738-21744.	1.7	3
1084	Perovskite Quantum Dots Glasses Based Backlit Displays. ACS Energy Letters, 2021, 6, 519-528.	8.8	240

#	Article	IF	Citations
1085	Perovskite-Like Quantum Dots Designed for Advanced Optoelectronic Applications. Engineering Materials, 2021, , 83-108.	0.3	1
1086	Highly Stable CsPbBr ₃ Colloidal Nanocrystal Clusters as Photocatalysts in Polar Solvents. ACS Applied Materials & Interfaces, 2021, 13, 4017-4025.	4.0	31
1087	Coordinating Solvent-Assisted Synthesis of Phase-Stable Perovskite Nanocrystals with High Yield Production for Optoelectronic Applications. Chemistry of Materials, 2021, 33, 547-553.	3.2	11
1088	Design optimization of CsPbBr ₃ nanocrystals into zeolite Beta composites as ultra-stable green emitters for backlight display applications. Journal of Materials Chemistry C, 2021, 9, 12118-12123.	2.7	22
1089	Laurionite Competes with 2D Ruddlesden–Popper Perovskites During the Saturation Recrystallization Process. ACS Applied Materials & Interfaces, 2021, 13, 6505-6514.	4.0	4
1090	Improving the Mn2+ emission and stability of CsPb(Cl/Br)3 nanocrystals by Ni2+ doping in ambient air. Journal of Materials Science, 2021, 56, 7494-7507.	1.7	10
1091	Highly efficient and blue-emitting CsPbBr ₃ quantum dots synthesized by two-step supersaturated recrystallization. Nanotechnology, 2021, 32, 145712.	1.3	9
1092	Lead-free, stable orange-red-emitting hybrid copper based organic–inorganic compounds. Dalton Transactions, 2021, 50, 2766-2773.	1.6	15
1093	Categorization of Quantum Dots, Clusters, Nanoclusters, and Nanodots. Journal of Chemical Education, 2021, 98, 703-709.	1.1	22
1094	Growth Kinetics and Optical Properties of CsPbBr3 Perovskite Nanocrystals. Energies, 2021, 14, 275.	1.6	17
1095	Wafer-sized 2D perovskite single crystal thin films for UV photodetectors. Journal of Materials Chemistry C, 2021, 9, 6498-6506.	2.7	26
1096	Nucleation management for the ambient fabrication of high-performance perovskite photodetectors with the eco-friendly <i>tert</i> -butanol anti-solvent. Journal of Materials Chemistry C, 2021, 9, 8650-8658.	2.7	4
1097	Magnetic perovskite nanoparticles for latent fingerprint detection. Nanoscale, 2021, 13, 12038-12044.	2.8	13
1098	One-pot synthesis of nanomaterials. , 2021, , 137-176.		3
1099	Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances, 2021, 3, 2180-2195.	2.2	27
1100	Multidentate Ligand Polyethylenimine Enables Bright Color-Saturated Blue Light-Emitting Diodes Based on CsPbBr ₃ Nanoplatelets. ACS Energy Letters, 2021, 6, 477-484.	8.8	65
1101	Colloidal semiconductor nanocrystals: synthesis, optical nonlinearity, and related device applications. Journal of Materials Chemistry C, 2021, 9, 6686-6721.	2.7	8
1102	Implications of the size variation on the local structure and polarized emission of CsPbBr3 quantum dots. Journal of Materials Science, 2021, 56, 6977-6986.	1.7	3

#	Article	IF	CITATIONS
1103	Metal halide perovskite nanocrystals: application in high-performance photodetectors. Materials Advances, 2021, 2, 856-879.	2.6	18
1104	Revealing photoluminescence mechanisms of single CsPbBr ₃ /Cs ₄ PbBr ₆ core/shell perovskite nanocrystals. RSC Advances, 2021, 11, 30465-30471.	1.7	4
1105	All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. Journal of Materials Chemistry A, 2021, 9, 18947-18973.	5.2	19
1106	Enhanced Stabilities and Production Yields of MAPbBr ₃ Quantum Dots and Their Applications as Stretchable and Self-Healable Color Filters. ACS Applied Materials & Interfaces, 2021, 13, 4374-4384.	4.0	26
1107	Room temperature synthesis of Sn ²⁺ doped highly luminescent CsPbBr ₃ quantum dots for high CRI white light-emitting diodes. Nanoscale, 2021, 13, 9740-9746.	2.8	42
1108	Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Research, 2021, 14, 2231-2240.	5.8	41
1109	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	2.8	47
1110	Improvement in optical properties of Cs ₄ PbBr ₆ nanocrystals using aprotic polar purification solvent. RSC Advances, 2021, 11, 16453-16460.	1.7	4
1111	Encapsulation of lead halide perovskite quantum dots in mesoporous NaYF ₄ matrices with enhanced stability for anti-counterfeiting. Dalton Transactions, 2021, 50, 10299-10309.	1.6	8
1112	Highly Soluble CsPbBr ₃ Perovskite Quantum Dots for Solution-Processed Light-Emission Devices. ACS Applied Nano Materials, 2021, 4, 1162-1174.	2.4	16
1113	Anion Substitution Effects on the Structural, Electronic, and Optical Properties of Inorganic CsPb(I _{1–<i>x</i>} Br <i>_x</i>) ₃ and CsPb(Br _{1–<i>x</i>} Cl <i>_x</i>) ₃ Perovskites: Theoretical and Experimental Approaches, Journal of Physical Chemistry C, 2021, 125, 886-897.	1.5	25
1114	Spontaneous Radiation Amplification in a Microsphereâ€Coupled CsPbBr ₃ Perovskite Vertical Structure. Advanced Optical Materials, 2021, 9, 2001932.	3.6	6
1115	Ecoâ€friendly Mnâ€doped CsPbCl ₃ perovskite nanocrystal glass with blueâ€red emission for indoor plant lighting. Journal of the American Ceramic Society, 2021, 104, 2579-2587.	1.9	8
1116	Stable Lead-Free Cesium Tin Halide Double-Perovskite Nanocrystals Embedded in Polydimethylsiloxane for Candlelight Light-Emitting Diodes. ACS Applied Nano Materials, 2021, 4, 1924-1931.	2.4	14
1117	All-Inorganic Perovskite Nanosheet Fabrication under Synergistic Effect for Integrated Optoelectronics with Strong Light–Matter Interactions. ACS Applied Nano Materials, 2021, 4, 2634-2641.	2.4	3
1118	Improvement of cobalt-doped ZnS QD emission intensity and linewidth for future diode laser application. Superlattices and Microstructures, 2021, 150, 106807.	1.4	0
1119	Vertically Aligned CsPbBr3 Nanowire Arrays with Template-Induced Crystal Phase Transition and Stability. Journal of Physical Chemistry C, 2021, 125, 4860-4868.	1.5	12
1120	Perovskite Nanocrystals: Synthesis, Stability, and Optoelectronic Applications. Small Structures, 2021, 2, 2000124.	6.9	53

#	Article	IF	CITATIONS
1121	Highly Photoluminescent CsPbBr ₃ /CsPb ₂ Br ₅ NCs@TEOS Nanocomposite in Light-Emitting Diodes. Inorganic Chemistry, 2021, 60, 3814-3822.	1.9	17
1122	Excitation Wavelength and Intensity-Dependent Multiexciton Dynamics in CsPbBr3 Nanocrystals. Nanomaterials, 2021, 11, 463.	1.9	6
1123	Precise Ligand Tuning Emission of Mn-Doped CsPbCl ₃ Nanocrystals by the Amount of Sulfonates. Journal of Physical Chemistry Letters, 2021, 12, 1838-1846.	2.1	17
1124	The effects of cesium lead bromide quantum dots on the performance of copper phthalocyanine-based organic field-effect transistors. Nanotechnology, 2021, 32, 195208.	1.3	11
1125	Colorimetric Determination of Chloridion in Domestic Water Based on the Wavelength Shift of CsPbBr3 Perovskite Nanocrystals via Halide Exchange. Journal of Analysis and Testing, 2021, 5, 3-10.	2.5	17
1126	Amineâ€Free Synthesis of Colloidal Cesium Lead Halide Perovskite Nanocrystals. ChemNanoMat, 2021, 7, 342-353.	1.5	23
1127	Dual modulating luminescence in all-inorganic perovskite CsPbBr3 quantum dots. Optical Materials, 2021, 113, 110822.	1.7	8
1128	Material Properties Modulation in Inorganic Perovskite Films via Solution-Free Solid-State Reactions. ACS Applied Electronic Materials, 2021, 3, 1468-1476.	2.0	7
1129	Precise Control of CsPbBr ₃ Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. Chemistry of Materials, 2021, 33, 2387-2397.	3.2	40
1130	Confined Synthesis of Stable and Uniform CsPbBr ₃ Nanocrystals with High Quantum Yield up to 90% by High Temperature Solidâ€State Reaction. Advanced Optical Materials, 2021, 9, 2002130.	3.6	40
1131	Challenges and Opportunities for CsPbBr ₃ Perovskites in Low- and High-Energy Radiation Detection. ACS Energy Letters, 2021, 6, 1290-1314.	8.8	80
1132	Highly Emissive Deepâ€Red Perovskite Quantum Dots in Class: Photoinduced Thermal Engineering and Applications. Advanced Optical Materials, 2021, 9, 2100094.	3.6	31
1133	Three-dimensional self-attaching perovskite quantum dots/polymer platform for efficient solar-driven CO2 reduction. Materials Today Physics, 2021, 17, 100358.	2.9	11
1134	Color revolution: toward ultra-wide color gamut displays. Journal Physics D: Applied Physics, 2021, 54, 213002.	1.3	9
1135	Revealing the Aging Effect of Metal-Oleate Precursors on the Preparation of Highly Luminescent CsPbBr ₃ Nanoplatelets. Journal of Physical Chemistry Letters, 2021, 12, 2668-2675.	2.1	15
1136	Water Molecules in Zeolite Y Enhance the Photoluminescent Properties of Its Cesium Lead Bromide Quantum Dots, Na4Cs6PbBr48+. Journal of Physical Chemistry C, 2021, 125, 5904-5918.	1.5	3
1137	Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Research, 2021, 14, 3773-3794.	5.8	27
1138	Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 2021, 15, 379-385.	15.6	260

#	Article	IF	CITATIONS
1139	Highly Efficient Cool-White Photoluminescence of (Gua) ₃ Cu ₂ I ₅ Single Crystals: Formation and Optical Properties. ACS Applied Materials & Interfaces, 2021, 13, 13443-13451.	4.0	63
1140	Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes. Nano Research, 2021, 14, 2770-2775.	5.8	28
1141	Carbon quantum dots passivated CsPbBr3 film with improved water stability and photocurrent: Preparation, characterization and application. Carbon, 2021, 175, 93-100.	5.4	15
1142	Roomâ€Temperature Diffusionâ€Induced Extraction for Perovskite Nanocrystals with High Luminescence and Stability. Small Methods, 2021, 5, 2001292.	4.6	2
1143	The mechanism of alkali doping in CsPbBr3: A first-principles perspective. Journal of Applied Physics, 2021, 129, .	1.1	7
1144	Ligandâ€Mediated Synthesis of Mixedâ€Phase Mn 2+ â€Đoped Cesium Lead Chloride Nanocrystals. ChemNanoMat, 2021, 7, 651-657.	1.5	1
1145	Constructing perovskite-like oxide CsCa2Ta3O10: Yb, Er@Cs(PbxMn1-x)(ClyBr1-y)3 perovskite halide composites for five-dimensional anti-counterfeiting barcodes applications. Chemical Engineering Journal, 2021, 409, 128165.	6.6	20
1146	In Situ Ambient Preparation of Perovskite-Poly(<scp>l</scp> -lactic acid) Phosphors for Highly Stable and Efficient Hybrid Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 21800-21809.	4.0	11
1147	Passive frequency conversion of ultraviolet images into the visible using perovskite nanocrystals. Journal of Optics (United Kingdom), 2021, 23, 054001.	1.0	4
1148	Progresses on Novel Bâ€Site Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100261.	3.6	10
1149	A novel in-situ process for high performance blue CsPbBr3 perovskite quantum dots via Cs ion-exchange in Sodium Titanium Silicate. Journal of Luminescence, 2021, 232, 117867.	1.5	4
1150	Tunable Broad Light Emission from 3D "Hollow―Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021, 143, 7069-7080.	6.6	37
1151	Molecular Triazine–Heptazine Junctions Promoting Exciton Dissociation for Overall Water Splitting with Visible Light. Journal of Physical Chemistry C, 2021, 125, 9818-9826.	1.5	55
1152	Tailoring the Broadband Emission in Allâ€Inorganic Leadâ€Free 0D Inâ€Based Halides through Sb ³⁺ Doping. Advanced Optical Materials, 2021, 9, 2100434.	3.6	56
1153	Synthesis of Red Cesium Lead Bromoiodide Nanocrystals Chelating Phenylated Phosphine Ligands with Enhanced Stability. ACS Omega, 2021, 6, 10437-10446.	1.6	12
1154	Unraveling the Origin of Low Optical Efficiency for Quantum Dot White Light-Emitting Diodes From the Perspective of Aggregation-Induced Scattering Effect. IEEE Transactions on Electron Devices, 2021, 68, 1738-1745.	1.6	6
1155	Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Research, 2022, 15, 492-501.	5.8	9
1156	Toward efficient photocatalysts for light-driven CO ₂ reduction: TiO ₂ nanostructures decorated with perovskite quantum dots. Nano Express, 2021, 2, 020003.	1.2	3

#	Article	IF	CITATIONS
1157	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	8.1	52
1158	Stability study of all-inorganic perovskite CsPbBr3 QDs@SiO2/EVA film composites prepared by one-step. Journal of Crystal Growth, 2021, 560-561, 126045.	0.7	6
1159	The role of EuBr2 in modulating the crystallization and luminescence of caesium lead bromide. Materials Research Bulletin, 2021, 137, 111191.	2.7	3
1160	Stable CsPbBr ₃ â€Glass Nanocomposite for Lowâ€Ã‰tendue Wideâ€Colorâ€Gamut Laserâ€Driven Projection Display. Laser and Photonics Reviews, 2021, 15, 2100044.	4.4	65
1161	Amplifying Surface Energy Difference toward Anisotropic Growth of Allâ€Inorganic Perovskite Singleâ€Crystal Wires for Highly Sensitive Photodetector. Advanced Functional Materials, 2021, 31, 2101966.	7.8	21
1162	Kinetic progress in post-synthetic doping of 2D perovskite nanoplatelets. Applied Physics Express, 2021, 14, 051007.	1.1	1
1163	The Influence of Spontaneous Oxidative Conversion on the Characteristics of Leadâ€Free Halide Perovskite CsSn(I <i>_x</i> Br _{1â^'} <i>_x</i>) ₃ and on the Performance of Perovskite Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2002240.	1.9	7
1164	Allâ€Inorganic Halide Perovskite Nanocrystals: Future Prospects and Challenges to Go Lead Free. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100185.	0.8	1
1165	Water-Recycled Perovskite for White Light-Emitting Diodes. Journal of Physical Chemistry C, 2021, 125, 10605-10610.	1.5	1
1166	Evaporation Deposition Strategies for Allâ€Inorganic CsPb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Perovskite Solar Cells: Recent Advances and Perspectives. Solar Rrl, 2021, 5, 2100172.	3.1	24
1167	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
1168	Ultrasmall CsPbBr ₃ Quantum Dots with Bright and Wide Blue Emissions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100134.	1.2	14
1169	Strategies Toward Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2100516.	7.8	92
1170	Luminescence and Stability Enhancement of CsPbBr ₃ Perovskite Quantum Dots through Surface Sacrificial Coating. Advanced Optical Materials, 2021, 9, 2100474.	3.6	22
1171	Efficient Dual-Band White-Light Emission with High Color Rendering from Zero-Dimensional Organic Copper Iodide. ACS Applied Materials & Interfaces, 2021, 13, 22749-22756.	4.0	57
1172	Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers. ACS Applied Materials & Interfaces, 2021, 13, 24747-24755.	4.0	22
1173	Facile synthesis of perovskite phosphors and nanocrystals using laundry detergent by ultra-rapid freezing for light-emitting diodes application. Journal of Luminescence, 2021, 233, 117902.	1.5	5
1174	Band-Gap Engineering of Lead-Free Iron-Based Halide Double-Perovskite Single Crystals and Nanocrystals by an Alloying or Doping Strategy. Journal of Physical Chemistry C, 2021, 125, 11743-11749.	1.5	24

