Oxidations carried out by means of vanadium oxide cat

Chemical Engineering Science 3, 41-59 DOI: 10.1016/s0009-2509(54)80005-4

Citation Report

#	Article	IF	CITATIONS
1	Probleme der technischen Reaktionsführung. Chemie-Ingenieur-Technik, 1955, 27, 124-134.	0.8	5
2	68 The Testing of Heterogeneous Catalysts. Advances in Catalysis, 1957, 9, 669-681.	0.2	2
4	気固系接触åå;œé€Ÿåº¦ã®è;ïå¼åŒ–. Chemical Engineering, 1958, 22, 573-578.	0.0	0
5	Kinetics of the vaporâ€phase oxidation of napthalene over a vanadium catalyst. Canadian Journal of Chemical Engineering, 1960, 38, 102-107.	1.7	53
6	Kinetics of the vapor-phase oxidation of toluene over a vanadium catalyst. Canadian Journal of Chemical Engineering, 1961, 39, 201-204.	1.7	37
7	Kinetics and mechanism of naphthalene oxidation by non-linear estimation. Chemical Engineering Science, 1962, 17, 203-219.	3.8	27
8	Kinetics of the catalytic oxidation of benzene. Canadian Journal of Chemical Engineering, 1963, 41, 220-225.	1.7	24
9	Ermittlung von technischen Reaktionsgeschwindigkeiten aus nicht-isothermen Messungen. Chemie-Ingenieur-Technik, 1964, 36, 774-785.	0.8	7
10	Rate laws in gas-solid reactions by the pulse-chromatographic technique. Chemical Engineering Science, 1966, 21, 621-630.	3.8	5
11	Controlling mechanisms in benzene oxidation. Chemical Engineering Science, 1968, 23, 537-550.	3.8	11
12	Kinetics Analysis by Digital Parameter Estimation. Catalysis Reviews - Science and Engineering, 1969, 2, 67-112.	12.9	49
13	The vapor-phase oxidation of benzene over a vanadium oxide catalyst. Canadian Journal of Chemical Engineering, 1969, 47, 284-287.	1.7	35
14	A theoretical study of complex reactions in fluidised catalytic reactors. Chemical Engineering Science, 1970, 25, 859-865.	3.8	8
15	THE MECHANISM OF THE CATALYTIC OXIDATION OF SOME ORGANIC MOLECULES. Catalysis Reviews - Science and Engineering, 1971, 4, 27-52.	12.9	101
16	Kinetics of the catalytic oxidation of naphthalene over V2O5 using a spinning catalyst basket reactor. Chemical Engineering Science, 1971, 26, 2003-2008.	3.8	7
17	Kinetics of vapour phase oxidation of furfural on vanadium catalyst. Chemical Engineering Science, 1974, 29, 601-609.	3.8	28
18	Mechanism of vapour phase oxidation of anthracene over cobalt molybdate catalyst. Chemical Engineering Science, 1974, 29, 25-30.	3.8	3
19	Kinetics of oxidation of pseudocumene in the vapor phase. Canadian Journal of Chemical Engineering, 1974, 52, 591-595.	1.7	4

#	Article	IF	CITATIONS
20	MoO3î—,Fe2(MoO4)3 catalysts for methanol oxidation. Journal of the Less Common Metals, 1974, 36, 289-297.	0.8	61
21	The Oxidation of <i>o</i> -Xylene in a Transported Bed Reactor. Advances in Chemistry Series, 1974, , 669-686.	0.6	11
22	The kinetics and mechanism of the oxidation of carbon monoxide over an industrial vanadium oxide catalyst. Canadian Journal of Chemical Engineering, 1975, 53, 438-442.	1.7	5
23	Catalyst effectiveness factor for redox model kinetic equation. Chemical Engineering Science, 1975, 30, 1425-1428.	3.8	1
24	DEFECT CHEMISTRY AND CATALYSIS IN OXIDATION AND REDUCTION OVER PEROVSKITE-TYPE OXIDES. Annals of the New York Academy of Sciences, 1976, 272, 3-21.	3.8	217
25	OLEFIN OXIDATION OVER OXIDE CATALYSTS WITH THE SCHEELITE STRUCTURE. Annals of the New York Academy of Sciences, 1976, 272, 22-44.	3.8	82
26	Interaction of V2O5 with oxygen in the gas phase. Reaction Kinetics and Catalysis Letters, 1976, 5, 93-100.	0.6	3
27	Kinetics of oâ€Xylene oxidation over sintered vanadium pentoxide in a spinning catalyst basket reactor. Canadian Journal of Chemical Engineering, 1976, 54, 305-311.	1.7	9
28	The kinetics and mechanism of the selective oxidation of o-xylene on vanadium-potassium sulfate catalyst. Theoretical and Experimental Chemistry, 1976, 12, 270-277.	0.8	4
29	Heterogeneous Catalytic Oxidation of Aromatic Hydrocarbons in the Gas Phase. Russian Chemical Reviews, 1976, 45, 762-776.	6.5	21
30	Engineering Aspects of Selective Hydrocarbon Oxidation. Catalysis Reviews - Science and Engineering, 1977, 15, 1-52.	12.9	12
31	Modelling of commercial oxidation reactors accounting for mass transfer effects. Canadian Journal of Chemical Engineering, 1977, 55, 626-628.	1.7	0
32	The oxidation of ortho-xylene on vanadium pentoxide catalysts. I. Transient kinetic measurements. Canadian Journal of Chemical Engineering, 1977, 55, 552-556.	1.7	29
33	The oxidation of orthoâ€xylene on vanadium pentoxide catalysts II. The influence of catalyst support material on product distribution. Canadian Journal of Chemical Engineering, 1977, 55, 557-564.	1.7	26
34	The prediction of the performance of packed-bed catalytic reactors in the air-oxidation of o-xylene. Chemical Engineering Science, 1977, 32, 1435-1443.	3.8	69
36	Constrained optimization of cold-shot converters. The Chemical Engineering Journal, 1978, 16, 153-164.	0.3	9
37	Oxygen equilibrium pressure as a measure of oxygen binding energy in the V2O5â^'x system. Journal of Solid State Chemistry, 1978, 26, 167-171.	2.9	9
38	Catalytic oxidation of benzene to maleic anhydride in a continuous stirred tank reactor. Canadian Journal of Chemical Engineering, 1978, 56, 72-78.	1.7	5

		CITATION REPORT		
#	Article		IF	CITATIONS
39	Vapor phase oxidation of pâ \in xylene. Canadian Journal of Chemical Engineering, 1978, 56, 2	23-229.	1.7	1
40	Interaction of propylene with a promoted Biâ^'Mo catalyst as determined from conductivity Reaction Kinetics and Catalysis Letters, 1978, 8, 477-481.	data.	0.6	12
41	Supportsd Liquid-Phass Catalysts. Catalysis Reviews - Science and Engineering, 1978, 17, 20)3-272.	12.9	135
42	Catalytic Interaction between Nitrogen Monoxide and Isobutylene, Propane or Isobutane or Supported Nickel Oxide and Nickel Oxide-Chromia Catalysts. Zeitschrift Fur Physikalische C 111, 91-103.		2.8	6
43	Catalytic Oxidation of Carbon Monoxide on CoO-MgO Solid Solutions. Zeitschrift Fur Physil Chemie, 1978, 111, 225-237.	valische	2.8	6
44	Chapter 2 Heterogeneous Oxidation Processes. Comprehensive Chemical Kinetics, 1978, , 1	.23-262.	2.3	3
45	Selective Oxidation of Hydrocarbons on Composite Oxides. Catalysis Reviews - Science and Engineering, 1979, 19, 293-350.		12.9	150
46	Dynamic measurements of the electrical conductivity of a non-metallic catalyst during adso and catalysis. Journal of Physics E: Scientific Instruments, 1979, 12, 1166-1170.	rption	0.7	1
47	Prediction of packed-bed catalytic reactor performance for a complex reaction (oxidation of	o-xylene) Tj ETQq0 0	0,ggBT /O	verlock 10 T
48	Vanadium oxide monolayer catalysts. I. Preparation, characterization, and thermal stability. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1979, 449, 25-40.		1.2	122
49	Lattice oxygen removal from nearly stoichiometric V2O5. Reaction Kinetics and Catalysis Le 9, 389-393.	tters, 1979,	0.6	4
50	Solution of the SSAM or redox equations. Canadian Journal of Chemical Engineering, 1979,	57, 605-608.	1.7	5
51	Modèles cinétiques et mécanisme de l'oxydation catalytique. Du propene en préser fer. Canadian Journal of Chemical Engineering, 1979, 57, 707-715.	ice de molybdate de	1.7	1
52	Catalysts, Kinetics and Reactor Design in Phthalic Anhydride Synthesis. Catalysis Reviews - S Engineering, 1979, 19, 211-292.	Science and	12.9	248
53	Selective Oxidation of Propylene. Advances in Catalysis, 1979, 27, 183-225.		0.2	109
54	Kinetics of the catalytic air-oxidation of o-xylene measured in a tube-wall-catalytic reactor. C Engineering Science, 1980, 35, 1523-1535.	hemical	3.8	9
55	35 Harmonic behaviour of the rate of catalytic oxidation of CO under cycling conditions. Ch Engineering Science, 1980, 35, 273-282.	iemical	3.8	20
56	The catalytic oxidation of carbon monoxide on cobalt oxide. Surface Technology, 1980, 10,	55-63.	0.4	27

#	Article	IF	CITATIONS
57	A combined LEIS (low energy ion scattering)—LEED study of the V6O13(001) surface. Applications of Surface Science, 1980, 6, 430-443.	1.0	10
58	Correlation and prediction of oxidation rates over a vanadium oxide catalyst. Canadian Journal of Chemical Engineering, 1980, 58, 545-548.	1.7	1
59	Transient phenomena in o-xylene oxidation in a fluidized bed reactor. Reaction Kinetics and Catalysis Letters, 1980, 14, 417-422.	0.6	3
60	On the occurrence of competitive mechanisms in the transformation of butadiene into maleic anhydride with air on MoO3â^'TiO2 catalysts. Reaction Kinetics and Catalysis Letters, 1980, 14, 467-473.	0.6	1
61	Response studies of the mechanism of o-xylene oxidation over a vanadium-titanium oxide catalyst. Reaction Kinetics and Catalysis Letters, 1980, 14, 347-351.	0.6	24
62	Catalytic Oxidation of Sulfur Dioxide. Catalysis Reviews - Science and Engineering, 1980, 21, 73-133.	12.9	44
63	Vanadium oxide monolayer catalysts. 3. A Raman spectroscopic and temperature-programmed reduction study of monolayer and crystal-type vanadia on various supports. The Journal of Physical Chemistry, 1980, 84, 2783-2791.	2.9	356
64	KINETIC MODELING OF THE CATALYTIC OXIDATION OF BENZO(A)PYRENE. Chemical Engineering Communications, 1980, 7, 169-183.	2.6	2
65	Investigation of Catalytic Reactions of Ethanol Proceeding on Oxidic Clusters of Vanadium on Aerosil Using a Transient Response Method. Studies in Surface Science and Catalysis, 1981, , 1357-1367.	1.5	2
66	Surface Reactions and Selectivity in Electrocatalysis. Advances in Catalysis, 1981, , 217-333.	0.2	14
67	Direct Oxidation by Oxometal (M=O) Reagents. , 1981, , 152-188.		4
68	Selective Oxidation and Ammoxidation of Propylene by Heterogeneous Catalysis. Advances in Catalysis, 1981, , 133-163.	0.2	296
69	Kinetics of selective oxidation of toluene and methanol over supported V2O5-alkalimetal sulfates. AICHE Journal, 1981, 27, 41-51.	3.6	8
70	Kinetics of the catalytic oxidation of methanol to formaldehyde. Chemical Engineering Science, 1981, 36, 909-918.	3.8	29
71	The alteration of oxidation and related properties of metals by ion implantation. Nuclear Instruments & Methods, 1981, 182-183, 899-914.	1.2	79
72	Kinetics of the catalytic transformation of isobutene into methacrylonitrile with NO on supported nickel oxide aerogel. Reaction Kinetics and Catalysis Letters, 1981, 15, 459-465.	0.6	8
73	MULTIRESPONSE MODELING OF THE OXIDATION OF NAPHTHALENE OVER A VANADIA CATALYST. Chemical Engineering Communications, 1982, 14, 289-305.	2.6	2
74	Characterization and Reactivity of Mononuclear Oxygen Species on Oxide Surfaces. Advances in Catalysis, 1982, , 77-133.	0.2	264

#	Article	IF	Citations
75	Transformation of propene into acrylonitrile with nitric oxide over nickel oxide alumina catalyst in a continuous stirred tank reactor. Canadian Journal of Chemical Engineering, 1982, 60, 411-417.	1.7	4
76	Redox kinetics of benzene oxidation to maleic anhydride. Canadian Journal of Chemical Engineering, 1983, 61, 200-207.	1.7	14
77	A Scientific Approach To The Preparation Of Bulk Mixed Oxide Catalysts. Studies in Surface Science and Catalysis, 1983, , 485-519.	1.5	55
78	Characterization and Reactivity of Molecular Oxygen Species on Oxide Surfaces. Advances in Catalysis, 1983, 32, 1-148.	0.2	376
79	Chapter V: The Kinetics of Gas-Phase Heterogeneous Catalytic Reactions Involving Molecular Oxygen. Studies in Surface Science and Catalysis, 1983, 15, 126-150.	1.5	1
80	Chapter XIV: General Features of the Heterogeneous Catalytic Oxidation of Organic Substances. Studies in Surface Science and Catalysis, 1983, , 397-436.	1.5	0
81	Influence of cobalt on the textural, redox and catalytic properties of stoichiometric vanadium phosphate. Applied Catalysis, 1983, 6, 245-259.	0.8	19
82	Chapter XXI: The Oxidation of Aromatic Hydrocarbons. Studies in Surface Science and Catalysis, 1983, 15, 650-742.	1.5	1
83	The Preparation of Potassium-Vanadium Bronze K0.23V2O5 Studied by Evolved Gas Analysis and Hot Stage Optical Microscopy. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1983, 87, 120-123.	0.9	1
84	Chapter 3 Radiation and Photoeffects at Gas/Solid Interfaces. Comprehensive Chemical Kinetics, 1984, 19, 291-427.	2.3	2
85	Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure. Materials Research Bulletin, 1984, 19, 1271-1279.	5.2	20
86	Kinetics of the self-fouling oxidation of hydrogen sulfide on activated carbon. AICHE Journal, 1984, 30, 1021-1025.	3.6	12
87	Characterization of supported Vanadium oxide catalysts by low temperature oxygen chemisorption technique. Applied Catalysis, 1984, 9, 225-233.	0.8	63
88	Influence of phosphorus and potassium impurities on the properties of vanadium oxide supported on TiO2. Applied Catalysis, 1984, 11, 317-330.	0.8	60
89	The oxyhydrochlorination of methane on fumed silica-based Cu, K, La catalysts: II. Gas phase stoichiometry. Applied Catalysis, 1984, 11, 49-58.	0.8	14
90	The Surface amd Bulk Oxidation States of MoO3 During the Partial Oxidation of Methanol. Studies in Surface Science and Catalysis, 1985, 21, 185-193.	1.5	0
91	Direct Conversion of Isobutane Into Nitriles by Interaction With Nitric Oxide On Chromia-Alumina Catalysts. Studies in Surface Science and Catalysis, 1985, 21, 429-439.	1.5	0
92	Combined pulse microcatalytic and ESR studies of butylene oxidation on V-Mg oxide catalysts. Reaction Kinetics and Catalysis Letters, 1985, 28, 67-73.	0.6	10

ARTICLE IF CITATIONS # Catalytic properties of metallic oxides in partial oxidation reactions. Materials Chemistry and Physics, 93 4.0 13 1985, 13, 365-378. Oxidation of furan on well-characterized vanadium oxide catalysts. Journal of Catalysis, 1985, 95, 94 6.2 482-491. Kinetics of the catalytic air oxidation of o-xylene over a commercial V2O5-TiO2 catalyst. Chemical 95 3.8 49 Engineering Science, 1985, 40, 611-620. Multiplicity in effectiveness factorâ€"redox kinetics. Chemical Engineering Science, 1985, 40, 1027-1029. The catalytic oxidation of methanol. Proceedings of the Royal Society of London Series A, 97 1.4 18 Mathematical and Physical Sciences, 1985, 399, 181-194. Structure sensitivity of mild oxidation reactions on oxide catalysts - a review. Applied Catalysis, 1985, 0.8 18, 1-32. The Co-Mo-Te-O Oxide System for Oxidation of Hydrocarbons - A Review. Applied Catalysis, 1985, 13, 99 0.8 22 223-243. The catalytic activity and selectivity of supported vanadia catalysts doped with alkali metal sulphates.. 100 0.8 Applied Ćatalysis, 1985, 17, 103-114. 101 Gas phase acetoxylation of 1,3-butadiene over palladium catalysts. Applied Catalysis, 1985, 14, 145-158. 0.8 11 Selective Oxidative Dehydrogenation of Butenes on Ferrite Catalysts. Advances in Catalysis, 1985, , 0.2 74 159-198. Selective oxidation of acrolein to acrylic acid by V2O5-P2O5 catalysts. Applied Catalysis, 1986, 27, 103 0.8 13 167-179. Kinetics and redox properties of vanadium phosphate catalysts for butane oxidation. Applied Catalysis, 0.8 1986, 26, 211-226. Effect of phosphorus on the oxidation selectivity of MoO3-based catalysts. Polyhedron, 1986, 5, 105 2.2 8 103-105. Oxidation of cyclopentadiene over vanadium oxide and its mixed oxides. Korean Journal of Chemical 2.7 Engineering, 1986, 3, 135-139. Vapour phase oxidation of 2,6-lutidine to 2,6-pyridinedicarboxaldehyde. III: Kinetic study. Applied 107 0.8 1 Catalysis, 1987, 34, 317-328. Solid electrolyte potentiometry study of butene oxidation over vanadium phosphate catalysts. Applied Catalysis, 1987, 30, 277-301. THE ROLE OF LATTICE OXYGEN IN THE DYNAMIC BEHAVIOR OF OXIDE CATALYSTS. Chemical Engineering 109 2.6 11 Communications, 1987, 58, 213-230. Relations between catalytic properties and atomic arrangements of metallic oxides. Catalysis Today, 4.4 1987, 1, 261-280.

#	Article	IF	CITATIONS
112	Multiplicity of the steady state in fluidized bed reactors—VIII. Partial oxidation of o-xylene. Computers and Chemical Engineering, 1987, 11, 95-100.	3.8	9
113	Phosphomolybdic acid (H3PMo12O40) as a catalyst for the vapour-phase oxidative dehydrogenation of isobutyric acid : kinetic parameters of supported and unsupported catalysts. Role of water Catalysis Today, 1987, 1, 167-180.	4.4	45
114	An overview of recent developments in elucidating the mechanism of selective oxidation of C-4 hydrocarbons over vanadium phosphorus oxide catalysts. Catalysis Today, 1987, 1, 527-536.	4.4	18
115	Maleic anhydride from C-4 feedstocks using fluidized bed reactors. Catalysis Today, 1987, 1, 587-607.	4.4	70
116	Catalytic nitroxidation of paraâ€xylene over chromium oxide based catalysts. Canadian Journal of Chemical Engineering, 1987, 65, 127-131.	1.7	13
118	Kinetic investigation of methacrylic acid synthesis on hetropoly-compounds. Chemical Engineering and Technology, 1988, 11, 392-402.	1.5	50
119	Uniform Heterogeneous Catalysts: The Role of Solid-State Chemistry in their Development and Design. Angewandte Chemie International Edition in English, 1988, 27, 1673-1691.	4.4	187
120	Oxidation of o-xylene: a quantum chemical study. Journal of Molecular Catalysis, 1988, 45, 183-191.	1.2	14
121	Selective oxidation of propene to acrolein on VOxTiO2 systems containing sodium. Journal of Molecular Catalysis, 1988, 48, 381-391.	1.2	13
122	Heterogeneous catalytic oxidation of ethanol: A new process for acetic acid. Reaction Kinetics and Catalysis Letters, 1988, 36, 301-305.	0.6	3
123	Selective reduction of nitrobenzene to nitrosobenzene on oxidic catalysts. Catalysis Letters, 1988, 1, 457-460.	2.6	14
124	Isobutene oxidation on an catalyst. Journal of the Less Common Metals, 1988, 138, 47-57.	0.8	8
125	Kinetics and Selectivity of Deep Catalytic Oxidation of n-Hexane and Benzene. Applied Catalysis, 1988, 36, 231-247.	0.8	119
126	Preparation of highly loaded vanadium oxide—silica catalysts. Applied Catalysis, 1988, 40, 255-275.	0.8	29
127	Temporal Analysis of Products (TAP)—A Unique Catalyst Evaluation System with Submillisecond Time Resolution. Catalysis Reviews - Science and Engineering, 1988, 30, 49-116.	12.9	394
128	A Model for Deep Catalytic Oxidation of Hydrocarbon Mixtures in the Strong Pore Diffusion Region. Studies in Surface Science and Catalysis, 1988, 38, 671-681.	1.5	1
129	Direct Conversion of Methane to Methanol and Higher Hydrocarbons. Studies in Surface Science and Catalysis, 1988, 36, 359-371.	1.5	3
130	Chapter 11 Selective Oxidation Reactions I. Studies in Surface Science and Catalysis, 1989, 45, 169-199.	1.5	9

#	Article	IF	CITATIONS
131	Application of periodic operation to maleic anhydride production. Canadian Journal of Chemical Engineering, 1989, 67, 635-645.	1.7	13
132	TEM studies of M(1)Ti2(PO4)3 nasicon-type mild oxidation catalysts in situ observation of mobility and dismutation of M(1) = Cu or Ag. Materials Research Bulletin, 1989, 24, 561-570.	5.2	20
133	Dynamics of packed-bed reactors loaded with oxide catalysts. AICHE Journal, 1989, 35, 746-754.	3.6	15
134	Parameter estimation from integral Mars-van Krevelen type of kinetic data of a reaction network. Chemical Engineering and Technology, 1989, 12, 11-14.	1.5	0
135	Coordination chemical approach to catalytic oxidation reactions. Journal of Molecular Catalysis, 1989, 51, 285-294.	1.2	15
136	Role of model heterogeneous gas-solid phase reversible reactions in heterogeneous catalysis. Journal of Molecular Catalysis, 1989, 54, 496-500.	1.2	2
137	Titration of active sites for partial oxidation of methanol over V2O5/SnO2 and MoO3/SnO2 catalysts by a low-temperature oxygen chemisorption technique. Applied Catalysis, 1989, 55, L1-L4.	0.8	18
138	Oxidative coupling of methane over thallium based silica supported catalysts. Applied Catalysis, 1989, 54, 241-255.	0.8	16
139	STEADY STATE AND DYNAMIC MODELLING OF A PACKED BED REACTOR FOR THE PARTIAL OXIDATION OF METHANOL TO FORMALDEHYDE I. MODEL DEVELOPMENT. Chemical Engineering Communications, 1989, 78, 1-43.	2.6	33
140	Reactivity and Structure of Multi-System Molybdate Catalysts. Studies in Surface Science and Catalysis, 1989, , 111-121.	1.5	4
141	Active Sites in Propylene Mild Oxidation as Studied on New [100] Oriented MoO3 Catalysts. Studies in Surface Science and Catalysis, 1990, 55, 747-756.	1.5	4
142	The Adsorption of Aliphatic Nitrocompounds on Oxides Investigated By Ft-Ir Spectroscopy. Studies in Surface Science and Catalysis, 1990, 55, 861-868.	1.5	5
143	Oxidation of carbon monoxide over barium cuprate catalysts. Catalysis Letters, 1990, 6, 349-360.	2.6	15
144	Is there a difference between surface and bulk oxidation levels in partially reduced metal oxide catalysts? Evidence from methane oxidative coupling kinetics. Catalysis Letters, 1990, 4, 245-249.	2.6	7
145	Infrared spectroscopic characterization of the α-Mn3O4 surface by adsorption of carbon monoxide. Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 795-804.	1.7	14
146	A Dynamic Model of The Oxidation of n-Butane and 1-Butene on Various Crystalline Faces of (VO)2P2O7. Studies in Surface Science and Catalysis, 1990, , 625-633.	1.5	13
147	Vapour Phase Oxidation of 4-pyridinemethanol to 4-pyridine carboxaldehyde. Synthetic Communications, 1990, 20, 3385-3390.	2.1	2
148	Pyridinealdehydes preparation by vapour phase oxidation of 2- and 3-pyridenemethanols and of their N-oxides on a V-Mo oxide catalyst. Applied Catalysis, 1990, 65, L5-L9.	0.8	13

#	Article	IF	CITATIONS
149	Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity. Applied Catalysis, 1991, 71, 1-31.	0.8	686
150	Quantitative studies of gas–solid reactions by powder X-ray diffraction: stoichiometric and catalytic conversion of CO to CO2over YBa2Cu3O6 +x. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3067-3075.	1.7	19
151	Selective oxidation of isobutene over multicomponent molybdate catalyst. Applied Catalysis, 1991, 70, 149-159.	0.8	4
152	Phthalic Anhydride fromo-Xylene Catalysis: Science and Engineering. Catalysis Reviews - Science and Engineering, 1991, 33, 319-374.	12.9	156
153	TPD studies of vanadium oxide films deposited on gold. Applied Surface Science, 1991, 52, 241-248.	6.1	15
154	Activation and properties of Mo=O bonds in Mo/SiO2 catalysts. Research on Chemical Intermediates, 1991, 15, 81-98.	2.7	15
156	A model for the rate of catalytic oxidation of methanol in a fixed bed reactor. Chemical Engineering and Technology, 1991, 14, 96-100.	1.5	4
157	Heterogeneous Catalytic Oxidation and Fine Chemicals. Studies in Surface Science and Catalysis, 1991, 59, 33-54.	1.5	54
158	TAP Investigations of Selective o-Xylene Oxidation. Studies in Surface Science and Catalysis, 1992, 72, 317-324.	1.5	9
159	Catalytic CO Oxidation over La _{1â€<i>x</i>} Sr <i>x</i> MnO ₃ at High CO Partial Pressures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1-9.	0.9	7
160	Kinetics of Heterogeneous Catalyzed Reactions. Catalysis Reviews - Science and Engineering, 1992, 34, 227-280.	12.9	51
161	Selective Oxidation Of Hydrogen Sulfide To Elemental Sulfur On Supported Iron Sulfate Catalysts. Studies in Surface Science and Catalysis, 1992, 72, 123-132.	1.5	23
162	Phase cooperation between the ZnFe2O4and α-Fe2O3phases of ferrite catalysts in the oxidative dehydrogenation of n-butenes. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 637-644.	1.7	18
163	Selective oxidation of ammonia to nitrogen over silica supported molybdena catalysts. Studies in Surface Science and Catalysis, 1992, , 133-145.	1.5	11
164	Kinetic investigation of the oxidative dehydrogenation of isobutyric acid on a Fe-P-O catalyst: role of water. Applied Catalysis A: General, 1992, 90, 61-72.	4.3	23
165	Vanadium mixed oxide catalysts for the oxidative coupling of methane. Applied Catalysis A: General, 1992, 83, 235-250.	4.3	13
166	Surface coordination number and surface redox couples on catalyst oxides, a new approach of the interpretation of activity and selectivity III. Interpretation of chemical and catalytic oxidation reactions on some oxides. Applied Surface Science, 1992, 62, 47-59.	6.1	4
167	Kinetic study of isobutyric acid oxydehydrogenation on various Feî—,Pî—,O catalysts: Proposal for the reaction mechanism. Journal of Molecular Catalysis, 1992, 71, 199-213.	1.2	24