#	Article	IF	Citations
1175	Suppressing ion migration of CsPbBr _x I _{3-x} nanocrystals by Nickel doping and the application in high-efficiency WLEDs. Nanotechnology, 2021, 32, 335601.	1.3	7
1176	Thermal Quenching and Antiquenching of Photoluminescence in Solution-Grown Cs ₄ PbBr ₆ Perovskite Single Crystals. Journal of Physical Chemistry C, 2021, 125, 11278-11284.	1.5	10
1177	Refractive index of different perovskite materials. Journal of Materials Research, 2021, 36, 1773-1793.	1.2	12
1178	Opportunities and challenges of inorganic perovskites in high-performance photodetectors. Journal Physics D: Applied Physics, 2021, 54, 293002.	1.3	35
1179	Ultrastable Gd3+ doped CsPbBrl2 nanocrystals red glass for high efficiency WLEDs. Chemical Engineering Journal, 2021, 411, 128530.	6.6	35
1180	Progress toward blue-emitting (460–475Ânm) nanomaterials in display applications. Nanophotonics, 2021, 10, 1801-1836.	2.9	20
1181	A conjugated ligand interfacial modifier for enhancing efficiency and operational stability of planar perovskite solar cells. Chemical Engineering Journal, 2021, 412, 128680.	6.6	17
1182	Flexible and Filterâ€Free Colorâ€Imaging Sensors with Multicomponent Perovskites Deposited Using Enhanced Vapor Technology. Small, 2021, 17, e2007543.	5.2	15
1183	Stable and Efficient Blue‣mitting CsPbBr ₃ Nanoplatelets with Potassium Bromide Surface Passivation. Small, 2021, 17, e2101359.	5.2	41
1184	Precursor chemistry towards highly efficient and phase-stable red emitting CsPbI3 perovskite nanocrystals. Nano Research, 2022, 15, 644-652.	5.8	17
1185	High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chemical Engineering Journal, 2021, 414, 128866.	6.6	29
1186	High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr ₃ Nanocrystals with Rationally Designed Aromatic Ligands. ACS Energy Letters, 2021, 6, 2395-2403.	8.8	67
1187	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Đrivingâ€Force Organic Solar Cells. Angewandte Chemie, 2021, 133, 15476-15481.	1.6	22
1188	Long-wavelength pass filter using green CsPbBr3 quantum dots glass. Optics and Laser Technology, 2021, 138, 106857.	2.2	6
1189	Enhanced performance of inverted CsPbBr3 nanocrystal LEDs via Zn(II) doping. Organic Electronics, 2021, 96, 106253.	1.4	9
1190	Core-shell CsPbBr3@Cs4PbBr6 nanocrystals dispersed in thermoplastic polyurethane as writeable heat-resistant fluorescent inks. Journal of Alloys and Compounds, 2021, 865, 158768.	2.8	16
1191	Roomâ€īemperature Magnetic Field Effect on Excitonic Photoluminescence in Perovskite Nanocrystals. Advanced Materials, 2021, 33, e2008225.	11.1	24
1192	Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nature Communications, 2021, 12, 3879.	5.8	76

#	Article	IF	CITATIONS
1193	In Situ Embedding Synthesis of Highly Stable CsPbBr ₃ /CsPb ₂ Br ₅ @PbBr(OH) Nano/Microspheres through Water Assisted Strategy. Advanced Functional Materials, 2021, 31, 2103275.	7.8	42
1194	Artificial Photosynthesis over Metal Halide Perovskites: Achievements, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2021, 12, 5864-5870.	2.1	45
1195	Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends in Chemistry, 2021, 3, 499-511.	4.4	63
1196	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
1197	Observation of Net Stimulated Emission in CsPbBr ₃ Thin Films Prepared by Pulsed Laser Deposition. Advanced Optical Materials, 2021, 9, 2100564.	3.6	9
1198	Rapid and convenient crystallization of quantum dot CsPbBr3 inside a phosphate glass matrix. Journal of Alloys and Compounds, 2021, 866, 158974.	2.8	19
1199	Demystifying the Formation of Colloidal Perovskite Nanocrystals via Controlling Stepwise Synthesis. Journal of Physical Chemistry C, 2021, 125, 14204-14211.	1.5	11
1200	Self-repairing inorganic phosphors/polymer composite film for restructuring luminescent patterns. Materials Research Express, 2021, 8, 065302.	0.8	5
1201	Pathways towards Boosting Solarâ€Driven Hydrogen Evolution of Conjugated Polymers. Small, 2021, 17, e2007576.	5.2	36
1202	<i>In Situ</i> Phase-Transition Crystallization of All-Inorganic Water-Resistant Exciton-Radiative Heteroepitaxial CsPbBr ₃ –CsPb ₂ Br ₅ Core–Shell Perovskite Nanocrystals. Chemistry of Materials, 2021, 33, 4948-4959.	3.2	47
1203	Stable and Efficient White Photoluminescence from Cesium Lead Halide Perovskite Nanocrystals/Polyfluorene Organogel Composite by Suppressing of Halide Ion Migration. Advanced Optical Materials, 2021, 9, 2100601.	3.6	6
1204	Construction of K ⁺ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Visible Light H ₂ Production. ACS Catalysis, 2021, 11, 6995-7005.	5.5	100
1205	Tuning hole transport layers and optimizing perovskite films thickness for high efficiency CsPbBr3 nanocrystals electroluminescence light-emitting diodes. Journal of Luminescence, 2021, 234, 117952.	1.5	14
1206	Double nanocrystalline engineering for effective enhanced photoluminescence of Tb3+ in glass ceramic. Ceramics International, 2021, 47, 15219-15227.	2.3	12
1207	A new class of luminescent nanoprobes based on main-group Sb3+ emitters. Nano Research, 2022, 15, 179-185.	5.8	19
1208	In Situ Fabrication of Mnâ€Doped 2D Perovskiteâ€Polymer Phosphor Films with Greenâ€Red Dual Emissions for Yellow Lighting. Advanced Materials Interfaces, 2021, 8, 2100560.	1.9	4
1209	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 15348-15353.	7.2	121
1210	Stable blue perovskite light-emitting diodes achieved by optimization of crystal dimension through zinc bromide addition. Chemical Engineering Journal, 2021, 414, 128774.	6.6	39

#	Article	IF	Citations
1211	Zinc ions doped cesium lead bromide perovskite nanocrystals with enhanced efficiency and stability for white light-emitting diodes. Journal of Alloys and Compounds, 2021, 866, 158969.	2.8	20
1212	Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission. Advanced Photonics, 2021, 3, .	6.2	47
1213	Single-crystal halide perovskites: Opportunities and challenges. Matter, 2021, 4, 2266-2308.	5.0	35
1214	Synthesis and photoluminescence kinetics of Ce3+-doped CsPbI3 QDs with near-unity PLQY. Nano Research, 2021, 14, 3352-3357.	5.8	22
1215	A liquid phase anion-exchange approach to high-quality all-inorganic halide perovskite micro- and nanowires. Journal of Materials Science, 2021, 56, 16059-16067.	1.7	2
1216	Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction. Renewable and Sustainable Energy Reviews, 2021, 145, 111047.	8.2	28
1217	Modulating Local Charge Distribution of Carbon Nitride for Promoting Exciton Dissociation and Chargeâ€Induced Reactions. Small, 2021, 17, e2100698.	5.2	18
1218	Ultrafast cation doping of perovskite quantum dots in flow. Matter, 2021, 4, 2429-2447.	5.0	20
1219	Light-emitting diodes based on quaternary CdZnSeS quantum dots. Journal of Luminescence, 2021, 235, 118025.	1.5	2
1220	Solvent-Vapor Atmosphere Controls the in Situ Crystallization of Perovskites. , 2021, 3, 1172-1180.		7
1221	Vapor deposition of CsPbBr3 thin films by evaporation of CsBr and PbBr2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	8
1222	Strong Polarized Photoluminescence CsPbBr ₃ Nanowire Composite Films for UV Spectral Conversion Polarization Photodetector Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 36147-36156.	4.0	20
1223	Full olor Perovskite Quantum Dots/Cellulose Nanocrystals Enhancement Films with Excellent Stability. Advanced Engineering Materials, 2021, 23, 2100424.	1.6	4
1224	Perovskite CsPbX3 (X=Cl, Br, I) Nanocrystals in fluorophosphate glasses. Journal of Non-Crystalline Solids, 2021, 563, 120811.	1.5	17
1225	Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. Nano Research, 2022, 15, 502-509.	5.8	18
1226	On the Role of Cs4PbBr6 Phase in the Luminescence Performance of Bright CsPbBr3 Nanocrystals. Nanomaterials, 2021, 11, 1935.	1.9	7
1227	Switchable Anion Exchange in Polymer-Encapsulated APbX ₃ Nanocrystals Delivers Stable All-Perovskite White Emitters. ACS Energy Letters, 2021, 6, 2844-2853.	8.8	34
1228	Radiation polymerized CsPbBr3-PMMA nanocomposite for alpha particle detection. Materials Today: Proceedings, 2021, , .	0.9	6

#	Article	IF	CITATIONS
1229	Mixed monomolecular and bimolecular-like recombination processes in CsPbBr3 perovskite film revealed by time-resolved photoluminescence spectroscopy. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	1
1230	Recent Advances in All-Inorganic Lead-Free Three-Dimensional Halide Double Perovskite Nanocrystals. Energy & Fuels, 2021, 35, 18871-18887.	2.5	30
1231	Highly flexible CH3NH3PbI3 micro- and nanowires. Applied Physics Letters, 2021, 119, 081903.	1.5	0
1232	Rapid synthesis of highly stable all-inorganic perovskite nanocrystals exhibiting strong blue luminescence. Journal of Alloys and Compounds, 2021, 872, 159612.	2.8	8
1233	Manipulating heat transport of photoluminescent composites in LEDs/LDs. Journal of Applied Physics, 2021, 130, .	1.1	15
1234	Cesium manganese chloride: Stable lead-free perovskite from bulk to single layer. Journal of Magnetism and Magnetic Materials, 2021, 531, 167845.	1.0	6
1235	Unusual Temperature Dependence of Bandgap in 2D Inorganic Leadâ€Halide Perovskite Nanoplatelets. Advanced Science, 2021, 8, e2100084.	5.6	23
1236	Multiexciton dynamics in CsPbBr ₃ nanocrystals: the dependence on pump fluence and temperature. Nanotechnology, 2021, 32, 455702.	1.3	3
1237	Low-Temperature Synthesis of High-Brightness Green-Emitting Silica-Coated CsPbBr3 and Its Application in Light-Emitting Diodes. Journal of Electronic Materials, 2021, 50, 6337-6343.	1.0	0
1238	MAPbBrxCl3-x quantum dots in Pb(OH)Br for stable blue light-emitting devices. Journal of Luminescence, 2021, 236, 118158.	1.5	10
1239	Room-temperature quaternary alkylammonium passivation toward morphology-controllable CsPbBr3 nanocrystals with excellent luminescence and stability for white LEDs. Chemical Engineering Journal, 2021, 417, 129349.	6.6	17
1240	Inorganic Halide Perovskite Thin Films for Neutron Detection. , 2022, , 81-95.		0
1241	MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy, 2021, 86, 106077.	8.2	44
1242	Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today, 2021, 39, 101179.	6.2	22
1243	Room Temperature Synthesis of Stable Zirconiaâ€Coated CsPbBr ₃ Nanocrystals for White Lightâ€Emitting Diodes and Visible Light Communication. Laser and Photonics Reviews, 2021, 15, 2100278.	4.4	138
1244	Synthesis of perovskite nanocrystal films with a high luminous efficiency and an enhanced stability. Ceramics International, 2021, , .	2.3	5
1245	Recent Advances in Flexible Perovskite Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100441.	1.9	28
1246	Solvent Recrystallizationâ€Enabled Green Amplified Spontaneous Emissions with an Ultra‣ow Threshold from Pinholeâ€Free Perovskite Films. Advanced Functional Materials, 2021, 31, 2106108.	7.8	31

#	Article	IF	CITATIONS
1247	Synthesis and optimization of cesium lead halide perovskite QDs. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	1
1248	Stable and highly efficient blue-emitting CsPbBr3 perovskite nanomaterials via kinetic-controlled growth. Chemical Engineering Journal, 2021, 419, 129612.	6.6	25
1249	Organic Semiconductor Single Crystals for Xâ€ray Imaging. Advanced Materials, 2021, 33, e2104749.	11.1	43
1250	Ceriumâ€Doped Perovskite Nanocrystals for Extremely Highâ€Performance Deepâ€Ultraviolet Photoelectric Detection. Advanced Optical Materials, 2021, 9, 2100423.	3.6	12
1251	Robust CsPbBr3 and CdSe / Dy3++CdSe quantum dot doped glass nanocomposite hybrid coupling as color converter for solid-state lighting applications. Chemical Engineering Journal, 2021, 420, 130542.	6.6	23
1252	Recent prospects on phosphor-converted LEDs for lighting, displays, phototherapy, and indoor farming. Journal of Luminescence, 2021, 237, 118167.	1.5	50
1253	CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon, 2021, 182, 454-462.	5.4	40
1254	Self-Assembly of CsPbBr ₃ Nanocubes into 2D Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 44777-44785.	4.0	15
1255	Perovskite Quantum Dots with Ultrahigh Solid-State Photoluminescence Quantum Efficiency, Superior Stability, and Uncompromised Electrical Conductivity. Journal of Physical Chemistry Letters, 2021, 12, 9115-9123.	2.1	6
1256	Defects in CsPbX ₃ Perovskite: From Understanding to Effective Manipulation for Highâ€Performance Solar Cells. Small Methods, 2021, 5, e2100725.	4.6	37
1257	Precise Control of Green to Blue Emission of Halide Perovskite Nanocrystals Using Terbium Chloride as Chlorine Source. Nanomaterials, 2021, 11, 2390.	1.9	0
1258	Defect Passivation of Mn ²⁺ -Doped CsPbCl ₃ Perovskite Nanocrystals as Probed by Scanning Tunneling Spectroscopy: Toward Boosting Emission Efficiencies. ACS Applied Nano Materials, 2021, 4, 10155-10163.	2.4	13
1259	Boosting Cascade Electron Transfer for Highly Efficient CO ₂ Photoreduction. Solar Rrl, 2021, 5, 2100558.	3.1	11
1260	Nanomaterials: Applications in Electronics. International Journal of Advanced Engineering and Nano Technology, 2021, 4, 7-19.	0.4	2
1261	Single-Particle Spectroscopy as a Versatile Tool to Explore Lower-Dimensional Structures of Inorganic Perovskites. ACS Energy Letters, 2021, 6, 3695-3708.	8.8	6
1262	Recent Progress on Synthesis, Characterization, and Applications of Metal Halide Perovskites@Metal Oxide. Advanced Functional Materials, 2021, 31, 2104634.	7.8	19
1263	Ultrastable PVB films-protected CsPbBr3/Cs4PbBr6 perovskites with high color purity for nearing Rec. 2020 standard. Chemical Engineering Journal, 2021, 419, 129529.	6.6	23
1264	Halide Perovskite Nanocrystals with Enhanced Water Stability for Upconversion Imaging in a Living Cell. Journal of Physical Chemistry Letters, 2021, 12, 8991-8998.	2.1	20

#	Article	IF	CITATIONS
1265	Recent progress on all-inorganic metal halide perovskite solar cells. Materials Today Nano, 2021, 16, 100143.	2.3	13
1266	Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chemical Engineering Journal, 2021, 419, 129551.	6.6	96
1267	CsPbBr ₃ Nanoplatelets: Synthesis and Understanding of Ultraviolet Light-Induced Structural Phase Change and Luminescence Degradation. ECS Journal of Solid State Science and Technology, 2021, 10, 096002.	0.9	10
1268	Current status on synthesis, properties and applications of CsPbX ₃ (XÂ=ÂCl, Br, I) perovskite quantum dots/nanocrystals. Nanotechnology, 2021, 32, 502007.	1.3	13
1269	Bandgap and Carrier Dynamic Controls in CsPbBr3 Nanocrystals Encapsulated in Polydimethylsiloxane. Crystals, 2021, 11, 1132.	1.0	4
1270	Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. Nano Today, 2021, 40, 101286.	6.2	16
1271	Advances and Challenges in Tin Halide Perovskite Nanocrystals. , 2021, 3, 1541-1557.		12
1272	Stabilized nanotube and nanofiber gel materials toward multifunctional adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127347.	2.3	6
1273	Highly sensitive temperature sensing of compound of CsPbBr3 perovskite quantum dots and NaYF4:Ho3+ nanoparticles. Optik, 2021, 246, 167794.	1.4	4
1274	Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications. TrAC - Trends in Analytical Chemistry, 2021, 144, 116432.	5.8	32
1275	Highly efficient Mn-doped CsPb(Br/Cl)3 mixed-halide perovskite via a simple large-scale synthesis method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115426.	1.7	12
1276	Solar-harvesting lead halide perovskite for artificial photosynthesis. Journal of Energy Chemistry, 2021, 62, 11-26.	7.1	14
1277	Confining CsPbX3 perovskites in a hierarchically porous MOF as efficient and stable phosphors for white LED. Chemical Engineering Journal, 2021, 425, 131556.	6.6	30
1278	Tunable luminescent color from green to blue on long afterglow materials using CsPbBr3 quantum dots. Applied Surface Science, 2021, 568, 150941.	3.1	10
1279	Homogeneous and inhomogeneous broadening in single perovskite nanocrystals investigated by micro-photoluminescence. Journal of Luminescence, 2021, 240, 118453.	1.5	18
1280	Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chemical Engineering Journal, 2021, 425, 130678.	6.6	24
1281	Microfluidic fabrication of fluorescent nanomaterials: A review. Chemical Engineering Journal, 2021, 425, 131511.	6.6	33
1282	Water-driven CsPbBr3 nanocrystals and poly(methyl methacrylate)-CsPbBr3 nanocrystal films with bending-endurable photoluminescence. Chemical Engineering Journal, 2021, 425, 131456.	6.6	26

#	Article	IF	CITATIONS
1283	The chloride anion doped hybrid perovskite quantum dots exchanged by short surfactant ligand enable color-tunable blue fluorescent emitting for QLEDs application. Materials Chemistry and Physics, 2022, 275, 125281.	2.0	11
1284	Modulation of the optical bandgap and photoluminescence quantum yield in pnictogen (Sb3+/Bi3+)-doped organic–inorganic tin(IV) perovskite single crystals and nanocrystals. Journal of Colloid and Interface Science, 2022, 606, 808-816.	5.0	17
1285	Brightly luminescent (NH4)xCs1-xPbBr3 quantum dots for in vitro imaging and efficient photothermal ablation therapy. Journal of Colloid and Interface Science, 2022, 605, 500-512.	5.0	16
1286	Tunable CsPb(Br/Cl) ₃ perovskite nanocrystals and further advancement in designing light emitting fiber membranes. Materials Advances, 2021, 2, 2700-2710.	2.6	19
1287	Photoconductive Detectors Based on Perovskite Quantum Dots or Nanocrystals: From Lead-Based System to Lead-Free System. Lecture Notes in Nanoscale Science and Technology, 2021, , 119-156.	0.4	0
1288	Investigation of random lasing from all-inorganic halide perovskite quantum dots prepared under ambient conditions. Nanoscale, 2021, 13, 3246-3251.	2.8	14
1289	Ni ²⁺ and Pr ³⁺ Co-doped CsPbCl ₃ perovskite quantum dots with efficient infrared emission at 1300 nm. Nanoscale, 2021, 13, 16598-16607.	2.8	13
1290	Two-step <i>in situ</i> synthesis of CsPbX ₃ @TS-1 zeolite (X = Cl, Br, l) nanocomposites for optical thermometric, latent fingerprints and anti-counterfeiting applications. Materials Chemistry Frontiers, 2021, 5, 7843-7851.	3.2	11
1291	Stable down-conversion white light-emitting devices based on highly luminescent copper halides synthesized at room temperature. Journal of Materials Chemistry C, 0, , .	2.7	33
1292	Investigation of CsPbBr ₃ CVD dynamics at various temperatures. Physical Chemistry Chemical Physics, 2021, 23, 23214-23218.	1.3	2
1293	Highly Stable and Spectrally Tunable Gamma Phase Rb <i>_x</i> Cs _{1–} <i>_x</i> Pbl ₃ Gradientâ€Alloyed Quantum Dots in PMMA Matrix through A Sites Engineering. Advanced Functional Materials, 2021, 31, 2008211.	7.8	73
1294	One-step conversion of CsPbBr ₃ into Cs ₄ PbBr ₆ /CsPbBr ₃ @Ta ₂ O ₅ core–shell microcrystals with enhanced stability and photoluminescence. Journal of Materials Chemistry C, 2021, 9. 1228-1234.	2.7	14
1295	Energetic and electronic properties of CsPbBr ₃ surfaces: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 7145-7152.	1.3	22
1296	Synthesis and optical properties of Cs4PbBr6 perovskite nanocrystals by the water assisted solid-state reaction (WASSR) method. Inorganic Chemistry Frontiers, 2021, 8, 2036-2041.	3.0	5
1297	CsPbBr ₃ @TiO ₂ Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 507.	0.6	5
1298	The impact of cation and anion pairing in ionic salts on surface defect passivation in cesium lead bromide nanocrystals. Journal of Materials Chemistry C, 2021, 9, 991-999.	2.7	0
1299	Ultrasonically-prepared copper-doped cesium halide nanocrystals with bright and stable emission. Nanoscale, 2021, 13, 9659-9667.	2.8	7
1300	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	5.6	155

#	Article	IF	CITATIONS
1301	A universal synthesis strategy for stable CsPbX ₃ @oxide core–shell nanoparticles through bridging ligands. Nanoscale, 2021, 13, 10600-10607.	2.8	11
1302	Quantum Dot/Graphene Heterostructure Nanohybrid Photodetectors. Lecture Notes in Nanoscale Science and Technology, 2021, , 215-248.	0.4	4
1303	Research on the influence of polar solvents on CsPbBr ₃ perovskite QDs. RSC Advances, 2021, 11, 27333-27337.	1.7	27
1304	Mixed dimensional 0D/3D perovskite heterostructure for efficient green light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 14318-14326.	2.7	8
1305	High fluorescence efficiency of intrinsic ligand-free zero-dimensional Cs ₄ PbBr ₆ particles and microcrystals. Journal of Materials Chemistry C, 2021, 9, 14371-14377.	2.7	1
1306	Thioacetamide-ligand-mediated synthesis of CsPbBr ₃ –CsPbBr ₃ homostructured nanocrystals with enhanced stability. Journal of Materials Chemistry C, 2021, 9, 11349-11357.	2.7	31
1307	Luminescence of CsPbBr3 microcrystals embedded in the KBr matrix. Journal of Physical Studies, 2021, 25, .	0.2	1
1308	Allâ€Inorganic Bismuthâ€Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Advanced Functional Materials, 2018, 28, 1704446.	7.8	375
1309	Plasmonic Photonic Crystals Induced Twoâ€Order Fluorescence Enhancement of Blue Perovskite Nanocrystals and Its Application for Highâ€Performance Flexible Ultraviolet Photodetectors. Advanced Functional Materials, 2018, 28, 1804429.	7.8	106
1310	Perovskiteâ€Based Nanocrystals: Synthesis and Applications beyond Solar Cells. Small Methods, 2018, 2, 1700380.	4.6	140
1311	Cesium Lead Halide Perovskite Quantum Dots in the Limelight: Dynamics and Applications. Lecture Notes in Nanoscale Science and Technology, 2020, , 175-205.	0.4	5
1312	All-Inorganic Perovskite Quantum Dots: Ligand Modification, Surface Treatment and Other Strategies for Enhanced Stability and Durability. Springer Series in Materials Science, 2020, , 51-106.	0.4	2
1313	Floating-gate photosensitive synaptic transistors with tunable functions for neuromorphic computing. Science China Materials, 2021, 64, 1219-1229.	3.5	11
1314	The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coordination Chemistry Reviews, 2020, 418, 213333.	9.5	23
1315	Enhanced photoluminescence quantum efficiency and stability of water assisted CsPbBr3 perovskite nanocrystals. Journal of Industrial and Engineering Chemistry, 2020, 88, 84-89.	2.9	20
1316	Highly enhanced photoluminescence from perovskite-semiconductor composites formed by CsPbBr3 nanocrystals embedded in ZnSe microsphere. Journal of Luminescence, 2020, 221, 117081.	1.5	5
1317	Visible light responsive CsPbBr3/TiO2 photocatalyst with long-term stability in aqueous solution. Materials Letters, 2020, 274, 128041.	1.3	11
1318	Facile low-temperature solid-state synthesis of efficient blue-emitting Cs3Cu2I5 powder phosphors for solid-state lighting. Materials Today Chemistry, 2020, 17, 100288.	1.7	53

#	Article	IF	CITATIONS
1319	High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy, 2017, 38, 51-58.	8.2	195
1320	Development of a triple channel colorimetric paper sensor array based on quantum dots: A robust tool for process monitoring and quality control of basic liquors of Baijiu. Sensors and Actuators B: Chemical, 2020, 319, 128260.	4.0	19
1321	Electroluminescence of Perovskite Nanocrystals with Ligand Engineering. Trends in Chemistry, 2020, 2, 837-849.	4.4	22
1322	Performance Enhancement of All-Inorganic Perovskite Quantum Dots (CsPbX ₃) by UV-NIR Laser Irradiation. Journal of Physical Chemistry C, 2019, 123, 4502-4511.	1.5	29
1323	Room-Temperature In Situ Synthesis of a Highly Efficient CsPbBr ₃ /SiO ₂ Sol Entirely in Ethanol Solvent by Constructing Amine-Functionalized Silica Micelles. Langmuir, 2020, 36, 6017-6024.	1.6	17
1324	Surface Ligand Engineering for Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 8428-8435.	4.0	130
1325	CsCu ₂ 1 ₃ Nanocrystals: Growth and Structural Evolution for Tunable Light Emission. ACS Omega, 2021, 6, 544-552.	1.6	26
1326	Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale, 2017, 9, 12032-12038.	2.8	176
1327	Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7, 4872-4880.	5.2	45
1328	Shape-controlled synthesis of Ag/Cs4PbBr6 Janus nanoparticles. Nanotechnology, 2021, 32, 075601.	1.3	4
1329	High-bandwidth light inputting multilevel photoelectric memory based on thin-film transistor with a floating gate of CsPbBr3/CsPbI3 blend quantum dots. Nanotechnology, 2021, 32, 095204.	1.3	5
1330	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsPbBr</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math></pre>	ml;mn> <td>nml:msub><</td>	nml:msub><
1331	Impact of organic molecule rotation on the optoelectronic properties of hybrid halide perovskites. Physical Review Materials, 2019, 3, .	0.9	20
1332	Improved photoluminescence quantum yield of CsPbBr ₃ quantum dots glass ceramics. Journal of the American Ceramic Society, 2020, 103, 5028-5035.	1.9	36
1333	Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Advanced Photonics, 2020, 2, .	6.2	30
1334	A Cyan Emitting CsPbBr ₃ Perovskite Quantum Dot Glass with Bi Doping. ECS Journal of Solid State Science and Technology, 2020, 9, 126003.	0.9	10
1335	Synthesis of CsPbBr3 and CsPbBrXI(3â^'X) Films by Spray-Coating Technique. ECS Journal of Solid State Science and Technology, 2020, 9, 126007.	0.9	5
1336	Impact of size and shape on trap state controlled luminescence properties of trioctylphosphine-capped cadmium selenide quantum dots. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1466.	0.9	4

#	Article	IF	CITATIONS
1337	Blue-red color-tunable all-inorganic bromide–iodide mixed-halide perovskite nanocrystals using the saponification technique for white-light-emitting diodes. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1616.	0.9	11
1338	Factors influencing the working temperature of quantum dot light-emitting diodes. Optics Express, 2020, 28, 34167.	1.7	9
1339	Enhancement of the optical properties of CsPbBr ₃ perovskite nanocrystals using three different solvents. Optics Letters, 2020, 45, 4972.	1.7	4
1340	Growth and optoelectronic application of CsPbBr ₃ thin films deposited by pulsed-laser deposition. Optics Letters, 2019, 44, 1908.	1.7	22
1341	Exciton photoluminescence of CsPbBr ₃ @SiO ₂ quantum dots and its application as a phosphor material in light-emitting devices. Optical Materials Express, 2020, 10, 1007.	1.6	12
1342	Encapsulated room-temperature synthesized CsPbX ₃ perovskite quantum dots with high stability and wide color gamut for display. Optical Materials Express, 2018, 8, 3494.	1.6	25
1343	Spectral optimization of white light from hybrid metal halide perovskites. OSA Continuum, 2019, 2, 1880.	1.8	29
1344	Design of circadian white light-emitting diodes with tunable color temperature and nearly perfect color rendition. OSA Continuum, 2019, 2, 2413.	1.8	20
1345	Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr ₃ quantum dots. Photonics Research, 2020, 8, 1086.	3.4	51
1346	Room temperature synthesis of stable silica-coated CsPbBr ₃ quantum dots for amplified spontaneous emission. Photonics Research, 2020, 8, 1605.	3.4	53
1347	Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Research, 2020, 8, A56.	3.4	45
1348	Superior multiphoton absorption properties in colloidal Mn-doped CsPbCl ₃ two-dimensional nanoplatelets. Photonics Research, 2018, 6, 1021.	3.4	30
1349	Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights. Photonics Research, 2019, 7, 579.	3.4	46
1350	Ligand-modulated electron transfer rates from CsPbBr ₃ nanocrystals to titanium dioxide. Nanophotonics, 2021, 10, 1967-1975.	2.9	15
1351	Atomic layer deposition for quantum dots based devices. Opto-Electronic Advances, 2020, 3, 19004301-19004314.	6.4	29
1352	Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 157101.	0.2	8
1353	Green solvent assisted preparation of one-dimensional CsPbBr ₃ nanocrystals with a controllable morphology for cyan-emitting applications. CrystEngComm, 2021, 23, 7805-7812.	1.3	2
1354	Conjugated amidine ligands enhance the performance of perovskite nanocrystal blue light-emitting diodes prepared in air with green solvents. Journal of Materials Chemistry C, 2021, 9, 15488-15495.	2.7	5

#	Article	IF	CITATIONS
1355	Room-temperature synthesis of Mn2+-doped CsPb(Br/Cl)3 nanocrystal thin films with high Mn substitution ratio. Journal of Materials Science: Materials in Electronics, 2021, 32, 27647.	1.1	0
1356	Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No onfinement to 3D and 1D Quantum Confinement. Angewandte Chemie - International Edition, 2021, 60, 26677-26684.	7.2	49
1357	Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nature Communications, 2021, 12, 5923.	5.8	150
1358	Photon Recycling in CsPbBr ₃ All-Inorganic Perovskite Nanocrystals. ACS Photonics, 2021, 8, 3201-3208.	3.2	10
1359	Presence of Maximal Characteristic Time in Photoluminescence Blinking of MAPbI ₃ Perovskite. Advanced Energy Materials, 2021, 11, 2102449.	10.2	4
1360	Highly Stable Lead-Free Cs ₃ Bi _{2–<i>y</i>} Er <i>_y</i> Br ₉ Fluorozirconate Perovskite Glasses with MIR Luminescence. ACS Applied Electronic Materials, 2021, 3, 4824-4835.	2.0	8
1361	Leadâ€Free Allâ€Inorganic Indium Chloride Perovskite Variant Nanocrystals for Efficient Luminescence. Advanced Optical Materials, 2022, 10, 2101344.	3.6	26
1362	Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No onfinement to 3D and 1D Quantum Confinement. Angewandte Chemie, 2021, 133, 26881.	1.6	5
1363	Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. ACS Catalysis, 2021, 11, 13463-13471.	5.5	54
1364	Third-Order Nonlinear Optical Properties and Saturation of Two-Photon Absorption in Lead-Free Double Perovskite Nanocrystals under Femtosecond Excitation. ACS Photonics, 2021, 8, 3365-3374.	3.2	30
1365	Perovskite energy funnels for efficient white emission. Journal of Colloid and Interface Science, 2022, 608, 1202-1211.	5.0	10
1366	Wide gamut white LED device using green CsPbBr3 quantum dots glass and red K2SiF6: Mn4+ phosphor. Optik, 2021, 248, 168156.	1.4	3
1367	Blue and green light exciton emission of chloro-brominated perovskite quantum dots glasses. Optical Materials, 2021, 122, 111654.	1.7	6
1368	Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 737-749.	0.0	0
1369	Synthesis of Perovskite Nanocrystals. Springer Series in Materials Science, 2020, , 1-18.	0.4	2
1370	Non-volatile Bipolar Transistor Memory. RSC Smart Materials, 2020, , 393-427.	0.1	0
1371	Stable blue-emissive aluminum acetylacetonate nanocrystals with high quantum yield of over 80% and embedded in polymer matrix for remote UV-pumped white light–emitting diodes. Nanophotonics, 2020, 9, 1509-1518.	2.9	1
1372	Room Temperature In-Situ Synthesis of Inorganic Lead Halide Perovskite Nanocrystals Sol Using Ultraviolet Polymerized Acrylic Monomers as Solvent and Their Composites with High Stability. Applied Sciences (Switzerland), 2020, 10, 3325.	1.3	2

#	Article	IF	CITATIONS
1373	Exploring the physics of cesium lead halide perovskite quantum dots via Bayesian inference of the photoluminescence spectra in automated experiment. Nanophotonics, 2021, 10, 1977-1989.	2.9	15
1374	Synthesis of Mn-doped CsPbClxBr3â^'x perovskite nanocrystals using ultrasonic irradiation-promoted with decrease of reaction order. Nano Express, 2020, 1, 010056.	1.2	Ο
1375	High Efficiency and Narrow Emission Band Pure-Red Perovskite Colloidal Quantum Wells. Journal of Physical Chemistry Letters, 2021, 12, 10735-10741.	2.1	14
1376	Simultaneous Enhancement of Photoluminescence and Stability of CsPbCl ₃ Perovskite Enabled by Titanium Ion Dopant. Journal of Physical Chemistry Letters, 2021, 12, 10746-10752.	2.1	12
1377	Upconversion Perovskite Nanocrystal Heterostructures with Enhanced Luminescence and Stability by Lattice Matching. ACS Applied Materials & Interfaces, 2021, 13, 51362-51372.	4.0	6
1378	High efficiency fluorescent perovskite quantum dots encapsulated in superhydrophobic silica aerogel for wide color gamut backlight displays. Chemical Engineering Journal, 2022, 433, 133195.	6.6	18
1379	Recent Advances in Blue Perovskite Quantum Dots for Lightâ€Emitting Diodes. Small, 2022, 18, e2103527.	5.2	43
1380	Structural, spectroscopic and temperature characterizations of Dy3+-doped CsPbBr3 quantum dots in borogermanate glass-ceramics. Optical Materials, 2021, 122, 111711.	1.7	9
1381	Two‣tep Anti‣tokes Photoluminescence of CsPbX ₃ Nanocrystals. Advanced Optical Materials, 2021, 9, 2001885.	3.6	9
1382	Optical-field induced SU(2) pair potential in caesium lead halide perovskites. International Journal of Modern Physics B, 2021, 35, 2150030.	1.0	0
1383	Insight into perovskite light-emitting diodes based on PVP buffer layer. Journal of Luminescence, 2022, 241, 118515.	1.5	3
1384	A theoretical study of the controversial surface states of the 2D lead halide perovskites. Applied Surface Science, 2022, 572, 151485.	3.1	4
1385	Ionic liquid assisted pure blue emission CsPbBr3 quantum dots with improved optical properties and alkyl chain regulated stability. Chemical Engineering Journal, 2022, 430, 132790.	6.6	25
1386	Electrospun Nanofibers Embedded with Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , 337-346.	0.4	1
1387	Perovskite Quantum Dots for Photovoltaic Applications. Springer Series in Materials Science, 2020, , 243-254.	0.4	1
1388	Perovskite Quantum Dots Based Lasing-Prospects and Challenges. Springer Series in Materials Science, 2020, , 279-335.	0.4	0
1389	Ligand with strong electronegativity induced blue emitting of CsPbBr ₃ nanocrystals. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 158102.	0.2	0
1390	Solvation of NiOx for hole transport layer deposition in perovskite solar cells. Nanotechnology, 2021, 33, .	1.3	2