#	Article	IF	CITATIONS
168	Gas phase complete catalytic oxidation of aromatic hydrocarbon mixtures. Canadian Journal of Chemical Engineering, 1992, 70, 286-293.	1.7	25
169	Ion and mixed conducting oxides as catalysts. Catalysis Today, 1992, 12, 1-101.	4.4	197
170	Deep catalytic oxidation kinetics of benzene—ethenylbenzene mixtures. Chemical Engineering Science, 1992, 47, 1943-1953.	3.8	39
171	Kinetics and mechanism of oxidative coupling of methane over sodium-manganese oxide catalyst. Chemical Engineering and Technology, 1993, 16, 62-67.	1.5	4
172	Catalytic afterburners with not fully developed flow: modelling and experimental performances. The Chemical Engineering Journal, 1993, 52, 79-88.	0.3	4
173	Chemisorptive and catalytic properties of V2O5 supported on phosphate modified γ-alumina. Applied Catalysis A: General, 1993, 94, 61-70.	4.3	14
174	Vanadium oxides as regenerable reagents in the oxidation of butan-2-one to diacetyl. Applied Catalysis A: General, 1993, 97, 39-47.	4.3	7
175	Promotional effect of sodium and phosphorus on a V-Mo-O catalyst. Applied Catalysis A: General, 1993, 97, 103-112.	4.3	2
176	Dispersion and activity of vanadia supported on phosphate modified silica. Applied Catalysis A: General, 1993, 101, 221-231.	4.3	5
177	Redox behavior of trimanganese tetroxide catalysts. Applied Catalysis A: General, 1993, 101, 233-252.	4.3	29
178	Kinetic study of the selective oxidation of butan-2-one to diacetyl over vanadium phosphorus oxide. Applied Catalysis A: General, 1993, 93, 203-217.	4.3	17
179	Catalytic combustion of voc mixtures in a monolithic reactor. Catalysis Today, 1993, 17, 335-347.	4.4	61
180	Homogeneous and heterogeneous catalytic oxidations with peroxide reagents. Topics in Current Chemistry, 1993, , 21-43.	4.0	149
181	Deep oxidation of toluene on perovskite catalyst. Industrial & Engineering Chemistry Research, 1993, 32, 2930-2933.	3.7	31
182	Industrial Perspectives on the use of Dioxygen: New Technology to Solve Old Problems. , 1993, , 31-44.		8
183	A History of Oxygen Activation: 1773–1993. , 1993, , 9-30.		9
184	Chapter 4 Bonding and elementary steps in catalysis. Studies in Surface Science and Catalysis, 1993, 79, 89-158.	1.5	4
185	The Mars and van Krevelen mechanism for oxidation reactions used for a selective reduction reaction—influence of surface OH-groups on the selectivity. Studies in Surface Science and Catalysis, 1993, , 487-494.	1.5	3

#	Article	IF	CITATIONS
186	Oxygen spillover for the design of industrial oxidation catalysts. Studies in Surface Science and Catalysis, 1993, 77, 95-103.	1.5	13
187	Oxidative Dehydrogenation of Propane in Presence of Rare Earth Vanadates. Studies in Surface Science and Catalysis, 1993, , 2309-2312.	1.5	8
188	Oxidation of Methanol to Formaldehyde over Antimony-Molybdenum Oxide catalyst. Studies in Surface Science and Catalysis, 1993, 75, 1991-1994.	1.5	0
189	Mechanistic Aspects of The Selective Oxidation of Methane to C1-Oxygenates Over MoO3/SiO2 Catalysts in A Single Catalytic Step. Studies in Surface Science and Catalysis, 1993, 75, 1131-1144.	1.5	8
190	Thermal and catalytic incineration of volatile organic compounds. Critical Reviews in Environmental Science and Technology, 1994, 24, 203-236.	12.8	39
191	Selective hydrogenation of acetic acid towards acetaldehyde. Recueil Des Travaux Chimiques Des Pays-Bas, 1994, 113, 426-430.	0.0	14
192	Turning Points in Catalysis. Angewandte Chemie International Edition in English, 1994, 33, 913-937.	4.4	199
193	Wendepunkte der Katalyse. Angewandte Chemie, 1994, 106, 963-989.	2.0	56
194	Combustion of methane over La0.66Sr0.34Ni0.3Co0.7O3 and La0.4Sr0.6Fe0.4Co0.6O3 prepared by freeze-drying. Applied Catalysis A: General, 1994, 109, 181-193.	4.3	58
195	Alkali hydroxides as promoters of Mn3O4 in the selective reduction of nitrobenzene; an X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and ion scattering spectroscopy study. Applied Catalysis A: General, 1994, 115, 69-84.	4.3	9
196	Role of alkali promoters on Mn3O4 in the selective reduction of nitrobenzene. Applied Catalysis A: General, 1994, 115, 85-101.	4.3	5
197	Promoted vanadia/titania catalysts foro-xylene oxidation: influence of acid-base and redox properties. Applied Catalysis A: General, 1994, 108, 241-260.	4.3	25
198	Mixed oxides as catalysts for the selective reduction of nitrobenzene. Catalysis Letters, 1994, 28, 17-23.	2.6	6
199	Characterization and catalytic properties of perovskites with nominal compositions La1-xSrxAl1-2yCuyRuyO3. Applied Catalysis B: Environmental, 1994, 3, 259-274.	20.2	36
200	Surface electronic structure of V2O5(001): defect states and chemisorption. Surface Science, 1994, 321, 133-144.	1.9	69
201	FTIR studies on the selective oxidation and combustion of light hydrocarbns at metal oxide surfaces. Propane and propene oxidation on MgCr2O4. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3347.	1.7	72
202	Redox molecular sieves as heterogeneous catalysts for liquid phase oxidations. Studies in Surface Science and Catalysis, 1994, 82, 515-529.	1.5	14
203	Multicomponent Bismuth Molybdate Catalyst: A Highly Functionalized Catalyst System for the Selective Oxidation of Olefin. Advances in Catalysis, 1994, 40, 233-273.	0.2	125

#	Article	IF	CITATIONS
204	Diacetyl synthesis by the direct partial oxidation of methyl ethyl ketone over vanadium oxide catalysts. Studies in Surface Science and Catalysis, 1994, 82, 853-860.	1.5	4
205	The reactivity of O2/H2, O2/CO and O2/C3H6 gas mixtures on Cu(111). Applied Surface Science, 1995, 90, 137-147.	6.1	4
206	Oxidative dehydrogenation of ethylbenzene over VIV and VV magnesium vanadates. Applied Catalysis A: General, 1995, 124, 221-243.	4.3	48
207	Investigations of catalytic mechanisms for selective propene oxidation in the presence of steam. Applied Catalysis A: General, 1995, 127, 177-199.	4.3	17
208	Selective reduction of nitrobenzene to nitrosobenzene over different kinds of trimanganese tetroxide catalysts. Applied Catalysis A: General, 1995, 133, 81-93.	4.3	52
209	Palladium on alumina catalyst for glucose oxidation: reaction kinetics and catalyst deactivation. Catalysis Today, 1995, 24, 41-47.	4.4	49
210	Redox processes of surface of vanadyl pyrophosphate in relation to selective oxidation ofn-butane. Catalysis Letters, 1995, 32, 205-213.	2.6	30
211	An investigation on the reaction mechanism for the partial oxidation of methane to synthesis gas over platinum. Catalysis Letters, 1995, 33, 291-304.	2.6	113
212	Destruction of Butanone and Toluene with Catalytic Incineration. Hazardous Waste and Hazardous Materials, 1995, 12, 37-49.	0.4	10
213	Molecular Aspects of Catalytic Reactivity. Application of EPR Spectroscopy to Stuies of the Mechanism of Heterogeneous Catalytic Reactions. Catalysis Reviews - Science and Engineering, 1995, 37, 461-512.	12.9	74
214	Catalytic Oxidations with Oxygen: An Industrial Perspective. , 1995, , 204-248.		3
215	Alkene oxidation over the Mo–Bi mixed oxides/Au yttria-stabilized zirconia Ag system. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1117-1124.	1.7	12
216	Semiconductive properties of some uranium–antimony oxide phases used as catalysts in the mild oxidation of but-1-ene to butadiene. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2343-2348.	1.7	12
217	Role of Lattice Oxygen in the Combustion of Methane over PdO/ZrO2:Â Combined Pulse TG/DTA and MS Study with18O-Labeled Catalyst. The Journal of Physical Chemistry, 1996, 100, 20006-20014.	2.9	65
218	The mechanism of the synthesis in connection with assignments for a solid reaction cycle of the HPA catalyst during catalytic reactions. Catalysis Today, 1996, 32, 337-347.	4.4	11
219	Surface structure of bulk nickel catalysts, active in the gas-phase hydrodechlorination reaction of aromatics. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2811-2816.	1.7	66
220	Hydrocarbon activation and oxidation on transition metal mixed oxides: Ft-IR and flow reactor studies. Studies in Surface Science and Catalysis, 1996, 101, 483-492.	1.5	12
221	Adaptation of the microscopic properties of redox catalysts to the type of gas-solid reactor. Topics in Catalysis, 1996, 3, 365-375.	2.8	24

#	Article	IF	Citations
222	Infrared studies of the reactive adsorption of organic molecules over metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation. Catalysis Today, 1996, 27, 457-496.	4.4	277
223	Oxidative dehydrogenation of n-butane on Cs doped nickel molybdate: Kinetics and mechanism. Applied Catalysis A: General, 1996, 135, 137-153.	4.3	18
224	On the intermediates of the acetic acid reactions on oxides: an IR study. Applied Surface Science, 1996, 103, 171-182.	6.1	92
225	Some kinetic aspects of unsteady-state partial oxidation reactions. Dynamic processes on metal oxide surfaces. Catalysis Today, 1996, 32, 21-28.	4.4	10
226	Comparison of catalytic properties for partial oxidation between heteropolyacids and phosphates of vanadium and iron. Journal of Molecular Catalysis A, 1996, 114, 3-13.	4.8	30
227	Kinetics and mechanism of reduction and reoxidation of the alkali metal promoted vanadia-titania catalysts. Applied Catalysis A: General, 1996, 146, 401-423.	4.3	31
228	Mechanistic study of the selective hydrogenolysis of CCI ₂ F ₂ (CFCâ€12) into CH ₂ F ₂ (HFCâ€32) over palladium on activated carbon. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 505-510.	0.0	26
229	On the role of acidity in catalytic oxidation. Catalysis Today, 1996, 32, 133-143.	4.4	116
230	Proposal of a new kinetic model based on the remote control mechanism to fit experimental data during the selective oxidation of isobutene to methacrolein on biphasic catalysts. Catalysis Today, 1996, 32, 255-263.	4.4	12
231	Oxidative dehydrogenation of propane on rare earth vanadates influence of the presence of CO2 in the feed. Studies in Surface Science and Catalysis, 1996, 101, 1049-1058.	1.5	25
232	New Uniform Solid Catalyst for the Low-Temperature Oxidation of Carbon Monoxide:Â A Triple-Layered Rare Earth Perovskite Containing Co and Cu Ionsâ€. The Journal of Physical Chemistry, 1996, 100, 8443-8447.	2.9	15
233	Prospects for the development of methods for the processing of organohalogen waste. Characteristic features of the catalytic hydrogenolysis of halogen-containing compounds. Russian Chemical Reviews, 1996, 65, 617-624.	6.5	64
234	Effects of cesium doping on the kinetics and mechanism of the n-butane oxidative dehydrogenation over nickel molybdate catalysts. Studies in Surface Science and Catalysis, 1997, , 797-806.	1.5	4
235	Oxidative conversion of LPG to olefins with mixed oxide catalysts: Surface chemistry and reactions network. Studies in Surface Science and Catalysis, 1997, , 315-326.	1.5	22
236	A study of V2O5-K2SO4-SiO2 catalysts for catalytic vapor-phase oxidation of toluene to benzaldehyde. Studies in Surface Science and Catalysis, 1997, 110, 1193-1201.	1.5	1
237	Oxydehydrogenation of propane on NiMoO4 catalyst under transient and steady—state conditions. Studies in Surface Science and Catalysis, 1997, , 263-271.	1.5	6
238	Mechanistic aspects of propane oxidation over Ni-Co-molybdate catalysts. Studies in Surface Science and Catalysis, 1997, , 357-365.	1.5	10
239	Oxidative dehydrogenation of propane on CeNiXOY (0 ≤ ≤) mixed oxides hydrogen acceptors. Studies in Surface Science and Catalysis, 1997, , 383-392.	1.5	4

#	Article	IF	CITATIONS
240	Oxidative coupling of isobutene in a two step process. Studies in Surface Science and Catalysis, 1997, 110, 593-602.	1.5	2
241	Redox molecular sieves as heterogeneous catalysts for liquid phase oxidations. Studies in Surface Science and Catalysis, 1997, 110, 151-175.	1.5	41
243	Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides. Journal of Physical Chemistry B, 1997, 101, 11192-11203.	2.6	162
244	Kinetics of Selective Partial Oxidation of C3â^'C6α-Olefins over an Iron Antimony Oxide Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 3568-3575.	3.7	1
245	Kinetic Study of Partial Oxidation of Ethanol over VMgO Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 3468-3472.	3.7	27
246	Kinetics and Modeling of Mixture Effects during Complete Catalytic Oxidation of Benzene and Methyltert-Butyl Ether. Industrial & Engineering Chemistry Research, 1997, 36, 1979-1988.	3.7	20
247	FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces Part 3.—Comparison of the oxidation of C3 organic compounds over Co3O4, MgCr2O4 and CuO. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 175-180.	1.7	67
248	The Kinetic Significance of V5+ in n-Butane Oxidation Catalyzed by Vanadium Phosphates. Science, 1997, 275, 191-193.	12.6	223
249	Kinetics of oxidative dehydrogenation of propane on the β phase of nickel molybdate. Applied Catalysis A: General, 1997, 155, 217-228.	4.3	27
250	Destruction of trichloromethane with catalytic oxidation. Applied Catalysis B: Environmental, 1997, 12, 111-123.	20.2	38
251	Reaction Kinetics of Methane Oxidation over LaCr1â^'xNixO3Perovskite Catalysts. Journal of Catalysis, 1997, 166, 324-332.	6.2	39
252	The Reaction Mechanism of the Partial Oxidation of Methane to Synthesis Gas: A Transient Kinetic Study over Rhodium and a Comparison with Platinum. Journal of Catalysis, 1997, 167, 43-56.	6.2	143
253	Reaction Network and Kinetics of Propane Oxydehydrogenation over Nickel Cobalt Molybdate. Journal of Catalysis, 1997, 167, 560-569.	6.2	75
254	The role of bulk H and C species in the chain lengthening of Fischer-Tropsch synthesis over nickel. Catalysis Letters, 1997, 45, 221-226.	2.6	20
255	Reactivity and stability of vanadium oxide catalysts for the oxidation of butan-2-ol by hydrogen peroxide. Applied Catalysis A: General, 1997, 151, 409-422.	4.3	12
256	Vanadium phosphorus oxides for n-butane oxidation to maleic anhydride. Applied Catalysis A: General, 1997, 157, 173-193.	4.3	85
257	V2O5î—,MoO3 catalysts for benzene oxidation. Applied Catalysis A: General, 1997, 157, 223-261.	4.3	99
258	Structure and reactivity of surface vanadium oxide species on oxide supports. Applied Catalysis A: General, 1997, 157, 67-90.	4.3	636

#	Article	IF	CITATIONS
259	The effects of steam on n-butane oxidation over VPO as studied in a riser reactor. Catalysis Today, 1997, 37, 51-57.	4.4	41
260	Characteristic features of Raman band shifts of vanadium oxide catalysts exchanged with the 18O tracer and active sites for reoxidation. Journal of Molecular Catalysis A, 1997, 116, 421-429.	4.8	12
261	Structure–activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coordination Chemistry Reviews, 1998, 178-180, 1753-1783.	18.8	207
262	Oxidative dehydrogenation of ethane over Cr/TiO2 modified by phosphorus. Catalysis Letters, 1998, 56, 221-225.	2.6	31
263	The CO2–CeO2 interaction and its role in the CeO2 reactivity. Catalysis Letters, 1998, 56, 199-202.	2.6	72
264	Determination of surface V=O species of V2O5 catalysts during reaction condition by using in-situ Narp technique. Research on Chemical Intermediates, 1998, 24, 425-437.	2.7	0
265	The Protonation of MoO3during the Partial Oxidation of Alcohols. Journal of Catalysis, 1998, 173, 219-228.	6.2	49
266	Mo–V–Nb Oxide Catalysts for the Partial Oxidation of Ethane. Journal of Catalysis, 1998, 175, 27-39.	6.2	89
267	Structure and Reactivity of PdOx/ZrO2Catalysts for Methane Oxidation at Low Temperatures. Journal of Catalysis, 1998, 179, 431-442.	6.2	455
268	Transition Metal Oxide Catalyzed Carbon Black Oxidation: A Study with18O2. Journal of Catalysis, 1998, 179, 258-266.	6.2	95
269	Chromium Oxide/Alumina Catalysts in Oxidative Dehydrogenation of Isobutane. Journal of Catalysis, 1998, 178, 687-700.	6.2	205
270	The Dynamic Restructuring of Electrolytic Silver during the Formaldehyde Synthesis Reaction. Journal of Catalysis, 1998, 179, 548-559.	6.2	83
271	The Morphological Evolution of the MoO3(010) Surface during Reactions in Methanol–Air Mixtures. Journal of Catalysis, 1998, 180, 270-278.	6.2	27
272	The effect of deactivation of a V2O5/TiO2 (anatase) industrial catalyst on reactor behaviour during the partial oxidation of o-xylene to phthalic anhydride. Applied Catalysis A: General, 1998, 170, 33-48.	4.3	29
273	Reducibility of undoped and Cs-doped α-NiMoO4 catalysts: Kinetic effects in the oxidative dehydrogenation of n-butane. Catalysis Today, 1998, 40, 229-243.	4.4	41
274	Improvement of a Bulk Optical Basicity Table for Oxidic Systems. Journal of Solid State Chemistry, 1998, 137, 94-103.	2.9	108
275	Principal relationships of the heterogeneous catalytic oxidation of benzene and its derivatives. Theoretical and Experimental Chemistry, 1998, 34, 119-133.	0.8	2
276	Redox features of β-VOPO4 catalyst using 18O tracer and laser Raman spectroscopy. Journal of Molecular Catalysis A, 1998, 130, 261-269.	4.8	6

		CITATION RE	PORT	
# 277	ARTICLE Forty years in CATALYSIS: what have we learned?. Journal of Molecular Catalysis A, 1998	. 133. 221-239.	IF 4.8	Citations
278	Redox properties and catalytic activity of SO42â^'ZrO2 catalysts for n-butane isomeriza transition metal cation promoters. Applied Catalysis A: General, 1998, 167, 75-84.		4.3	66
279	Catalytic and electrical behaviour of Li0.9Ni0.5Co0.5O2â^î^ below 400°C. Applied Cata 1998, 167, 225-235.	alysis A: General,	4.3	1
280	Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese o Catalysis A: General, 1998, 173, 61-74.	xide. Applied	4.3	59
281	The kinetics of the catalytic incineration of CH3SH and (CH3)2S over a Pt/Al2O3 catalys Total Environment, 1998, 209, 149-156.	t. Science of the	8.0	8
282	Reduction of benzoic acid on CeO2 and, the effect of additives. Applied Catalysis A: Ger 173-184.	eral, 1998, 166,	4.3	43
283	Surface potential study of adsorbed oxygen species on aerogel Cr2O3–Al2O3catalyst oxidation. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 455-458.	in toluene	1.7	8
284	Structural Changes of Surface Layer of Vanadyl Pyrophosphate Catalysts by Oxidationa Their Relationships with Selective Oxidation ofn-Butane. Journal of the American Chemic 1998, 120, 767-774.	'Reduction and al Society,	13.7	51
285	Decomposition of Dimethyl Methylphosphonate (DMMP) on Alumina-Supported Iron O: Physical Chemistry B, 1998, 102, 7299-7302.	kide. Journal of	2.6	57
286	Light-off performance over cobalt oxide- and ceria-promoted platinum and palladium cat Studies in Surface Science and Catalysis, 1998, , 113-122.	ralysts.	1.5	1
287	Kinetics and mechanism of the selective oxidation and degradation of n-butane over nic catalysts. Studies in Surface Science and Catalysis, 1998, , 611-616.	kel molybdate	1.5	3
288	The catalytic incineration of ethyl mercaptan over a MnO/Fe2O3catalyst. Journal of Envi Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 1119-1148.		1.7	9
289	Lattice oxide ion-transfer effect demonstrated in the selective oxidation of propene over silica-supported bismuth molybdate catalysts. Applied Catalysis A: General, 1999, 176, 1	.1-16.	4.3	28
290	Sol–gel bismuth–molybdenum–titanium mixed oxides. Applied Catalysis A: Gener	al, 1999, 179, 189-202.	4.3	8
291	Kinetics of the reduction of aromatic nitro compounds with hydrazine hydrate in the pre iron oxide hydroxide catalyst. Applied Catalysis A: General, 1999, 183, 325-333.	sence of an	4.3	29
292	A study of the structure sensitivity of the exchange of oxygen with the surface of magne Journal of Molecular Catalysis A, 1999, 141, 171-176.	esium oxide.	4.8	3
293	Combustion of methane over palladium/zirconia: effect of Pd-particle size and role of lat Catalysis Today, 1999, 47, 245-252.	tice oxygen.	4.4	144
294	Characteristics of iron phosphate as a catalyst for partial oxidation. Catalysis Today, 199	99, 52, 65-69.	4.4	29

# 295	ARTICLE Combined kinetic and potentiometric measurements of the reduction of nitrogen monoxide on vanadia titania catalysts. Chemical Engineering and Processing: Process Intensification, 1999, 38, 571-577.	IF 3.6	Citations 3
296	Time on stream behaviour in the (amm)oxidation of propene/propane over iron antimony oxide: cyclic operation. Catalysis Today, 1999, 49, 155-160.	4.4	16
297	The catalytic decomposition of CHF3 over ZrO2-SO4. Catalysis Today, 1999, 54, 13-22.	4.4	40
298	Oxidative Dehydrogenation of 1-Butene over Manganese Oxide Octahedral Molecular Sieves. Journal of Catalysis, 1999, 184, 305-315.	6.2	42
299	lsotopic Studies of Methane Oxidation Pathways on PdO Catalysts. Journal of Catalysis, 1999, 188, 132-139.	6.2	92
300	The Role of Subsurface Oxygen in the Silver-Catalyzed, Oxidative Coupling of Methane. Journal of Catalysis, 1999, 188, 58-68.	6.2	102
301	The Role of Active Oxygen in the AMM-V Si-Catalysed Selective Oxidation of Toluene. Journal of Catalysis, 1999, 188, 154-164.	6.2	39
302	Title is missing!. Catalysis Letters, 1999, 62, 71-78.	2.6	21
303	Title is missing!. Catalysis Letters, 1999, 63, 65-71.	2.6	12
304	Influence of the nanostructure and morphology of (VO)2P2O7 on its catalytic reactivity. Catalysis Letters, 1999, 57, 81-88.	2.6	29
305	Title is missing!. Catalysis Letters, 1999, 61, 173-178.	2.6	5
306	Generation of superoxide ions at oxide surfaces. Topics in Catalysis, 1999, 8, 189-198.	2.8	312
307	Selective oxidation of H2S to elemental sulfur over chromium oxide catalysts. Applied Catalysis B: Environmental, 1999, 22, 293-303.	20.2	76
308	Selective reduction of nitric oxide by methanol and dimethyl ether over promoted alumina catalysts in excess oxygen. Applied Catalysis B: Environmental, 1999, 23, 235-246.	20.2	33
310	Konzentrationsprogrammierte Reaktionstechnik - Eine Methode zur Beurteilung des Anwendungspotentials instationĀær ProzeĀŸf¼hrungen bei Partialoxidationen. Chemie-Ingenieur-Technik, 1999, 71, 226-230.	0.8	17
311	Partial Oxidation in the Integral Reactor: Possibilities of a Mathematical Description. Chemical Engineering and Technology, 1999, 22, 817-822.	1.5	2
312	New Catalysts Active for the Mild Oxidation of Hydrogen Sulfide to Sulfur. Journal of Catalysis, 1999, 187, 385-391.	6.2	8
313	Chapter 5 Heterogeneous catalysis. Studies in Surface Science and Catalysis, 1999, 123, 209-287.	1.5	3

#	Article	IF	CITATIONS
314	Structure sensitivity of the hydrocarbon combustion reaction over alumina-supported platinum catalysts. Studies in Surface Science and Catalysis, 2000, 130, 575-580.	1.5	6
317	Low-Temperature Activation of Dioxygen and Hydrocarbon Oxidation Catalyzed by a Phosphovanadomolybdate: Evidence for a Mars–vanâ€Krevelen Type Mechanism in a Homogeneous Liquid Phase. Angewandte Chemie - International Edition, 2000, 39, 4088-4090.	13.8	80
318	Oxidosqualene Cyclase Residues that Promote Formation of Cycloartenol, Lanosterol, and Parkeol. Angewandte Chemie - International Edition, 2000, 39, 4090-4092.	13.8	33
319	Ammoxidation and oxidation of substituted methyl aromatics on vanadium-containing catalysts. Catalysis Today, 2000, 57, 61-70.	4.4	111
320	In situ vibrational spectroscopic investigation of surface redox process of vanadyl pyrophosphate. Journal of Molecular Catalysis A, 2000, 155, 31-41.	4.8	16
321	The role of structural chemistry of selective catalysts in heterogeneous mild oxidation catalysis of hydrocarbons. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 725-733.	0.1	16
322	Characterization of K-mixed V2O5 catalyst and oxidative dehydrogenation of propane on it. Journal of Molecular Catalysis A, 2000, 159, 293-300.	4.8	24
323	The universal character of the Mars and Van Krevelen mechanism. Journal of Molecular Catalysis A, 2000, 162, 19-32.	4.8	475
324	Molybdenum oxide based partial oxidation catalyst: 1. Thermally induced oxygen deficiency, elemental and structural heterogeneity and the relation to catalytic performance. Journal of Molecular Catalysis A, 2000, 162, 463-492.	4.8	90
325	Identification of vanadium species involved in sequential redox operation of VPO catalysts. Applied Catalysis A: General, 2000, 201, 203-213.	4.3	49
326	TiO2 supported vanadyl phosphate as catalyst for oxidative dehydrogenation of ethane to ethylene. Applied Catalysis A: General, 2000, 203, 133-142.	4.3	46
327	Dynamic phenomena and catalytic reactivities of oxide surfaces. Applied Catalysis A: General, 2000, 202, 265-283.	4.3	25
328	The behavior of Cu/ZSM-5 in the oxide and reduced form in the presence of NO and methanol. Applied Catalysis A: General, 2000, 193, 265-276.	4.3	86
329	Catalytic nitroxidation of toluene into benzonitrile on chromia–alumina aerogel catalyst. Applied Catalysis A: General, 2000, 197, 269-277.	4.3	10
330	Catalytic and non-catalytic formation of 4,4′-dimethylbiphenyl using p-chlorotoluene. Applied Catalysis A: General, 2000, 194-195, 341-357.	4.3	4
331	Physico-chemical properties of V-Sb-oxide systems and their catalytic behaviour in oxidative dehydrogenation of light paraffins. Catalysis Today, 2000, 61, 325-331.	4.4	24
332	Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts. Catalysis Today, 2000, 62, 189-199.	4.4	136
333	Ion oxide conductor as a catalytic membrane for selective oxidation of hydrocarbons. Catalysis Letters, 2000, 66, 129-138.	2.6	15

#	Article	IF	CITATIONS
334	Title is missing!. Catalysis Letters, 2000, 69, 71-78.	2.6	21
335	Methane activation by surface oxygen in calcia-stabilized zirconia. Catalysis Letters, 2000, 68, 203-208.	2.6	3
336	Title is missing!. Topics in Catalysis, 2000, 10, 241-254.	2.8	73
337	A Study of theÂKinetics and Mechanism of the Adsorption and Anaerobic Partial Oxidation of n-Butane over a Vanadyl Pyrophosphate Catalyst. Journal of Catalysis, 2000, 189, 253-262.	6.2	25
338	V2O5/TiO2 Catalysts for the Vapor-Phase Oxidation of β-Picoline: Influence of the TiO2-Carrier. Journal of Catalysis, 2000, 192, 1-10.	6.2	44
339	Selective Oxidation of H2S over CuO/Al2O3: Identification and Role of the Sulfurated Species formed on the Catalyst during the Reaction. Journal of Catalysis, 2000, 189, 63-69.	6.2	44
340	Time-Resolved XAS Investigation of the Reduction/Oxidation of MoO3â^'x. Journal of Catalysis, 2000, 191, 75-85.	6.2	111
341	Kinetics and Mechanism of the N2O Reduction by NH3 on a Fe-Zeolite-Beta Catalyst. Journal of Catalysis, 2000, 195, 298-303.	6.2	73
342	Simultaneous Determination of Reaction Kinetics and Oxygen Activity in an Oxidic Multicomponent Catalyst during Partial Oxidations. Journal of Catalysis, 2000, 195, 38-45.	6.2	6
343	Title is missing!. Topics in Catalysis, 2000, 11/12, 61-65.	2.8	6
344	Thirty years in selective oxidation on oxides: what have we learned?. Topics in Catalysis, 2000, 11/12, 23-42.	2.8	123
345	Behavior of Lattice Oxygen in Mixtures of V2O5and Bi2O3. Langmuir, 2000, 16, 1109-1113.	3.5	8
346	Oxidation of toluene to benzaldehyde over VSb1-xTixO4 catalyst. Kinetics studies Studies in Surface Science and Catalysis, 2000, 130, 1733-1738.	1.5	1
347	Mastering the chemical state of Mo at the surface of oxide catalysts in the selective oxidation of hydrocarbons: Towards a fine optimization of the catalytic performances. Studies in Surface Science and Catalysis, 2000, , 1697-1702.	1.5	0
348	Dispersed Pd-Ag alloys for selective production of olefins from chlorinated alkanes. Studies in Surface Science and Catalysis, 2000, , 2015-2020.	1.5	5
349	Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface. Science, 2000, 287, 1474-1476.	12.6	829
350	State and Reactivity of Lattice Oxygen Ions in Mixed Feâ^'Mo Oxides. Langmuir, 2000, 16, 1440-1443.	3.5	11
351	Interaction of surface- and bulk-oxygen in Mo/V-mixed oxides during the partial oxidation of an unsaturated Aldehyde. Studies in Surface Science and Catalysis, 2000, , 1739-1744.	1.5	1