#	Article	IF	CITATIONS
1391	Vacancyâ€Ordered Double Perovskite Rb ₂ ZrCl _{6â^'} <i>_x</i> Br <i>_x</i> Eraile Synthesis and Insight into Efficient Intrinsic Selfâ€Trapped Emission. Advanced Optical Materials, 2022, 10, 2101661.	3.6	30
1392	Effects of Halide Composition on the Self-Recovery of Photodegraded Cesium Lead Halide Perovskite Nanocrystals: Implications for Photoluminescence Applications. ACS Applied Nano Materials, 2021, 4, 12600-12608.	2.4	10
1394	High Photoluminescence Quantum Yield Perovskite/Polymer Nanocomposites for High Contrast X-ray Imaging. ACS Applied Materials & Interfaces, 2021, 13, 54348-54353.	4.0	17
1395	Heterostructure of CsPbBr3-CdS perovskite quantum dots for enhanced stability and charge transfer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115513.	1.7	12
1396	Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordination Chemistry Reviews, 2022, 452, 214313.	9.5	37
1397	Magnetic all-inorganic perovskite nanocrystals demonstrating well-defined hybrid structure and superhydrophobic behavior towards movable and stable photoluminescence. Journal of Luminescence, 2022, 243, 118629.	1.5	0
1398	Transparent tellurite glass-ceramics for photonics applications: A comprehensive review on crystalline phases and crystallization mechanisms. Progress in Materials Science, 2022, 125, 100890.	16.0	40
1399	Roomâ€Temperature Direct Synthesis of Tetragonal β sPbI 3 Nanocrystals. Advanced Optical Materials, 0, , 2101869.	3.6	4
1400	Enhancing the Stability and Photoluminescence Quantum Yield of CsPbX ₃ (X = Cl and Br) Perovskite Nanocrystals by Treatment with Imidazolium-Based Ionic Liquids through Surface Modification. Journal of Physical Chemistry C, 2021, 125, 26652-26660.	1.5	5
1401	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
1402	Transformation of Quasiâ€2D Perovskite into 3D Perovskite Using Formamidine Acetate Additive for Efficient Blue Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2105164.	7.8	26
1403	Colloidal Metalâ€Halide Perovskite Nanoplatelets: Thickness ontrolled Synthesis, Properties, and Application in Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2107105.	11.1	124
1404	Phosphine Oxide Additives for Highâ€Brightness Inorganic Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101602.	3.6	12
1405	Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. International Nano Letters, 2022, 12, 139-151.	2.3	5
1406	Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Materials Today, 2021, 51, 222-246.	8.3	64
1407	Achieving direct electrophoretically deposited highly stable polymer induced CsPbBr3 colloidal nanocrystal films for high-performance optoelectronics. Chemical Engineering Journal, 2022, 433, 133809.	6.6	14
1409	Role of localized phonon vibration in luminescence performance of Pr doped Ba(Mg0.28Zr0.16Ta0.56)O3 transparent ceramics. Journal of Rare Earths, 2022, 40, 1728-1733.	2.5	3
1410	Surface ligand engineering renders tube-like perovskite nanocrystal composites with outstanding polar organic solvent-tolerance and strong emission. Chemical Engineering Journal, 2022, 434, 133866.	6.6	7

#	Article	IF	CITATIONS
1411	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 17150-17174.	7.3	101
1412	Additives in Halide Perovskite for Blue-Light-Emitting Diodes: Passivating Agents or Crystallization Modulators?. ACS Energy Letters, 2021, 6, 4265-4272.	8.8	24
1413	Hole transporting materials in inorganic CsPbI3â^'Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268.	8.3	20
1414	Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells. Journal of Rare Earths, 2022, 40, 1651-1667.	2.5	19
1415	Realizing Near-Unity Quantum Efficiency of Zero-Dimensional Antimony Halides through Metal Halide Structural Modulation. ACS Applied Materials & Interfaces, 2021, 13, 58908-58915.	4.0	36
1416	Water-induced ultrastrong green emission in Cs ₄ PbBr ₆ quantum dot glass. Journal of Materials Chemistry C, 2022, 10, 762-767.	2.7	9
1417	Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14, 4042-4064.	2.8	14
1418	Green-to-UV photon upconversion enabled by new perovskite nanocrystal-transmitter-emitter combination. Nanoscale, 2021, 13, 19890-19893.	2.8	16
1419	Ionic liquid-induced <i>in situ</i> deposition of perovskite quantum dot films with a photoluminescence quantum yield of over 85%. Nanoscale, 2021, 13, 20067-20077.	2.8	3
1420	Photoinduced quasi-2D to 3D phase transformation in hybrid halide perovskite nanoplatelets. Physical Chemistry Chemical Physics, 2021, 23, 27355-27364.	1.3	7
1421	Temperatureâ€Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions. Advanced Materials, 2022, , 2108357.	11.1	9
1422	Mass production of self-passivated perovskite microlaser particles by solution-phase processing for gas sensors. APL Photonics, 2022, 7, 016103.	3.0	1
1423	Facile exfoliation of MoS2 powders into nanosheets with excellent fluorescence quenching performance of perovskite. Optik, 2022, 251, 168480.	1.4	2
1424	The hole transport layer with ammonia-modified to improve luminescence efficiency of all-inorganic perovskite light-emitting diodes. Organic Electronics, 2022, 101, 106418.	1.4	1
1425	Broadband yellow light emissions of hybrid lead silver bimetallic halides. Journal of Solid State Chemistry, 2022, 307, 122814.	1.4	3
1426	In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors. Nano Energy, 2022, 93, 106815.	8.2	22
1427	Inverse opal photonic crystal stabilized CsPbX3 perovskite quantum dots and their application in white LED. Chemical Engineering Journal, 2022, 432, 134409.	6.6	20
1428	Effect of Introducing Zinc on the Photoluminescence and Stability of Cesium Lead Halide Perovskite Materials. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1429	Wavelength Selective and Cesium Halides Additive Photodetectors Based on Two-Dimensional Perovskite: (C ₈ H ₉ NH ₃) ₂ PbBr _{4*} . SSRN Electronic Journal, 0, , .	0.4	0
1430	Embedded growth of colorful CsPbX3 (XÂ=ÂCl, Br, I) nanocrystals in metal-organic frameworks at Room Temperature. Nanotechnology, 2022, 33, 175603.	1.3	4
1431	Feasibility of Emission-Enhanced CsPbCl ₃ Quantum Dots Co-Doped with Mn ²⁺ and Er ³⁺ as Luminescent Downshifting Layers in Crystalline Silicon Solar Modules. ACS Applied Nano Materials, 2022, 5, 2522-2531.	2.4	13
1432	Boosting the Optoelectronic Performance by Regulating Exciton Behaviors in a Porous Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 2189-2196.	6.6	37
1433	Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs. Engineering Materials, 2022, , 3-49.	0.3	1
1434	Boosting the Selfâ€Trapped Exciton Emission in Alloyed Cs ₂ (Ag/Na)InCl ₆ Double Perovskite via Cu ⁺ Doping. Advanced Science, 2022, 9, e2103724.	5.6	64
1435	Highly Efficient and Flexible Scintillation Screen Based on Manganese (II) Activated 2D Perovskite for Planar and Nonplanar Highâ€Resolution Xâ€Ray Imaging. Advanced Optical Materials, 2022, 10, .	3.6	46
1436	Formation of CsPbCl ₃ Cubes and Edge-Truncated Cuboids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2022, 10, 1578-1584.	3.2	8
1437	MOF-triggered formation of MAPbBr ₃ @PbBr(OH) with enhanced stability. Journal of Materials Chemistry C, 2022, 10, 616-625.	2.7	7
1438	White light emission from lead-free mixed-cation doped Cs ₂ SnCl ₆ nanocrystals. Nanoscale, 2022, 14, 1468-1479.	2.8	29
1439	High-yield synthesis of CsPbBr ₃ nanoparticles: diphenylphosphine as a reducing agent and its effect in Pb-seeding nucleation and growth. Nanotechnology, 2022, 33, 155604.	1.3	2
1440	Color tunable emission from Eu ³⁺ and Tm ³⁺ co-doped CsPbBr ₃ quantum dot glass nanocomposites. Physical Chemistry Chemical Physics, 2022, 24, 1486-1495.	1.3	15
1441	Inorganic halide perovskites for lighting and visible light communication. Photonics Research, 2022, 10, 1039.	3.4	26
1442	High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6:Mn4+ phosphor. Chinese Chemical Letters, 2022, 33, 4798-4802.	4.8	8
1443	CsPbI ₃ perovskite quantum dot solar cells: opportunities, progress and challenges. Materials Advances, 2022, 3, 1931-1952.	2.6	17
1444	Perspective on Metal Halides with Selfâ€Trapped Exciton toward White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	14
1445	Surface passivation of halide perovskite nanocrystals for stable and high purity color conversion. Applied Physics Letters, 2022, 120, .	1.5	8
1446	Photoelectric Logic and <i>In Situ</i> Memory Transistors with Stepped Floating Gates of Perovskite Quantum Dots. ACS Nano, 2022, 16, 2442-2451.	7.3	15

#	Article	IF	CITATIONS
1447	Preparation of CsPbBr ₃ perovskite nanocrystals with controllable morphology and <i>in-situ</i> photoluminescence of formation kinetics. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 096802.	0.2	1
1448	A study on structural, optical, and electrical characteristics of perovskite CsPbBr ₃ QD/2D-TiSe ₂ nanosheet based nanocomposites for optoelectronic applications. Dalton Transactions, 2022, 51, 4104-4112.	1.6	2
1449	A colorimetric sensor array for rapid discrimination of edible oil species based on a halogen ion exchange reaction between CsPbBr ₃ and iodide. Analyst, The, 2022, 147, 404-409.	1.7	3
1450	Quick preparation of water-soluble perovskite nanocomposite via cetyltrimethylammonium bromide and its application. Mikrochimica Acta, 2022, 189, 68.	2.5	4
1451	Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 2022, 375, 307-310.	6.0	190
1452	Wavelength selective and cesium halides additive photodetectors based on two-dimensional perovskite: (C8H9NH3)2PbBr4. Journal of Alloys and Compounds, 2022, 904, 163990.	2.8	3
1453	Surface ligand modified cesium lead bromide/silica sphere composites for low-threshold upconversion lasing. Photonics Research, 2022, 10, 628.	3.4	7
1454	Wavelength-Tunable and Water-Stable Cesium–Lead-Based All-Bromide Nanocrystal–Polymer Composite Films Using Ultraviolet-Curable Prepolymer as an Anti-Solvent. Polymers, 2022, 14, 381.	2.0	2
1455	Hexamethyldisilazane-assisted Mn ²⁺ doping of perovskite nanocrystals under ambient conditions. CrystEngComm, 2022, 24, 1803-1811.	1.3	1
1456	One-pot synthesis of stable and functional hydrophilic CsPbBr ₃ perovskite quantum dots for "turn-on―fluorescence detection of <i>Mycobacterium tuberculosis</i> . Dalton Transactions, 2022, 51, 3581-3589.	1.6	6
1457	Optical Properties of Inorganic Halide Perovskite Nanorods: Role of Anisotropy, Temperature, Pressure, and Nonlinearity. Journal of Physical Chemistry C, 2022, 126, 2003-2012.	1.5	9
1458	Ultrastable and highly efficient green-emitting perovskite quantum dot composites for Mini-LED displays or backlights. Nano Energy, 2022, 95, 107003.	8.2	49
1459	Electrochemical characterization of halide perovskites: Stability & doping. Materials Today Advances, 2022, 13, 100213.	2.5	5
1460	Impact of Zn-doping on the composition, stability, luminescence properties of silica coated all-inorganic cesium lead bromide nanocrystals and their biocompatibility. Materials Today Chemistry, 2022, 23, 100753.	1.7	12
1461	Compositional degradation with Br content in Cesium lead halide CsPbBrxI3-x. Journal of Solid State Chemistry, 2022, 308, 122893.	1.4	2
1462	Effect of introducing zinc on the photoluminescence and stability of cesium lead halide perovskite materials. Applied Surface Science, 2022, 584, 152527.	3.1	3
1463	12-Crown-4 ether assisted in-situ grown perovskite crystals for ambient stable light emitting diodes. Nano Energy, 2022, 95, 107000.	8.2	11
1464	Spectral properties of CsPbX3 (X=Br, I) perovskite nanocrystals in borogermanate glass-ceramics. Materials Research Bulletin, 2022, 149, 111720.	2.7	4

#	Article	IF	CITATIONS
1465	Optimal colloidal synthesis and quality judgment of low-dimensional Cs3Cu2Cl5 nanocrystals with efficient green emission. Journal of Alloys and Compounds, 2022, 903, 163924.	2.8	8
1466	Tunable deep-blue luminescence from ball-milled chlorine-rich Cs _{<i>x</i>} (NH ₄) _{1â°'<i>x</i>} PbCl ₂ Br nanocrystals by ammonium modulation. Chemical Communications, 2022, 58, 3827-3830.	2.2	2
1467	Confinement of all-inorganic perovskite quantum dots assembled in metal–organic frameworks for ultrafast scintillator application. Nanoscale, 2022, 14, 4216-4224.	2.8	7
1468	Facile strategy to synthesize cesium gold-based bromide perovskites: an integrated experimental and theoretical approach to study temperature-dependent structural and optical properties. Journal of Materials Chemistry C, 2022, 10, 4224-4235.	2.7	7
1469	One-pot synthesis of novel ligand-free tin(<scp>ii</scp>)-based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors. Nanoscale, 2022, 14, 4170-4180.	2.8	4
1470	In Situ Synthesis of Monodispersed CsPbBr 3 /P GMAâ€EDMA Microspheres with High Stability for White Lightâ€Emitting Diodes. Particle and Particle Systems Characterization, 0, , 2100274.	1.2	2
1471	K ⁺ -doping-induced highly efficient red emission in CsPb(Br,I) ₃ quantum dot glass toward Rec. 2020 displays. Optics Letters, 2022, 47, 1431.	1.7	4
1472	Efficient and Stable CF ₃ PEAI-Passivated CsPbI ₃ QDs toward Red LEDs. ACS Applied Materials & Interfaces, 2022, 14, 8235-8242.	4.0	20
1473	Thermally Activated Charge Transfer in Dual-Emission Mn ²⁺ -Alloyed Perovskite Quantum Wells for Luminescent Thermometers. Chemistry of Materials, 2022, 34, 1854-1861.	3.2	23
1474	A facile strategy to synthesize high colour purity blue luminescence aluminium-doped CsPbBr3 perovskite quantum dots. Journal of Luminescence, 2022, 245, 118788.	1.5	8
1475	Fabry–Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from <i>In Situ</i> Laser-Induced CsPbBr ₃ Quantum Dots in CsPb ₂ Br ₅ Microcavities. Nano Letters, 2022, 22, 355-365.	4.5	17
1476	Stable CsPbX ₃ (Br/Cl) Perovskite Nanocrystal Layer Passivated with Al-Doped CdSe for Blue Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 908-916.	2.4	10
1477	Highly Thin Film with Aerosol-Deposited Perovskite Quantum Dot/Metal Oxide Composite for Perfect Color Conversion and Luminance Enhancement. SSRN Electronic Journal, 0, , .	0.4	0
1478	Bi3+ and Eu3+ Co-Doped Cspbcl3 PervoskiteÂQuantum Dots with Efficient Controllable Blue Photoluminescence Via Energy Transfer. SSRN Electronic Journal, 0, , .	0.4	0
1479	Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes. Chemical Science, 2022, 13, 3719-3727.	3.7	25
1480	Polyacrylic acid- <i>b</i> -polystyrene-passivated CsPbBr ₃ perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes. Chemical Communications, 2022, 58, 4235-4238.	2.2	10
1481	Nanostructured perovskites for nonvolatile memory devices. Chemical Society Reviews, 2022, 51, 3341-3379.	18.7	71
1482	Encapsulation of perovskite quantum dots into a Ln ^{III} -incorporating polymer matrix to achieve white light emission. New Journal of Chemistry, 2022, 46, 6307-6313	1.4	2

#	Article	IF	CITATIONS
1483	Synthesis and optical properties of ultra-small Tin doped CsPbBr ₃ blue luminescence quantum dots. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 047401.	0.2	0
1484	Dual-Response Ratiometric Fluorescence Based Ligand-Functionalized Cspbbr3perovskite Quantum Dots for Sensitive Detection of Trace Water in Edible Oils. SSRN Electronic Journal, 0, , .	0.4	0
1485	Surface ligand engineering involving fluorophenethyl ammonium for stable and strong emission CsPbBr ₃ quantum dots and high-performance QLEDs. Journal of Materials Chemistry C, 2022, 10, 5849-5855.	2.7	7
1486	CsPbBr ₃ /Cs ₂ SiF ₆ :Mn ⁴⁺ /2ZnS/Al Rivet Nanostructured Perovskites with Dual-Wavelength Emission for Flexible White Electroluminescence. ACS Applied Nano Materials, 2022, 5, 3743-3755.	2.4	2
1487	Efficient Enhancement of Stability and Luminescence of Three-Dimensional CsPbBr ₃ Nanoparticles via Ligand-Triggered Transformation into Zero-Dimensional Cs ₄ PbBr ₆ Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 4172-4181.	1.5	4
1488	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	8.8	52
1489	Laser-Induced Morphological and Structural Changes of Cesium Lead Bromide Nanocrystals. Nanomaterials, 2022, 12, 703.	1.9	3
1490	Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis. Nanophotonics, 2022, 11, 1355-1366.	2.9	15
1491	Photothermal Optimization of Quantum Dot Converters for Highâ€Power Solidâ€ S tate Light Sources. Advanced Optical Materials, 2022, 10, .	3.6	8
1492	Passivation Layer of Potassium Iodide Yielding High Efficiency and Stable Deep Red Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 16404-16412.	4.0	17
1493	MAPbBr ₃ nanocrystals from aqueous solution for poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 photoluminescence. Nanotechnology, 2022, 33, 235605.) 347 Td (1.3	methacrylate 7
1494	Inorganic CsPbBr ₃ Perovskite Nanocrystals as Interfacial Ion Reservoirs to Stabilize FAPbI ₃ Perovskite for Efficient Photovoltaics. Advanced Energy Materials, 2022, 12, .	10.2	22
1495	Halogenâ€contentâ€dependent photoluminescence of Mn ²⁺ â€doped CsPbCl ₃ nanocrystals. Journal of the American Ceramic Society, 2022, 105, 4763-4774.	1.9	4
1496	Solutionâ€Processed CsPbBr ₃ Quantum Dots/Organic Semiconductor Planar Heterojunctions for Highâ€Performance Photodetectors. Advanced Science, 2022, 9, e2105856.	5.6	15
1497	Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 2022, 120, .	1.5	13
1498	Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 312, 121358.	10.8	53
1499	Macro-prepared Cs4PbBr6/CsPbBr3 perovskite screen printing inks. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	2
1500	4â€Bromoâ€Butyric Acidâ€Assisted In Situ Passivation Strategy for Superstable Allâ€Inorganic Halide Perovskite CsPbX ₃ Quantum Dots in Polar Media. Angewandte Chemie - International Edition, 2022, 61	7.2	33

#	Article	IF	CITATIONS
1501	In Situ Growth of Ultrapure Greenâ€Emitting FAPbBr ₃ â€PVDF Films via a Synergetic Dualâ€Additive Strategy for Wide Color Gamut Backlit Display. Advanced Materials Technologies, 2022, 7, .	3.0	3
1502	Luminescent Thin Films Enabled by CsPbX ₃ (X=Cl, Br, I) Precursor Solution. Chemistry - A European Journal, 2022, 28, .	1.7	2
1503	Improving the Stability of Ball-Milled Lead Halide Perovskites via Ethanol/Water-Induced Phase Transition. Nanomaterials, 2022, 12, 920.	1.9	3
1504	Erasable glass-stabilized perovskite quantum dots for NIR-laser-stimuli-responsive optical security. Cell Reports Physical Science, 2022, 3, 100794.	2.8	11
1505	Recent Advances in Colloidal Quantum Dots or Perovskite Quantum Dots as a Luminescent Downshifting Layer Embedded on Solar Cells. Nanomaterials, 2022, 12, 985.	1.9	18
1506	Low-temperature synthesis of stable blue Cesium lead bromide perovskite nanoplates with high quantum efficiency for display applications. Ceramics International, 2022, 48, 19132-19140.	2.3	1
1507	Ligandâ€Free CsPbBr ₃ Perovskite Quantum Dots in Silicaâ€Aerogel Composites with Enhanced Stability for wâ€LED and Display by Substituting Pb ²⁺ with Pr ³⁺ or Gd ³⁺ lons. Advanced Optical Materials, 2022, 10, .	3.6	11
1508	4â€Bromoâ€Butyric Acidâ€Assisted In Situ Passivation Strategy for Superstable Allâ€Inorganic Halide Perovskite CsPbX ₃ Quantum Dots in Polar Media. Angewandte Chemie, 2022, 134, .	1.6	4
1509	Water-Stable CsPbBr ₃ /Cs ₄ PbBr ₆ Nanocrystals with a Mixed Fluoropolymer Shell for Optical Temperature Sensing. ACS Applied Nano Materials, 2022, 5, 5025-5034.	2.4	8
1510	Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449.	6.2	53
1511	A new insights into multicolor emissive carbon dots using Trachelospermum jasminoides leaves for the application of WLEDs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128959.	2.3	13
1512	CsPbBr ₃ and CsPbBr ₃ /SiO ₂ Nanocrystals as a Fluorescence Sensing Platform for High-Throughput Identification of Multiple Thiophene Sulfides. Analytical Chemistry, 2022, 94, 5946-5952.	3.2	15
1513	Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. Chinese Chemical Letters, 2023, 34, 107383.	4.8	6
1514	Highly Luminescent and Ultraâ€Stable Perovskite Films with Excellent Selfâ€Healing Ability for Flexible Lighting and Wide Color Gamut Displays. Advanced Functional Materials, 2022, 32, .	7.8	17
1515	Advanced Halide Scintillators: From the Bulk to Nano. Advanced Photonics Research, 2022, 3, .	1.7	10
1516	Ligand-mediated CsPbBr _x I _{3â^'} _x /SiO ₂ quantum dots for red, stable and low-threshold amplify spontaneous emission. Nanotechnology, 2022, 33, 285201.	1.3	2
1517	Green anti-solvent processed white light emitting perovskite phosphors in one step. Physica B: Condensed Matter, 2022, 633, 413788.	1.3	3
1518	Highly luminescent lead bromine perovskite via fast and eco-friendly water-assisted mechanochemical method. Optical Materials, 2022, 127, 112289.	1.7	2

#	Article	IF	CITATIONS
1519	Three-color white electroluminescence emission using perovskite quantum dots and organic emitters. Applied Surface Science, 2022, 588, 152875.	3.1	8
1520	Improved stability of all-inorganic perovskite nanocrystals in hierarchical ZSM-5 zeolites for multimodal applications. Chemical Engineering Journal, 2022, 437, 135290.	6.6	19
1521	Bi3+ and Eu3+ co-doped CsPbCl3 perovskite quantum dots with efficient controllable blue emission via energy transfer. Journal of Luminescence, 2022, 247, 118901.	1.5	9
1522	Air- and water-stable halide perovskite nanocrystals protected with nearly-monolayer carbon nitride for CO2 photoreduction and water splitting. Applied Surface Science, 2022, 592, 153276.	3.1	31
1523	Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement. Chemical Engineering Journal, 2022, 441, 135991.	6.6	3
1524	Designable and highly stable emissive CsPbI ₃ perovskite quantum dots/polyvinylidene fluoride nanofiber composites. Optical Materials Express, 2022, 12, 109.	1.6	7
1525	Phaseâ€Control of Singleâ€Crystalline Inorganic Halide Perovskites via Molecular Coordination Engineering. Advanced Functional Materials, 2022, 32, .	7.8	14
1526	Surfaceâ€Dependent Properties and Tunable Photodetection of CsPbBr ₃ Microcrystals Grown on Functional Substrates. Advanced Optical Materials, 2022, 10, 2101807.	3.6	1
1527	Packing-Shape Effects of Optical Properties in Amplified Spontaneous Emission through Dynamics of Orbit–Orbit Polarization Interaction in Hybrid Perovskite Quantum Dots Based on Self-Assembly. Journal of Physical Chemistry Letters, 2021, 12, 11894-11901.	2.1	3
1528	Composite of CsPbBr ₃ with Boron Imidazolate Frameworks as an Efficient Visible-Light Photocatalyst for CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 1175-1182.	2.5	15
1529	Highly Emissive Blue Quantum Dots with Superior Thermal Stability via In Situ Surface Reconstruction of Mixed CsPbBr ₃ –Cs ₄ PbBr ₆ Nanocrystals. Advanced Science, 2022, 9, e2104660.	5.6	20
1530	Enhanced Light Emission through Symmetry Engineering of Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 297-305.	6.6	5
1531	Charge Transfer Improvement after Solvent-Induced Phase Change in Type-I Cs ₄ PbBr ₆ @CsPbBr ₃ Core–Shell Perovskites. Journal of Physical Chemistry C, 2021, 125, 27363-27371.	1.5	3
1532	Photoluminescence-Raman/FTIR under Variable Hydrostatic Pressure to Reveal the Origin of Luminescent Centers in Lead Halide Perovskites. , 2021, , .		Ο
1533	Ultra-stable narrowband green-emitting CsPbBr ₃ quantum dot-embedded glass ceramics for wide color gamut backlit displays. Journal of Materials Chemistry C, 2022, 10, 7263-7272.	2.7	14
1534	Progress in the preparation and application of CsPbX ₃ perovskites. Materials Advances, 2022, 3, 4053-4068.	2.6	17
1535	Synthesis of highly calibrated CsPbBr ₃ nanocrystal perovskites by soft chemistry. Chemical Communications, 2022, 58, 5960-5963.	2.2	1
1536	Advances in colloidal quantum dot-based photodetectors. Journal of Materials Chemistry C, 2022, 10, 7404-7422.	2.7	23

#	Article	IF	CITATIONS
1537	Natural Wax-Stabilized Perovskite Nanocrystals as Pen-on-Paper Inks and Doughs. ACS Applied Nano Materials, 2022, 5, 6201-6212.	2.4	5
1538	Largeâ€Scale Production of Ligandâ€Engineered Robust Lead Halide Perovskite Nanocrystals by a Dropletâ€Based Microreactor System. Small, 2022, 18, e2200740.	5.2	17
1543	Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light: Science and Applications, 2022, 11, 69.	7.7	60
1544	Realizing Tunable Spectral Emission in Perovskite Quantum Dots Light-Emitting Diodes Via Contemporary Surface Ligand/Anion Engineering. SSRN Electronic Journal, 0, , .	0.4	0
1545	Large-scale continuous preparation of highly stable α-CsPbI ₃ /m-SiO ₂ nanocomposites by a microfluidics reactor for solid state lighting application. CrystEngComm, 2022, 24, 3852-3858.	1.3	4
1546	Large Red Shift from Blue to Green in the Photoluminescence of Pure Cspbbr3 Nanoplatelets Triggered by Cooperative Effect of Ligands Combination. SSRN Electronic Journal, 0, , .	0.4	0
1547	Selectively Tunable Luminescence of Perovskite Nanocrystals Embedded in Polymer Matrix Allows Direct Laser Patterning. Advanced Optical Materials, 2022, 10, .	3.6	4
1548	Insight into Luminescence Enhancement of Alkaline-Earth Metal Ion-Doped CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 7588-7595.	1.5	7
1549	V5+-doped CsPbBr3 quantum dots tellurite glass for shortwave shielding. Journal of Luminescence, 2022, 250, 118918.	1.5	2
1550	Metal cation substitution of halide perovskite nanocrystals. Nano Research, 2022, 15, 6522-6550.	5.8	15
1550 1551	Metal cation substitution of halide perovskite nanocrystals. Nano Research, 2022, 15, 6522-6550. Airâ€Stable, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, .	5.8 7.3	15
	Air‣table, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for		
1551	Airâ€Stable, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, . Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of	7.3	11
1551 1552	 Airâ€Stable, Ecoâ€Friendly <scp>RRAMs </scp> Based on Leadâ€Free <scp>Cs ₃Bi ₂Br ₉ </scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, . Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454. A Facile Centrifuge Coating Method for High-Performance CsPbBr3 Compact and Crack-Free 	7.3 1.9	11 4
1551 1552 1553	 Airâ€Stable, Ecoâ€Friendly <scp>RRAMs </scp> Based on Leadâ€Free <scp>Cs ₃Bi ₂Br ₉ </scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, . Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454. A Facile Centrifuge Coating Method for High-Performance CsPbBr3 Compact and Crack-Free Nanocrystal Thin Film Photodetector. Crystals, 2022, 12, 587. Direct Room Temperature Synthesis of α-CsPbI < sub>3 Perovskite Nanocrystals with High Photoluminescence Quantum Yields: Implications for Lighting and Photovoltaic Applications. ACS 	7.3 1.9 1.0	11 4 2
1551 1552 1553 1554	Air table, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Bi₉</scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, . Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454. A Facile Centrifuge Coating Method for High-Performance CsPbBr3 Compact and Crack-Free Nanocrystal Thin Film Photodetector. Crystals, 2022, 12, 587. Direct Room Temperature Synthesis of α-CsPbl ₃ Perovskite Nanocrystals with High Photoluminescence Quantum Yields: Implications for Lighting and Photovoltaic Applications. ACS Applied Nano Materials, 2022, 5, 12366-12373. Ethylcelluloseâ€Encapsulated Inorganic Lead Halide Perovskite Nanoparticles for Printing and	7.31.91.02.4	11 4 2 4
1551 1552 1553 1554 1555	Air table, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃8i₂8i₉/sub>8i₂8i₉/sub>8i₉/sub>8i₉/sub>8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i₉8i_{99 Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454. A Facile Centrifuge Coating Method for High-Performance CsPbBr3 Compact and Crack-Free Nanocrystal Thin Film Photodetector. Crystals, 2022, 12, 587. Direct Room Temperature Synthesis of α-CsPbI₃ Perovskite Nanocrystals with High Photoluminescence Quantum Yields: Implications for Lighting and Photovoltaic Applications. ACS Applied Nano Materials, 2022, 5, 12366-12373. Ethylcelluloseâ€Encapsulated Inorganic Lead Halide Perovskite Nanoparticles for Printing and Optoelectronic Applications. Particle and Particle Systems Characterization, 2022, 39, . Two-Photon Absorption and Photoluminescence of Individual CsPbBr₃ Nanocrystal}</scp>	 7.3 1.9 1.0 2.4 1.2 	11 4 2 4 4

#	Article	IF	CITATIONS
1559	Cs4PbBr6@PDMS film prepared by a facile two-step method for wide color gamut backlit display. Applied Surface Science, 2022, 596, 153568.	3.1	2
1560	Synthesis of highly luminescent CsPbBr3@Cs4PbBr6 nanocrystals via ligand-assisted reaction. Optical Materials, 2022, 128, 112444.	1.7	9
1561	Ultrastable highly-emissive amphiphilic perovskite nanocrystal composites via the synergy of polymer-grafted silica nanoreactor and surface ligand engineering for white light-emitting diode. Nano Energy, 2022, 98, 107321.	8.2	7
1562	Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3. Acta Materialia, 2022, 234, 118010.	3.8	6
1563	Dual-response ratiometric fluorescence based ligand-functionalized CsPbBr3 perovskite quantum dots for sensitive detection of trace water in edible oils. Sensors and Actuators B: Chemical, 2022, 366, 132010.	4.0	16
1564	Ternary phase diagram of all-inorganic perovskite CsPbClaBrbI3â^'aâ^'b nanocrystals. Nano Research, 2022, 15, 7590-7596.	5.8	7
1565	Surface Stabilization of Colloidal Perovskite Nanocrystals via Multi-amine Chelating Ligands. ACS Energy Letters, 2022, 7, 1963-1970.	8.8	34
1566	Interfacial electronic properties of metal/CsSnBr3 heterojunctions. Nanotechnology, 2022, , .	1.3	1
1567	Formation Mechanism of CsPbBr3/Cs4PbBr6 Microscale Composites Assisted by Imidazolium Cations and Their Device Application. Dalton Transactions, 0, , .	1.6	2
1568	Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
1570	Single‣ayer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	3.6	2
1571	Synthesizing Bright CsPbBr ₃ Perovskite Nanocrystals with High Purification Yields and Their Composites with In Situ-Polymerized Styrene for Light-Emitting Diode Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 7385-7393.	3.2	18
1572	One-step precipitation of stable perovskite CsPbBr ₃ quantum dots in silicate glass by picosecond laser pulses. Optical Materials Express, 2022, 12, 2260.	1.6	6
1573	Ultrafast Charge Carrier Dynamics of CsPbBr ₃ /Cs ₄ PbBr ₆ Nanocomposites. Journal of Physical Chemistry C, 2022, 126, 8777-8786.	1.5	3
1574	Developing Yâ€Branched Polymer Acceptor with 3D Architecture to Reconcile Between Crystallinity and Miscibility Yielding >15%ÁEfficient Allâ€Polymer Solar Cells. Advanced Science, 2022, 9, .	5.6	15
1575	Encapsulation of AlEgens within Metal–Organic Framework toward Highâ€Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	9
1576	Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation. Journal of the American Ceramic Society, 2022, 105, 6105-6115.	1.9	5
1577	Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Nearâ€Infrared Light Photoactivity. Advanced Science, 2022, 9, .	5.6	22