		CITATION	Report	
#	Article		IF	CITATIONS
352	Active sites on oxides: From single crystals to catalysts. Advances in Catalysis, 2000, 45,	261-331.	0.2	90
353	Surface structures of oxides and halides and their relationships to catalytic properties. Ac Catalysis, 2001, , 265-397.	lvances in	0.2	68
354	New Aspects of the Mechanisms of Selective Oxidation and Structure/Activity Relationsh Fundamental and Applied Catalysis, 2001, , 363-495.	ips.	0.9	5
355	Rationalization of the Catalytic Behavior of Lanthanide Oxides and Praseodymium Molyb and Selective Oxidation of Isobutene. Journal of Physical Chemistry B, 2001, 105, 12355	dates in Total ·12363.	2.6	43
356	Electron and Oxygen Transfer in Polyoxometalate, H5PV2Mo10O40, Catalyzed Oxidatior and Alkyl Aromatic Compounds:Â Evidence for Aerobic Marsâ^'van Krevelen-Type Reactio Homogeneous Phase. Journal of the American Chemical Society, 2001, 123, 8531-8542.	ו of Aromatic ns in the Liquid	13.7	174
357	Selective Oxidation of CO, over Supported Au Catalysts. Journal of Catalysis, 2001, 199,	48-59.	6.2	333
358	The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst. Science of th Environment, 2001, 275, 83-93.	ie Total	8.0	46
359	Relationship between Structure of CeNiXOY Mixed Oxides and Catalytic Properties in Ox Dehydrogenation of Propane. Langmuir, 2001, 17, 1511-1517.	idative	3.5	47
360	Epitaxial Growth of RuO2(100) on Ru(101̄0):  Surface Structure and Other Propert Physical Chemistry B, 2001, 105, 2205-2211.	ies. Journal of	2.6	72
361	Direct Imaging of Catalytically Important Processes in the Oxidation of CO over RuO2(11 the American Chemical Society, 2001, 123, 11807-11808.	.0). Journal of	13.7	59
362	A FT-IR Study of the Reactivity of Tungsta-Supported Catalysts toward Butan-2-ol. Langm 6968-6973.	uir, 2001, 17,	3.5	12
363	Deactivation of Chromium Oxide Catalyst for the Removal of Perchloroethylene (PCE). St Surface Science and Catalysis, 2001, 139, 173-180.	cudies in	1.5	14
364	Self Sustained Oscillations over Copper in the Catalytic Oxidation of Methanol. Studies in Science and Catalysis, 2001, 133, 57-70.	ו Surface	1.5	4
365	Solid state kinetics of the oxidation of MoO2 investigated by time-resolved X-ray absorpt spectroscopy. Solid State Communications, 2001, 119, 169-174.	ion	1.9	28
366	Hydrogenolysis of organohalogen compounds over palladium supported catalysts. Journa Molecular Catalysis A, 2001, 173, 329-345.	al of	4.8	313
367	Oxidation of toluene to benzaldehyde over VSb0.8Ti0.2O4Effect of the operating condit Today, 2001, 64, 179-187.	ions. Catalysis	4.4	22
368	Methane catalytic combustion on La-based perovskite catalysts. Comptes Rendus De L'A Sciences - Series IIc: Chemistry, 2001, 4, 49-55.	cademie Des	0.1	8
369	Effects of copper on the activity of sulfated zirconia catalysts for n-pentane isomerization Catalysis A: General, 2001, 209, 165-177.	n. Applied	4.3	20

#	Article	IF	CITATIONS
370	Selective oxidation of H2S to elemental sulfur over VOx/SiO2 and V2O5 catalysts. Applied Catalysis A: General, 2001, 211, 213-225.	4.3	63
371	Kinetics of propane combustion over La0.66Sr0.34Ni0.3Co0.7O3 perovskite. Applied Catalysis A: General, 2001, 213, 113-121.	4.3	60
372	Oxidative dehydrogenation of propane over V2O5/TiO2/SiO2 catalysts obtained by grafting titanium and vanadium alkoxides on silica. Applied Catalysis A: General, 2001, 214, 203-212.	4.3	44
373	XPS characterisation of iron-modified vanadyl phosphate catalysts. Applied Catalysis A: General, 2001, 218, 129-137.	4.3	22
374	Heterogeneous catalysis on the atomic scale. Chemical Record, 2001, 1, 33-45.	5.8	66
375	Catalytic Decomposition of 2-Propanol over Different Metal-Cation-Doped OMS-2 Materials. Journal of Catalysis, 2001, 197, 292-302.	6.2	99
376	Palladium–Silver Sol–Gel Catalysts for Selective Hydrodechlorination of 1,2-Dichloroethane into Ethylene. Journal of Catalysis, 2001, 200, 309-320.	6.2	61
377	Selective Ammoxidation of Isobutylene to Methacrylonitrile on a New Family of Crystalline Re–Sb–O Catalysts. Journal of Catalysis, 2001, 200, 69-78.	6.2	32
378	Mo Oxidation State of Cd, Fe, and Ag Catalysts Under Propane Mild Oxidation Reaction Conditions. Journal of Catalysis, 2001, 200, 360-369.	6.2	3
379	High-Yield Butane to Maleic Anhydride Direct Oxidation on Vanadyl Pyrophosphate Supported on Heat-Conductive Materials: β-SiC, Si3N4, and BN. Journal of Catalysis, 2001, 203, 495-508.	6.2	81
380	Title is missing!. Topics in Catalysis, 2001, 16/17, 425-431.	2.8	38
381	Title is missing!. Topics in Catalysis, 2001, 15, 219-228.	2.8	63
382	Title is missing!. Magyar Apróvad Közlemények, 2001, 63, 267-277.	1.4	9
383	Title is missing!. Kinetics and Catalysis, 2001, 42, 574-581.	1.0	16
384	Title is missing!. Magyar Apróvad Közlemények, 2001, 66, 63-78.	1.4	15
385	A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catalysis Today, 2001, 64, 69-81.	4.4	170
386	Structure and reactivity of ultrafine Ce–Mo oxide particles. Catalysis Today, 2001, 68, 75-82.	4.4	14
387	Correlation with the redox V5+/V4+ ratio in vanadium phosphorus oxide catalysts for mild oxidation of n-butane to maleic anhydride. Catalysis Today, 2001, 71, 121-128.	4.4	56

#	Article	IF	CITATIONS
388	The influence of CO2, C3H6, NO, H2, H2O or SO2 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4). Applied Catalysis B: Environmental, 2001, 31, 1-12.	20.2	50
389	Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies. Applied Catalysis B: Environmental, 2001, 35, 21-30.	20.2	41
390	The Kinetics of Catalytic Incineration of Dimethyl Sulfide and Dimethyl Disulfide over an MnO/Fe2O3 Catalyst. Journal of the Air and Waste Management Association, 2001, 51, 574-581.	1.9	6
391	Synergy effect between copper and manganese oxides in hopcalite catalysts. Studies in Surface Science and Catalysis, 2001, 138, 315-322.	1.5	12
392	Adsorption characteristics ofCOandN2onRuO2(110). Physical Review B, 2001, 63, .	3.2	35
393	THE KINETICS OF CATALYTIC INCINERATION OF (CH3)2S2OVER THE CuO–MoO3/γ-Al2O3CATALYST. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1649-1663.	1.7	6
394	Unique Performance and Characterization of a Crystalline SbRe2O6 Catalyst for Selective Ammoxidation of Isobutane. Journal of Physical Chemistry B, 2002, 106, 2319-2329.	2.6	26
395	Reactions of Vanadium Oxide Cluster Ions with 1,3-Butadiene and Isomers of Buteneâ€. Journal of Physical Chemistry A, 2002, 106, 9893-9899.	2.5	55
396	FT-IR Spectroscopic Study of the Oxidation of Chlorobenzene over Mn-Based Catalyst. Langmuir, 2002, 18, 6229-6232.	3.5	57
397	IR Investigation of the Oxidation of Propane and Likely C3 and C2 Products over Group IVB Metal Oxide Catalysts. Journal of Physical Chemistry B, 2002, 106, 12747-12756.	2.6	71
398	Oxidation of Methanol to Formaldehyde Catalyzed by V2O5. A Density Functional Theory Study. Journal of Physical Chemistry B, 2002, 106, 9659-9667.	2.6	23
399	Catalytic oxidative dehydrogenation ofn-butane. Catalysis Reviews - Science and Engineering, 2002, 44, 247-286.	12.9	142
400	Investigation of the Mechanism of n-Butane Oxidation on Vanadium Phosphorus Oxide Catalysts: Evidence from Isotopic Labeling Studies. Journal of the American Chemical Society, 2002, 124, 1638-1652.	13.7	66
401	Oxide solid solutions as catalysts. Advances in Catalysis, 2002, , 141-306.	0.2	44
402	Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. Journal of Physical Chemistry B, 2002, 106, 5421-5427.	2.6	114
403	Experimental and computational study of the gas-sensor behaviour and surface chemistry of the solid-solution Cr2–xTixO3 (x ≤0.5). Journal of Materials Chemistry, 2002, 12, 667-675.	6.7	80
404	The promoter effect and a rate expression of the catalytic incineration of (CH3)2S2 over an improved CuO–MoO3/γ-Al2O3 catalyst. Chemosphere, 2002, 49, 389-394.	8.2	25
405	Adsorption of molecular and atomic hydrogen on vacuum-cleaved V2O5(). Surface Science, 2002, 496, 64-72.	1.9	67

#	Article	IF	CITATIONS
406	Complex redox chemistry on the RuO2() surface: experiment and theory. Surface Science, 2002, 505, 137-152.	1.9	56
407	CO Oxidation on Pt(110): Scanning Tunneling Microscopy Inside a High-Pressure Flow Reactor. Physical Review Letters, 2002, 89, 046101.	7.8	448
408	Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on Î ³ -alumina catalyst. Applied Catalysis B: Environmental, 2002, 38, 139-149.	20.2	223
409	High energy states of goldand their importance in electrocatalytic processes at surfaces and interfaces. Gold Bulletin, 2002, 35, 3-10.	2.7	32
410	New evidences of redox mechanism in n-butane oxidative dehydrogenation over undoped and Cs-doped nickel molybdates. Applied Catalysis A: General, 2002, 235, 1-10.	4.3	11
411	Kinetics of the propane oxidative dehydrogenation on vanadia/titania catalysts from steady-state and transient experiments. Applied Catalysis A: General, 2002, 232, 277-288.	4.3	47
412	Evaluation and characterization of Sm-V-O catalytic system for propane oxydehydrogenation: Sm2O3-impregnated V2O5 catalysts. Applied Catalysis A: General, 2002, 234, 245-258.	4.3	15
413	Effect of treatments on gold nanoparticles. Catalysis Today, 2002, 72, 101-105.	4.4	90
414	Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Progress in Surface Science, 2002, 70, 1-151.	8.3	558
415	Catalytic Partial Oxidation of Ethane to Acetic Acid over Mo1V0.25Nb0.12Pd0.0005Ox. Journal of Catalysis, 2002, 205, 32-43.	6.2	45
416	Carbon Efficiency and the Surface Chemistry of the Actinides: Direct Formation of Furan from Acetylene over β-UO3. Journal of Catalysis, 2002, 206, 155-158.	6.2	21
417	Simultaneous Determination of Reaction Kinetics and Oxygen Activity in Single-Phase Oxidic Catalysts and Their Mixture during Partial Oxidations. Journal of Catalysis, 2002, 209, 177-185.	6.2	7
418	Title is missing!. Catalysis Letters, 2002, 78, 273-279.	2.6	43
419	Surface Doping of Rutile by Vanadium. Topics in Catalysis, 2002, 20, 75-83.	2.8	6
420	Fundamental Principles of Selective Heterogeneous Oxidation Catalysis. Topics in Catalysis, 2002, 21, 79-88.	2.8	399
421	Title is missing!. Topics in Catalysis, 2002, 21, 97-106.	2.8	100
422	Reactivity of V2O5/MgF2 Catalysts for the Selective Ammoxidation of 3-Picoline. Catalysis Letters, 2002, 84, 27-30.	2.6	18
423	Title is missing!. Catalysis Letters, 2003, 88, 175-181.	2.6	22

#	Article	IF	CITATIONS
424	Study of cesium phospho(vanado)molybdates active in the oxidative dehydrogenation of cyclohexane. Reaction Kinetics and Catalysis Letters, 2003, 79, 357-364.	0.6	1
425	Oxidative Dehydrogenation of Ethane Over Novel Li/Dy/Mg Mixed Oxides: Structure–Activity Study. Topics in Catalysis, 2003, 23, 151-158.	2.8	41
426	Catalytic Combustion of Volatile Organic Compounds on Supported Precious Metal Catalysts. Topics in Catalysis, 2003, 23, 159-162.	2.8	43
427	A microkinetic model of the methanol oxidation over silver. Surface Science, 2003, 544, 5-23.	1.9	55
428	Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2â^'y catalyst. Journal of Catalysis, 2003, 213, 135-150.	6.2	295
429	New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis, 2003, 216, 333-342.	6.2	115
430	Evolution of Defects in the Bulk Structure of MoO3 During the Catalytic Oxidation of Propene. European Journal of Inorganic Chemistry, 2003, 2003, 301-312.	2.0	37
431	Study of the hypophosphite effect on the electrochemical reduction of nitrobenzene on Ni. Electrochimica Acta, 2003, 48, 1829-1835.	5.2	27
432	Alumina-supported vanadyl phosphates catalysts for the oxidative dehydrogenation of ethane: an XPS characterisation. Applied Surface Science, 2003, 211, 216-226.	6.1	12
433	Recent developments in the selective oxidation of propane to acrylic and acetic acids. Catalysis Today, 2003, 81, 247-262.	4.4	53
434	Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach. Catalysis Today, 2003, 81, 337-345.	4.4	50
435	Oxidative dehydrogenation of propane using V2O5/TiO2/SiO2 catalysts prepared by grafting titanium and vanadium alkoxides on silica. Journal of Molecular Catalysis A, 2003, 198, 151-165.	4.8	38
436	The role of bulk oxide ion in the catalytic oxidation reaction over metal oxide catalyst. Journal of Molecular Catalysis A, 2003, 199, 139-148.	4.8	41
437	Support effect in hydrogenation of methyl benzoate over supported manganese oxide catalysts. Journal of Molecular Catalysis A, 2003, 203, 299-306.	4.8	16
438	Gas sensing properties of PLD made MoO3 films. Sensors and Actuators B: Chemical, 2003, 94, 189-196.	7.8	106
439	Catalytic oxidation of methanol to formaldehyde: an example of kinetics with transport phenomena in a packed-bed reactor. Catalysis Today, 2003, 77, 325-333.	4.4	16
440	The effect of varying the duration of the butane/air pretreatment on the morphology and reactivity of (VO)2P2O7 catalysts. Catalysis Today, 2003, 81, 215-225.	4.4	15
441	Vanadium antimonate as a partial oxidation catalyst. Applied Catalysis A: General, 2003, 250, 279-285.	4.3	19

#	Article	IF	CITATIONS
442	Effects of O2Concentration on the Rate and Selectivity in Oxidative Dehydrogenation of Ethane Catalyzed by Vanadium Oxide:Â Implications for O2Staging and Membrane Reactors. Industrial & Engineering Chemistry Research, 2003, 42, 5462-5466.	3.7	16
443	Decomposition of Dimethyl Methylphosphonate (DMMP) on Supported Cerium and Iron Co-Impregnated Oxides at Room Temperature. Journal of Physical Chemistry B, 2003, 107, 580-586.	2.6	52
444	Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+nVnMo12-nPO40Keggin Structures. Journal of Physical Chemistry B, 2003, 107, 10840-10847.	2.6	142
445	In situ DRIFTS study of picoline oxidation over CrV0.95P0.05O4 catalyst. Physical Chemistry Chemical Physics, 2003, 5, 2710.	2.8	15
446	X-Ray absorption and X-ray diffraction studies on molybdenum doped vanadium pentoxide. Physical Chemistry Chemical Physics, 2003, 5, 4317-4324.	2.8	24
447	Composition and structure of theRuO2(110)surface in anO2and CO environment: Implications for the catalytic formation ofCO2. Physical Review B, 2003, 68, .	3.2	442
448	Stability of reducedV2O5(001)surfaces. Physical Review B, 2004, 70, .	3.2	119
449	Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Applied Catalysis B: Environmental, 2004, 48, 267-274.	20.2	201
450	Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 2004, 50, 153-159.	20.2	124
451	Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 2004, 50, 161-166.	20.2	47
451 452		20.2 2.6	47 8
	Environmental, 2004, 50, 161-166. Low-Temperature Combustion of CH4over CeO2–MOxSolid Solution (M = Zr4+, La3+, Ca2+, or Mg2+)		
452	Environmental, 2004, 50, 161-166. Low-Temperature Combustion of CH4over CeO2–MOxSolid Solution (M = Zr4+, La3+, Ca2+, or Mg2+) Promoted Pd/γ–Al2O3Catalysts. Catalysis Letters, 2004, 95, 151-155. Kinetics of oxidative dehydrogenation of isobutyraldehyde over Cs2HPMo12O40catalyst. Reaction	2.6	8
452 453	 Environmental, 2004, 50, 161-166. Low-Temperature Combustion of CH4over CeO2–MOxSolid Solution (M = Zr4+, La3+, Ca2+, or Mg2+) Promoted Pd/γ–Al2O3Catalysts. Catalysis Letters, 2004, 95, 151-155. Kinetics of oxidative dehydrogenation of isobutyraldehyde over Cs2HPMo12O40catalyst. Reaction Kinetics and Catalysis Letters, 2004, 81, 383-391. Kinetics of interaction of toluene with a pre-oxidized vanadia/titania catalyst. Reaction Kinetics and 	2.6 0.6	8
452 453 454	 Environmental, 2004, 50, 161-166. Low-Temperature Combustion of CH4over CeO2–MOxSolid Solution (M = Zr4+, La3+, Ca2+, or Mg2+) Promoted Pd/γ–Al2O3Catalysts. Catalysis Letters, 2004, 95, 151-155. Kinetics of oxidative dehydrogenation of isobutyraldehyde over Cs2HPMo12O40catalyst. Reaction Kinetics and Catalysis Letters, 2004, 81, 383-391. Kinetics of interaction of toluene with a pre-oxidized vanadia/titania catalyst. Reaction Kinetics and Catalysis Letters, 2004, 82, 199-206. CH bond activation in the presence or absence of oxygen or nitrous oxide. Reaction Kinetics and 	2.6 0.6 0.6	8 1 1
452 453 454 455	 Environmental, 2004, 50, 161-166. Low-Temperature Combustion of CH4over CeO2–MOxSolid Solution (M = Zr4+, La3+, Ca2+, or Mg2+) Promoted Pd/l³â€"Al2O3Catalysts. Catalysis Letters, 2004, 95, 151-155. Kinetics of oxidative dehydrogenation of isobutyraldehyde over Cs2HPMo12O40catalyst. Reaction Kinetics and Catalysis Letters, 2004, 81, 383-391. Kinetics of interaction of toluene with a pre-oxidized vanadia/titania catalyst. Reaction Kinetics and Catalysis Letters, 2004, 82, 199-206. CH bond activation in the presence or absence of oxygen or nitrous oxide. Reaction Kinetics and Catalysis Letters, 2004, 82, 401-409. Role of preparation parameters on the structure–selectivity properties of MoO3/Al2O3 catalysts for 	2.6 0.6 0.6	8 1 1 8
452 453 454 455 456	 Environmental, 2004, 50, 161-166. Low-Temperature Combustion of CH4over CeO2–MOxSolid Solution (M = Zr4+, La3+, Ca2+, or Mg2+) Promoted Pd/l³â€"Al2O3Catalysts. Catalysis Letters, 2004, 95, 151-155. Kinetics of oxidative dehydrogenation of isobutyraldehyde over Cs2HPMo12O4Ocatalyst. Reaction Kinetics and Catalysis Letters, 2004, 81, 383-391. Kinetics of interaction of toluene with a pre-oxidized vanadia/titania catalyst. Reaction Kinetics and Catalysis Letters, 2004, 82, 199-206. CH bond activation in the presence or absence of oxygen or nitrous oxide. Reaction Kinetics and Catalysis Letters, 2004, 82, 401-409. Role of preparation parameters on the structure–selectivity properties of MoO3/Al2O3 catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 2004, 91-92, 289-292. Oxide formation at the surface of late 4d transition metals: insights from first-principles atomistic 	2.6 0.6 0.6 4.4	8 1 1 8 25

~	_
	Report
C11/1	

#	Article	IF	CITATIONS
460	The selective adsorption/reaction of methanol over nanosize uranium oxide crystallites dispersed in MCM-48: FT-IR and TPD studies. Journal of Molecular Catalysis A, 2004, 223, 251-257.	4.8	11
461	Structure and reaction studies on vanadium molybdenum mixed oxides. Journal of Molecular Catalysis A, 2004, 216, 67-74.	4.8	24
462	CO oxidation over anatase TiO2-(001). Computational and Theoretical Chemistry, 2004, 709, 73-78.	1.5	47
463	Modeling catalytic reduction of NO by ammonia over V2O5. Surface Science Reports, 2004, 55, 169-236.	7.2	75
464	Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surface Science, 2004, 552, 229-242.	1.9	240
465	Electrical conductivity and gas sensing properties of MoO3. Sensors and Actuators B: Chemical, 2004, 101, 161-174.	7.8	223
466	Catalytic oxidative dehydrogenation of propane over Mg–V/Mo oxides. Journal of Catalysis, 2004, 223, 419-431.	6.2	69
467	An XPS study of titania-supported vanadyl phosphate catalysts for the oxidative dehydrogenation of ethane. Applied Catalysis A: General, 2004, 267, 157-164.	4.3	30
468	Oxidation of C2–C4 hydrocarbons over MoO3 and V2O5 supported on a YSZ-aided membrane reactor. Applied Catalysis A: General, 2004, 273, 133-141.	4.3	7
469	Oxidation of C2–C4 alkanes over MoO3–V2O5 supported on a YSZ-aided membrane reactor. Applied Catalysis A: General, 2004, 277, 209-217.	4.3	11
470	Influence of the reduction state in the bulk and at the surface on the behavior of MoO3 catalysts in the reaction of 2-butanol (dehydration versus oxidation) in the presence of oxygen. Catalysis Today, 2004, 91-92, 105-110.	4.4	12
471	On the role of monomeric vanadyl species in toluene oxidation over V2O5/TiO2 catalysts: a kinetic study using the TAP reactor. Catalysis Today, 2004, 91-92, 143-147.	4.4	22
472	Reduction over zeolite-based catalysts of nitrogen oxides in emissions containing excess oxygen. Catalysis Today, 2004, 96, 1-10.	4.4	55
473	Sulfation Mechanism and Catalytic Behavior of Manganese Oxide in the Oxidation of Methanethiol. Journal of Physical Chemistry B, 2004, 108, 9989-10001.	2.6	24
474	An FT-IR study of the adsorption and reactivity of ethanol on systems derived from Mg2Al–W7O246â~'layered double hydroxides. Physical Chemistry Chemical Physics, 2004, 6, 465-470.	2.8	14
475	Kinetics of the Oxidative Dehydrogenation of Ethanol to Acetaldehyde on V2O5/TiO2â^'SiO2 Catalysts Prepared by Grafting. Industrial & Engineering Chemistry Research, 2004, 43, 1623-1633.	3.7	43
476	NOxReduction from Diesel Emissions over a Nontransition Metal Zeolite Catalyst:Â A Mechanistic Study Using FTIR Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 5386-5404.	2.6	131
477	Kinetics and Mechanism of Dimethyl Ether Oxidation to Formaldehyde on Supported Molybdenum Oxide Domains. Journal of Physical Chemistry B, 2004, 108, 18650-18658.	2.6	29

#	Article	IF	CITATIONS
478	Solid Electrolyte Potentiometry Aided Studies of Oxidic Catalysts. Catalysis Reviews - Science and Engineering, 2004, 46, 1-29.	12.9	11
479	Abiotic Degradation of Pentachloronitrobenzene by Fe(II):Â Reactions on Goethite and Iron Oxide Nanoparticles. Environmental Science & Technology, 2004, 38, 4353-4360.	10.0	84
480	Nickel Molybdate Catalysts and Their Use in the Selective Oxidation of Hydrocarbons. Catalysis Reviews - Science and Engineering, 2004, 46, 53-110.	12.9	82
481	Preparations of C-Nitroso Compounds. Chemical Reviews, 2004, 104, 3315-3340.	47.7	183
482	Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 2004, 104, 3037-3058.	47.7	1,857
483	Basics of Oxidations. , 0, , 200-213.		1
484	CO Oxidation on a Pd/Fe3O4(111) Model Catalyst. Zeitschrift Fur Physikalische Chemie, 2004, 218, 905-914.	2.8	32
485	Mechanistic aspects of the oxidative dehydrogenation of propane over an alumina-supported VCrMnWOx mixed oxide catalyst. Catalysis Today, 2005, 99, 59-67.	4.4	28
486	The contribution of homogeneous and non-oxidative side reactions in the performance of vanadyl pyrophosphate, catalyst for the oxidation of n-butane to maleic anhydride, under hydrocarbon-rich conditions. Catalysis Today, 2005, 99, 115-122.	4.4	15
487	Reduction and re-oxidation of molybdena and vanadia: DFT cluster model studies. Catalysis Today, 2005, 99, 241-253.	4.4	36
488	Gas phase catalytic partial oxidation of toluene in a microchannel reactor. Catalysis Today, 2005, 110, 171-178.	4.4	38
489	In Situ XPS Studies of Perovskite Oxide Surfaces under Electrochemical Polarizationâ€. Journal of Physical Chemistry B, 2005, 109, 2445-2454.	2.6	76
490	Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental, 2005, 57, 191-199.	20.2	101
491	Cu/MCM-41 for selective catalytic NO reduction with NH3—comparison of different Cu-loading methods. Applied Catalysis B: Environmental, 2005, 58, 69-77.	20.2	34
492	Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Applied Catalysis B: Environmental, 2005, 58, 175-183.	20.2	221
493	In Situ XAS and XRD Studies on the Structural Evolution of Ammonium Paratungstate During Thermal Decomposition. European Journal of Inorganic Chemistry, 2005, 2005, 2124-2133.	2.0	22
494	Structural Characterization of Automotive Catalysts. Advanced Engineering Materials, 2005, 7, 899-913.	3.5	31
495	Coupling the deoxygenation of benzoic acid with the oxidation of propylene on a Co molybdate catalyst. Journal of Molecular Catalysis A, 2005, 237, 9-16.	4.8	10