ARTICLE IF CITATIONS Facile synthesis of Mn < sup > 2 + </sup > doped ultrathin (<i>n</i> = 2) NPLs and their application in1578 9 1.6 anti-counterfeiting. Dalton Transactions, 2022, 51, 11021-11028. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. Nanoscale Horizons, 2022, 7, 941-1015. 1579 4.1 A polymer/small-molecule binary-blend hole transport layer for enhancing charge balance in blue 1580 5.215 perovskite light emitting diodes. Journal of Materials Chemistry A, 2022, 10, 13928-13935. Polymerâ€Assisted Crystal Growth Regulation and Defect Passivation for Efficient Perovskite 1581 Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, . Enhanced Flexibility and Stability of Emissive Layer Enable Highâ€Performance Flexible Lightâ€Emitting 1582 7.8 19 Diodes by Crossâ€Linking of Biomass Material. Ádvanced Functional Materials, 2022, 32, . Cesium lead iodide electrospun fibrous membranes for white light-emitting diodes. Nanotechnology, 1584 1.3 Detection of Lead(II) in Living Cells by Inducing the Transformation of a Supramolecular System into 1586 3.2 11 Quantum Dots. ACS Sustainable Chemistry and Engineering, 2022, 10, 7907-7915. Fast Aâ€Site Cation Crossâ€Exchange at Room Temperature: Singleâ€to Double―and Tripleâ€Cation Halide 7.2 29 Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, . Core-shell structuredCsPbBr3/Sn-TiO2 nanocrystals for visible-light-driven photocatalyst in aqueous 1588 3.1 7 solution. Applied Surface Science, 2022, 599, 153937. Aromatic Amino Acid-Mediated Perovskite Nanocrystals: Fluorescence Tuning and Morphological 1589 1.9 Evolution. Inorganic Chemistry, 2022, 61, 10079-10088. Fast Aâ€Site Cation Crossâ€Exchange at Room Temperature: Singleâ€to Double―and Tripleâ€Cation Halide 1590 1.6 5 Perovskite Nanocrystals. Angewandte Chemie, 2022, 134, . Stable and efficient luminescence of Cs₄PbBr_{6a[^]x}Ix PQDs glass: a potential material for wide color gamut display. Optics Letters, 2022, 47, 3335. Highly efficient A-site cation exchange in perovskite quantum dot for solar cells. Journal of Chemical 1592 1.2 6 Physics, 2022, 157, . Excellent long-wavelength pass filters of CsPbBr3 and CsPb(Cl/Br)3 quantum dots glasses by Cu2+ 1593 quenching strategy. Journal of the Optical Society of America B: Optical Physics, 0, , . Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and 1594 1.9 13 Perspectives. Nanomaterials, 2022, 12, 2102. CsPb(Br/Cl)3 Perovskite Nanocrystals with Bright Blue Emission Synergistically Modified by Calcium 1595 1.9 Halide and Ammonium Ion. Nanomaterials, 2022, 12, 2026. A nano-liter droplet-based microfluidic reactor serves as continuous large-scale production of 1596 3.512 inorganic perovskite nanocrystals. Science China Materials, 2022, 65, 2746-2754. Efficient purification method for CsPbX3 perovskite quantum dots. Journal of Luminescence, 2022, 250, 1.5 119060.

ARTICLE IF CITATIONS Realizing full-color perovskite quantum dots light-emitting diodes via contemporary surface 1598 1.7 7 ligand/anion engineering. Materials Today Chemistry, 2022, 26, 101012. Recent Progress in Mixed Aâ€Site Cation Halide Perovskite Thinâ€Films and Nanocrystals for Solar Cells 1599 3.6 and Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, . Highly efficient blue emitting one dimensional lead-free nanocrystals. Journal of Materials Chemistry 1600 2.7 3 C, 2022, 10, 11323-11328. Kinetic analysis of the growth behavior of perovskite CsPbBr₃ nanocrystals in a 1601 3.1 microfluidic system. Lab on A Chip, 2022, 22, 2832-2843. Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. 1602 2.7 29 Journal of Materials Chemistry C, 2022, 10, 13590-13610. Simultaneous enhancement of near infrared luminescence and stability of Cs₂AgInCl₆:Cr³⁺ double perovskite single crystals enabled by a 3.0 Yb³⁺ dopant. Inorganic Chemistry Frontiers, 2022, 9, 4695-4704. Perovskite Quantum Dots for Emerging Displays: Recent Progress and Perspectives. Nanomaterials, 1604 1.9 30 2022, 12, 2243. Elucidating the Role of Antisolvents on the Surface Chemistry and Optoelectronic Properties of CsPbBr_{<i>x</i>}I_{3-x} Perovskite Nanocrystals. Journal of the American Chemical 6.6 Society, 2022, 144, 12102-12115. Improvement of Photophysical Properties of CsPbBr₃ and 1606 Mn²⁺:CsPb(Br,Cl)₃ Perovskite Nanocrystals by Sr²⁺ Doping for 1.5 10 White Light-Emitting Diodes. Journal of Physical Chemistry C, 2022, 126, 11277-11284. Stable and Bright Electroluminescent Devices utilizing Emissive OD Perovskite Nanocrystals 11.1 Incorporated in a 3D CsPbBr₃ Matrix. Advanced Materials, 2022, 34, . In Situ Green Preparation of Highly Stable CsPbBr₃â€"Polyimide Films for Flexible Liquid 1608 4 3.6 Crystal Displays. Advanced Optical Materials, 2022, 10, . Tunable Luminescence of Sb³⁺ Doped 0D Cs₄PbCl₆ Nanocrystals 3.6 from Three Distinct Emission Centers. Advanced Optical Materials, 2022, 10, . Large red shift from blue to green in the photoluminescence of pure CsPbBr3 nanoplatelets triggered by the cooperative effect of ligands combination. Journal of Alloys and Compounds, 2022, 923, 166322. 1610 2.8 2 Novel green-emitting copper-doped Cs<sub>2</sub>ZnCl<sub>4</sub> synthesized via low-temperature solid-state reaction using a small amount of water. Journal of the Ceramic Society of Japan, 2022, 130, 458-463. Optical properties of CsFAMA-based perovskite film and its application in the inverted solar cells with 1612 1.6 5 poly(methyl methacrylate) passivation layer. Optical Materials Express, 2022, 12, 3262. Narrowing the Phase Distribution of Quasiâ€2D Perovskites for Stable Deepâ€Blue Electroluminescence. Advanced Science, 2022, 9, . Research Progress on Photocatalytic Reduction of CO ₂ Based on CsPbBr ₃ 1614 1.52 Perovskite Materials. ChemNanoMat, 0, , . A water-soluble luminescent cesium-lead perovskite nanocrystal probe for sensitive detection of penicillamine. Dyes and Pigments, 2022, 205, 110537.

#	Article	IF	Citations
1616	An environment-friendly backlight display material: Dy3+-doped CsPbBr3 perovskite quantum dot glass with super high stability and ultra-wide color gamut. Materials Today Chemistry, 2022, 26, 101020.	1.7	3
1617	Organic Sulfoniumâ€&tabilized Highâ€Efficiency Cesium or Methylammonium Lead Bromide Perovskite Nanocrystals. Angewandte Chemie, 2022, 134, .	1.6	1
1618	Organic Sulfoniumâ€6tabilized Highâ€Efficiency Cesium or Methylammonium Lead Bromide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
1619	Grading patterning perovskite nanocrystal-polymer composite films for robust multilevel information encryption and decryption. Chemical Engineering Journal, 2023, 451, 138240.	6.6	6
1620	Elimination of unexpected destruction on CsPbBrxI3-x nanocrystals arising from polymer matrix. Journal of Luminescence, 2022, 251, 119147.	1.5	2
1621	Systematic Microwave-Assisted Postsynthesis of Mn-Doped Cesium Lead Halide Perovskites with Improved Color-Tunable Luminescence and Stability. Nanomaterials, 2022, 12, 2535.	1.9	3
1622	Ligand-mediated evolution from CsPbBr3 to Cs4PbBr6/CsPbBr3 perovskite composites with intense green emission. Optik, 2022, 267, 169705.	1.4	2
1623	Chemically Engineered Avenues: Opportunities for Attaining Desired Carrier Cooling in Perovskites. Chemical Record, 2022, 22, .	2.9	2
1624	Rational Amphiphilic Ligand Engineering Enables Enhanced Stability and Efficiency of CsPbBr ₃ Nanocrystals Based Light Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	7
1625	Low Temperature Photoluminescence Properties of α sPbl ₃ Nanocrystals with High Quantum Yield. Crystal Research and Technology, 0, , 2100243.	0.6	0
1626	Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for Highâ€Performance Micro‣ED Displays. Advanced Materials, 2023, 35, .	11.1	27
1627	Stabilization and Fluorescence Enhancement of CsPbX ₃ (X = Cl, Br, I) Perovskite Nanocrystals with Tungstosilicic Acid. Journal of Physical Chemistry C, 2022, 126, 13032-13042.	1.5	2
1628	Large third-order optical nonlinearities of two-dimensional CsPbBr3 nanoplatelets. Applied Physics Letters, 2022, 121, .	1.5	3
1629	Highly Photostable Mixedâ€Halide Blue CsPbBr _{1.5} Cl _{1.5} Perovskite Quantum Dots via Surface Treatment. Crystal Research and Technology, 2022, 57, .	0.6	0
1630	Lowâ€Powerâ€Consumption, Reversible 3D Optical Storage Based on Selectively Laserâ€Induced Photoluminescence Degradation in CsPbBr ₃ Quantum Dots Doped Glass. Advanced Materials Technologies, 2022, 7, .	3.0	3
1631	Spectrally Stable Blue Light-Emitting Diodes Based on All-Inorganic Halide Perovskite Films. Nanomaterials, 2022, 12, 2906.	1.9	5
1632	Performance Enhancement of Crystal Silicon Solar Cell by a CsPbBr ₃ –Cs ₄ PbBr ₆ Perovskite Quantum Dot @ZnO/Ethylene Vinyl Acetate Copolymer Downshifting Composite Film. Solar Rrl, 2022, 6, .	3.1	12
1633	Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 2022, 16, 637-643.	15.6	125

#	Article	IF	CITATIONS
1634	Highly Stable Leadâ€Free Perovskite Single Crystals with NIR Emission Beyond 1100Ânm. Advanced Optical Materials, 2022, 10, .	3.6	7
1635	Polarization improvement of perovskite nanowire composite films by mechanical stretching method. Nanotechnology, 2022, 33, 485602.	1.3	0
1636	One-Step Melt Closed Mesoporous SiO ₂ for Large-Scale Synthesis of Confined CsPbX ₃ (X = Cl, Br, and I) Quantum Dots and LED Applications. ACS Applied Nano Materials, 2022, 5, 11549-11558.	2.4	6
1637	A facile and general approach to enhance the luminescence efficiency and stability of CsPbBr3 perovskite quantum dots. Ceramics International, 2022, , .	2.3	2
1639	Didodecylamine for the synthesis of highly ultrapure green-emitting hybrid perovskite FAPbBr3 nanocrystals. Optical Materials, 2022, 132, 112881.	1.7	0
1640	Pressure-driven ferroelectric phase transition for the Pnma-CsPbBr3: Mechanical and dynamical stability study. Journal of Solid State Chemistry, 2022, 314, 123402.	1.4	1
1641	CsPbBr3 nanocrystals encapsulated in silica molecular sieve as a stable green light emitting material for backlight display. Journal of Luminescence, 2022, 251, 119238.	1.5	2
1642	Green and simple synthesis of NH2-functionalized CsPbBr3 perovskite nanocrystals for detection of iodide ion. Microchemical Journal, 2022, 182, 107892.	2.3	9
1643	Excitonic optical properties and lasing mode shifts in square CsPbBr3 nanoplate cavities. Journal of Luminescence, 2022, 251, 119182.	1.5	7
1644	Scalable synthesis of efficiently luminescent and color-tunable CsPbX3 (X=Cl, Br, I) nanocrystals by regulating the reaction parameters. Journal of Luminescence, 2022, 251, 119191.	1.5	2
1645	Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review. Materials Research Bulletin, 2022, 156, 111987.	2.7	13
1646	Flexible cesium lead halide CsPbX3@SiO2 (XÂ=ÂCl, Br, I and their mixtures) perovskite nanocrystal films. Journal of Alloys and Compounds, 2022, 925, 166551.	2.8	8
1647	Incorporation of Cesium ions in FAPbBr3 quantum dots: Spectroscopic characterization for light-emitting application. Journal of the Taiwan Institute of Chemical Engineers, 2022, 139, 104469.	2.7	1
1648	Facile room-temperature colloidal synthesis of CsPbBr3 perovskite nanocrystals by the Emulsion-based ligand-assisted reprecipitation approach: Tuning the color-emission by the demulsification process. Journal of Alloys and Compounds, 2022, 928, 167249.	2.8	3
1649	Tri-chromatic luminescence of CsPb(Cl/Br)3 quantum dots-Tb3+-Mn2+ co-doped single component glasses for white LED application. Journal of Luminescence, 2022, 252, 119342.	1.5	1
1650	Ultrasound-induced synthesis of all-inorganic lead perovskite quantum dots: fast, simple, and highly reproducible. Materials Today Chemistry, 2022, 26, 101163.	1.7	1
1651	Ultrasensitive detection of mercury(<scp>ii</scp>) in aqueous solutions <i>via</i> the spontaneous precipitation of CsPbBr ₃ crystallites. Dalton Transactions, 2022, 51, 12996-13002.	1.6	1
1652	Biexciton dynamics in halide perovskite nanocrystals. Physical Chemistry Chemical Physics, 2022, 24, 22405-22425.	1.3	12

#	Article	IF	CITATIONS
1653	Crystallization Characteristics of Stress-Induced Cspbcl3-Xbrx (X ≤3) Quantum Dots Phosphate Glasses. SSRN Electronic Journal, 0, , .	0.4	0
1654	Environment-friendly Mn and Cu co-doped CsBr nanocrystals with doping-controlled dual-emission and chrominance. New Journal of Chemistry, 2022, 46, 18482-18489.	1.4	2
1655	Surface ligand engineering of perovskite nanocrystals with a conjugated sulfonate ligand for light-emitting applications. Materials Advances, 2022, 3, 7824-7832.	2.6	5
1656	Macromatrices for nanoscale particles. Journal of Materials Chemistry C, 2022, 10, 11105-11118.	2.7	0
1657	Stabilizing red-emitting all-inorganic perovskite nanocrystals by a ligand-mediated room-temperature procedure. CrystEngComm, 2022, 24, 6777-6785.	1.3	0
1658	Acid-mediated phase transition synthesis of stable nanocrystals for high-power LED backlights. Nanoscale, 2022, 14, 13628-13638.	2.8	4
1659	Surface Anchoringâ€Induced Robust Luminescence Thermal Quenching Suppression in Shellâ€Free Perovskite Nanocrystals. Advanced Optical Materials, 2022, 10, .	3.6	6
1660	Giant blue-violet photoluminescence enhancement of Mn:CsPbCl3 nanocrystals by CdCl2 post-synthetic treatment. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	1
1661	Fabrication of Colloidal Cesium Metal Halide (CsMX: M = Fe, Co, and Ni) Nanoparticles and Assessment of Their Thermodynamic Stability by DFT Calculations. Inorganic Chemistry, 2022, 61, 14361-14367.	1.9	0
1662	CsPbX ₃ Perovskite Nanocrystals with Varying Morphologies for Light-Emitting Devices: A Noninjection Synthesis Approach. ACS Applied Nano Materials, 2022, 5, 12395-12400.	2.4	2
1663	Metal halide perovskites-based white light-emitting diodes. JPhys Photonics, 2022, 4, 042001.	2.2	4
1664	Highly efficient green emission Cs ₄ PbBr ₆ quantum dots with stable water endurance. Optics Letters, 2022, 47, 5020.	1.7	4
1665	Degradation mechanisms of perovskite nanocrystals in color-converted InGaN micro-light-emitting diodes. Optics Express, 2022, 30, 36921.	1.7	0
1666	A Ga Doped NiTiO ₃ Photocatalyst for Overall Water Splitting under Visible Light Illumination. Advanced Functional Materials, 2022, 32, .	7.8	16
1667	Thermal, Physical, and Optical Properties of the Solution and Melt Synthesized Single Crystal CsPbBr3 Halide Perovskite. Chemosensors, 2022, 10, 369.	1.8	3
1668	Perovskite nanocrystals for light-emitting diodes. Journal of Semiconductors, 2022, 43, 090201.	2.0	3
1669	Scintillation properties of ((CH ₃) ₄ N) ₃ BiCl ₆ as a novel lead-free perovskite halide crystal. Materials Research Express, 2022, 9, 096202.	0.8	3
1670	Investigation on the stability improvement of hybrid halide all-inorganic perovskite quantum dots. Nanotechnology, 0, , .	1.3	0