#	Article	IF	CITATIONS
496	Kinetics of the partial oxidation of methanol over a Fe-Mo catalyst. Applied Catalysis A: General, 2005, 289, 240-255.	4.3	38
497	Cr, Mo and W used as VPO promoters in the partial oxidation of n-butane to maleic anhydride. Catalysis Today, 2005, 107-108, 323-329.	4.4	12
498	Looking at Heterogeneous Catalysis at Atmospheric Pressure Using Tunnel Vision. Topics in Catalysis, 2005, 36, 43-54.	2.8	74
499	Characterization of Mo-V-W Mixed Oxide Catalysts byex situ andin situ X-Ray Absorption Spectroscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 1289-1296.	1.2	22
500	Modeling Reactions on Uniform (Ideal) Surfaces. , 2005, , 141-207.		5
501	Reduction of the (001) Surface of Î ³ -V2O5Compared to α-V2O5. Journal of Physical Chemistry B, 2005, 109, 374-380.	2.6	19
502	Selective Oxidation of Methanol and Ethanol on Supported Ruthenium Oxide Clusters at Low Temperaturesâ€. Journal of Physical Chemistry B, 2005, 109, 2155-2163.	2.6	183
503	The kinetic of the catalytic decomposition of methyl isobutyl ketone over a Pt/γ-Al2O3 catalyst. Chemosphere, 2005, 61, 469-477.	8.2	15
504	Oxidative dehydrogenation of propane on TiO2 supported antimony oxide/vanadia catalysts. Catalysis Communications, 2005, 6, 1-5.	3.3	26
505	Surface-Mediated Formation of Polybrominated Dibenzo-p-dioxins and Dibenzofurans from the High-Temperature Pyrolysis of 2-Bromophenol on a CuO/Silica Surface. Environmental Science & Technology, 2005, 39, 4857-4863.	10.0	30
506	Oxidation of Methanol to Formaldehyde on Supported Vanadium Oxide Catalysts Compared to Gas Phase Molecules. Journal of the American Chemical Society, 2005, 127, 10861-10868.	13.7	187
507	Quantum Chemical Study of Mechanisms for Oxidative Dehydrogenation of Propane on Vanadium Oxide. Journal of Physical Chemistry B, 2006, 110, 8363-8371.	2.6	54
508	Selective Oxidation of Methacrolein towards Methacrylic Acid on Mixed Oxide (Mo, V, W) Catalysts. Part 2. Variation of Catalyst Composition and Comparison with Acrolein Oxidation. Industrial & Engineering Chemistry Research, 2006, 45, 8801-8806.	3.7	17
509	Catalytic Oxidation Activity of Pt3O4Surfaces and Thin Films. Journal of Physical Chemistry B, 2006, 110, 14860-14869.	2.6	133
510	Kinetics of Oxidative Dehydrogenation of C2 3Alkanes on Oxide Catalysts. Catalysis Reviews - Science and Engineering, 2006, 48, 199-268.	12.9	234
511	Molecular oxygen and oxidation catalysis by phosphovanadomolybdates. Chemical Communications, 2006, , 2529.	4.1	175
512	Selective Oxidation of Methacrolein towards Methacrylic Acid on Mixed Oxide (Mo, V, W) Catalysts. Part 1. Studies on Kinetics. Industrial & Engineering Chemistry Research, 2006, 45, 8794-8800.	3.7	22
513	Hydrogen Production from a Combination of the Waterâ^Gas Shift and Redox Cycle Process of Methane Partial Oxidation via Lattice Oxygen over LaFeO3Perovskite Catalyst. Journal of Physical Chemistry B, 2006, 110, 25856-25862.	2.6	87

#	Article	IF	CITATIONS
514	Reactivity of Small MoxOy-Clusters toward Methane and Ethane. Journal of Physical Chemistry A, 2006, 110, 2157-2164.	2.5	49
515	Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function. Nature Materials, 2006, 5, 44-47.	27.5	55
516	Kinetic modeling of the reoxidation of vanadia-based catalysts. Catalysis Today, 2006, 112, 68-72.	4.4	8
517	Synthesis of cyclic carbonates from epoxides: Use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propene. Catalysis Today, 2006, 115, 117-123.	4.4	25
518	Dispersion and reactivity of monolayer vanadium oxide catalysts supported on zirconia: The influence of molybdena addition. Journal of Molecular Catalysis A, 2006, 258, 313-319.	4.8	13
519	Surface texturing of Mo–V–Te–Nb–O x selective oxidation catalysts. Topics in Catalysis, 2006, 38, 51-58.	2.8	60
520	MoVW mixed metal oxides catalysts for acrylic acid production: from industrial catalysts to model studies. Topics in Catalysis, 2006, 38, 69-82.	2.8	43
521	The significance of defect chemistry for the rate of gas–solid reactions: three examples. Topics in Catalysis, 2006, 38, 141-145.	2.8	38
522	Catalytic dense membranes of doped Bi4V2O11 (BIMEVOX) for selective partial oxidation: chemistry of defects versus catalysis. Topics in Catalysis, 2006, 38, 169-179.	2.8	11
523	Monte Carlo simulation studies of the catalytic combustion of methane. Catalysis Letters, 2006, 112, 121-128.	2.6	10
524	Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream. Applied Catalysis B: Environmental, 2006, 65, 207-216.	20.2	179
525	Preparation, characterization and application of a new kind of mesoporous composite. Materials Chemistry and Physics, 2006, 96, 16-21.	4.0	11
526	Rapid Monitoring of the Nature and Interconversion of Supported Catalyst Phases and of Their Influence upon Performance: CO Oxidation to CO2 by γ-Al2O3 Supported Rh Catalysts. Chemistry - A European Journal, 2006, 12, 1975-1985.	3.3	63
527	<i>In Situ</i> Investigations of Chemical Reactions on Surfaces by X-Ray Diffraction at Atomospheric Pressures. MRS Bulletin, 2007, 32, 1010-1014.	3.5	34
528	Catalytic oxidation of methanol over molybdenum oxide–tungsten oxide. Journal of Applied Chemistry and Biotechnology, 1977, 27, 198-204.	0.0	8
529	The Reactor-STM: A Real-Space Probe for <i>Operando</i> Nanocatalysis. MRS Bulletin, 2007, 32, 1015-1021.	3.5	29
530	<i>In Situ</i> X-Ray Photoelectron Spectroscopy Studies of Gas-Solid Interfaces at Near-Ambient Conditions. MRS Bulletin, 2007, 32, 1022-1030.	3.5	180
531	Preparation of pyridinemonocarboxylic acids by catalytic vapour phase oxidation of alkylpyridines. II. Oxidation of 2â€methylâ€5â€ethylpyridine to niacin. Journal of Applied Chemistry and Biotechnology, 1977, 27, 510-521.	0.0	3

#	Article	IF	CITATIONS
532	Kinetics of the vapour phase oxidation of ethyl alcohol on vanadium pentoxide catalyst. Journal of Applied Chemistry and Biotechnology, 2007, 25, 335-345.	0.0	0
533	Oxidation of ethanol over ferric molybdate catalyst. Journal of Chemical Technology and Biotechnology, 1982, 32, 868-876.	0.2	2
534	Kinetics and mechanism of the vapour-phase ammoxidation of 4-picoline. Journal of Chemical Technology and Biotechnology, 2007, 29, 487-498.	0.2	6
535	Selective heterogeneous hydrocarbon oxidation over oxide catalysts. Journal of Applied Chemistry and Biotechnology, 1972, 22, 759-768.	0.0	0
537	Heterogeneously catalysed partial oxidation of acrolein to acrylic acid—structure, function and dynamics of the V–Mo–W mixed oxides. Physical Chemistry Chemical Physics, 2007, 9, 3577-3589.	2.8	72
538	Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V4O10Cluster. Journal of Physical Chemistry C, 2007, 111, 5115-5127.	3.1	74
539	Methanol Oxidation Using Ozone on Titania-Supported Vanadia Catalyst. Environmental Science & Technology, 2007, 41, 4754-4760.	10.0	19
540	Alternative Reaction Engineering Concepts in Partial Oxidations on Oxidic Catalysts. Catalysis Reviews - Science and Engineering, 2007, 49, 1-32.	12.9	25
541	Kinetics of Methyl Ethyl Ketone Combustion in Air at Low Concentrations over a Commercial Pt/Al2O3Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 9037-9044.	3.7	12
542	Modification of the Oxidative Power of ZnO(101̄0) Surface by Substituting Some Surface Zn Atoms with Other Metals. Journal of Physical Chemistry C, 2007, 111, 8617-8622.	3.1	61
543	Steady state kinetic parameters of bulk V2O5 for ethane and propane oxidation reactions. Catalysis Communications, 2007, 8, 957-962.	3.3	6
544	Metallic mixed oxides (Pt, Mn or Cr) as catalysts for the gas-phase toluene oxidation. Catalysis Communications, 2007, 8, 1227-1231.	3.3	31
545	Catalysis by Metal and Oxide Nanoparticles, Single Metal Atoms and Di-Nuclear Oxo-Ions in Zeolites. , 2007, , 139-151.		2
546	The Structure and Energy of Oxygen Vacancy Formation in Clean and Doped, Very Thin Films of ZnO. Journal of Physical Chemistry C, 2007, 111, 12715-12722.	3.1	30
547	Mesostructured Manganese Oxide/Gold Nanoparticle Composites for Extensive Air Purification. Angewandte Chemie - International Edition, 2007, 46, 2891-2894.	13.8	97
549	Kinetic parameter analysis for propane ODH: V2O5/Al2O3 and MoO3/Al2O3 catalysts. AICHE Journal, 2007, 53, 1538-1549.	3.6	22
550	Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 2007, 62, 219-270.	7.2	1,102
551	The effect of metal and support particle size on NiO/CeO2 and NiO/ZrO2 catalyst activity in complete methane oxidation. Applied Catalysis A: General, 2007, 332, 124-129.	4.3	61

ARTICLE IF CITATIONS # Études cinétique et mécanistique de la déshydrogénation oxydante du cyclohexane sur 552 0.5 1 Cs2,5Fe0,08H0,26PMo12O40. Comptes Rendus Chimie, 2007, 10, 637-643. An analysis of the Mars–van Krevelen rate expression. Catalysis Today, 2007, 123, 18-22. 4.4 154 Oxidation of methanol on Ru catalyst: Effect of the reagents partial pressures on the catalyst 554 4.4 28 oxidation state and selectivity. Catalysis Today, 2007, 124, 71-79. Fluorescence microscopy: Bridging the phase gap in catalysis. Catalysis Today, 2007, 126, 44-53. 4.4 Gas phase partial oxidation of toluene over modified V2O5/TiO2 catalysts in a microreactor. Chemical 556 12.7 33 Engineering Journal, 2007, 127, 39-46. Mass and heat transfer effects on the oxidative dehydrogenation of propane (ODP) over a low loaded VOx/Al2O3 catalyst. Applied Catalysis A: General, 2007, 323, 66-76. 4.3 Chromium–saponite clay catalysts: Preparation, characterization and catalytic performance in 558 4.3 41 propene oxidation. Applied Catalysis A: General, 2007, 327, 1-12. Performance of Mo-Bi-Co-Fe-K-O catalysts prepared from a sol–gel solution containing a drying control chemical additive in the partial oxidation of propylene. Applied Catalysis A: General, 2007, 332, 4.3 14 257-262 The performance of CNT as catalyst support on CO oxidation at low temperature. Fuel, 2007, 86, 560 6.4 51 1153-1161. Catalytic processes during preferential oxidation of CO in H2-rich streams over catalysts based on 104 copper–ceria. Journal of Power Sources, 2007, 169, 110-116. A novel scheelite-like structure of BaBi2Mo4O16: Photocatalysis and investigation of the solid solution, BaBi2Mo4â[^]xWxO16 (0.25â‰竊‰車). Journal of Photochemistry and Photobiology A: Chemistry, 562 3.9 23 2007, 187, 177-185. Detection of propane by "GaON―thick-film gas sensors. Sensors and Actuators B: Chemical, 2007, 122, 7.8 14-19. Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 2007, 70, 564 20.2 78 360-369. Predicting experimental signatures for the oxidation of magnesia supported palladium clusters by 1.3 density functional theory. European Physical Journal D, 2007, 45, 485-489. Interaction of CO with planar Au/TiO2 model catalysts at elevated pressures. Topics in Catalysis, 2007, 566 39 2.8 44, 83-93. An FT-IR study of the adsorption of isopropanol on calcined layered double hydroxides containing 4.4 23 isopolymolybdate. Catalysis Today, 2007, 126, 153-161. Interaction of oxygen with the surface of vanadia catalysts. Journal of Molecular Catalysis A, 2007, 568 4.8 14 277, 27-34. PMo or PW heteropoly acids supported on MCM-41 silica nanoparticles: Characterisation and FT-IR 569 48 study of the adsorption of 2-butanol. Journal of Solid State Chemistry, 2008, 181, 2046-2057.

#	Article	IF	CITATIONS
570	Kinetic Monte Carlo simulations of the oscillatory CO oxidation at high pressures: The surface oxide model. Chemical Physics, 2008, 348, 11-20.	1.9	10
571	Propane Oxidative Dehydrogenation on V–Sb/ZrO2 Catalysts. Catalysis Letters, 2008, 122, 252-258.	2.6	13
572	Conversion of Lower Hydrocarbons in the Presence of Carbon Dioxide: The Theoretic Analysis and Catalytic Tests over Active Carbon Supported Vanadium Oxide. Catalysis Letters, 2008, 124, 52-58.	2.6	13
573	Gas-phase toluene oxidation over platinum-containing mixed oxides. Reaction Kinetics and Catalysis Letters, 2008, 93, 343-350.	0.6	4
574	Kinetics of \hat{I}^2 -picoline oxidation to nicotinic acid over vanadia-titania catalyst. 3. The oxidation of nicotinic acid. Reaction Kinetics and Catalysis Letters, 2008, 94, 327-335.	0.6	7
575	The Selective Oxidation of Methanol on Iron Molybdate Catalysts. Topics in Catalysis, 2008, 48, 158-165.	2.8	36
576	The effects of oxygen vacancies on the electronic properties of V2O5â´'x. Journal of Materials Science: Materials in Electronics, 2008, 19, 366-370.	2.2	12
577	Phase Relations in the System TiO2-V2O x under Oxidizing and Reducing Conditions. Journal of Phase Equilibria and Diffusion, 2008, 29, 482-487.	1.4	23
578	Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed. Journal of Rare Earths, 2008, 26, 76-80.	4.8	16
579	Kinetics of Heterogeneous Solventâ€free Liquid Phase Oxidation of Alcohol Using ZrO ₂ Catalyst with Molecular Oxygen. Chinese Journal of Chemistry, 2008, 26, 941-946.	4.9	12
580	Simulation of the Industrial Packed Bed Catalytic Reactor for the Partial Oxidation of Methanol to Formaldehyde:. Asia-Pacific Journal of Chemical Engineering, 2003, 11, 337-347.	0.0	5
581	Oxidation of 2-chloroethyl ethyl sulfide using V-APMS. Journal of Molecular Catalysis A, 2008, 283, 52-59.	4.8	10
582	Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst. Journal of Hazardous Materials, 2008, 150, 53-61.	12.4	35
583	Deactivation and oxidative regeneration of VTiSbSiOx catalyst for ammoxidation of 3-picoline to nicotinonitrile. Applied Catalysis A: General, 2008, 335, 196-203.	4.3	15
584	Combustion of toluene–hexane binary mixtures in a reverse flow catalytic reactor. Chemical Engineering Science, 2008, 63, 5003-5009.	3.8	14
585	Catalytic applications of red mud, an aluminium industry waste: A review. Applied Catalysis B: Environmental, 2008, 81, 64-77.	20.2	272
586	Catalytic oxidation of chlorobenzene over Pd/perovskites. Applied Catalysis B: Environmental, 2008, 84, 251-261.	20.2	116
587	Selective oxidation of CO in H2-rich stream over gold/iron oxide: An insight on the effect of catalyst pretreatment. Journal of Molecular Catalysis A, 2008, 284, 24-32.	4.8	51

#	Article	IF	Citations
588	Defect formation and the water–gas shift reaction on β-Ga2O3. Journal of Catalysis, 2008, 256, 278-286.	6.2	37
592	Heteropolyoxometallate Catalysts for Partial Oxidation. , 0, , 561-594.		0
593	Platinum-group and noble metals under oxidizing conditions. Journal of Physics Condensed Matter, 2008, 20, 184023.	1.8	52
594	Oxidative Câ^'C Bond Cleavage of Primary Alcohols and Vicinal Diols Catalyzed by H ₅ PV ₂ Mo ₁₀ O ₄₀ by an Electron Transfer and Oxygen Transfer Reaction Mechanism. Journal of the American Chemical Society, 2008, 130, 14474-14476.	13.7	103
595	Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes. Journal of Materials Chemistry, 2008, 18, 2036.	6.7	133
596	CO Oxidation by Rutile TiO ₂ (110) Doped with V, W, Cr, Mo, and Mn. Journal of Physical Chemistry C, 2008, 112, 12398-12408.	3.1	115
598	COMPLETE OXIDATION OF VOLATILE ORGANIC COMPOUNDS OVER Ce/Cu/γâ€Al ₂ O ₃ CATALYST. Environmental Technology (United Kingdom), 2008, 29, 535-542.	2.2	16
599	Structure and function of oxide nanostructures: catalytic consequences of size and composition. Physical Chemistry Chemical Physics, 2008, 10, 5331.	2.8	47
600	Oxidative Dehydrogenation of Ethane over V ₂ O ₅ (001):  A Periodic Density Functional Theory Study. Journal of Physical Chemistry C, 2008, 112, 3719-3725.	3.1	48
601	Preparation and Characterization of Mesostructured Î ³ -Manganese Oxide and Its Application to VOCs Elimination. Journal of Physical Chemistry C, 2008, 112, 16028-16035.	3.1	33
602	An <i>Operando</i> Raman, IR, and TPSR Spectroscopic Investigation of the Selective Oxidation of Propylene to Acrolein over a Model Supported Vanadium Oxide Monolayer Catalyst. Journal of Physical Chemistry C, 2008, 112, 11363-11372.	3.1	53
603	Support Effects on Water Activation and Oxygen Reduction over Au–SnO[sub x] Electrocatalysts Observed with X-Ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2008, 155, B834.	2.9	19
604	Mechanochemical-treated Cr-promoted Vanadyl Pyrophosphate Catalyst for n-Butane Oxidation to Maleic Anhydride. Petroleum Science and Technology, 2008, 26, 734-741.	1.5	1
605	Structure and reactivity of a model catalyst alloy under realistic conditions. Journal of Physics Condensed Matter, 2008, 20, 184018.	1.8	47
606	Structural imaging of surface oxidation and oxidation catalysis on Ru(0001). Physical Review B, 2008, 78, .	3.2	51
611	Investigation of the Origins of Selectivity in Ethylene Epoxidation on Promoted and Unpromoted Ag/α-Al2O3 Catalysts. , 2008, , 233-263.		3
613	Kinetics of oxidative coupling of methane: Bridging the gap between comprehension and description. Journal of Natural Gas Chemistry, 2009, 18, 273-287.	1.8	105
615	Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons. Angewandte Chemie - International Edition, 2009, 48, 6913-6917.	13.8	299

#	Article	IF	Citations
616	The comparison between the polyol process and the impregnation method for the preparation of CNT-supported nanoscale Cu catalyst. Chemical Engineering Journal, 2009, 145, 461-467.	12.7	25
617	Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Chemical Engineering Journal, 2009, 155, 514-522.	12.7	22
618	Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface. Catalysis Letters, 2009, 133, 257-261.	2.6	116
619	Influence of the Ethylene Glycol, Water Treatment and Microwave Irradiation on the Characteristics and Performance of VPO Catalysts for n-Butane Oxidation to Maleic Anhydride. Catalysis Letters, 2009, 130, 593-603.	2.6	14
620	Revisiting the Behaviour of Vanadia-Based Catalysts in the Abatement of (Chloro)-Aromatic Pollutants: Towards an Integrated Understanding. Topics in Catalysis, 2009, 52, 501-516.	2.8	62
621	Catalysis for Society: Towards Improved Process Efficiency in Catalytic Selective Oxidations. Topics in Catalysis, 2009, 52, 935-947.	2.8	56
622	Spectroscopic Study on the Nature of Active Entities in Copper–Ceria CO-PROX Catalysts. Topics in Catalysis, 2009, 52, 1425-1432.	2.8	24
623	A Combined Multi-Technique In Situ Approach Used to Probe the Stability of Iron Molybdate Catalysts During Redox Cycling. Topics in Catalysis, 2009, 52, 1400-1409.	2.8	17
624	Formulation of mechanisms for gold-catalysed reactions. Gold Bulletin, 2009, 42, 247-259.	2.7	59
625	Synthesis and physicochemical characterization of palladium-cerium oxide catalysts for the low-temperature oxidation of carbon monoxide. Kinetics and Catalysis, 2009, 50, 819-823.	1.0	11
626	Catalytic performance of a copper–promoted CeO2 catalyst in the CO oxidation: Influence of the operating variables and kinetic study. International Journal of Hydrogen Energy, 2009, 34, 4021-4028.	7.1	21
627	In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy. Surface Science, 2009, 603, L35-L38.	1.9	33
628	Reduction/reoxidation of a multicomponent molybdate catalyst for propylene ammoxidation. Thermochimica Acta, 2009, 486, 20-26.	2.7	5
629	Microstraining in titania-, alumina- and silica-supported V2O5-catalysts. Journal of the European Ceramic Society, 2009, 29, 1093-1099.	5.7	8
630	Structure and catalytic reactivity of Rh oxides. Catalysis Today, 2009, 145, 227-235.	4.4	71
631	Carbon incorporation and deactivation of MgO(0 0 1) supported Pd nanoparticles during CO oxidation. Catalysis Today, 2009, 145, 243-250.	4.4	18
632	Reaction path of ethanol and acetic acid steam reforming over Ni–Zn–Al catalysts. Flow reactor studies. Chemical Engineering Journal, 2009, 153, 43-49.	12.7	47
633	Reoxidation dynamics of highly dispersed VOx species supported on Î ³ -alumina. Applied Catalysis A: General, 2009, 353, 288-295.	4.3	38

#	Article	IF	CITATIONS
634	The oxidative dehydrogenation of n-hexane over Ni–Mo–O catalysts. Applied Catalysis A: General, 2009, 361, 57-64.	4.3	53
635	Oxidation of methanol and total reduced sulfur compounds with ozone over V2O5/TiO2 catalyst: Effect of humidity. Applied Catalysis A: General, 2009, 361, 72-80.	4.3	28
636	Modification of Co–Mn–Al mixed oxide with potassium and its effect on deep oxidation of VOC. Applied Catalysis A: General, 2009, 361, 106-116.	4.3	162
637	Transient kinetic modeling of the oxidative dehydrogenation of propane over a vanadia-based catalyst in the absence of O2. Applied Catalysis A: General, 2009, 371, 31-42.	4.3	35
638	Structure sensitivity of dimethylamine deep oxidation over Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 2009, 90, 478-484.	20.2	5
639	Effects of thermal treatment on physico-chemical and catalytic properties of lanthanum manganite LaMnO3+y. Applied Catalysis A: General, 2009, 353, 145-153.	4.3	68
640	Kinetic investigation of propane oxidation on diluted Mo1–V0.3–Te0.23–Nb0.125–O x mixed-oxide catalysts. Reaction Kinetics and Catalysis Letters, 2009, 98, 273-286.	0.6	9
641	A DFT Study of CO Catalytic Oxidation by N ₂ 0 or O ₂ on the Co ₃ O ₄ (110) Surface. ChemCatChem, 2009, 1, 384-392.	3.7	75
642	Vanadium ontaining Oxynitrides: Effective Catalysts for the Ammoxidation of 3â€Picoline. ChemCatChem, 2009, 1, 485-491.	3.7	11
643	Relative stability of low-index V ₂ O ₅ surfaces: a density functional investigation. Journal of Physics Condensed Matter, 2009, 21, 095008.	1.8	27
644	Insights into Oxygen Exchange Between Gaseous O ₂ and Supported Vanadium Oxide Catalysts via ¹⁷ 0 NMR. Chemistry of Materials, 2009, 21, 4127-4134.	6.7	15
645	High Surface Area Vanadium Phosphate Catalysts for <i>n</i> Butane Oxidation. Industrial & Engineering Chemistry Research, 2009, 48, 7517-7528.	3.7	25
646	Oxygen vacancy formation on clean and hydroxylated low-index <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mtext>V</mml:mtext><mml:mn>2</mml:mn></mml:msub><n A density functional investigation. Physical Review B, 2009, 79, .</n </mml:mrow></mml:math 	າmi:msub>	• < 39 • < mml:mtext
647	Intermediates and Spectators in O ₂ Dissociation at the RuO ₂ (110) Surface. Journal of Physical Chemistry C, 2009, 113, 15266-15273.	3.1	54
648	Thermal Decomposition of a Chemical Warfare Agent Simulant (DMMP) on TiO ₂ : Adsorbate Reactions with Lattice Oxygen as Studied by Infrared Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 15684-15691.	3.1	99
649	Electronic Structure and Stability of Peroxide Divanadate Species V(Oâ^'O) on the TiO ₂ (001) Surface Reconstructed. Journal of Physical Chemistry C, 2009, 113, 14941-14945.	3.1	15
651	Molecular Adsorption on the Doped (110) Ceria Surface. Journal of Physical Chemistry C, 2009, 113, 2425-2432.	3.1	92
652	On the Active Oxygen in Bulk MoO3 during the Anaerobic Dehydrogenation of Methanol. Journal of Physical Chemistry C, 2009, 113, 4890-4897.	3.1	39

ARTICLE IF CITATIONS # Elucidating the genesis of Bi2MoO6 catalyst by combination of synchrotron radiation experiments 653 4.1 48 and Raman scattering. Chemical Communications, 2009, , 4850. QM/MM Study of the Effect of Local Environment on Dissociative Adsorption in BaY Zeolites. Journal 654 3.1 of Physical Chemistry C, 2009, 113, 15643-15651. Oxidation of Formaldehyde to Formic Acid over V2O5/TiO2 Catalysts: A DFT Analysis of the Molecular 655 3.121 Reaction Mechanisms. Journal of Physical Chemistry C, 2009, 113, 2873-2880. Structure and bonding of [VIVO(acac)2] on the surface of AIF3 as studied by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 6849. Characterization of a ceria-zirconia-supported Cu oxides catalyst: An FT-IR study on the catalytic 658 3.3 19 oxidation of propylene. Catalysis Communications, 2009, 10, 861-864. Intrinsic kinetics of reoxidation reaction for a multicomponent molybdate catalyst by thermal analysis method. Catalysis Communications, 2009, 10, 1066-1069. 3.3 Palladium doped manganese dioxide catalysts for low temperature carbon monoxide oxidation. 660 3.3 27 Catalysis Communications, 2009, 10, 1776-1780. Kinetics of Carbon Monoxide Oxidation over CuO Supported on Nanosized CeO₂. 3.7 Industrial & amp; Engineering Chemistry Research, 2009, 48, 5633-5641. Configuration of Adsorbed Phases and Their Evolution to Absorbent States in the CH4–O2 Catalytic 662 3.2 2 Reaction. Bulletin of the Chemical Society of Japan, 2009, 82, 683-688. The main factors influencing the O vacancy formation on the Ir doped ceria surface: A DFT+U study. 1.5 European Physical Journal B, 2010, 77, 373-380. Mechanism of Hydrodeoxygenation of Acrolein on a Cluster Model of MoO₃. Journal of 664 3.1 76 Physical Chemistry C, 2010, 114, 13782-13795. Heterogeneously Catalyzed Ammoxidation: A Valuable Tool for Oneâ€Step Synthesis of Nitriles. ChemCatChem, 2010, 2, 1504-1522. Liquid Phase Oxidation of p-cymene by (VO)2P2O7 and VO(PO3)2 Catalysts. Catalysis Letters, 2010, 135, 666 2.6 9 105-113. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters, 2010, 138, 143-147. 2.6 A Comprehensive Study of Deep Catalytic Oxidation of Benzene, Toluene, Ethyl Acetate, and their Mixtures over Pd/ZSM-5 Catalyst: Mutual Effects and Kinetics. Water, Air, and Soil Pollution, 2010, 209, 668 2.4 76 365-376. Detailed product and kinetic analysis for the low-pressure selective oxidation of isobutane over phosphomolybdic acid. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 251. Oxidative dehydrogenation of propane under steady-state and transient regimes over alumina-supported catalysts prepared from mixed V2W4O4a^{~1}9 hexametalate precursors. Journal of 670 1.8 1 Natural Gas Chemistry, 2010, 19, 123-133. Realâ€Space Observation of Surface Termination of a Complex Metal Oxide Catalyst. Angewandte Chemie 13.8 - International Edition, 2010, 49, 6084-6089.

#	Article	IF	CITATIONS
674	Iron–calcium–hydroxyapatite catalysts: Iron speciation and comparative performances in butan-2-ol conversion and propane oxidative dehydrogenation. Applied Catalysis A: General, 2010, 388, 113-123.	4.3	59
675	Vanadium-containing SBA-15 systems prepared by direct synthesis: Physico-chemical and catalytic properties in the decomposition of dichloromethane. Microporous and Mesoporous Materials, 2010, 133, 36-44.	4.4	44
676	Structure of Cs0.5[Nb2.5W2.5O14] analysed by focal-series reconstruction and crystallographic image processing. Acta Materialia, 2010, 58, 3764-3772.	7.9	10
677	Composition of tungsten oxide bronzes active for hydrodeoxygenation. Applied Catalysis A: General, 2010, 388, 86-95.	4.3	25
678	Kinetic modeling of the total oxidation of propane over CuO-CeO2/γ-Al2O3. Applied Catalysis B: Environmental, 2010, 95, 26-38.	20.2	67
679	Modifications induced by potassium addition on chromia/alumina catalysts and their influence on the catalytic activity for the oxidative dehydrogenation of propane. Applied Surface Science, 2010, 256, 5576-5580.	6.1	30
680	TAP study on the active oxygen species in the total oxidation of propane over a CuO–CeO2/γ-Al2O3 catalyst. Catalysis Today, 2010, 157, 49-54.	4.4	31
681	Mechanismus der katalytischen Oxydation von Kohlenwasserstoffen an Oxidkatalysatoren. Zeitschrift Für Chemie, 1973, 13, 241-253.	0.0	42
682	Selective deâ€oxygenation of organic compounds. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 451-455.	0.0	8
683	The role of steps in surface catalysis and reaction oscillations. Nature Chemistry, 2010, 2, 730-734.	13.6	184
685	Aerogel Catalysts. Advances in Science and Technology, 0, , .	0.2	3
686	The study of oxygen molecules on Pt (111) surface with high resolution x-ray photoemission spectroscopy. Journal of Chemical Physics, 2010, 133, 034501.	3.0	30
688	Catalytic effect of metal oxides on the oxidation resistance in carbon nanotube–inorganic hybrids. Journal of Materials Chemistry, 2010, 20, 9149.	6.7	72
689	Carbon Nanotubeâ^'Inorganic Hybrids. Chemical Reviews, 2010, 110, 1348-1385.	47.7	762
690	Câ~'H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chemical Reviews, 2010, 110, 656-680.	47.7	396
691	Water Effect on the Electronic Structure of Active Sites of Supported Vanadium Oxide Catalyst VO _{<i>x</i>} /TiO ₂ (001). Journal of Physical Chemistry C, 2010, 114, 3609-3613.	3.1	37
692	O ₂ Activation by Au ₅ Clusters Stabilized on Clean and Electron-Rich MgO Stepped Surfaces. Journal of Physical Chemistry C, 2010, 114, 16973-16978.	3.1	33
693	Theoretical Cluster Studies on the Catalytic Sulfidation of MoO ₃ . Journal of Physical Chemistry C, 2010, 114, 6791-6801.	3.1	21

	Cita	ATION REPORT	
Article		IF	CITATIONS
On the Mechanism of Low-Temperature CO Oxidation on Ni(111) and NiO(111) Surfa Physical Chemistry C, 2010, 114, 21579-21584.	ces. Journal of	3.1	71
Two-Site Mechanism for the Oxidation Reaction of Methane on Oxidized Palladium. Jo Chemistry C, 2010, 114, 11441-11447.	urnal of Physical	3.1	11
Oxidation of Methanol to Formaldehyde on Silica-Supported Molybdena: Density Func Study on Models of Mononuclear Sites. Journal of Physical Chemistry C, 2010, 114, 29		3.1	38
Electron Transferâ^'Oxygen Transfer Oxygenation of Sulfides Catalyzed by the H ₅ PV ₂ Mo ₁₀ O ₄₀ Polyoxometalat American Chemical Society, 2010, 132, 11446-11448.	e. Journal of the	13.7	109
Role of Lattice Oxygen and Lewis Acid on Ethanol Oxidation over OMS-2 Catalyst. Jour Chemistry C, 2010, 114, 10544-10550.	nal of Physical	3.1	69
DFT Studies of Oxygen Vacancies on Undoped and Doped La ₂ O _{3< Journal of Physical Chemistry C, 2010, 114, 12234-12244.}	/sub> Surfaces.	3.1	101
Spin trapping of radical intermediates in gas phase catalysis: cyclohexane oxidation ov Chemical Communications, 2010, 46, 3991.	er metal oxides.	4.1	18
Activation of Molecular Oxygen, Polyoxometalates, and Liquid-Phase Catalytic Oxidation	on. Inorganic	4.0	187

702	Activation of Molecular Oxygen, Polyoxometalates, and Liquid-Phase Catalytic Oxidation. Inorganic Chemistry, 2010, 49, 3594-3601.	4.0	187
703	Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2â^'x under different gas environments. Physical Chemistry Chemical Physics, 2010, 12, 2401.	2.8	29
704	Post-deposition annealing control of phase and texture for the sputtered MoO3 films. CrystEngComm, 2011, 13, 5125.	2.6	46
705	The mechanism of the water-gas shift reaction on Cu/TiO2(110) elucidated from application of density-functional theory. Physical Chemistry Chemical Physics, 2011, 13, 20393.	2.8	20
706	Sustained Room Temperature Decomposition of Dimethyl Methylphosphonate (DMMP) by O ₃ on Alumina-Supported MnO _{<i>x</i>} . Journal of Physical Chemistry C, 2011, 115, 11514-11524.	3.1	13
707	Mechanisms for Selective Catalytic Oxidation of Ammonia over Vanadium Oxides. Journal of Physical Chemistry C, 2011, 115, 21218-21229.	3.1	48
708	Electronic Structure of Metal (M = Au, Pt, Pd, or Ru) Bilayer Modified α-Fe ₂ 0 ₃ (0001) Surfaces. Journal of Physical Chemistry C, 2011, 115, 4656-4663.	3.1	25

Electronic Structure of Trioxide, Oxoperoxide, Oxosuperoxide, and Ozonide Clusters of the 3d 709 2.525 Elements: Density Functional Theory Study. Journal of Physical Chemistry A, 2011, 115, 1320-1330. Choice of <i>U</i> for DFT+<i>U</i> Calculations for Titanium Oxides. Journal of Physical Chemistry 264 C, 2011, 115, 5841-5845. Temporal Analysis of Products Study of HCl Oxidation on Copper- and Ruthenium-Based Catalysts. 711 3.162 Journal of Physical Chemistry C, 2011, 115, 1056-1063. Photocatalytic Oxidation of Cyclohexane over TiO₂: Evidence for a Marsâ^'van Krevelen 3.1 54 Mechanism. Journal of Physical Chemistry C, 2011, 115, 1330-1338.

#

694

696

698

699

#	Article	IF	CITATIONS
713	Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons. Chemical Communications, 2011, 47, 9275.	4.1	96
715	Catalysis Science of Methanol Oxidation over Iron Vanadate Catalysts: Nature of the Catalytic Active Sites. ACS Catalysis, 2011, 1, 54-66.	11.2	133
716	Substrate Reactivity Effects in the Atomic Layer Deposition of Aluminum Oxide from Trimethylaluminum on Ruthenium. Chemistry of Materials, 2011, 23, 3159-3168.	6.7	35
717	Oxidative Dehydrogenation of Cyclohexane over Mg-V-O Catalysts Prepared via Citriate Complexation. Advanced Materials Research, 2011, 284-286, 692-696.	0.3	0
718	Sol–gel derived V2O5–TiO2 mesoporous materials as catalysts for the total oxidation of chlorobenzene. Catalysis Communications, 2011, 15, 1-5.	3.3	42
719	Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110). Physical Chemistry Chemical Physics, 2011, 13, 4963.	2.8	49
720	Charge Compensation and Ce ³⁺ Formation in Trivalent Doping of the CeO ₂ (110) Surface: The Key Role of Dopant Ionic Radius. Journal of Physical Chemistry C, 2011, 115, 6671-6681.	3.1	95
721	Low-temperature oxidation of carbon monoxide on Pd(Pt)/CeO2 catalysts prepared from complex salts. Kinetics and Catalysis, 2011, 52, 282-295.	1.0	17
722	Reaction network for the total oxidation of toluene over CuO–CeO2/Al2O3. Journal of Catalysis, 2011, 283, 1-9.	6.2	84
723	Why silver is the unique catalyst for ethylene epoxidation. Journal of Catalysis, 2011, 284, 230-235.	6.2	84
724	Kinetics of CO and H2 oxidation over CuO–CeO2 and CuO catalysts. Chemical Engineering Journal, 2011, 176-177, 14-21.	12.7	19
725	The role of catalyst activity on the steady state and transient behavior of an industrial-scale fixed bed catalytic reactor for the partial oxidation of o-xylene on V2O5/TiO2 catalysts. Chemical Engineering Journal, 2011, 176-177, 26-32.	12.7	17
726	Electronic Structure of Partially Reduced Rutile TiO ₂ (110) Surface: Where Are the Unpaired Electrons Located?. Journal of Physical Chemistry C, 2011, 115, 4696-4705.	3.1	153
727	Selective oxidation catalysis on rhenium-oxide catalysts. Catalysis, 2011, , 316-349.	1.0	1
728	Direct CO Oxidation by Lattice Oxygen on Zr-Doped Ceria Surfaces. Catalysis Letters, 2011, 141, 78-82.	2.6	39
729	Influences of the Various Metal Dopants for the Nanosized Vanadium Phosphate Catalysts. Catalysis Letters, 2011, 141, 136-148.	2.6	26
730	Structural and Activity Investigation into Al3+, La3+ and Ce3+ Addition to the Phosphomolybdate Heteropolyanion for Isobutane Selective Oxidation. Catalysis Letters, 2011, 141, 374-390.	2.6	10
731	Study of the Catalytic Activity–Semiconductive Properties Relationship For BaTiO3 and PbTiO3 Perovskites, Catalysts for Methane Combustion. Catalysis Letters, 2011, 141, 445-451.	2.6	17

#	Article	IF	CITATIONS
732	Catalytic Oxidation of Ammonia to NO over Perovskite-type LaMnO3 and LaVO4 Catalysts. Catalysis Letters, 2011, 141, 1215-1218.	2.6	9
733	The Oxidative Dehydrogenation of n-Hexane over a β-NiMoO4 Catalyst. Catalysis Letters, 2011, 141, 1297-1304.	2.6	14
734	Comprehensive Study of Isobutane Selective Oxidation Over Group I and II Phosphomolybdates: Structural and Kinetic Factors. Catalysis Letters, 2011, 141, 1767-1785.	2.6	9
735	Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts. Research on Chemical Intermediates, 2011, 37, 605-616.	2.7	7
736	Methane oxidation over catalytic copper oxides nanowires. Proceedings of the Combustion Institute, 2011, 33, 3169-3175.	3.9	42
737	Structure and properties of molybdenum oxide nitrides as model systems for selective oxidation catalysts. Chemistry Central Journal, 2011, 5, 42.	2.6	17
738	Catalytic oxidation of CO on Ir(100). Physica Status Solidi (B): Basic Research, 2011, 248, 1425-1430.	1.5	13
739	Synthesis of Oxacycles Employing the Oxaâ€Pictet–Spengler Reaction: Recent Developments and New Prospects. European Journal of Organic Chemistry, 2011, 2011, 5195-5231.	2.4	95
740	Interplay between Defect Structure and Catalytic Activity in the Mo _{10â^'<i>x</i>} V _{<i>x</i>} O _{<i>y</i>} Mixedâ€Oxide System. ChemPhysChem, 2011, 12, 3578-3583.	2.1	5
741	Calorimetric Study of Propane and Propylene Adsorption on the Active Surface of Multiwalled Carbon Nanotube Catalysts. ChemPhysChem, 2011, 12, 2709-2713.	2.1	12
742	The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catalysis Today, 2011, 169, 192-199.	4.4	45
743	Promotional effect of metal encapsulation on reactivity of iron oxide supported Pt catalysts. Applied Catalysis A: General, 2011, 391, 407-410.	4.3	57
744	Investigation of the electrical and catalytic properties of materials with Csx(Mo,Nb)5O14 composition. Applied Catalysis A: General, 2011, 392, 199-207.	4.3	6
745	Mn-SBA15 catalysts prepared by impregnation: Influence of the manganese precursor. Applied Catalysis A: General, 2011, 400, 238-248.	4.3	69
746	Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0 0 0 1) from first principles. Journal of Molecular Catalysis A, 2011, 344, 53-61.	4.8	16
747	LEED and STM studies of the stability of the MoO2(100) surface. Surface Science, 2011, 605, 1445-1451.	1.9	4
748	Ethylene epoxidation catalyzed by chlorine-promoted silver oxide. Journal of Physics Condensed Matter, 2011, 23, 404202.	1.8	23
749	Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, 2012, 1, .	0.7	73

#	Article	IF	Citations
750	Experimental Studies and Redox-Type Monte Carlo Simulations for the Reduction Reaction of NO by CO over Supported Copper. Bulletin of the Chemical Society of Japan, 2012, 85, 884-891.	3.2	0
751	Study by electrical conductivity measurements of semiconductive and redox properties of ceria and phosphated ceria catalysts. Applied Catalysis B: Environmental, 2012, 128, 55-63.	20.2	10
752	Rare Earthâ€doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 2012, 4, 2102-2111.	3.7	24
753	Nature of the active sites for the total oxidation of toluene by CuOCeO2/Al2O3. Journal of Catalysis, 2012, 295, 91-103.	6.2	78
754	Pd ₆ O ₄ ⁺ : An Oxidation Resistant yet Highly Catalytically Active Nano-oxide Cluster. Journal of the American Chemical Society, 2012, 134, 20654-20659.	13.7	36
755	Oxidation of Magnesia-Supported Pd ₃₀ Nanoclusters and Catalyzed CO Combustion: Size-Selected Experiments and First-Principles Theory. Journal of Physical Chemistry C, 2012, 116, 9594-9607.	3.1	40
756	Partial Oxidation of Ethanol to Acetaldehyde over LaMnO3-Based Perovskites: A Kinetic Study. Industrial & Engineering Chemistry Research, 2012, , 120427144845004.	3.7	3
757	Kinetics of <i>n</i> -Butanol Partial Oxidation to Butyraldehyde over Lanthanum–Transition Metal Perovskites. Industrial & Engineering Chemistry Research, 2012, 51, 13993-13998.	3.7	11
758	Oxidation State and Symmetry of Magnesia-Supported Pd ₁₃ O _{<i>x</i>} Nanocatalysts Influence Activation Barriers of CO Oxidation. Journal of the American Chemical Society, 2012, 134, 7690-7699.	13.7	43
759	Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3. Journal of Catalysis, 2012, 293, 175-185.	6.2	155
760	High-Pressure XPS of Crotyl Alcohol Selective Oxidation over Metallic and Oxidized Pd(111). ACS Catalysis, 2012, 2, 2235-2241.	11.2	43
761	Active Surface Oxygen for Catalytic CO Oxidation on Pd(100) Proceeding under Near Ambient Pressure Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3182-3187.	4.6	67
762	Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels, 2012, 3, 155-166.	2.4	53
763	An IR spectroscopy assessment of the surface acidity of mesoporous VO –SiO2 catalysts. Microporous and Mesoporous Materials, 2012, 164, 111-119.	4.4	24
764	Atomic-Scale Understanding of the HCl Oxidation Over RuO ₂ , A Novel Deacon Process. Journal of Physical Chemistry C, 2012, 116, 6779-6792.	3.1	64
765	Combustion of Methane over Palladium-Based Catalysts: Support Interactions. Journal of Physical Chemistry C, 2012, 116, 8571-8578.	3.1	155
766	Monte Carlo simulation of a surface oxide model of CO oxidation. Chemical Physics Letters, 2012, 553, 30-35.	2.6	4
767	Correlation between the reduction behavior of ferrospinels synthesized by a â€~soft' chemical method and their carbon monoxide oxidation activity. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 355-365.	1.7	2

#	Article	IF	CITATIONS
771	Chemistry of Lewis Acid–Base Pairs on Oxide Surfaces. Journal of Physical Chemistry C, 2012, 116, 10439-10450.	3.1	293
772	Influences of annealing temperature on characteristics of composite materials consisting of multi-walled carbon nanotubes and Pb(Zr0.52Ti0.48)O3 thin films. Journal of the Korean Physical Society, 2012, 60, 216-219.	0.7	3
773	Catalysis Science of Bulk Mixed Oxides. ACS Catalysis, 2012, 2, 1235-1246.	11.2	177
774	Activation of Molecular Oxygen by Anionic Gold Clusters. Angewandte Chemie - International Edition, 2012, 51, 4444-4447.	13.8	101
775	Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 2012, 112, 3356-3426.	47.7	580
777	Study on RuO ₂ /SnO ₂ : Novel and Active Catalysts for CO and CH ₄ Oxidation. ChemCatChem, 2012, 4, 1122-1132.	3.7	54
778	A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem, 2012, 4, 1844-1849.	3.7	129
779	Nanoroses of Nickel Oxides: Synthesis, Electron Tomography Study, and Application in CO Oxidation and Energy Storage. ChemSusChem, 2012, 5, 1241-1248.	6.8	30
780	Study on the interfacial structures of Tin oxide/multiwalled carbon nanotube heterojunctions. RSC Advances, 2012, 2, 1942.	3.6	6
781	Activity of Pd doped and supported Mn2O3 nanomaterials for CO oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 395-405.	1.7	18
782	Effect of vanadium dispersion and of support properties on the catalytic activity of V-containing silicas. Catalysis Today, 2012, 179, 140-148.	4.4	35
783	Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst. Chemosphere, 2012, 87, 1032-1038.	8.2	45
784	Superior performance of multi-wall carbon nanotubes as support of Pt-based catalysts for the preferential CO oxidation: Effect of ceria addition. Applied Catalysis B: Environmental, 2012, 113-114, 72-78.	20.2	29
785	Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. Journal of Power Sources, 2012, 213, 69-77.	7.8	38
786	Modification of red mud by acid treatment and its application for CO removal. Journal of Hazardous Materials, 2012, 203-204, 264-273.	12.4	76
787	Hexane activation over vanadium modified zeolite ZSM-5. Journal of Porous Materials, 2013, 20, 763-775.	2.6	3
788	Kinetics of the oxidative coupling of methane in the presence of model catalysts. Kinetics and Catalysis, 2013, 54, 451-462.	1.0	28
789	CERIA-BASED CATALYSTS FOR AIR POLLUTION ABATEMENT. Catalytic Science Series, 2013, , 813-879.	0.0	0

ARTICLE IF CITATIONS # Towards Physical Descriptors of Active and Selective Catalysts for the Oxidation of <i>n</i>â€Butane to 790 3.7 29 Maleic Anhydride. ChemCatChem, 2013, 5, 2318-2329. Characterization of Pt-doped SnO2 catalyst for a high-performance micro gas sensor. Physical 791 2.8 Chemistry Chemical Physics, 2013, 15, 17938. In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel. Surface 792 1.9 82 Science, 2013, 609, 113-118. Interpretation of the kinetic compensation effect in heterogeneous reactions: thermochemical 793 approach. International Reviews in Physical Chemistry, 2013, 32, 515-557. Oxidation Mechanism of Nickel Oxide/Carbon Nanotube Composite. Microscopy and Microanalysis, 794 0.4 7 2013, 19, 202-206. 795 Elementary Steps in Heterogeneous Catalysis., 2013, , 7-38. Particle Size Effect on CH4 Oxidation Over Noble Metals: Comparison of Pt and Pd Catalysts. Topics in 797 2.8 78 Catalysis, 2013, 56, 306-310. Mixed-Metal Oxides., 2013, , 153-184. 798 799 Gold Clusters in the Gas Phase. Structure and Bonding, 2013, , 243-278. 1.0 10 Atomically Thin Tin Dioxide Sheets for Efficient Catalytic Oxidation of Carbon Monoxide. Angewandte 13.8 Chemie - International Edition, 2013, 52, 10569-10572. Model selection and parameter estimation for chemical reactions using global model structure. 802 3 3.8 Computers and Chemical Engineering, 2013, 58, 269-277. Temperature Programmed Reduction/Oxidation (TPR/TPO) Methods. Springer Series in Materials Science, 2013, , 175-195. In Situ Oxidation Study of Pt Nanoparticles on MgO(001). Journal of Physical Chemistry C, 2013, 117, 804 3.1 26 19955-19966. Experimental and Computational Investigation of Effect of Sr on NO Oxidation and Oxygen Exchange for La_{1–<i>x</i>}Sr_{<i>x</i>}CoO₃ Perovskite Catalysts. ACS Catalysis, 2013, 3, 2719-2728. 11.2 74 Unraveling the Role of Metalâ€"Support Interactions in Heterogeneous Catalysis: Oxygenate Selectivity 806 11.2 54 in Fischer〓Tropsch Synthesis. ACS Catalysis, 2013, 3, 2881-2890. Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. Journal of 361 the American Chemical Society, 2013, 135, 16689-16696. Ethane Activation by Nb-Doped NiO. Journal of Physical Chemistry C, 2013, 117, 23597-23608. 808 3.126 Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russian Chemical 809 6.5

CITATION REPORT

Reviews, 2013, 82, 917-941.

#	Article	IF	CITATIONS
810	Toward a general theory of heterogeneous reactions. Journal of Thermal Analysis and Calorimetry, 2013, 113, 561-568.	3.6	21
811	Stability and migration barriers of small vanadium oxide clusters on the CeO2(111) surface studied by density functional theory. Faraday Discussions, 2013, 162, 233.	3.2	25
812	Catalytic Combustion Reactions During Atomic Layer Deposition of Ru Studied Using ¹⁸ O ₂ Isotope Labeling. Journal of Physical Chemistry C, 2013, 117, 21320-21330.	3.1	11
813	Catalytic oxidation of CO on platinum. Journal of Thermal Analysis and Calorimetry, 2013, 111, 145-154.	3.6	22
814	The influence of preparation conditions and doping on the physicochemical and sensor properties of mesoporous tin oxide. Sensors and Actuators B: Chemical, 2013, 177, 643-653.	7.8	11
815	A COMPILATION OF THE D-OPTIMAL DESIGNS IN CHEMICAL KINETICS. Chemical Engineering Communications, 2013, 200, 185-204.	2.6	18
816	Electronic Activity Relationship for Methacrolein Formation Over 4th Period Transition Metal Phosphomolybdates. Catalysis Letters, 2013, 143, 61-70.	2.6	2
817	Monte Carlo Simulations and Theoretical Mean Field Analysis of Two Sites in the Oxidation of CO Over Cu0.1Ce0.9O2â^'y with Oxygen Supplied as the Gas and from the Catalyst's Bulk. Catalysis Letters, 2013, 143, 176-183.	2.6	4
818	Design, Synthesis and Application of Metal Oxide-Based Sensing Elements: A Chemical Principles Approach. , 2013, , 69-115.		9
819	Structure Sensitivity of CO Oxidation on Co ₃ O ₄ : A DFT Study. ChemPhysChem, 2013, 14, 204-212.	2.1	64
820	The Mechanism of Ethylene Epoxidation Catalysis. Catalysis Letters, 2013, 143, 131-141.	2.6	137
821	Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid. Journal of Energy Chemistry, 2013, 22, 883-894.	12.9	24
822	Selective oxidation of toluene using surface-modified vanadium oxide nanobelts. Chinese Journal of Catalysis, 2013, 34, 1297-1302.	14.0	5
823	CO oxidation on Ta-Modified SnO2 solid solution catalysts. Solid State Sciences, 2013, 20, 103-109.	3.2	17
824	Correlation of electrical properties of nanometric copper-doped ceria materials (Ce1â^'xCuxO2â^'Î) with their catalytic activity in incineration of VOCs. Solid State Ionics, 2013, 251, 18-22.	2.7	18
825	Studies towards a mechanistic insight into the activation of n-octane using vanadium supported on alkaline earth metal hydroxyapatites. Applied Catalysis A: General, 2013, 467, 142-153.	4.3	28
826	Catalysis by Doped Oxides. Chemical Reviews, 2013, 113, 4391-4427.	47.7	687
827	DFT-assisted structure determination of α1- and α2-VOPO4: new insights into the understanding of the catalytic performances of vanadium phosphates. Dalton Transactions, 2013, 42, 8124.	3.3	16

#	Article	IF	CITATIONS
828	Formaldehyde: Catalytic Oxidation as a Promising Soft Way of Elimination. ChemSusChem, 2013, 6, 578-592.	6.8	214
829	Site Requirements for the Adsorption and Reaction of Oxygenates on Metal Oxide Surfaces. Chemical Reviews, 2013, 113, 4136-4163.	47.7	91
830	Pulsed laser deposition of bimetallic gold–platinum nanoparticles on cerium oxide and their characterisation by X-ray photoelectron spectroscopy and temperature-programmed desorption of isotopically labelled carbon monoxide. Journal of Catalysis, 2013, 299, 109-118.	6.2	8
831	A high-throughput study of the redox properties of Nb-Ni oxide catalysts by low temperature CO oxidation: Implications in ethane ODH. Catalysis Today, 2013, 203, 3-9.	4.4	20
832	Aberration-Corrected TEM Imaging of Oxygen Occupancy in YSZ. Journal of Physical Chemistry Letters, 2013, 4, 1156-1160.	4.6	22
833	Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 2013, 5, 3196-3217.	3.7	360
834	Catalysis science of supported vanadium oxide catalysts. Dalton Transactions, 2013, 42, 11762.	3.3	324
835	Low-Temperature Reactivity of Zn ⁺ lons Confined in ZSM-5 Zeolite toward Carbon Monoxide Oxidation: Insight from in Situ DRIFT and ESR Spectroscopy. Journal of the American Chemical Society, 2013, 135, 6762-6765.	13.7	80
836	PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Applied Catalysis B: Environmental, 2013, 140-141, 317-326.	20.2	74
837	Catalytic Material with Enhanced Contacting Efficiency for Volatile Organic Compound Removal at Ultrashort Contact Time. Industrial & Engineering Chemistry Research, 2013, 52, 15494-15503.	3.7	12
838	Computational Studies of Structure and Catalytic Activity of Vanadia for Propane Oxidative Dehydrogenation. ACS Symposium Series, 2013, , 71-82.	0.5	2
839	Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: Highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene. Microporous and Mesoporous Materials, 2013, 172, 20-29.	4.4	94
840	Charge Separation Promoted Activation of Molecular Oxygen by Neutral Gold Clusters. Journal of the American Chemical Society, 2013, 135, 1727-1730.	13.7	68
841	Critical Review of Carbon Conversion in "Carbon Fuel Cells― Chemical Reviews, 2013, 113, 6179-6206.	47.7	227
842	Evidence for light-induced oxygen exchange in the oxidation of liquid hydrocarbons on oxygen 18-labelled titanium dioxide. RSC Advances, 2013, 3, 9402.	3.6	5
843	Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles. ACS Catalysis, 2013, 3, 1460-1468.	11.2	44
844	The kinetics of selective oxidation of propene on bismuth vanadium molybdenum oxide catalysts. Journal of Catalysis, 2013, 308, 25-36.	6.2	64
845	Photo-catalytic behavior of vanadia incorporated titania nanoparticles. Catalysis Science and Technology, 2013, 3, 2081.	4.1	10

ARTICLE IF CITATIONS Insight into Magnetite's Redox Catalysis from Observing Surface Morphology during Oxidation. 846 13.7 53 Journal of the American Chemical Society, 2013, 135, 10091-10098. Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. 847 47.7 849 Chemical Reviews, 2013, 113, 3949-3985. 848 An Overview of Synthetic Methods for Preparation of Nitrosoaromatic Compounds., 2013, , 15-35. 1 Insight into the active phase of CO oxidation on Ni/Pt and NiO1â[^]x/Pt model catalysts from a first 849 principles investigation. Surface Science, 2013, 614, 30-37. Reaction Kinetics of Ethylene Combustion in a Carbon Dioxide Stream over a Cu–Mn–O Hopcalite 850 3.7 9 Catalyst in Low Temperature Range. Industrial & amp; Engineering Chemistry Research, 2013, 52, 686-691. Methane Dissociation on Li-, Na-, K-, and Cu-Doped Flat and Stepped CaO(001). Journal of Physical 3.1 24 Chemistry C, 2013, 117, 7114-7122. <i>In Situ</i> Imaging of Cu₂O under Reducing Conditions: Formation of Metallic Fronts 852 13.7 74 by Mass Transfer. Journal of the American Chemical Society, 2013, 135, 16781-16784. Control of Carbon Monoxide (CO) from Automobile Exhaust by a Dealuminated Zeolite Supported Regenerative MnCo₂O₄ Catalyst. Environmental Science & amp; Technology, 10.0 2013, 47, 2746-2753. Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 854 30.8 289 using low H2 pressures. Energy and Environmental Science, 2013, 6, 1732. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide 12.8 oxidation. Nature Communications, 2013, 4, 2899 Molecular Level Insights into the Structure of Active Sites of VAIO Mixed Oxides in Propane 856 9 3.1 Ammoxidation. Journal of Physical Chemistry C, 2013, 117, 22926-22938. Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering. International Journal of Materials 0.3 Research, 2013, 104, 657-665. Fabrication of nanocrystalline SnO₂using electron stimulated oxidation. 858 2.6 4 Nanotechnology, 2013, 24, 205303. Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on reactant adsorption at vanadium oxide substrate. Journal of Chemical Physics, 2013, 138, 094704. Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on adsorbate diffusion and 860 3.0 6 dehydrogenation at vanadium oxide substrate. Journal of Chemical Physics, 2013, 138, 194701. Influence of Intercalation-Exfoliation-Reduction Technique towards the Physico-Chemical of VPO Catalysts. Journal of Chemistry, 2013, 2013, 1-8. Kinetic Study of Combustion of Isopropanol and Ethyl Acetate on Monolith-Supported 862 2.14 CeO₂ Catalyst. Progress in Reaction Kinetics and Mechanism, 2013, 38, 62-74. Preparation of La0.7Ca0.3Mn0.95Fe0.05O3 perovskites by different methods: Catalytic activity towards the hydroxylation of benzene. European Journal of Chemistry, 2013, 4, 272-276.