#	Article	IF	CITATIONS
1671	Vacuumâ€Vaporâ€Deposited 0D/3D Allâ€Inorganic Perovskite Composite Films toward Lowâ€Threshold Amplified Spontaneous Emission and Lasing. Small, 2022, 18, .	5.2	9
1672	Revealing the Low-Temperature Interplay of Electronic, Ionic, and Optical Effects in Perovskite Electroluminescent Devices. , 2023, 1, 193-200.		0
1673	Filling Chlorine Vacancy with Bromine: A Two-Step Hot-Injection Approach Achieving Defect-Free Hybrid Halogen Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2022, 14, 46857-46865.	4.0	4
1674	Surface Boronizing Can Weaken the Excitonic Effects of BiOBr Nanosheets for Efficient O ₂ Activation and Selective NO Oxidation under Visible Light Irradiation. Environmental Science & Technology, 2022, 56, 14478-14486.	4.6	61
1675	Mn-Doped Multiple Quantum Well Perovskites for Efficient Large-Area Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2022, 14, 44572-44580.	4.0	16
1676	Highly Stable Amine-Free CsPbBr ₃ Perovskite Nanocrystals for Perovskite-Based Display Applications. ACS Applied Nano Materials, 2022, 5, 13561-13572.	2.4	15
1677	Stable borosilicate glass doped with CsPbBr3 quantum dots for efficient photodetectors. Ceramics International, 2023, 49, 1283-1290.	2.3	4
1678	Enhancement and recovery of photoluminescence and stability by multifunctional etching ligands treatment for perovskite nanocrystals. Journal of Energy Chemistry, 2023, 76, 495-502.	7.1	5
1679	Amine-Free Synthetic Route: An Emerging Approach to Making High-Quality Perovskite Nanocrystals for Futuristic Applications. Journal of Physical Chemistry Letters, 2022, 13, 9480-9493.	2.1	9
1680	In-situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room-temperature heptanal sensors. Materials Today Chemistry, 2022, 26, 101155.	1.7	7
1681	Solution preparation of CsPbBr3/Cs4PbBr6 polycrystalline composites. Physica B: Condensed Matter, 2022, 647, 414378.	1.3	5
1682	FIRST-PRINCIPLES CALCULATIONS OF THE STRUCTURAL, ELECTRONIC AND ELASTIC PROPERTIES OF SrGeO3 AND SrZrO3 CUBIC PEROVSKITES , 2021, 6, 7-18.		0
1683	Steady and transient optical properties of CsPbBr ₃ /Pb ₃ (PO ₄) ₂ perovskite quantum dots for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 16679-16686.	2.7	4
1684	<i>In situ</i> synthesis of high-quantum-efficiency and stable bromide-based blue-emitting perovskite nanoplatelets. Nanoscale Advances, 2022, 4, 4766-4781.	2.2	2
1685	Enhanced photothermal stability of <i>in situ</i> grown FAPbBr ₃ nanocrystals in polyvinylidene fluoride by incorporation of Cd ²⁺ ions. Journal of Materials Chemistry C, 2022, 10, 17512-17520.	2.7	1
1686	Green synthesis of highly stable CsPbBr ₃ perovskite nanocrystals using natural deep eutectic solvents as solvents and surface ligands. Nanoscale, 0, , .	2.8	5
1687	Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Advances, 2023, 5, 385-392.	2.2	3
1688	Programmable precise kinetic control over crystal phase, size, and equilibrium in spontaneous metathesis reaction for Cs–Pb–Br nanostructure patterns at room temperature. Nanoscale, 0, , .	2.8	2

#	Article	IF	CITATIONS
1689	Enhance luminescence or change morphology: effect of the doping method on Cu ²⁺ -doped CsPbBr ₃ perovskite nanocrystals. CrystEngComm, 2022, 24, 7962-7970.	1.3	2
1690	Realizing Efficient Emission in Three-Dimensional CsCdCl ₃ Single Crystals by Introducing Separated Emitting Centers. Inorganic Chemistry, 2022, 61, 17902-17910.	1.9	4
1691	Stable Core–Shell Structure Nanocrystals of Cs ₄ PbBr ₆ -Zn(moi) ₂ Achieved by an In Situ Surface Reconstruction Strategy for Optical Anticounterfeiting. Inorganic Chemistry, 2022, 61, 17590-17598.	1.9	2
1692	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
1693	Waterâ€Triggered Chemical Transformation of Perovskite Nanocrystals. Chemistry - A European Journal, 2023, 29, .	1.7	3
1694	A Demulsification–Crystallization Model for Highâ€Quality Perovskite Nanocrystals. Advanced Materials, 2023, 35, .	11.1	6
1695	CsPbBr3 quantum dots/PDVT-10 conjugated polymer hybrid film-based photonic synaptic transistors toward high-efficiency neuromorphic computing. Science China Materials, 2022, 65, 3077-3086.	3.5	12
1696	High-resolution flexible X-ray luminescence imaging enabled by eco-friendly CuI scintillators. Frontiers in Chemistry, 0, 10, .	1.8	0
1697	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	3
1698	Evolution and Mechanism of Cesium Lead Bromide Nanostructures in Oleylamineâ€Rich System by Hotâ€Injection Method. Advanced Materials Interfaces, 0, , 2201916.	1.9	2
1699	In Situ Bonding Regulation of Surface Ligands for Efficient and Stable FAPbI ₃ Quantum Dot Solar Cells. Advanced Science, 2022, 9, .	5.6	15
1700	Facet Engineering for Amplified Spontaneous Emission in Metal Halide Perovskite Nanocrystals. Nano Letters, 2022, 22, 8908-8916.	4.5	13
1701	Scalable synthesis of ultrastable lead halide perovskite-zeolite composites via a chemical vapor method in air. NPG Asia Materials, 2022, 14, .	3.8	4
1702	Room-temperature lasing from cesium lead halide perovskite heterostructures induced by phase segregation. Journal of Luminescence, 2022, 252, 119442.	1.5	1
1703	Stabilizing dynamic surface of highly luminescent perovskite quantum dots for light-emitting diodes. Chemical Engineering Journal, 2023, 453, 139909.	6.6	15
1704	Highly luminescent dual-phase CsPbBr ₃ /Cs ₄ PbBr ₆ microcrystals for a wide color gamut for backlight displays. Nanoscale, 2022, 14, 17789-17801.	2.8	8
1705	Transition metal(<scp>ii</scp>) ion doping of CsPb ₂ Br ₅ /CsPbBr ₃ perovskite nanocrystals enables high luminescence efficiency and stability. Journal of Materials Chemistry C, 2022, 10, 18336-18342.	2.7	5
1706	Strategies for the preparation of high-performance inorganic mixed-halide perovskite solar cells. RSC Advances, 2022, 12, 32925-32948.	1.7	11

#	Article	IF	CITATIONS
1707	Surface Versus Bulk State Transitions in Inkjet-Printed All-Inorganic Perovskite Quantum Dot Films. Nanomaterials, 2022, 12, 3956.	1.9	1
1708	Synergistic Effect of Cation Composition Engineering of Hybrid Cs _{1â^'<i>x</i>} FA _{<i>x</i>} PbBr ₃ Nanocrystals for Selfâ€Healing Electronics Application. Advanced Materials, 2023, 35, .	11.1	19
1709	Facile low-energy and high-yield synthesis of stable α-CsPbI3 perovskite quantum dots: Decomposition mechanisms and solar cell applications. Chemical Engineering Journal, 2023, 454, 140331.	6.6	6
1710	Improving stability and photoluminescence of CsPbBr3 quantum dots/CMC polymer composite for optoelectronics application. Optical Materials, 2022, 134, 113200.	1.7	7
1711	Synthesis of Cesium lead bromide nanoparticles by ultrasonic bath: A polar-solvent-free approach at room temperature. Dalton Transactions, 0, , .	1.6	0
1712	Self-Assembled δ-CsPbl ₃ Nanowires for Stable White Light Emission. ACS Applied Nano Materials, 2022, 5, 18879-18884.	2.4	9
1713	Design and development of an unprecedented phosphorescent bidentate iridium (III) complex exhibiting green electroluminescence. Materials Today Communications, 2023, 34, 104973.	0.9	1
1714	Photo-processing of perovskites: current research status and challenges. , 2022, 1, 220014-220014.		8
1715	Titanium oxide mediated rapid charge separation in halide perovskite for efficient photocatalytic CO2 reduction. Chemical Physics Letters, 2023, 811, 140255.	1.2	1
1716	Effective defect passivation with a designer ionic molecule for high-efficiency vapour-deposited inorganic phase-pure CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2022, 11, 408-418.	5.2	10
1717	Highly efficient silica coated perovskite nanocrystals with the assistance of ionic liquids for warm white LEDs. Nanoscale, 2023, 15, 631-643.	2.8	6
1718	Metal halide perovskite nanocrystal with fluorescence enhancement in wet and acidic environment. Optical Materials, 2023, 135, 113356.	1.7	1
1719	Monoclinic-rich CsPbBr3/α-Fe2O3 S-scheme heterojunction for highly efficient thermal-assisted CO2 photoreduction. Journal of Environmental Chemical Engineering, 2023, 11, 109103.	3.3	5
1720	High-quality luminescent CsPbBr3 perovskite nanocrystals prepared by a facile two-phase method. Chemical Physics Letters, 2023, 812, 140262.	1.2	0
1721	Influence of periodic flow field on synthesis of perovskite nanocrystals: Synthetic pathway and productivity. Chemical Engineering Journal, 2023, 454, 140519.	6.6	2
1722	Solvent stimuli-responsive off-on fluorescence induced by synergistic effect of doping and phase transformation for Te4+ doped indium halide perovskite: Giving printable and colorless ink for information encryption and decryption. Journal of Colloid and Interface Science, 2023, 633, 808-816.	5.0	5
1723	Stable and highly luminescent CsPbX3 (X= Br, Br/Cl) perovskite quantum dot embedded into Zinc(II) imidazole-4,5-dicarboxylate metal organic framework as a luminescent probe for metal ion detection. Materials Chemistry and Physics, 2023, 295, 127093.	2.0	5
1724	High-temperature photoluminescence OF CsPbBr3 perovskite nanocrystals in the fluorophosphate glasses. Journal of Luminescence, 2023, 255, 119541.	1.5	3

#	Article	IF	CITATIONS
1725	Glucose and pH responsive fluorescence detection system based on simple synthesis of silicon-coated perovskite quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 289, 122212.	2.0	4
1726	Self-assembled CsPbBr ₃ quantum dots with wavelength-tunable photoluminescence for efficient active jamming. Nanoscale, 2022, 14, 17900-17907.	2.8	1
1727	Sub-1 nm: A Critical Feature Size in Materials Science. Accounts of Materials Research, 2022, 3, 1285-1298.	5.9	8
1728	Highly Electrochemiluminescent Cs ₄ PbBr ₆ @CsPbBr ₃ Perovskite Nanoacanthospheres and Their Application for Sensing Bisphenol A. Analytical Chemistry, 2022, 94, 17142-17150.	3.2	12
1729	Hot-Injection Synthesis Protocol for Green-Emitting Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2022, 16, 19618-19625.	7.3	27
1730	Fabrication of High-Performance CsPbBr ₃ Perovskite Quantum Dots/Polymer Composites via Photopolymerization: Implications for Luminescent Displays and Lighting. ACS Applied Nano Materials, 2023, 6, 646-655.	2.4	3
1731	Synergistic Effects of Surface Ligand Engineering and Double Matrices Protecting Enable Ultrastable and Highly Emissive Blue/Cyan Perovskite Nanocrystal Films for Multifunctional Applications. Laser and Photonics Reviews, 0, , 2200651.	4.4	1
1732	Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals. Chinese Journal of Chemical Engineering, 2023, 59, 32-41.	1.7	3
1733	Ultra‣table and Highly Efficient White Light Emitting Diodes through CsPbBr ₃ Perovskite Nanocrystalsâ^'Silica Composite Phosphor Functionalized with Surface Phenyl Molecules. Small, 2023, 19, .	5.2	6
1734	Metal halide perovskite nanostructures and quantum dots for photocatalytic CO2 reduction: prospects and challenges. Materials Today Energy, 2023, 32, 101230.	2.5	4
1735	Blue Light Hazard Optimization for White Lightâ€Emitting Diode of Mn ²⁺ â€Activated 0D Cs ₃ Cu ₂ Br ₅ Perovskite Materials. Advanced Materials Interfaces, 2023, 10, .	1.9	6
1736	Leadâ€Free Cesium Manganese Halide Nanocrystals Embedded Glasses for Xâ€Ray Imaging. Advanced Science, 2023, 10, .	5.6	20
1737	Recent Advances on Nanocrystals Embedding for High Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	6
1738	Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO2 photocatalytic reduction conversion. Environmental Science and Pollution Research, 2023, 30, 11246-11271.	2.7	2
1739	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25
1740	All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies. Nanomaterials, 2022, 12, 4372.	1.9	5
1741	Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna. Nanomaterials, 2023, 13, 11.	1.9	2
1742	Facile low-energy and open-air synthesis of mixed-cation perovskite quantum dots for high-performance solar cells. Chemical Engineering Journal, 2023, 457, 141107.	6.6	4

#	Article	IF	CITATIONS
1743	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	1.7	4
1744	Spin-photogalvanic effect in chiral lead halide perovskites. Nanoscale, 2023, 15, 3300-3308.	2.8	11
1745	Enhanced energy transfer by Sb ion doping for efficient CsPbCl ₃ :Mn ²⁺ perovskite nanocrystals and light emitting diodes. Journal of Materials Chemistry C, 2023, 11, 1409-1417.	2.7	4
1746	Open-circuit voltage loss in perovskite quantum dot solar cells. Nanoscale, 2023, 15, 3713-3729.	2.8	6
1747	Switchable biexcitons in perovskite-like RbCu ₂ Br ₃ crystals driven by thermally induced phase transition. Journal of Materials Chemistry C, 2023, 11, 2531-2539.	2.7	3
1748	Simultaneously achieving room-temperature circularly polarized luminescence and high stability in chiral perovskite nanocrystals <i>via</i> block copolymer micellar nanoreactors. Journal of Materials Chemistry A, 2023, 11, 12876-12884.	5.2	5
1749	Color-Tunable Mixed-Cation Perovskite Single Photon Emitters. ACS Photonics, 2023, 10, 197-205.	3.2	7
1750	Growth and Self-Assembly of CsPbBr ₃ Nanocrystals in the TOPO/PbBr ₂ Synthesis as Seen with X-ray Scattering. Nano Letters, 2023, 23, 667-676.	4.5	11
1751	Role of CsMnCl ₃ Nanocrystal Structure on Its Luminescence Properties. ACS Applied Nano Materials, 2023, 6, 953-965.	2.4	6
1753	é«~稳定性é"‹åŸºé'™é'›çŸ¿çº³ç±³æ™¶çš"啿ާ啿^ŀ结构和å‰ç‰© ç†æ€§è ⁺ . Science China Materia	ls, 2.0 23, 6	6, 2079-20<mark>8</mark>9
1753 1754		ls, 20 23, 6 1.7	56, <i>2</i> 079-2089 1
	é«~ç~³å®šæ€§é"‹åŸºé'™é'›çŸ¿çº³ç±³æ™¶çš"啿ާ啿^• 结构和光物 ç‡æ€§è∻. Science China Materia Crystallization characteristics of stress-induced CsPbCl3-xBrx (X â‰\$) quantum dots phosphate		
1754	é«~ç~3定性铋基钙钛矿çº3ç±3æ™¶çš"å∓æŽ§å•æ^+结构和å‰ç‰© ç‡æ€§è [~] . Science China Materia Crystallization characteristics of stress-induced CsPbCl3-xBrx (X â‰☎) quantum dots phosphate glasses. Optical Materials, 2023, 136, 113400. Luminescence, stability, and applications of CsPbBr3 quantum dot/polymethyl methacrylate composites	1.7	1
1754 1755	 é«~ç~3定性铋基钙钛矿çº3ç±3æ™¶çš"啿ާ啿• 结构和å‰ç‰ © ç‡æ€§è*. Science China Materia Crystallization characteristics of stress-induced CsPbCl3-xBrx (X ≠𝔅) quantum dots phosphate glasses. Optical Materials, 2023, 136, 113400. Luminescence, stability, and applications of CsPbBr3 quantum dot/polymethyl methacrylate composites prepared by a solvent- and ligand-free ball milling method. Optical Materials, 2023, 136, 113398. Intense blue emission from one-pot synthesized quaternary CsZnxPb1-xBr3 perovskite quantum dots. 	1.7	1 3
1754 1755 1756	 髰簳定性é"‹åŸ°é'™é'›çŸ¿ç°³ç±³æ™¶çš"啿ާ啿°•ç»"æž"å'Œå…‰ç‰ © ç†æ€§è[*]. Science China Material Crystallization characteristics of stress-induced CsPbCl3-xBrx (X â‰r\$) quantum dots phosphate glasses. Optical Materials, 2023, 136, 113400. Luminescence, stability, and applications of CsPbBr3 quantum dot/polymethyl methacrylate composites prepared by a solvent- and ligand-free ball milling method. Optical Materials, 2023, 136, 113398. Intense blue emission from one-pot synthesized quaternary CsZnxPb1-xBr3 perovskite quantum dots. Optical Materials, 2023, 136, 113441. Ternary diagrams of phase, stability, and optical properties of cesium lead mixed-halide perovskites. 	1.7 1.7 1.7	1 3 2
1754 1755 1756 1757	 é«[¬]ç^{¬3}定性铑åŸ^eé'[™]é'[,]ç^Ÿ¿ç²³ç±³æ[™]¶çš_nå[‡]控å[‡]æ²§å[‡]æ², s[*]"æž_nå'Œå…‰ç‰ © ç‡æ€§è⁺. Science China Material Crystallization characteristics of stress-induced CsPbCl3-xBrx (X â‰r³) quantum dots phosphate glasses. Optical Materials, 2023, 136, 113400. Luminescence, stability, and applications of CsPbBr3 quantum dot/polymethyl methacrylate composites prepared by a solvent- and ligand-free ball milling method. Optical Materials, 2023, 136, 113398. Intense blue emission from one-pot synthesized quaternary CsZnxPb1-xBr3 perovskite quantum dots. Optical Materials, 2023, 136, 113441. Ternary diagrams of phase, stability, and optical properties of cesium lead mixed-halide perovskites. Acta Materialia, 2023, 246, 118661. Charge Carrier Dynamics of CsPbBr₃/g-C₃N₄ Nanoheterostructures in Visible-Light-Driven CO₂-to-CO Conversion. Journal of Physical 	1.7 1.7 1.7 3.8	1 3 2 3
1754 1755 1756 1757 1758	髈爳定性é ^a ‹åŸ ^a é' ™é'›çŸ¿ç ^e ³ç±³æ ™¶çš"啿ާ啿ˆ+ç» ^a 构和å‰ç‰ © ç‡æ€§è [*] . Science China Material Crystallization characteristics of stress-induced CsPbCl3-xBrx (X ≕ष्\$) quantum dots phosphate glasses. Optical Materials, 2023, 136, 113400. Luminescence, stability, and applications of CsPbBr3 quantum dot/polymethyl methacrylate composites prepared by a solvent- and ligand-free ball milling method. Optical Materials, 2023, 136, 113398. Intense blue emission from one-pot synthesized quaternary CsZnxPb1-xBr3 perovskite quantum dots. Optical Materials, 2023, 136, 113441. Ternary diagrams of phase, stability, and optical properties of cesium lead mixed-halide perovskites. Acta Materialia, 2023, 246, 118661. Charge Carrier Dynamics of CsPbBr ₃ /g-C ₃ /ksub>/ksub>4 Nanoheterostructures in Visible-Light-Driven CO _{2 Charge Carrier Dynamics of CsPbBr₃/g-C₃/to-CO Conversion. Journal of Physical Chemistry Letters, 2023, 14, 122-131. Recent Progress in Halide Perovskite Nanocrystals for Photocatalytic Hydrogen Evolution.}	1.7 1.7 1.7 3.8 2.1	1 3 2 3 4