#	ARTICLE	IF	CITATIONS
864	Isolated Vanadium Surface Complexes on Aluminum Fluoride ―A Model for the Relevance of Oxygen Atoms of Aluminum Oxide Supports in Catalytic Oxidation Reactions. ChemCatChem, 2013, 5, 3260-3268.	3.7	3
865	Characterization of Active Sites/Entities and Redox/Catalytic Correlations in Copper-Ceria-Based Catalysts for Preferential Oxidation of CO in H2-Rich Streams. Catalysts, 2013, 3, 378-400.	3.5	56
866	Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on reaction paths and energetics at vanadium oxide substrate. Journal of Chemical Physics, 2013, 139, 244701.	3.0	13
867	Aerobic Oxidation of Sulfides to Sulfoxides Catalyzed by Gold/Manganese Oxides. Bulletin of the Chemical Society of Japan, 2013, 86, 1412-1418.	3.2	11
868	Removal of Hydrocarbons and Particulate Matter Using a Vanadia Selective Catalytic Reduction Catalyst: An Experimental and Modeling Study. SAE International Journal of Engines, 0, 6, 882-897.	0.4	19
869	Soot Oxidation in Particulate Filter Regeneration. , 2014, , 25-50.		3
870	Catalytic Oxidation of Volatile Organic Compounds: Chlorinated Hydrocarbons. , 2014, , 91-131.		0
871	Vanadium-Phosphorus Oxide Catalyst for <i>n</i> Butane Selective Oxidation: From Catalyst Synthesis to the Industrial Process. , 2014, , 549-585.		3
872	Critical review and exergy analysis of formaldehyde production processes. Reviews in Chemical Engineering, 2014, 30, .	4.4	64
873	Identification of the Active Sites for Low Temperature CO Oxidation over Nanocrystalline Co ₃ O ₄ Catalysts. Journal of the Chinese Chemical Society, 2014, 61, 490-494.	1.4	13
874	YCeZrO Ternary Oxide Solid Solution Supported Nonplatinic Lean-Burn NOx Trap Catalysts Using LaCoO ₃ Perovskite as Active Phase. Journal of Physical Chemistry C, 2014, 118, 25403-25420.	3.1	35
875	Oxidative Dehydrogenation of Alkanes using Oxygen-Permeable Membrane Reactor. Chinese Journal of Chemical Physics, 2014, 27, 690-696.	1.3	3
876	Fe- and V-doped mesoporous titania prepared by direct synthesis: Characterization and role in the oxidation of AO7 by H2O2 in the dark. Catalysis Today, 2014, 227, 71-79.	4.4	27
877	Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system. Chemical Engineering Journal, 2014, 252, 75-88.	12.7	66
878	Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1,1-dimethoxymethane from methanol. Applied Catalysis B: Environmental, 2014, 145, 126-135.	20.2	63
879	Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants. Applied Catalysis B: Environmental, 2014, 144, 486-497.	20.2	129
880	Partial oxidation of methane over bifunctional catalyst I. In situ formation of Ni0/La2O3 during temperature programmed POM reaction over LaNiO3 perovskite. Applied Catalysis B: Environmental, 2014, 152-153, 360-369.	20.2	43
881	Catalytic consequences of the identity and coverages of reactive intermediates during methanol partial oxidation on Pt clusters. Journal of Catalysis, 2014, 313, 55-69.	6.2	17

#	Article	IF	CITATIONS
882	Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. Journal of Catalysis, 2014, 311, 59-70.	6.2	114
883	Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). Journal of Catalysis, 2014, 309, 397-407.	6.2	54
884	Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity. Journal of Physical Chemistry C, 2014, 118, 26115-26129.	3.1	39
885	A green chemistry approach to styrene from ethylbenzene and air on Mn _x Ti _{1â^'x} O ₂ catalyst. RSC Advances, 2014, 4, 57087-57097.	3.6	9
886	TAP study of toluene total oxidation over a Co ₃ O ₄ /La-CeO ₂ catalyst with an application as a washcoat of cordierite honeycomb monoliths. Physical Chemistry Chemical Physics, 2014, 16, 11447-11455.	2.8	40
887	Surface stabilities and NO oxidation kinetics on hexagonal-phase LaCoO ₃ facets: a first-principles study. Catalysis Science and Technology, 2014, 4, 3687-3696.	4.1	12
888	Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M = Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2014, 16, 4962.	2.8	32
889	Study of the local structure and oxidation state of iron in complex oxide catalysts for propylene ammoxidation. Catalysis Science and Technology, 2014, 4, 2512-2519.	4.1	11
890	Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids. Journal of the American Chemical Society, 2014, 136, 15229-15247.	13.7	43
891	Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chemical Reviews, 2014, 114, 10292-10368.	47.7	685
892	Looped-oxide catalysis: a solar thermal approach to bio-oil deoxygenation. Energy and Environmental Science, 2014, 7, 3122-3134.	30.8	25
893	Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chemical Society Reviews, 2014, 43, 3480.	38.1	653
894	Low temperature crystallization behavior of multi-walled carbon nanotubes/Pb(Zr0.52Ti0.48)O3 nanocomposite thin films through annealing in various atmosphere and duration control. Current Applied Physics, 2014, 14, 1304-1311.	2.4	7
895	Computational Investigation of NO ₂ Adsorption and Reduction on Ceria and M-Doped CeO ₂ (111) (M = Mn, Fe) Surfaces. Journal of Physical Chemistry C, 2014, 118, 10043-10052.	3.1	20
896	Effects of Silica-Supported Nickel and Vanadium on Liquid Products of Catalytic Steam Pyrolysis of Biomass. Energy & Fuels, 2014, 28, 591-599.	5.1	25
897	Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catalysis, 2014, 4, 3357-3380.	11.2	453
898	An in situ electrical conductivity study of LaCoFe perovskite-based catalysts in correlation with the total oxidation of methane. Applied Catalysis A: General, 2014, 485, 20-27.	4.3	29
899	Redox properties and catalytic activity of CuO/γ-Al2O3 meso phase. Journal of Colloid and Interface Science, 2014, 434, 195-200.	9.4	19

	CHATION R		
# 900	ARTICLE Reactivity and Mass Transfer of Lowâ€Đimensional Catalysts. Chemical Record, 2014, 14, 857-868.	IF 5.8	CITATIONS 4
901	Carboxyl Group Enhanced CO Tolerant GO Supported Pt Catalysts: DFT and Electrochemical Analysis. Chemistry of Materials, 2014, 26, 6142-6151.	6.7	35
902	Support Effect in Oxide Catalysis: Methanol Oxidation on Vanadia/Ceria. Journal of the American Chemical Society, 2014, 136, 14616-14625.	13.7	101
903	Reactions of Methanol with Pristine and Defective Ceria (111) Surfaces: A Comparison of Density Functionals. Journal of Physical Chemistry C, 2014, 118, 23690-23700.	3.1	33
904	Toluene destruction over nanometric palladium supported ZSM-5 catalysts: influences of support acidity and operation condition. Journal of Porous Materials, 2014, 21, 551-563.	2.6	23
905	Elementary reactions of CO and H2 on C-terminated χ-Fe5C2(0 0 1) surfaces. Journal of Catalysis, 2014, 317, 158-166.	6.2	67
906	Oxidative Dehydrogenation of Ethane on Dynamically Rearranging Supported Chloride Catalysts. Journal of the American Chemical Society, 2014, 136, 12691-12701.	13.7	54
907	Active ruthenium species in acetylene hydrochlorination. Applied Catalysis A: General, 2014, 488, 28-36.	4.3	82
908	Band-Gap Energy as a Descriptor of Catalytic Activity for Propene Oxidation over Mixed Metal Oxide Catalysts. Journal of the American Chemical Society, 2014, 136, 13684-13697.	13.7	120
909	Effects of Bi and Ni on the properties of a vanadium phosphorus oxide catalyst. Chinese Journal of Catalysis, 2014, 35, 270-276.	14.0	7
910	Evidence of A–B site cooperation in the EuFeO3 perovskite from 151Eu and 57Fe Mössbauer spectroscopy, EXAFS, and toluene catalytic oxidation. Journal of Catalysis, 2014, 316, 130-140.	6.2	20
911	Revisiting active sites in heterogeneous catalysis: Their structure and their dynamic behaviour. Applied Catalysis A: General, 2014, 474, 40-50.	4.3	91
913	Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction. Catalysts, 2015, 5, 905-925.	3.5	16
914	Biomass-derived Platform Molecules Upgrading through Catalytic Processes: Yielding Chemicals and Fuels. Journal of the Japan Petroleum Institute, 2015, 58, 257-273.	0.6	29
915	Wet Air Oxidation of Aqueous Wastes. , 0, , .		11
916	Scheelite: a versatile structural template for selective alkene oxidation catalysts. Catalysis Science and Technology, 2015, 5, 3452-3458.	4.1	48
917	Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation. Journal of Materials Chemistry A, 2015, 3, 10296-10302.	10.3	38
918	TiO 2 /SiO 2 supported vanadia catalysts for the ODH of propane. Catalysis Today, 2015, 254, 62-71.	4.4	16

		15	0
#	ARTICLE	IF	CITATIONS
919	Easy Transition Path Sampling Methods: Flexible-Length Aimless Shooting and Permutation Shooting. Journal of Chemical Theory and Computation, 2015, 11, 2421-2428.	5.3	36
920	Characterization of bismuth–cerium-molybdate selective propylene ammoxidation catalysts. Applied Catalysis A: General, 2015, 495, 115-123.	4.3	25
921	Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (0 0 1) surface of the iron carbide χ-Fe5C2. Journal of Catalysis, 2015, 325, 9-18.	6.2	44
922	Selective oxidation and oxidative dehydrogenation of hydrocarbons on bismuth vanadium molybdenum oxide. Journal of Catalysis, 2015, 325, 87-100.	6.2	47
923	Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions. Procedia Computer Science, 2015, 51, 1897-1906.	2.0	58
924	Facile synthesis of \hat{I}_{\pm} -Fe2O3 nanoparticles and their catalytic activity in oxidation of benzyl alcohols with periodic acid. Catalysis Communications, 2015, 69, 48-54.	3.3	31
925	One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts. Applied Catalysis A: General, 2015, 492, 243-251.	4.3	66
926	Iron oxidation kinetics for H2 and CO production via chemical looping. International Journal of Hydrogen Energy, 2015, 40, 1675-1689.	7.1	15
927	On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. Journal of Catalysis, 2015, 322, 118-129.	6.2	85
928	High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(110). Catalysis Today, 2015, 244, 85-95.	4.4	31
929	Catalytic partial oxidation of a biodiesel surrogate over molybdenum dioxide. Fuel, 2015, 146, 132-137.	6.4	17
930	Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2015, 54, 3465-3520.	13.8	754
931	Effect of Surface Oxide Transformation on CO Oxidation. Brazilian Journal of Physics, 2015, 45, 72-78.	1.4	0
932	The surface chemistry of cerium oxide. Surface Science Reports, 2015, 70, 42-85.	7.2	493
933	Size-dependent activity of Pt/yttria-stabilized zirconia catalyst for ethylene and carbon monoxide oxidation in oxygen-free gas environment. Journal of Catalysis, 2015, 324, 32-40.	6.2	34
934	Rutile TiO2–Pd Photocatalysts for Hydrogen Gas Production from Methanol Reforming. Topics in Catalysis, 2015, 58, 70-76.	2.8	22
935	Kinetics of hydrogen reduction of titanium-doped molybdenum dioxide. Scripta Materialia, 2015, 100, 55-58.	5.2	5
936	Effect of the Support on the Oxidation of Heptane Using Vanadium Supported on Alkaline Earth Metal Hydroxyapatites. Catalysis Letters, 2015, 145, 668-678.	2.6	7

#	Article	IF	CITATIONS
937	Facile synthesis of α-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance. Materials Research Bulletin, 2015, 64, 252-256.	5.2	37
938	Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for Alkene Epoxidation with H ₂ O ₂ . ACS Catalysis, 2015, 5, 5077-5088.	11.2	115
939	Rare earth oxides doped NiO/γ-Al2O3 catalyst for oxidative dehydrogenation of cyclohexane. Journal of Rare Earths, 2015, 33, 611-618.	4.8	25
940	Rules for Selective Oxidation Exemplified by Methanol Selective Oxidation on Iron Molybdate Catalysts. Topics in Catalysis, 2015, 58, 606-612.	2.8	7
941	The role of lattice oxygen in CO oxidation over Ce ¹⁸ O ₂ -based catalysts revealed under operando conditions. Catalysis Science and Technology, 2015, 5, 4839-4848.	4.1	17
942	Au–Ag/CeO2 and Au–Cu/CeO2 Catalysts for Volatile Organic Compounds Oxidation and CO Preferential Oxidation. Catalysis Letters, 2015, 145, 1691-1702.	2.6	62
943	Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. Journal of Analytical and Applied Pyrolysis, 2015, 115, 214-223.	5.5	96
944	Reconstruction of Low-Index α-V ₂ O ₅ Surfaces. Journal of Physical Chemistry C, 2015, 119, 10500-10506.	3.1	12
945	Structure and electronic properties of MoVO type mixed-metal oxides – a combined view by experiment and theory. Dalton Transactions, 2015, 44, 13778-13795.	3.3	21
946	Simultaneous investigation of the structure and surface of a Co/alumina catalyst during Fischer–Tropsch synthesis: discrimination of various phenomena with beneficial or disadvantageous impact on activity. Catalysis Science and Technology, 2015, 5, 4193-4201.	4.1	13
947	A Comparative Study of the Effects of Water on Methane Oxidation over Pd@CeO2/Al2O3 and Pd@TiO2/Al2O3 Catalysts. , 2015, , 89-97.		1
948	Einführung in die Heterogene Katalyse. , 2015, , .		19
949	Density Functional Theory Study of the Oxygen Chemistry and NO Oxidation Mechanism on Low-Index Surfaces of SmMn ₂ O ₅ Mullite. ACS Catalysis, 2015, 5, 4913-4926.	11.2	55
950	Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in an industrial-scale packed bed catalytic reactor. Chemical Engineering Journal, 2015, 280, 682-694.	12.7	52
951	Low-temperature CO oxidation by transition metal polycation exchanged low-silica faujasites. Applied Catalysis B: Environmental, 2015, 179, 521-529.	20.2	16
952	High low-temperature CO oxidation activity of platinum oxide prepared by magnetron sputtering. Applied Surface Science, 2015, 345, 319-328.	6.1	18
953	High Activity of Au/γ-Fe ₂ O ₃ for CO Oxidation: Effect of Support Crystal Phase in Catalyst Design. ACS Catalysis, 2015, 5, 3528-3539.	11.2	119
954	Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or [Ti,Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 2015, 174-175, 293-307.	20.2	49

#	Article	IF	CITATIONS
955	Phase transformation of iron in hydroxyapatite in the activation of n-octane. Hyperfine Interactions, 2015, 231, 131-136.	0.5	5
956	Theoretical study of catalytic oxidation of CO on free Pd _x O ₂ ⁺ (x) Tj ETQq1	1 0.7843 3.6	514 rgBT /O
957	Defects on TiO2—Key Pathways to Important Surface Processes. Springer Series in Surface Sciences, 2015, , 81-121.	0.3	5
958	Numerical Simulations of Defective Structures: The Nature of Oxygen Vacancy in Non-reducible (MgO,) Tj ETQq1 I	1 0.78431 0.3	4 ₇ rgBT /Ove
959	Low-Temperature CO Oxidation Catalyzed by Free Palladium Clusters: Similarities and Differences to Pd Surfaces and Supported Particles. ACS Catalysis, 2015, 5, 2275-2289.	11.2	47
960	On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane. Chemical Engineering Journal, 2015, 266, 329-338.	12.7	101
961	A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2015, 17, 8138-8147.	2.8	39
962	Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 2015, 44, 3295-3346.	38.1	586
963	Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity. Surface Science Reports, 2015, 70, 135-187.	7.2	305
964	Impact of the outermost layer of various solid metal vanadate catalysts on ammoxidation of 2-methyl pyrazine to 2-cyanopyrazine. Catalysis Communications, 2015, 71, 97-101.	3.3	6
965	Unique Electronic and Structural Effects in Vanadia/Ceria-Catalyzed Reactions. Journal of the American Chemical Society, 2015, 137, 13228-13231.	13.7	44
966	The role of m-ZrO2 in the selective oxidation of ethanol to acetic acid employing PdO/m-ZrO2. Journal of Molecular Catalysis A, 2015, 410, 177-183.	4.8	26
967	Activity versus Selectivity of the Methanol Oxidation at Ceria Surfaces: A Comparative First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 23021-23031.	3.1	31
968	The effects of morphology of cerium oxide catalysts for dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 505, 354-364.	4.3	30
969	A novel Pd3O9@α-Al2O3 catalyst under a hydroxylated effect: high activity in the CO oxidation reaction. Physical Chemistry Chemical Physics, 2015, 17, 32140-32148.	2.8	5
970	CO catalytic oxidation on Al-doped graphene-like ZnO monolayer sheets: a first-principles study. Journal of Materials Chemistry C, 2015, 3, 9964-9972.	5.5	58
971	Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol. ACS Catalysis, 2015, 5, 666-682.	11.2	49
972	Methane Catalytic Combustion over Hierarchical Pd@CeO ₂ /Siâ€Al ₂ O ₃ : Effect of the Presence of Water. ChemCatChem, 2015, 7, 2038-2046.	3.7	98

ARTICLE IF CITATIONS Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational 973 2.8 246 catalyst design. Physical Chemistry Chemical Physics, 2015, 17, 4909-4918. Catalytic oxygen activation versus autoxidation for industrial applications: a physicochemical 974 2.8 approach. Physical Chemistry Chemical Physics, 2015, 17, 715-731. Simulation of V2O5/TiO2 catalyst activity by central composite design for optimal operating 975 conditions and catalyst life in phthalic anhydride production. Journal of Industrial and Engineering 5.8 5 Chemistry, 2015, 25, 288-294. Studies on lattice oxygen utilization during catalytic conversion of n-heptane activated by V2O5/Al2O3. Chemical Engineering Journal, 2015, 263, 113-118. Catalytic combustion kinetics of isopropanol over novel porous microfibrousâ€structured ZSMâ€5 977 3.6 11 coating/PSSF catalyst. AICHE Journal, 2015, 61, 620-630. Selective oxidation of toluene using Ag nanoparticles self-supported on Ag2V4O11 nanobelts. Research on Chemical Intermediates, 2015, 41, 4067-4076. 978 Renewable energy and fuel production over transition metal oxides: The role of oxygen defects and 979 4.4 23 acidity. Catalysis Today, 2015, 240, 220-228. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society 980 38.1 872 Reviews, 2015, 44, 623-636. Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined 981 11.2 34 Theoretical and Experimental Study. AĆS Catalysis, 2015, 5, 82-94. Partial oxidation of methane over NiO/La2O3 bifunctional catalyst II: Global kinetics of methane total 20.2 oxidation, dry reforming and partial oxidation. Applied Catalysis B: Environmental, 2015, 165, 389-398. First Principles Calculations on Oxide-Based Heterogeneous Catalysts and Photocatalysts: Problems 983 49 2.6 and Advances. Catalysis Letters, 2015, 145, 80-94. Characterization and kinetic study of BiMoLa x oxide catalysts for oxidative dehydrogenation of 984 3.8 1-butene to 1,3-butadiene. Chemical Engineering Science, 2015, 135, 553-558. Estimation of kinetic parameters for the reactor model of the phthalic anhydride production by the 985 5.8 4 design of experiments. Journal of Industrial and Engineering Chemistry, 2015, 24, 51-58. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total 20.2 oxidation of VOCs. Applied Catalysis B: Environmental, 2015, 163, 277-287. Theory of surface chemistry and reactivity of reducible oxides. Catalysis Today, 2015, 244, 63-84. 987 4.4 67 Solid oxide fuel cells. , 2016, , 89-114. Catalytic Performance of Lanthanum Vanadate Catalysts in Ammoxidation of 2-Methylpyrazine. 989 3.516 Catalysts, 2016, 6, 10. Heterogeneous Partial (amm)Oxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal 990 44 Oxides. Catalysts, 2016, 6, 22.

#	Article	IF	CITATIONS
991	Câ~H Activation of Methane to Syngas on Mn _{<i>x</i>} Ce _{1â~<i>x</i>â~<i>y</i>} Zr _{<i>y</i>} O ₂ : A Molecular Beam Study. ChemCatChem, 2016, 8, 2296-2306.	3.7	16
992	Titaniumâ€Microfiberâ€Supported Binaryâ€Oxide Nanocomposite with a Large Highly Active Interface for the Gasâ€Phase Selective Oxidation of Benzyl Alcohol. ChemCatChem, 2016, 8, 313-317.	3.7	4
993	First principle study on alkali metals promotion of CO oxidation over Ir(100). Physica Status Solidi (B): Basic Research, 2016, 253, 983-989.	1.5	6
994	Vapour phase selective oxidation of 2â€methylnaphthalene to 2â€methylâ€1,4â€naphthoquinone on composite vanadium catalyst. Canadian Journal of Chemical Engineering, 2016, 94, 1184-1190.	1.7	5
995	Oxidative conversion of ethane involving lattice oxygen of molybdenum systems modified with aluminum, gallium, or yttrium oxide. Petroleum Chemistry, 2016, 56, 841-845.	1.4	12
996	Defect-induced Burstein-Moss shift in reduced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">V <mml:mn>2</mml:mn> </mml:mi </mml:msub> <mml:msub> <mml:mi mathvariant="normal">O <mml:mn>5</mml:mn> </mml:mi </mml:msub> </mml:mrow> </mml:math 	3.2	71
997	Nanostructures. Physical Review 8, 2006, 54. Kinetics study for the oxidative dehydrogenation of ethyl lactate to ethyl pyruvate over MoVNbO based catalysts. Chemical Engineering Journal, 2016, 296, 217-224.	12.7	25
998	Hybrid Density Functionals Applied to Complex Solid Catalysts: Successes, Limitations, and Prospects. Catalysis Letters, 2016, 146, 861-885.	2.6	31
999	Adsorption measurements on a CrOx/ \hat{I}^3 -Al2O3 catalyst for parameter reduction in kinetic analysis. Chemical Engineering Science, 2016, 149, 266-276.	3.8	6
1000	One-step oxidehydration of glycerol to acrylic acid using ETS-10-like vanadosilicates. Microporous and Mesoporous Materials, 2016, 232, 151-160.	4.4	32
1001	The mechanism and kinetics of propene ammoxidation over α-bismuth molybdate. Journal of Catalysis, 2016, 339, 228-241.	6.2	22
1002	ZrO2 Acting as a Redox Catalyst. Topics in Catalysis, 2016, 59, 823-832.	2.8	49
1003	Structure and Oxidizing Power of Single Layer α-V2O5. Topics in Catalysis, 2016, 59, 809-816.	2.8	6
1004	Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO ₂ /ZrO ₂ /MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activity. Industrial & Engineering Chemistry Research, 2016, 55, 4846-4855.	3.7	30
1005	An Oxidative Route for the Production of Methyl Methacrylate: A Study Over Iron Phosphate Catalysts. Catalysis Letters, 2016, 146, 1169-1181.	2.6	9
1006	An attempt to correlate surface physics with chemical properties: molecular beam and Kelvin probe investigations of Ce1â ^{°°} xZrxO2 thin films. Physical Chemistry Chemical Physics, 2016, 18, 27594-27602.	2.8	12
1007	Silverâ€5ulphur Oxidoâ€Vanadium Cluster: A Newly Born Catalyst for Direct Reduction of Aryl Carboxylic Acids to Aldehydes <i>via</i> Mars and van Krevelen Mechanism. ChemistrySelect, 2016, 1, 3750-3756.	1.5	5
1008	Nanoparticles of Low-Valence Vanadium Oxyhydroxides: Reaction Mechanisms and Polymorphism Control by Low-Temperature Aqueous Chemistry. Inorganic Chemistry, 2016, 55, 11502-11512.	4.0	21

#	Article	IF	CITATIONS
1009	The absence of a gap state and enhancement of the Mars–van Krevelen reaction on oxygen defective Cu/CeO2 surfaces. Physical Chemistry Chemical Physics, 2016, 18, 20708-20712.	2.8	4
1010	Selective Oxidation: From a Still Immature Technology to the Roots of Catalysis Science. Topics in Catalysis, 2016, 59, 1461-1476.	2.8	44
1011	Mechanistic Studies on the Transition Metal Oxide Catalysed Partial Oxidation of (Meth)Acrolein to the Corresponding Carboxylic Acids. Topics in Catalysis, 2016, 59, 1518-1532.	2.8	22
1012	Oxidative dehydrogenation of ethane to ethylene in a system with circulating microspherical metal oxide oxygen carrier: 2. Ethylene production in a pilot unit with a riser reactor. Petroleum Chemistry, 2016, 56, 724-729.	1.4	6
1013	Production of butene and butadiene by oxidative dehydrogenation of butane over carbon nanomaterial catalysts. Korean Journal of Chemical Engineering, 2016, 33, 3417-3424.	2.7	6
1014	Solid-state kinetic investigations of non-isothermal reduction of VO2. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 429-444.	1.7	1
1015	Oxygen Vacancy Formation on α-MoO ₃ Slabs and Ribbons. Journal of Physical Chemistry C, 2016, 120, 19252-19264.	3.1	44
1016	Partial Oxidation of Methanol on MoO3 (010): A DFT and Microkinetic Study. ACS Catalysis, 2016, 6, 7260-7277.	11.2	57
1017	Promoter effect of Pd species on Mn oxide catalysts supported on rare-earth-iron mixed oxide. Catalysis Science and Technology, 2016, 6, 7868-7874.	4.1	13
1018	Development of Mn-based perovskite materials: Chemical structure and applications. Catalysis Reviews - Science and Engineering, 2016, 58, 371-438.	12.9	47
1019	Selective electrochemical reactivity of rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2the suppression of metal-insulator transition. Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	1118 <i>2</i> /mml:	m za b>
1020	Reactivity and Selectivity Descriptors for the Activation of C–H Bonds in Hydrocarbons and Oxygenates on Metal Oxides. Journal of Physical Chemistry C, 2016, 120, 16741-16760.	3.1	75
1021	The effect of phosphorus on the catalytic performance of nickel oxide in ethane oxidative dehydrogenation. Catalysis Science and Technology, 2016, 6, 6953-6964.	4.1	34
1022	Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. Journal of Catalysis, 2016, 341, 82-90.	6.2	132
1025	Modeling the Transient VOC (toluene) Oxidation in a Packed-Bed Catalytic Reactor. International Journal of Chemical Reactor Engineering, 2016, 14, 1177-1185.	1.1	4
1026	Oxidative coupling of methane: Mechanism and kinetics. Kinetics and Catalysis, 2016, 57, 647-676.	1.0	72
1027	Energetics of CO oxidation on lanthanide-free perovskite systems: the case of Co-doped SrTiO ₃ . Physical Chemistry Chemical Physics, 2016, 18, 33282-33286.	2.8	29
1028	Heterogeneous catalytic partial oxidation of lower alkanes (C 1 –C 6) on mixed metal oxides. Journal of Energy Chemistry, 2016, 25, 936-946.	12.9	37

#	Article	IF	CITATIONS
1029	Catalytic Processes. Particle Technology Series, 2016, , 23-65.	0.5	1
1030	Anode Catalyst of Hybrid AuPd and Rare Earth Doped Cerium Oxide/Multi-Walled Carbon Nanotubes for Direct Formic Acid Fuel Cells. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 706-713.	0.2	2
1031	Kinetic Analysis of the Hydrocarbon Total Oxidation Using Individually Measured Adsorption Isotherms. Chemie-Ingenieur-Technik, 2016, 88, 1746-1760.	0.8	3
1032	Efficient Ceria–Platinum Inverse Catalyst for Partial Oxidation of Methanol. Langmuir, 2016, 32, 6297-6309.	3.5	27
1033	Conjugation-Driven "Reverse Mars–van Krevelen―Type Radical Mechanism for Low-Temperature C–O Bond Activation. Journal of the American Chemical Society, 2016, 138, 8104-8113.	13.7	84
1034	In Situ Environmental STEM Study of the MoVTe Oxide M1 Phase Catalysts for Ethane Oxidative Dehydrogenation. ACS Catalysis, 2016, 6, 4775-4781.	11.2	43
1035	Toluene oxidation over ZrO2-based gasification gas clean-up catalysts: Part B. Kinetic modeling. Applied Catalysis B: Environmental, 2016, 199, 45-54.	20.2	5
1036	Effects of Anion Substitution in (Mo,V) ₅ O ₁₄ on Catalytic Performance in Selective Propene Oxidation to Acrolein. ChemCatChem, 2016, 8, 758-766.	3.7	1
1037	Unravelling Mechanistic Aspects of the Gasâ€Phase Ethanol Conversion: An Experimental and Computational Study on the Thermal Reactions of MO ₂ ⁺ (M=Mo, W) with Ethanol. Chemistry - A European Journal, 2016, 22, 3077-3083.	3.3	8
1038	Performance of a Catalytic Gas–Solid Fluidized Bed Reactor in the Presence of Interparticle Forces. International Journal of Chemical Reactor Engineering, 2016, 14, 433-444.	1.1	6
1039	A comparison between photocatalytic and catalytic oxidation of 2-Propanol over Au/TiO 2 –CeO 2 catalysts. Journal of Molecular Catalysis A, 2016, 415, 56-64.	4.8	43
1040	Identification of O-rich structures on platinum(111)-supported ultrathin iron oxide films. Surface Science, 2016, 652, 261-268.	1.9	27
1041	One-pot 1,1-dimethoxymethane synthesis from methanol: a promising pathway over bifunctional catalysts. Catalysis Science and Technology, 2016, 6, 958-970.	4.1	47
1042	Role of RuO ₂ (100) in surface oxidation and CO oxidation catalysis on Ru(0001). Physical Chemistry Chemical Physics, 2016, 18, 213-219.	2.8	15
1043	Energy of Oxygen-Vacancy Formation on Oxide Surfaces: Role of the Spatial Distribution. Journal of Physical Chemistry C, 2016, 120, 2320-2323.	3.1	21
1044	Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas. Progress in Energy and Combustion Science, 2016, 54, 1-64.	31.2	270
1045	Electroreduction of N ₂ to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments. ACS Catalysis, 2016, 6, 635-646.	11.2	317
1046	Room-temperature catalytic oxidation of formaldehyde on catalysts. Catalysis Science and Technology, 2016, 6, 3649-3669.	4.1	197

#	Article	IF	CITATIONS
1047	Redox mechanism for selective oxidation of ethanol over monolayer V2O5/TiO2 catalysts. Journal of Catalysis, 2016, 338, 82-93.	6.2	70
1048	Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes. Chemical Reviews, 2016, 116, 2982-3028.	47.7	394
1049	CO Chemical Capture on Lithium Cuprate, Through a Consecutive CO Oxidation and Chemisorption Bifunctional Process. Journal of Physical Chemistry C, 2016, 120, 3798-3806.	3.1	29
1050	Importance of the oxygen bond strength for catalytic activity in soot oxidation. Applied Catalysis B: Environmental, 2016, 188, 235-244.	20.2	36
1051	Synergy between hydrogen and ceria in Pt-catalyzed CO oxidation: An investigation on Pt–CeO2 catalysts synthesized by solution combustion. Applied Catalysis B: Environmental, 2016, 197, 2-13.	20.2	81
1052	Freeze-dried Co 3 O 4 –CeO 2 catalysts for the preferential oxidation of CO with the presence of CO 2 and H 2 O in the feed. Ceramics International, 2016, 42, 7462-7474.	4.8	30
1053	Stainless steel grid mesh-supported CVD made Co3O4 thin films for catalytic oxidation of VOCs of olefins type at low temperature. Journal of Industrial and Engineering Chemistry, 2016, 35, 253-261.	5.8	28
1054	Oxidative Dehydrogenation of n-Butenes to 1,3-Butadiene over Bismuth Molybdate and Ferrite Catalysts: A Review. Catalysis Surveys From Asia, 2016, 20, 23-33.	2.6	21
1055	The composition of Ni-Mo phases obtained by NiMoOx-SiO2 reduction and their catalytic properties in anisole hydrogenation. Applied Catalysis A: General, 2016, 514, 224-234.	4.3	48
1056	Heterogeneous partial oxidation catalysis on metal oxides. Comptes Rendus Chimie, 2016, 19, 1203-1225.	0.5	72
1057	Porous thin films toward bridging the material gap in heterogeneous catalysis. Journal of Lithic Studies, 2016, 2, 1-12.	0.5	14
1058	A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon, 2016, 99, 633-641.	10.3	77
1059	Hydrocarbons via CO2 Hydrogenation Over Iron Catalysts: The Effect of Potassium on Structure and Performance. Catalysis Letters, 2016, 146, 509-517.	2.6	51
1060	Bifunctional application of sodium cobaltate as a catalyst and captor through CO oxidation and subsequent CO ₂ chemisorption processes. RSC Advances, 2016, 6, 2162-2170.	3.6	27
1061	A theoretical study of stability and vacancy replenishing of MoO3(010) surfaces in oxygen atmosphere. Applied Surface Science, 2016, 361, 107-113.	6.1	18
1062	Partial oxidation of methane over Ni 0 /La 2 O 3 bifunctional catalyst III. Steady state activity of methane total oxidation, dry reforming, steam reforming and partial oxidation. Sequences of elementary steps. Applied Catalysis B: Environmental, 2016, 182, 385-391.	20.2	39
10.60			
1063	In situ analysis of catalytically active Pd surfaces for CO oxidation with near ambient pressure XPS. Catalysis Today, 2016, 260, 14-20.	4.4	44

#	Article	IF	CITATIONS
1065	Pt-based structured catalysts on metallic supports synthesized by electroless plating deposition for toluene complete oxidation. Catalysis Today, 2017, 281, 542-548.	4.4	16
1066	Progress in the Electrochemical Synthesis of Ammonia. Catalysis Today, 2017, 286, 2-13.	4.4	502
1067	Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 2017, 72, 673-722.	16.4	168
1068	Effect of crystallite size on the performance and phase transformation of Co ₃ O ₄ /Al ₂ O ₃ catalysts during CO-PrOx – an in situ study. Faraday Discussions, 2017, 197, 269-285.	3.2	22
1069	Ambient CO Oxidation on <i>In‣itu</i> Generated Co ₃ O ₄ Spinel Surfaces with Random Morphology. ChemistrySelect, 2017, 2, 533-536.	1.5	14
1070	Supported, bulk and bulk-supported vanadium oxide catalysts: A short review with an historical perspective. Catalysis Today, 2017, 285, 226-233.	4.4	59
1071	Ceria-supported small Pt and Pt 3 Sn nanoparticles for NO x -assisted soot oxidation. Applied Catalysis B: Environmental, 2017, 209, 295-310.	20.2	67
1072	Total Oxidation of Lean Methane over Cobalt Spinel Nanocubes Controlled by the Self-Adjusted Redox State of the Catalyst: Experimental and Theoretical Account for Interplay between the Langmuir–Hinshelwood and Mars–Van Krevelen Mechanisms. ACS Catalysis, 2017, 7, 2853-2867.	11.2	110
1073	Computational Predictions of Catalytic Activity of Zincblende (110) Surfaces of Metal Nitrides for Electrochemical Ammonia Synthesis. Journal of Physical Chemistry C, 2017, 121, 6141-6151.	3.1	99
1075	Chemicals from ethanol: the acetone synthesis from ethanol employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3. Chemistry Central Journal, 2017, 11, 30.	2.6	25
1076	Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite. Philosophical Magazine, 2017, 97, 1921-1938.	1.6	16
1077	Study on the formation of photoactive species in XPMo 12-n V n O 40 - HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation. Applied Catalysis B: Environmental, 2017, 214, 89-99.	20.2	28
1078	From dull to shiny: A novel setup for reflectance difference analysis under catalytic conditions. Review of Scientific Instruments, 2017, 88, 023704.	1.3	15
1079	Supported Vanadium Oxide Clusters in Partial Oxidation Processes: Catalytic Consequences of Size and Electronic Structure. ChemCatChem, 2017, 9, 3655-3669.	3.7	13
1080	In Situ Optical Reflectance Difference Observations of CO Oxidation over Pd(100). Journal of Physical Chemistry C, 2017, 121, 11407-11415.	3.1	21
1081	Gas-phase reactions of cationic molybdenum and tungsten monoxide with ethanol: a combined experimental/computational exercise. Structural Chemistry, 2017, 28, 403-413.	2.0	7
1082	Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chemical Society Reviews, 2017, 46, 4347-4374.	38.1	202
1083	Bridging the reaction route of toluene total oxidation and the structure of ordered mesoporous Co 3 O 4 : The roles of surface sodium and adsorbed oxygen. Catalysis Today, 2017, 297, 173-181.	4.4	54

		CITATION REPORT		
#	Article		IF	CITATIONS
1084	Dynamics of Bulk Oxygen in the Selective Oxidation of Acrolein. ChemCatChem, 2017	, 9, 2390-2398.	3.7	9
1085	Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts. Chemical Education, 2017, 94, 675-689.	Journal of	2.3	18
1086	Silver nanoparticles supported on zirconia–ceria for the catalytic wet air oxidation o tert-butyl ether. RSC Advances, 2017, 7, 3599-3610.	f methyl	3.6	33
1088	Engineering the surface charge states of nanostructures for enhanced catalytic perform Materials Chemistry Frontiers, 2017, 1, 1951-1964.	mance.	5.9	63
1089	Effect of NO2 and water on the catalytic oxidation of soot. Applied Catalysis B: Environ 205, 182-188.	nmental, 2017,	20.2	38
1090	Live Observations of Catalysts Using High-Pressure Scanning Probe Microscopy. Spring Chemical Physics, 2017, , 1-30.	ger Series in	0.2	4
1091	Cerium-copper oxides prepared by solution combustion synthesis for total oxidation repowder catalysts to structured reactors. Applied Catalysis B: Environmental, 2017, 201		20.2	104
1092	Onset potentials for different reaction mechanisms of nitrogen activation to ammonia metal nitride electro-catalysts. Catalysis Today, 2017, 286, 69-77.	on transition	4.4	164
1093	Thermal treatments of precursors of molybdenum and vanadium oxides and the forme phases active in the oxydehydration of glycerol. Applied Catalysis A: General, 2017, 53		4.3	27
1094	Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Support Pt ₁ Catalyst. ACS Catalysis, 2017, 7, 887-891.	ed Single-Atom	11.2	407
1095	Nonreducible, Basic La ₂ O ₃ to Reducible, Acidic La _{2–<i>x</i>} Sb _{<i>x</i>} O ₃ with Significant (Capacity, Lower Band Gap, and Effect on the Catalytic Activity. Journal of Physical Che 121, 481-489.	Dxygen Storage mistry C, 2017,	3.1	26
1096	Heterogeneous Catalysis. , 2017, , 15-71.			0
1097	Hydrogen production via methanol oxidation on platinum oxide thin film catalyst: Influ methanol-to-oxygen ratio. International Journal of Hydrogen Energy, 2017, 42, 29254-		7.1	15
1098	Dioxygen Activation Pathways over Cobalt Spinel Nanocubes—From Molecular Mech Initio Thermodynamics and ¹⁶ O ₂ / ¹⁸ O <sul Microkinetics. Journal of Physical Chemistry C, 2017, 121, 24128-24143.</sul 	anism into <i>Ab >>2 Exchange</i>	3.1	22
1099	Systematic investigation of the effect of oxygen mobility on CO oxidation over AgPt n supported on CeO2, TiO2 and Al2O3. Journal of Materials Science, 2017, 52, 13764-1		3.7	9
1100	Activity Hysteresis during Cyclic Temperatureâ€Programmed Reactions in the Partial C Acrolein to Acrylic Acid. Chemical Engineering and Technology, 2017, 40, 2084-2095.	oxidation of	1.5	8
1101	Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic mate Journal of Catalysis, 2017, 38, 1588-1596.	erials. Chinese	14.0	15
1102	Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nature Co 2017, 8, 305.	mmunications,	12.8	59

#	Article	IF	CITATIONS
1103	Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity. Applied Catalysis B: Environmental, 2017, 219, 231-240.	20.2	62
1104	Aromatization of iso-butanol with CO2 as an enhancer over ZSM-5 catalysts. Research on Chemical Intermediates, 2017, 43, 7223-7239.	2.7	7
1105	Revisiting kinetics of morin oxidation: Surface kinetics analysis. Applied Surface Science, 2017, 426, 497-503.	6.1	16
1106	System Assessment of Carbon Dioxide Used as Gas Oxidant and Coolant in Vanadium-Extraction Converter. Jom, 2017, 69, 1785-1789.	1.9	6
1107	The relationship between surface open cells of α-MnO ₂ and CO oxidation ability from a surface point of view. Journal of Materials Chemistry A, 2017, 5, 20911-20921.	10.3	38
1108	Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catalysis, 2017, 7, 6493-6513.	11.2	589
1109	Semiconductor SERS enhancement enabled by oxygen incorporation. Nature Communications, 2017, 8, 1993.	12.8	306
1110	Seeing dynamic phenomena with live scanning tunneling microscopy. MRS Bulletin, 2017, 42, 834-841.	3.5	5
1111	Effect of transition metal on stability and activity of La-Ca-M-(Al)-O (MÂ=ÂCo, Cr, Fe and Mn) perovskite oxides during partial oxidation of methane. International Journal of Hydrogen Energy, 2017, 42, 19920-19934.	7.1	34
1112	Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catalysis, 2017, 7, 5628-5642.	11.2	67
1113	A critical perspective on the design and development of metal oxide catalysts for selective propylene ammoxidation and oxidation. Applied Catalysis A: General, 2017, 543, 225-233.	4.3	25
1114	Catalytic oxidation of solid carbon and carbon monoxide over ceriumâ€zirconium mixed oxides. AICHE Journal, 2017, 63, 725-738.	3.6	23
1115	Investigation of methane oxidation by palladium-based catalyst via ReaxFF Molecular Dynamics simulation. Proceedings of the Combustion Institute, 2017, 36, 4339-4346.	3.9	42
1116	The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, 2017, 289, 20-28.	4.4	35
1117	Catalytic Metal Oxides and Applications. , 0, , 307-369.		0
1118	CVDâ€Made Spinels: Synthesis, Characterization and Applications for Clean Energy. , 2017, , .		1
1119	Flexible Piezoelectric Generators by Using the Bending Motion Method of Direct-Grown-PZT Nanoparticles on Carbon Nanotubes. Nanomaterials, 2017, 7, 308.	4.1	17
1120	Time Resolved Operando X-ray Techniques in Catalysis, a Case Study: CO Oxidation by O2 over Pt Surfaces and Alumina Supported Pt Catalysts. Catalysts, 2017, 7, 58.	3.5	38

#	Article	IF	CITATIONS
1121	Heterogeneous Catalysis on Metal Oxides. Catalysts, 2017, 7, 341.	3.5	349
1122	Development of Mn-modified Hexagonal YbFeO ₃ Catalyst for Reducing the Use of Precious Metal Resources. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 583-588.	0.2	2
1123	Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions. Catalysts, 2017, 7, 149.	3.5	79
1124	The role of oxygen vacancies in biomass deoxygenation by reducible zinc/zinc oxide catalysts. Catalysis Science and Technology, 2018, 8, 1819-1827.	4.1	33
1125	Fe and Ni Dopants Facilitating Ammonia Synthesis on Mn ₄ N and Mechanistic Insights from First-Principles Methods. Journal of Physical Chemistry C, 2018, 122, 6109-6116.	3.1	32
1126	Effect of surface oxygen vacancy sites on ethanol synthesis from acetic acid hydrogenation on a defective In ₂ O ₃ (110) surface. Physical Chemistry Chemical Physics, 2018, 20, 7156-7166.	2.8	12
1127	Learning from the past: Are catalyst design principles transferrable between hydrodesulfurization and deoxygenation?. AICHE Journal, 2018, 64, 3121-3133.	3.6	9
1128	CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by <i>in situ</i> near-ambient pressure X-ray photoelectron spectroscopy. Nanoscale, 2018, 10, 6566-6580.	5.6	24
1129	The Catalytic Activities of New Metal Oxide Catalysts Modified by Graphene Oxide to Produce Propene and its Economic Evaluation. Bulletin of the Korean Chemical Society, 2018, 39, 461-468.	1.9	1
1130	Ethane oxidative dehydrogenation mechanism on MoO3(010) surface: A first-principle study using on-site Coulomb correction. Surface Science, 2018, 674, 45-50.	1.9	9
1131	Adsorption and Diffusion of CO on Clean and CO ₂ -Precovered ZnO(101ì0). Journal of Physical Chemistry C, 2018, 122, 8919-8924.	3.1	18
1132	Effect of alkali and alkaline earth metal dopants on catalytic activity of mesoporous cobalt oxide evaluated using a model reaction. Applied Catalysis A: General, 2018, 555, 189-195.	4.3	15
1133	Recent development of heterogeneous catalysis in ring-opening, biocatalysis, and selective partial oxidation reactions on metal oxides. Comptes Rendus Chimie, 2018, 21, 408-418.	0.5	7
1134	Reaction kinetics and mechanism of complete methane oxidation on Pd/Mn2O3 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 585-605.	1.7	15
1135	Catalytic combustion of SOFC stack flue gas over CuO and Mn ₂ O ₃ supported by La _{0.8} Sr _{0.2} Mn _{0.67} Cu _{0.33} O ₃ perovskite. AICHE Journal, 2018, 64, 940-949.	3.6	5
1136	A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis. Physical Chemistry Chemical Physics, 2018, 20, 4982-4989.	2.8	86
1137	Catalytic Mechanisms of NO Reduction in a CO–NO Atmosphere at Co- and Cu-Doped SrTiO ₃ (100) Surfaces. Journal of Physical Chemistry C, 2018, 122, 449-454.	3.1	28
1138	Effect of water and methanol in the production of methyl methacrylate over iron phosphate catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 265-277.	1.7	8

#	Article	IF	CITATIONS
1139	One-step selective synthesis of 2-chlorobenzonitrile from 2-chlorotoluene <i>via</i> ammoxidation. New Journal of Chemistry, 2018, 42, 1892-1901.	2.8	11
1140	CO oxidation on SnO ₂ surfaces enhanced by metal doping. Catalysis Science and Technology, 2018, 8, 782-789.	4.1	25
1141	Autoxidation of aromatics. Applied Petrochemical Research, 2018, 8, 55-78.	1.3	28
1142	Surfactant-assisted synthesis of Mo–V mixed oxide catalysts for upgraded one-step conversion of glycerol to acrylic acid. RSC Advances, 2018, 8, 11975-11982.	3.6	14
1143	Reduction and Oxidation Behavior of Ni <i>_x</i> Fe _{3–<i>x</i>} O _{4â~Î} Spinels Probed by Reactive in Situ XRD. Journal of Physical Chemistry C, 2018, 122, 11038-11050.	3.1	3
1144	Ethanol Partial Oxidation over VO _{<i>x</i>} /TiO ₂ Catalysts: The Role of Titania Surface Oxygen on Vanadia Reoxidation in the Mars–van Krevelen Mechanism. ACS Catalysis, 2018, 8, 4681-4693.	11.2	33
1145	Mechanism of Soot Oxidation over CeO2–ZrO2 under O2 Flow. Bulletin of the Chemical Society of Japan, 2018, 91, 437-443.	3.2	0
1146	Oxidative Dehydrogenation (ODH) of Ethylbenzene with \$\$hbox {CO}_{2}\$\$ CO 2 and \$\$hbox {N}_{2}hbox {O}\$\$ N 2 O over Heteropolycompounds. Journal of Chemical Sciences, 2018, 130, 1.	1.5	4
1147	Effect of CO2 in the oxidative dehydrogenation reaction of propane over Cr/ZrO2 catalysts. Applied Catalysis A: General, 2018, 558, 55-66.	4.3	44
1148	Porous structured CuO-CeO2 nanospheres for the direct oxidation of cellobiose and glucose to gluconic acid. Catalysis Today, 2018, 306, 172-182.	4.4	41
1149	Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode. Sensors and Actuators B: Chemical, 2018, 254, 502-513.	7.8	61
1150	Sustainable superior function of the synthesized NixCo1-xFe2Oz nanosphere on the destruction of chlorinated biphenyls in the effluent. Journal of Hazardous Materials, 2018, 344, 64-72.	12.4	5
1151	Exploring the Reaction Pathways of Bioglycerol Hydrodeoxygenation to Propene over Molybdenaâ€Based Catalysts. ChemSusChem, 2018, 11, 264-275.	6.8	34
1152	Role of lattice oxygen and oxygen vacancy sites in platinum group metal catalysts supported on Sr ₃ Fe ₂ O _{7â^Î} for NO-selective reduction. Catalysis Science and Technology, 2018, 8, 147-153.	4.1	29
1153	Size-Dependent Oxidation State and CO Oxidation Activity of Tin Oxide Clusters. ACS Catalysis, 2018, 8, 451-456.	11.2	40
1154	Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. Journal of Catalysis, 2018, 357, 263-273.	6.2	59
1155	Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts. Chemical Reviews, 2018, 118, 2769-2815.	47.7	237
1156	CO and H2 oxidation over Pt/BaSnO3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 659-677.	1.7	4

#	Article	IF	CITATIONS
1157	Understanding the "seesaw effect―of interlayered K+ with different structure in manganese oxides for the enhanced formaldehyde oxidation. Applied Catalysis B: Environmental, 2018, 224, 863-870.	20.2	124
1158	Theoretical Study on PdCu/CeO2-Catalyzed Water–Gas Shift Reaction: Crucial Role of the Metal/Ceria Interface and O2 Enhancement Effects. Journal of Physical Chemistry C, 2018, 122, 28868-28883.	3.1	12
1159	Influence of B-site transition metal on NO oxidation over LaBO3 (B=Mn, Fe and Co) perovskite catalysts. AIP Advances, 2018, 8, .	1.3	14
1160	Density Functional Theory Calculations of Oxygen Vacancy Formation and Subsequent Molecular Adsorption on Oxide Surfaces. Journal of Physical Chemistry C, 2018, 122, 29435-29444.	3.1	103
1161	V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review. Catalysts, 2018, 8, 564.	3.5	19
1162	Selective Oxidation ofnâ€Butane over Vanadiumâ€Phosphorus Oxide: Oxygen Activation and Dynamics. ChemCatChem, 2018, 10, 5523-5532.	3.7	11
1163	Tuning the interlayer cations of birnessite-type MnO ₂ to enhance its oxidation ability for gaseous benzene with water resistance. Catalysis Science and Technology, 2018, 8, 5344-5358.	4.1	48
1164	Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts, 2018, 8, 478.	3.5	59
1165	Operando Scanning Probe Microscopy, Surface X-Ray Diffraction, and Optical Microscopy for Catalysis Studies. , 2018, , 336-353.		0
1166	Correlation between Copper Oxide Particle Size and Selectivity towards Propylene Oxide in Selective Oxidation of Propene. ChemCatChem, 2018, 10, 5459-5467.	3.7	8
1167	General and Prospective Views on Oxidation Reactions in Heterogeneous Catalysis. Catalysts, 2018, 8, 483.	3.5	40
1168	Role of transition metal in perovskites for enhancing selectivity of methane to syngas. International Journal of Hydrogen Energy, 2018, 43, 20580-20590.	7.1	29
1169	Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Advanced Functional Materials, 2018, 28, 1803309.	14.9	212
1170	A detailed insight into the catalytic reduction of NO operated by Cr–Cu nanostructures embedded in a CeO ₂ surface. Physical Chemistry Chemical Physics, 2018, 20, 25592-25601.	2.8	14
1171	A DFT mechanistic study of the ODH of n-hexane over isolated H3VO4. Molecular Catalysis, 2018, 452, 83-92.	2.0	4
1172	Fundamentals of heterogeneous catalysis. , 2018, , 1-41.		17
1173	Main industrial processes using metal oxides as catalysts or support and future trends in heterogeneous catalysis. , 2018, , 401-549.		5
1174	Gas phase heterogeneous partial oxidation reactions. , 2018, , 211-286.		7

#	Article	IF	Citations
1175	Transition metal oxides for combustion and depollution processes. , 2018, , 287-353.		6
1176	Effect of Ar, O ₂ , and N ₂ Plasma on the Growth and Composition of Vanadium Oxide Nanostructured Thin Films. Advanced Materials Interfaces, 2018, 5, 1800612.	3.7	5
1177	Influence of Tight Confinement on Selective Oxidative Dehydrogenation of Ethane on MoVTeNb Mixed Oxides. ACS Catalysis, 2018, 8, 7051-7067.	11.2	59
1178	Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides. Journal of the American Chemical Society, 2018, 140, 8424-8428.	13.7	59
1179	Thermal O–H Bond Activation of Water As Mediated by Heteronuclear [Al ₂ Mg ₂ O ₅] ^{•+} : Evidence for Oxygen-Atom Scrambling. Journal of the American Chemical Society, 2018, 140, 9275-9281.	13.7	13
1180	Mechanism of heterogeneous catalytic oxidation of organic compounds to carboxylic acids. Russian Chemical Reviews, 2018, 87, 586-603.	6.5	10
1181	Promoted methane activation on doped ceria via occupation of Pr(4f) states. Applied Surface Science, 2018, 458, 397-404.	6.1	9
1182	Acrolein oxidation to acrylic acid over the MoVOx material. Insights from DFT modeling. Applied Catalysis A: General, 2018, 565, 68-75.	4.3	13
1183	Manipulating Reaction Rates of Metal-Oxide Heterogeneous Catalysts via Semiconductor Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 16655-16663.	3.1	4
1184	Facile Preparation of Haggite by Reducing V ₂ O ₅ in Guaiacol/Methanol Solution. Inorganic Chemistry, 2018, 57, 8705-8708.	4.0	5
1185	Catalytic performance of phase-pure M1 MoVNbTeOx/CeO2 composite for oxidative dehydrogenation of ethane. Journal of Catalysis, 2018, 365, 238-248.	6.2	29
1186	Synthesis-Structure-Activity Relationships in Co3O4 Catalyzed CO Oxidation. Frontiers in Chemistry, 2018, 6, 185.	3.6	13
1187	A DFT Study on the Selective Oxidation of Ethane Over Pure SBA-15 and SBA-15-supported Vanadium Oxide. Kinetics and Catalysis, 2018, 59, 393-404.	1.0	3
1188	Assessment of Density Functional Approximations for Highly Correlated Oxides: The Case of CeO ₂ and Ce ₂ O ₃ . Journal of Chemical Theory and Computation, 2018, 14, 4914-4927.	5.3	27
1189	Direct measurement of Ni incorporation into Fe ₃ O ₄ (001). Physical Chemistry Chemical Physics, 2018, 20, 16469-16476.	2.8	20
1190	Effect of CeO2 morphologies on toluene catalytic combustion. Catalysis Today, 2019, 332, 177-182.	4.4	111
1191	Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst. Catalysis Today, 2019, 333, 36-46.	4.4	36
1192	CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188.	4.4	9

#	Article	IF	CITATIONS
1193	Surface chemistry and reactivity of α-MoO3 toward methane: A SCAN-functional based DFT study. Journal of Chemical Physics, 2019, 151, 044708.	3.0	14
1194	Recent Advances in Intensified Ethylene Production—A Review. ACS Catalysis, 2019, 9, 8592-8621.	11.2	227
1195	Scientific Heritage of Georgii Konstantinovich Boreskov. Kinetics and Catalysis, 2019, 60, 123-136.	1.0	3
1196	Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40, 1324-1338.	14.0	49
1197	Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 2019, 10, 3808.	12.8	225
1198	Realâ€īme Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials, 2019, 29, 1903242.	14.9	36
1199	Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation. Journal of Hazardous Materials, 2019, 380, 120905.	12.4	73
1200	Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2019, 2, 590-602.	34.4	300
1201	Oxygen atom transfer with organofunctionalized polyoxovanadium clusters: O-atom vacancy formation with tertiary phosphanes and deoxygenation of styrene oxide. Chemical Science, 2019, 10, 8035-8045.	7.4	25
1202	Molecular Precursors for Tailoring Humidity Tolerance of Nanoscale Hopcalite Catalysts Via Flame Spray Pyrolysis. ChemCatChem, 2019, 11, 4593-4603.	3.7	4
1203	Biomimetic Nitrogen Fixation Catalyzed by Transition Metal Sulfide Surfaces in an Electrolytic Cell. ChemSusChem, 2019, 12, 4265-4273.	6.8	35
1204	Resource utilization of spent ternary lithium-ions batteries: Synthesis of highly active manganese-based perovskite catalyst for toluene oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 268-275.	5.3	13
1205	Novel urea-assisted hydrothermal synthesis of tetrametallic Co6Fe4Mo12Bi1.5Ox phase for the selective oxidation of tert-butyl alcohol to methacrolein. Catalysis Communications, 2019, 130, 105762.	3.3	2
1206	A Mechanistic Study of Dehydrogenation of Propane over Vanadia–Titania Catalysts. Journal of Physical Chemistry C, 2019, 123, 19668-19680.	3.1	33
1207	Impact of Nanoparticle–Support Interactions in Co ₃ O ₄ /Al ₂ O ₃ Catalysts for the Preferential Oxidation of Carbon Monoxide. ACS Catalysis, 2019, 9, 7166-7178.	11.2	54
1208	NiMoAl catalysts derived from heptamolybdate-intercalated layered double hydroxides for hydrodeoxygenation of anisole. BMC Chemical Engineering, 2019, 1, .	3.4	5
1209	BrÃ,nsted–Evans–Polanyi relation for CO oxidation on metal oxides following the Mars–van Krevelen mechanism. Journal of Catalysis, 2019, 377, 577-581.	6.2	33
1210	Importance, features and uses of metal oxide catalysts in heterogeneous catalysis. Chinese Journal of Catalysis, 2019, 40, 1627-1636.	14.0	95