#	Article	IF	CITATIONS
1762	Origin of the near 400 nm Absorption and Emission Band in the Synthesis of Cesium Lead Bromide Nanostructures: Metal Halide Molecular Clusters Rather Than Perovskite Magic-Sized Clusters. Journal of Physical Chemistry Letters, 2023, 14, 116-121.	2.1	3
1763	Challenges and future prospects. , 2023, , 447-484.		1
1764	Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices. Nanomaterials, 2023, 13, 419.	1.9	5
1765	Shape-controlled synthesis of one-dimensional cesium lead halide perovskite nanocrystals: methods and advances. Journal of Materials Chemistry C, 2023, 11, 3409-3427.	2.7	2
1766	Improving anion-exchange efficiency and spectrum stability of perovskite quantum dots <i>via</i> an Al ³⁺ bonding-doping synergistic effect. Nanoscale, 2023, 15, 5696-5704.	2.8	4
1767	Phase Transformation of Colloidal Cs ₃ Cu ₂ Cl ₅ Nanocrystals to CsMCl (M = Zn, Bi, Cd) by Cation Exchange and Their Thermodynamic Study by Density Functional Theory Calculations. Chemistry of Materials, 2023, 35, 1301-1309.	3.2	3
1768	CsPbBr3@PbBrOH 3D/1D molecular matrix for a high-performance scintillator. Science China Materials, 2023, 66, 2004-2012.	3.5	3
1769	CsPbBr ₃ perovskite quantum dots grown within Fe-doped zeolite X with improved stability for sensitive NH ₃ detection. Nanoscale, 2023, 15, 5705-5711.	2.8	3
1770	Effect of surface ligand density on the amplified spontaneous emission properties of CsPbl2Br quantum dots. Optical Materials, 2023, 137, 113515.	1.7	1
1771	Progress on the Microcavity Lasers Based on Microstructured Optical Fiber. Electronics (Switzerland), 2023, 12, 1761.	1.8	0
1772	Tuneable structural and optical properties of inorganic mixed halide perovskite nanocrystals. , 2024, 3, .		4
1773	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023, 34, 101079.	2.9	8
1774	Metal halide perovskite materials in photocatalysis: Design strategies and applications. Coordination Chemistry Reviews, 2023, 481, 215031.	9.5	22
1775	Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coordination Chemistry Reviews, 2023, 482, 215076.	9.5	18
1776	Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215073.	9.5	19
1777	All-inorganic green light-emitting diode based on p-NiO/CsPbBr3/n-GaN heterojunction structure. Journal of Luminescence, 2023, 258, 119826.	1.5	5
1778	Realize intelligent anti-counterfeiting and efficient near-infrared emission of indium-based perovskite through crystal phase and energy band engineering. Journal of Alloys and Compounds, 2023, 947, 169541.	2.8	3
1779	White electroluminescence of diamond/boron/diamond/SrTiO3 composite film. Materials Science in Semiconductor Processing, 2023, 159, 107382.	1.9	1

#	Article	IF	CITATIONS
1780	An ethanol-induced on-paper perovskite nanocrystal crystallization mechanism for expiratory alcohol screening and information encryption. Sensors and Actuators B: Chemical, 2023, 384, 133649.	4.0	1
1781	Optical properties and mechanical induced phase transition of CsPb2Br5 and CsPbBr3 nanocrystals. Journal of Alloys and Compounds, 2023, 947, 169439.	2.8	1
1782	Strongly luminescent and highly stable CsPbBr3/Cs4PbBr6 core/shell nanocrystals and their ultrafast carrier dynamics. Journal of Alloys and Compounds, 2023, 946, 169272.	2.8	9
1783	Li2O-2B2O3 doped with Er3+, Yd3+ and Dy3+ and containing Ag and Cu nanoparticles using for emission stabilization under high temperatures. Journal of Non-Crystalline Solids, 2023, 609, 122282.	1.5	2
1784	Decyl disulfide surface treatment improved photoluminescence quantum yield and stability of blue-emitting CsPbBr3 nanoplatelets. Materials Research Bulletin, 2023, 164, 112257.	2.7	2
1785	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1786	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie, 2023, 135, .	1.6	0
1787	Ligand Chemistry of Inorganic Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2023, 8, 1152-1191.	8.8	70
1788	Anchoring TiO2@CsPbBr3 on g-C3N4 nanosheet for enhanced photocatalytic degradation activity of tetracycline hydrochloride. Diamond and Related Materials, 2023, 133, 109727.	1.8	6
1789	3D/2D Core/Shell Perovskite Nanocrystals for Highâ€Performance Solar Cells. Small, 2023, 19, .	5.2	5
1790	Construction of CsPbBr3-CdS solid solution for visible light photocatalytic CO2 reduction. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
1791	Charge-Carrier Dynamics of Solution-Processed Antimony- and Bismuth-Based Chalcogenide Thin Films. ACS Energy Letters, 2023, 8, 1485-1492.	8.8	13
1792	Scale-up synthesis of high-quality solid-state-processed CsCuX (X = Cl, Br, I) perovskite nanocrystal materials toward near-ultraviolet flexible electronic properties. RSC Advances, 2023, 13, 5993-6001.	1.7	2
1793	Facile Synthesis of CsPbX3 Perovskite Quantum Dots via an Open-Air Solution Strategy. Journal of Electronic Materials, 2023, 52, 3173-3179.	1.0	1
1794	Minimizing Energy Barrier in Intermediate Connection Layer for Monolithic Tandem WPeLEDs with Wide Color Gamut. Advanced Functional Materials, 2023, 33, .	7.8	9
1795	Designing stable lead halide perovskite nanocrystals: From a single particle to nanocomposites. Applied Materials Today, 2023, 31, 101775.	2.3	4
1796	Morphology dependent light-induced photoluminescence enhancement of CsPbBr ₃ microcrystals. Chemical Communications, 2023, 59, 3403-3406.	2.2	3
1797	Stability improvements of metal halide perovskite nanocrystals and their optoelectrical applications. Materials Chemistry Frontiers, 2023, 7, 2175-2207.	3.2	5

#	Article	IF	CITATIONS
1798	Facet Engineering for Decelerated Carrier Cooling in Polyhedral Perovskite Nanocrystals. Nano Letters, 2023, 23, 1946-1953.	4.5	6
1799	Antisolventâ€Assisted In Situ Cation Exchange of Perovskite Quantum Dots for Efficient Solar Cells. Advanced Materials, 2023, 35, .	11.1	21
1800	Highly Crystalline CsPbBr ₃ Perovskite Nanoparticles for Liquid Crystal Displays. ACS Applied Nano Materials, 2023, 6, 3974-3980.	2.4	4
1801	TiN Electrode for High-Performance CsPbBrâ,ƒ Perovskite Nanocrystal-Based Photodetectors. IEEE Sensors Journal, 2023, 23, 8335-8343.	2.4	0
1802	Reversible Growth of Halide Perovskites via Lead Oxide Hydroxide Nitrates Anchored Zeolitic Imidazolate Frameworks for Information Encryption and Decryption. ACS Nano, 2023, 17, 4483-4494.	7.3	5
1803	Recent Advancement of Luminescent Graphene Quantum Dots for Energy-Related Applications. Materials Horizons, 2023, , 147-164.	0.3	0
1804	Challenges and developments for the blue perovskite nanocrystal light-emitting diodes. Dalton Transactions, 2023, 52, 3921-3941.	1.6	2
1805	Polar-Solvent-Free Sonochemical Synthesis of Mn(II)-Doped CsPbCl ₃ Perovskite Nanocrystals for Dual-Color Emission. ACS Applied Nano Materials, 2023, 6, 4693-4706.	2.4	6
1806	Controlled growth and spectroscopy characterization of blue violet perovskite quantum dots in borate glasses. Ceramics International, 2023, 49, 20281-20289.	2.3	1
1807	Highly Enhanced Photoluminescence Quantum Yield of Phenethylammonium Halide-Passivated Inorganic Perovskite/Cellulose Nanocrystal Films. ACS Sustainable Chemistry and Engineering, 2023, 11, 4580-4587.	3.2	0
1808	Highly Efficient Broadband Nearâ€Infrared Emission from Sn ²⁺ Alloyed Leadâ€Free Cesium Zinc Halides. Laser and Photonics Reviews, 2023, 17, .	4.4	11
1809	Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. Nanophotonics, 2023, 12, 1643-1710.	2.9	4
1810	Experimental and numerical investigations on feasibility of inorganic KSnCl3 perovskite absorber and SWCNT-HTL for solar cells. Heliyon, 2023, 9, e14802.	1.4	1
1811	l–Ill–VI Quantum Dots and Derivatives: Design, Synthesis, and Properties for Light-Emitting Diodes. Nano Letters, 2023, 23, 2443-2453.	4.5	11
1812	All-inorganic lead halide perovskite nanocrystals applied in advanced display devices. Materials Horizons, 2023, 10, 1969-1989.	6.4	5
1813	CH3I sensing using yttrium single atom-doped perovskite nanocrystals. Nano Research, 2023, 16, 10429-10435.	5.8	2
1814	Optical fluorescent sensor based on perovskite QDs for nitric oxide gas detection. Applied Optics, 2023, 62, 3176.	0.9	1
1815	Inorganic Perovskite Quantum Dot-Mediated Photonic Multimodal Synapse. ACS Applied Materials & Interfaces, 2023, 15, 18055-18064.	4.0	3

#	Article	IF	CITATIONS
1816	Vacuum-deposited perovskite CsPbBr3 thin-films for temperature-stable Si based pure-green all-inorganic light-emitting diodes. Ceramics International, 2023, 49, 21624-21633.	2.3	7
1817	Highly Stable CsPbBr ₃ Nanocrystals for Photocatalytic Reduction of CO ₂ : Ionic Liquid as a Surface Passivation Ligand and Reaction Precursor. ACS Sustainable Chemistry and Engineering, 2023, 11, 5963-5972.	3.2	3
1818	Perovskite nanocrystal superlattices: self-assembly, collective behavior, and applications. Chemical Communications, 2023, 59, 5365-5374.	2.2	1
1819	Manipulating the sublattice distortion induced by Mn ²⁺ doping for boosting the emission characteristics of self-trapped excitons in Cs ₄ SnBr ₆ . Journal of Materials Chemistry C, 0, , .	2.7	3
1820	Crystal structure and electronic properties of low-dimensional hexamethylenediaminium lead halide perovskites. Dalton Transactions, 0, , .	1.6	1
1821	Colored Daytime Radiative Cooling Textiles Supported by Semiconductor Quantum Dots. ACS Applied Materials & Interfaces, 2023, 15, 19480-19489.	4.0	5
1822	Metal halide perovskite nanomaterials for battery applications. , 2023, , 537-568.		0
1823	An Ultrafast and Roomâ€Temperature Strategy for Kilogramâ€Scale Synthesis of Subâ€5Ânm Eu ³⁺ â€doped CaMO ₄ Nanocrystals with a Photoluminescence Quantum Yield Exceeding 85%. Small, 2023, 19, .	5.2	2
1824	Intelligent Colorimetric Indicators for Quality Monitoring and Multilevel Anticounterfeiting with Kinetics-Tunable Fluorescence. ACS Nano, 2023, 17, 7624-7635.	7.3	11
1825	Synthesis of Li+ and Bi3+codoped Cs2AgInCl6 lead-free double perovskites. Optical Materials, 2023, 139, 113748.	1.7	1
1826	Toward the green synthesis of CsPbBr ₃ perovskite nanocrystals using ethanol as an antisolvent and cyclodextrin as a ligand. New Journal of Chemistry, 2023, 47, 9771-9778.	1.4	1
1827	Controlled synthesis and photoluminescence study of blue-emitting Cs3Bi2Br9 nanocrystals prepared by the ligand-assisted reprecipitation (LARP) method. Materials Research Bulletin, 2023, 165, 112285.	2.7	1
1828	One‣tep Preparation of Ionâ€Doped Cesium Lead Halide Perovskite Nanocrystals by Ultrasonication. Particle and Particle Systems Characterization, 0, , .	1.2	0
1829	Stable and Sensitive Ultraviolet Photodetectors Based on High-Quality CsCu ₂ 1 ₃ Films. ACS Applied Electronic Materials, 2023, 5, 2829-2837.	2.0	5
1830	Dodecahedron CsPbBr ₃ Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. Journal of Physical Chemistry Letters, 2023, 14, 3953-3960.	2.1	2
1831	Efficient Near-Infrared Luminescence Based on Double Perovskite Cs2SnCl6. Molecules, 2023, 28, 3593.	1.7	3
1832	Enhanced photoluminescence of CsPbBr\$\${{}_{3}}\$\$ quantum dots by localized surface plasmon. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
1847	Advances in Synthesis and Defect Properties of Halide Perovskite Nanocrystals: Experimental and Theoretical Perspectives. Composites Science and Technology, 2023, , 3-37.	0.4	0

		n Report	
#	Article	IF	Citations
1853	Photoluminescence (PL) Spectroscopy. Springer Handbooks, 2023, , 295-321.	0.3	0
1878	Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices. ACS Omega, 2023, 8, 17337-17349.	1.6	1
1885	Recent Progress of Amorphous Nanomaterials. Chemical Reviews, 2023, 123, 8859-8941.	23.0	29
1886	Recent development in metal halide perovskites synthesis to improve their charge-carrier mobility and photocatalytic efficiency. Science China Materials, 2023, 66, 2545-2572.	3.5	4
1897	Quantum Dots and Nanoparticles in Light-Emitting Diodes and Displays Applications. Progress in Optical Science and Photonics, 2023, , 253-277.	0.3	0
1900	Semiconductor-based artificial photosynthesis for water-splitting and CO2 reduction. , 2023, , 377-405.		0
1901	Tailoring the spontaneous emission of nanocube perovskites. , 2023, , 475-506.		0
1919	Ultrasmall water-stable CsPbBr ₃ quantum dots with high intensity blue emission enabled by zeolite confinement engineering. Materials Horizons, 2023, 10, 5079-5086.	6.4	2
1921	Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design. Materials Chemistry Frontiers, 2023, 8, 192-209.	3.2	1
1929	Optical detection of nitroaromatic compounds using MAPbBr3 at room temperature. Journal of Chemical Sciences, 2023, 135, .	0.7	0
1943	电åæ~¾ç¤ç∞织å"的设è®jä,Žé>†æ^•Science China Materials, 2023, 66, 3782-3794.	3.5	1
2013	Two-dimensional complex metal halides: influence of restricted dimensionality on functional properties. Journal of Materials Chemistry A, 2024, 12, 5055-5079.	5.2	0
2020	All-inorganic lead halide perovskites for photocatalysis: a review. RSC Advances, 2024, 14, 4946-4965.	1.7	0
2040	Halide Perovskite Thin Films for Neutron and X-Ray Detection. , 2024, , 293-308.		Ο