#	Article	IF	CITATIONS
1211	Potassiumâ€Ionâ€Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visibleâ€Lightâ€Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie, 2019, 131, 16797-16803.	2.0	26
1212	Potassiumâ€lonâ€Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visibleâ€Lightâ€Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2019, 58, 16644-16650.	13.8	356
1213	Gaseous Photocatalytic Oxidation of Formic Acid over TiO ₂ : A Comparison between the Charge Carrier Transfer and Light-Assisted Mars–van Krevelen Pathways. Journal of Physical Chemistry C, 2019, 123, 22261-22272.	3.1	13
1214	Reactivity and selectivity descriptors of dioxygen activation routes on metal oxides. Journal of Catalysis, 2019, 377, 692-710.	6.2	9
1215	Nanostructured MoOx films deposited on c-plane sapphire. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 051504.	2.1	4
1216	Oxygen Activation and Pathways in High-Temperature Reactions of Light Alkane Oxidation: A Seeming Simplicity of Kinetic Description. Kinetics and Catalysis, 2019, 60, 420-431.	1.0	2
1217	Rapid Screening of CO Oxidation Catalysts Using Optical Calorimetry. Industrial & Engineering Chemistry Research, 2019, 58, 19839-19846.	3.7	2
1218	Allylic selective oxidation of tert-butyl alcohol to methacrolein: Cooperative catalysis of two different active sites. Catalysis Communications, 2019, 130, 105765.	3.3	1
1219	Insights into the highly efficient Co modified MnSm/Ti catalyst for selective catalytic reduction of NO with NH3 at low temperature. Fuel, 2019, 255, 115798.	6.4	38
1220	Selective C–H Bond Activation via NO _{<i>x</i>} -Mediated Generation of Strong H-Abstractors. ACS Catalysis, 2019, 9, 10324-10338.	11.2	24
1221	H ₂ Dissociation and Water Evolution on Silver-Decorated CeO ₂ (111): A Hybrid Density Functional Theory Investigation. Journal of Physical Chemistry C, 2019, 123, 25668-25679.	3.1	9
1222	Complete cleavage of the N≡N triple bond by Ta ₂ N ⁺ via degenerate ligand exchange at ambient temperature: A perfect catalytic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21416-21420.	7.1	60
1223	Ceria-nano supported copper oxide catalysts for CO preferential oxidation: Importance of oxygen species and metal-support interaction. Applied Surface Science, 2019, 494, 1166-1176.	6.1	69
1224	Optimizing Ni–Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials, 2019, 2, 1199-1209.	5.1	71
1225	Plasma-etching enhanced titanium oxynitride active phase with high oxygen content for ambient electrosynthesis of ammonia. Electrochemistry Communications, 2019, 100, 90-95.	4.7	38
1226	Capping experiments reveal multiple surface active sites in CeO ₂ and their cooperative catalysis. RSC Advances, 2019, 9, 15229-15237.	3.6	17
1227	Defective Nb2O5-supported Pt catalysts for CO oxidation: Promoting catalytic activity via oxygen vacancy engineering. Journal of Catalysis, 2019, 375, 124-134.	6.2	70
1228	Stable and Active Oxidation Catalysis by Cooperative Lattice Oxygen Redox on SmMn ₂ O ₅ Mullite Surface. Journal of the American Chemical Society, 2019, 141–10722-10728	13.7	64

#	Article	IF	CITATIONS
1229	Mechanistic Study on the Selective Oxidation of Acrolein to Acrylic Acid: Identification of the Rateâ€Limiting Step via Perdeuterated Acrolein. ChemCatChem, 2019, 11, 3242-3252.	3.7	8
1230	Reduction and Oxidation of Maghemite (001) Surfaces: The Role of Iron Vacancies. Journal of Physical Chemistry C, 2019, 123, 15648-15658.	3.1	7
1231	One-pot synthesis of Ag-H3PW12O40-LiCoO2 composites for thermal oxidation of airborne benzene. Chemical Engineering Journal, 2019, 375, 121956.	12.7	16
1232	CuO/La0.5Sr0.5CoO3 nanocomposites in TWC. Applied Catalysis B: Environmental, 2019, 255, 117753.	20.2	19
1233	Superior low-temperature NO catalytic performance of PrMn ₂ O ₅ over SmMn ₂ O ₅ mullite-type catalysts. Catalysis Science and Technology, 2019, 9, 2758-2766.	4.1	16
1234	Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nature Catalysis, 2019, 2, 377-380.	34.4	463
1235	CO Oxidation over Ce _{1–<i>x</i>} Pd _{<i>x</i>} O _{2â^îî} Takes Place via Vacancy Hopping. Industrial & Engineering Chemistry Research, 2019, 58, 7964-7972.	3.7	11
1236	Rational Design of Transition Metal Coâ€Doped Ceria Catalysts for Lowâ€Temperature CO Oxidation. ChemCatChem, 2019, 11, 2288-2296.	3.7	26
1237	Pathways, mechanisms, and kinetics: a strategy to examine byproduct selectivity in partial oxidation catalytic transformations on reducible oxides. Reaction Chemistry and Engineering, 2019, 4, 784-805.	3.7	15
1238	Pulsed reactivity on LaCoO ₃ -based perovskites: a comprehensive approach to elucidate the CO oxidation mechanism and the effect of dopants. Catalysis Science and Technology, 2019, 9, 2749-2757.	4.1	22
1239	Deoxyalkylation of guaiacol using haggite structured V ₄ O ₆ (OH) ₄ . Catalysis Science and Technology, 2019, 9, 1922-1932.	4.1	10
1240	Catalytic Properties of Selected Transition Metal Oxides—Computational Studies. Challenges and Advances in Computational Chemistry and Physics, 2019, , 345-408.	0.6	2
1241	Carbon Monoxide Oxidation Promoted by a Highly Active Strained PdO Layer at the Surface of Au30Pd70(110). ACS Catalysis, 2019, 9, 4448-4461.	11.2	4
1242	Zirconia-Supported Silver Nanoparticles for the Catalytic Combustion of Pollutants Originating from Mobile Sources. Catalysts, 2019, 9, 297.	3.5	18
1243	The Influence of RuO ₂ Distribution and Dispersion on the Reactivity of RuO ₂ â`'SnO ₂ Composite Oxide Catalysts Probed by CO Oxidation. ChemCatChem, 2019, 11, 2473-2483.	3.7	13
1244	Oxygen storage capacity <i>versus</i> catalytic activity of ceria–zirconia solid solutions in CO and HCl oxidation. Catalysis Science and Technology, 2019, 9, 2163-2172.	4.1	37
1245	Controlling Metal-to-Oxygen Ratios via Mâ•O Bond Cleavage in Polyoxovanadate Alkoxide Clusters. Inorganic Chemistry, 2019, 58, 10462-10471.	4.0	19
1246	V ₂ O ₅ /TiO ₂ and V ₂ O ₅ /TiO ₂ –SO ₄ ^{2â°} catalysts for the total oxidation of chlorobenzene: one-step sol–gel preparation <i>vs.</i> two-step impregnation. Catalysis Science and Technology. 2019. 9. 2344-2350.	4.1	15

#	Article	IF	Citations
1247	Advances in Cleaning Mobile Emissions: NO -Assisted Soot Oxidation in Light-Duty Diesel Engine Vehicle Application. Studies in Surface Science and Catalysis, 2019, , 329-352.	1.5	1
1248	Recent developments and prospectives of acid-base and redox catalytic processes by metal oxides. Applied Catalysis A: General, 2019, 575, 170-179.	4.3	26
1249	Preparation and characterization of H3â^'2(+)Mn Co PMo12O40 heteropolysalts. Application to adipic acid green synthesis from cyclohexanone oxidation with hydrogen peroxide. Comptes Rendus Chimie, 2019, 22, 327-336.	0.5	11
1250	Synergy of Lithium, Cobalt, and Oxygen Vacancies in Lithium Cobalt Oxide for Airborne Benzene Oxidation: A Concept of Reusing Electronic Wastes for Air Pollutant Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 5072-5081.	6.7	23
1251	Noble Metal–Manganese Oxide Hybrid Nanocatalysts. , 2019, , 313-340.		13
1252	Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nature Communications, 2019, 10, 700.	12.8	98
1253	Activation of Water on MnOx-Nanocluster-Modified Rutile (110) and Anatase (101) TiO2 and the Role of Cation Reduction. Frontiers in Chemistry, 2019, 7, 67.	3.6	12
1254	SnO ₂ Nanosheets for Selective Alkene Gas Sensing. ACS Applied Nano Materials, 2019, 2, 1820-1827.	5.0	92
1255	Effects of Lattice O Atom Coordination and Pore Confinement on Selectivity Limitations for Ethane Oxidative Dehydrogenation Catalyzed by Vanadium-Oxo Species. Journal of Physical Chemistry C, 2019, 123, 28168-28191.	3.1	20
1256	Catalytic Reaction Mechanism of NO–CO on the ZrO2 (110) and (111) Surfaces. International Journal of Molecular Sciences, 2019, 20, 6129.	4.1	6
1257	Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48, 5658-5716.	38.1	541
1258	Electronic Origin of Oxygen Transport Behavior in La-Based Perovskites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 275-290.	3.1	25
1259	Phosphorus-Doped Graphene as a Metal-Free Material for Thermochemical Water Reforming at Unusually Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 838-846.	6.7	28
1260	Synthesis and Development of Four Way Catalysts Starting from Critical Raw Material Free Perovskites: Influence of Doping and Synthesis Conditions. Topics in Catalysis, 2019, 62, 237-243.	2.8	7
1261	Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures. Applied Catalysis B: Environmental, 2019, 245, 569-582.	20.2	140
1262	Cracking of n-heptane with activation of vanadium oxide based catalyst: effect of support and modification by K or P. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 295-306.	1.7	2
1263	Kinetic Modeling of the Partial Oxidation of Propylene to Acrolein: A Systematic Procedure for Parameter Estimation Based on Non-isothermal Data. Industrial & Engineering Chemistry Research, 2019, 58, 1857-1874.	3.7	10
1264	Effect of Crystal Phase of MnO ₂ with Similar Nanorod‣haped Morphology on the Catalytic Performance of Benzene Combustion. ChemistrySelect, 2019, 4, 473-480.	1.5	31

#	Article	IF	CITATIONS
1265	Combining the Physics of Metal/Oxide Heterostructure, Interface Dipole, Band Bending, Crystallography, and Surface State to Understand Heterogeneity Contrast in Oxidation and Corrosion. Corrosion, 2019, 75, 152-166.	1.1	12
1266	Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging. ChemBioChem, 2019, 20, 521-525.	2.6	17
1267	Role of Metal/Oxide Interfaces in Enhancing the Local Oxide Reducibility. Topics in Catalysis, 2019, 62, 1192-1201.	2.8	14
1268	Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem, 2019, 12, 577-588.	6.8	179
1269	Alternating catalytic reactions. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 577-586.	1.7	2
1270	Temperature-programmed studies of isobutene oxidation over α-Bi2Mo3O12: Active oxygen species and reaction mechanism. Applied Surface Science, 2019, 470, 846-853.	6.1	11
1271	Mars van Krevelen Mechanism for the Selective Partial Oxidation of Ethane. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	4
1272	Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Applied Surface Science, 2019, 466, 441-453.	6.1	217
1273	Model of an industrial multitubular reactor for methanol to formaldehyde oxidation in the presence of catalyst deactivation. Chemical Engineering Science, 2019, 195, 347-355.	3.8	16
1274	Recent Applications of Nanometal Oxide Catalysts in Oxidation Reactions. , 2019, , 227-293.		7
1275	Different behaviors of birnessite-type MnO2 modified by Ce and Mo for removing carcinogenic airborne benzene. Materials Chemistry and Physics, 2019, 221, 457-466.	4.0	19
1276	Operando Electrical Conductivity and Complex Permittivity Study on Vanadia Oxidation Catalysts. Journal of Physical Chemistry C, 2019, 123, 8005-8017.	3.1	17
1277	Investigation of reaction mechanism and kinetic modelling for the toluene total oxidation in presence of CoAlCe catalyst. Catalysis Today, 2019, 333, 28-35.	4.4	30
1278	CO2–CO capture and kinetic analyses of sodium cobaltate under various partial pressures. Adsorption, 2020, 26, 781-792.	3.0	2
1279	Influence of Ce doping on catalytic oxidation of NO on LaCoO3 (011) surface: A DFT study. Applied Surface Science, 2020, 499, 143866.	6.1	17
1280	Intrinsic kinetic model for oxidative dehydrogenation of ethane over MoVTeNb mixed metal oxides: A mechanistic approach. Chemical Engineering Journal, 2020, 383, 123195.	12.7	19
1281	Enhancing the flame stability in a slot burner using yttrium-doped zirconia coating. Fuel, 2020, 262, 116502.	6.4	8
1282	Samarium doping boosts catalytic oxidation of airborne benzene over todorokite-type MnO2. Applied Surface Science, 2020, 500, 144043.	6.1	31

#	Article	IF	CITATIONS
1283	Catalytic abatement of CO, HCs and soot emissions over spinel-based catalysts from diesel engines: An overview. Journal of Environmental Chemical Engineering, 2020, 8, 103627.	6.7	18
1284	Role of Local Structure on Catalytic Reactivity: Comparison of Methanol Oxidation by Aqueous Bioinorganic Enzyme Mimic (Vanadium Haloperoxidase) and Vanadia-Based Heterogeneous Catalyst (Supported VO4/SiO2). ACS Catalysis, 2020, 10, 1566-1574.	11.2	7
1285	Insight into a Sustainable Application of Spent Lithium-Ion Cobaltate Batteries: Preparation of a Cobalt-Based Oxide Catalyst and Its Catalytic Performance in Toluene Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 194-204.	3.7	17
1286	Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling. AICHE Journal, 2020, 66, e16904.	3.6	23
1287	Mars–van-Krevelen mechanism-based blackening of nano-sized white semiconducting oxides for synergetic solar photo-thermocatalytic degradation of dye pollutants. Nanoscale, 2020, 12, 4030-4039.	5.6	12
1288	A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy and Environmental Science, 2020, 13, 1231-1239.	30.8	140
1289	Asymmetric Oxygen Vacancies: the Intrinsic Redox Active Sites in Metal Oxide Catalysts. Advanced Science, 2020, 7, 1901970.	11.2	141
1290	Comparative study of transition metal (Mn, Fe or Co) catalysts supported on titania: Effect of Au nanoparticles addition towards CO oxidation and soot combustion reactions. Chemical Engineering Journal, 2020, 385, 123848.	12.7	64
1291	Conversion of NO _x ^{1â^'} (<i>x</i> = 2, 3) to NO using an oxygen-deficient polyoxovanadate–alkoxide cluster. Chemical Communications, 2020, 56, 555-558.	4.1	17
1292	Towards Experimental Handbooks in Catalysis. Topics in Catalysis, 2020, 63, 1683-1699.	2.8	28
1293	Theoretical screening of di-metal atom (MÂ=ÂFe, Co, Ni, Cu, Zn) electrocatalysts for ammonia synthesis. International Journal of Hydrogen Energy, 2020, 45, 31881-31891.	7.1	28
1294	Au–CeO ₂ -based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO). New Journal of Chemistry, 2020, 44, 19028-19036.	2.8	5
1295	Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters. Chemical Communications, 2020, 56, 13477-13490.	4.1	22
1296	Highly reactive bulk lattice oxygen exposed by simple water treatment of LiCoO2 for catalytic oxidation of airborne benzene. Molecular Catalysis, 2020, 492, 111003.	2.0	4
1297	Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chemical Society Reviews, 2020, 49, 5704-5771.	38.1	134
1298	Adsorption and reactivity of CO at a stepped SrTiO3(1Â0Â0) surface in the presence of Cu impurities. Applied Surface Science, 2020, 521, 146450.	6.1	6
1299	DFT modelling of the CO-NO redox reaction at Cu-doped SrTiO3(1Â0Â0) stepped surface: CO oxidation at lattice O ions. Inorganica Chimica Acta, 2020, 511, 119810.	2.4	2
1300	Methane Activation on Metal-Doped (111) and (100) Ceria Surfaces with Charge-Compensating Oxygen Vacancies. Journal of Physical Chemistry C, 2020, 124, 17578-17585.	3.1	13

#	Article	IF	CITATIONS
1301	Copper-Containing Mixed Metal Oxides (Al, Fe, Mn) for Application in Three-Way Catalysis. Catalysts, 2020, 10, 1344.	3.5	16
1302	Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts. Journal of the American Chemical Society, 2020, 142, 14374-14383.	13.7	126
1303	Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO ₂ . Catalysis Science and Technology, 2020, 10, 5772-5791.	4.1	32
1304	Perovskite-Based Formulations as Rival Platinum Catalysts for NOx Removal in Diesel Exhaust Aftertreatment. , 2020, , .		0
1305	Interdependence of Point Defects and Reaction Kinetics: CO and CH4 Oxidation on Ceria and Zirconia. Journal of Physical Chemistry C, 2020, 124, 18544-18556.	3.1	5
1306	Au-Decorated Ce–Ti Mixed Oxides for Efficient CO Preferential Photooxidation. ACS Applied Materials & Interfaces, 2020, 12, 38019-38030.	8.0	12
1307	Critical Raw Material-Free Catalysts and Electrocatalysts: Complementary Strategies to Activate Economic, Robust, and Ecofriendly SrTiO3. Energy & Fuels, 2020, 34, 11438-11448.	5.1	11
1308	Tin oxide subnanoparticles: a precisely-controlled synthesis, subnano-detection for their detailed characterisation and applications. Dalton Transactions, 2020, 49, 13512-13518.	3.3	1
1309	Oxygen exchange in Bi ₂ MoO ₆ nanosheets with different thicknesses during oxidative dehydrogenation of 1-butene. Catalysis Science and Technology, 2020, 10, 8034-8041.	4.1	4
1310	Novel Inorganic Compound Based Sensors for Their Application in Nuclear Energy Programs. , 2020, , 739-791.		0
1311	Intercalation of Copper Phthalocyanine Within Bulk Graphite as a New Strategy Toward the Synthesis of CuO-Based CO Oxidation Catalysts. Frontiers in Chemistry, 2020, 8, 735.	3.6	5
1312	Environment-Dependent Catalytic Performance and Phase Stability of Co ₃ O ₄ in the Preferential Oxidation of Carbon Monoxide Studied <i>In Situ</i> . ACS Catalysis, 2020, 10, 11892-11911.	11.2	21
1313	Recent advances in single-atom catalysts for CO oxidation. Catalysis Reviews - Science and Engineering, 2022, 64, 491-532.	12.9	35
1314	Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nature Communications, 2020, 11, 4240.	12.8	101
1315	Recent advances in three-way catalysts of natural gas vehicles. Catalysis Science and Technology, 2020, 10, 6407-6419.	4.1	55
1316	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	6.7	23
1317	Electrospinning SnO2 fibers with 3D interconnected structure for efficient soot catalytic combustion. Journal of Materials Science, 2020, 55, 16083-16095.	3.7	7
1318	How TeO Defects in the MoVNbTeO Catalyst Material Affect the V ⁴⁺ Distribution: A Computational Study. Journal of Physical Chemistry C, 2020, 124, 18628-18638.	3.1	5

#	Article	IF	CITATIONS
1319	Light-Induced In Situ Oxidative Coupling Mediated by Triplet State Reactive Oxygen into Nanostructured Hexaniobate Photocatalyst. ACS Applied Nano Materials, 2020, 3, 8483-8494.	5.0	0
1320	Synthesis and catalytic properties of a novel copper- and manganese-substituted cerium dioxide for benzene remediation. Journal of Chemical Research, 2020, , 174751982094588.	1.3	Ο
1321	Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO ₂ Catalysts for Selective Catalytic Reduction of NO with NH ₃ . ACS Omega, 2020, 5, 33357-33371.	3.5	18
1322	Design of an Ultrastable and Highly Active Ceria Catalyst for CO Oxidation by Rare-Earth- and Transition-Metal Co-Doping. ACS Catalysis, 2020, 10, 14877-14886.	11.2	23
1323	Revisiting the Role of Mass and Heat Transfer in Gas–Solid Catalytic Reactions. Processes, 2020, 8, 1599.	2.8	7
1324	First discernments for NO storage and reduction (NSR) on lithium cuprate (Li2CuO2) at moderate temperatures (100 â‰ ¤ €⊤ ≤400†°C). Applied Catalysis B: Environmental, 2020, 275, 119119.	20.2	6
1325	Scalable synthesis of water-dispersible 2D manganese dioxide monosheets. Journal of Physics Condensed Matter, 2020, 32, 015301.	1.8	11
1326	Elucidation of the reaction mechanism of catalytic reaction coupling of ethylbenzene dehydrogenation with nitrobenzene hydrogenation over MoO3/TiO2 catalysts. Applied Catalysis A: General, 2020, 602, 117562.	4.3	5
1327	Ru0.05Ce0.95O2-y deposited on functionalized alumina as a smart catalyst for propane oxidation. Applied Catalysis B: Environmental, 2020, 274, 119090.	20.2	23
1328	Sea-urchin-like mesoporous copper-manganese oxide catalysts: Influence of copper on benzene oxidation. Journal of Industrial and Engineering Chemistry, 2020, 89, 156-165.	5.8	16
1329	Excellent Catalytic Activity of a Pdâ€Promoted MnO x Catalyst for Purifying Automotive Exhaust Gases. ChemCatChem, 2020, 12, 4276-4280.	3.7	11
1330	Exploring the multifunctionality and accessibility of vanadosilicates to produce acrylic acid in one-pot glycerol oxydehydration. Applied Catalysis A: General, 2020, 602, 117687.	4.3	9
1331	Advances in thermocatalytic and photocatalytic techniques for the room/low temperature oxidative removal of formaldehyde in air. Chemical Engineering Journal, 2020, 399, 125759.	12.7	48
1332	Influence of statistical activity variations in diluted catalyst beds on the thermal reactor behavior: Derivation of an a priori criterion. Chemical Engineering Science, 2020, 220, 115607.	3.8	8
1333	Surface reduction properties of ceria–zirconia solid solutions: a first-principles study. RSC Advances, 2020, 10, 4664-4671.	3.6	9
1334	Catalytic activity of porous manganese oxides for benzene oxidation improved via citric acid solution combustion synthesis. Journal of Environmental Sciences, 2020, 98, 196-204.	6.1	21
1335	On the importance of by-products in the kinetics of n-butane oxidation to maleic anhydride. Chemical Engineering Journal, 2020, 401, 126016.	12.7	15
1336	Evaluation of Me-Li ₂ CuO ₂ Solid Solutions (Where Me = Ni, Fe, and Mn) during CO ₂ and CO Chemisorption. Journal of Physical Chemistry C, 2020, 124, 16019-16031.	3.1	11

#	Article	IF	CITATIONS
1337	DFT modelling of the NO reduction process at the Cu-doped SrTiO3(1Â0Â0) stepped surface. Inorganica Chimica Acta, 2020, 511, 119813.	2.4	2
1338	Advances in electrocatalytic ammonia synthesis under mild conditions. Progress in Energy and Combustion Science, 2020, 81, 100860.	31.2	38
1339	Kinetic and mechanistic study of CO oxidation over nanocomposite Cuâ^'Feâ^'Al oxide catalysts. ChemCatChem, 2020, 12, 4911-4921.	3.7	16
1340	Millistructured Reactor as Tool for Investigating the Kinetics of Maleic Anhydride Synthesis. Chemie-Ingenieur-Technik, 2020, 92, 575-581.	0.8	7
1341	Tin oxide nanosheet thin film with bridge type structure for gas sensing. Thin Solid Films, 2020, 698, 137845.	1.8	13
1342	lsotopic Oxygen Exchange Study to Unravel Noble Metal Oxide/Support Interactions: The Case of RuO ₂ and IrO ₂ Nanoparticles Supported on CeO ₂ , TiO ₂ and YSZ. ChemCatChem, 2020, 12, 2548-2555.	3.7	6
1343	Perovskite-Based Catalysts as Efficient, Durable, and Economical NOx Storage and Reduction Systems. Catalysts, 2020, 10, 208.	3.5	18
1344	Activation of Câ^'H Bond of Propane by Strong Basic Sites Generated by Bulk Proton Conduction on Vâ€Modified Hydroxyapatites for the Formation of Propene ChemCatChem, 2020, 12, 2506-2521.	3.7	14
1345	Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale, 2020, 12, 6900-6920.	5.6	97
1346	Catalytic glycerol dehydration-oxidation to acrylic acid. Catalysis Reviews - Science and Engineering, 2020, 62, 481-523.	12.9	24
1347	Chemical looping beyond combustion – a perspective. Energy and Environmental Science, 2020, 13, 772-804.	30.8	325
1348	Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Applied Catalysis A: General, 2020, 592, 117413.	4.3	72
1349	Reducibility and Dispersion Influence the Activity in Silica-Supported Vanadium-Based Catalysts for the Oxidative Dehydrogenation of Propane: The Case of Sodium Decavanadate. ACS Catalysis, 2020, 10, 2314-2321.	11.2	22
1350	Characteristics of Sr1â~'xYxTi1â~'yRuyO3+/â^'δ and Ru-impregnated Sr1â^'xYxTiO3+/â^´Î´ perovskite catalysts as SOFC anode for methane dry reforming. Applied Surface Science, 2020, 510, 145450.	6.1	17
1351	Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation. Journal of Materials Chemistry A, 2020, 8, 3771-3784.	10.3	17
1352	Surface-reaction induced structural oscillations in the subsurface. Nature Communications, 2020, 11, 305.	12.8	27
1353	MoO3/Al2O3 catalysts for chemical-looping oxidative dehydrogenation of ethane. Journal of Chemical Physics, 2020, 152, 044713.	3.0	21
1354	Partial oxidation of o-xylene to phthalic anhydride in a fixed bed reactor with axial thermowells. Chemical Engineering Research and Design, 2020, 159, 125-137.	5.6	11

#	Article	IF	CITATIONS
1355	CO Oxidation Mechanisms on CoO _{<i>x</i>} -Pt Thin Films. Journal of the American Chemical Society, 2020, 142, 8312-8322.	13.7	39
1356	The controllable synthesis of substitutional and interstitial nitrogen-doped manganese dioxide: the effects of doping sites on enhancing the catalytic activity. Journal of Materials Chemistry A, 2020, 8, 8383-8396.	10.3	65
1357	Surface Oxygen Vacancy Formation Energy Calculations in 34 Orientations of β-Ga ₂ O ₃ and Î,-Al ₂ O ₃ . Journal of Physical Chemistry C, 2020, 124, 10509-10522.	3.1	19
1358	Strain engineering to tune the performance of CO oxidation on Cu2O(1 1 1) surface: A theoretical study. Applied Surface Science, 2021, 540, 148331.	6.1	7
1359	Oxidative Dehydrogenation of Propane over Ni–Al Mixed Oxides: Effect of the Preparation Methods on the Activity of Surface Ni(II) Species. Catalysis Letters, 2021, 151, 497-506.	2.6	3
1360	A review on one-pot synthesis of acrylic acid from glycerol on bi-functional catalysts. Journal of Industrial and Engineering Chemistry, 2021, 93, 216-227.	5.8	19
1361	Vapor-phase decomposition of dimethyl methylphosphonate (DMMP), a sarin surrogate, in presence of metal oxides. Defence Technology, 2021, 17, 1095-1114.	4.2	22
1362	Boosting the thermal stability and catalytic performance by confining Ag single atom sites over antimony-doped tin oxide via atom trapping. Applied Catalysis B: Environmental, 2021, 283, 119625.	20.2	36
1363	Selective catalytic reduction of NO with C3H6 over CuFe-containing catalysts derived from layered double hydroxides. Fuel, 2021, 283, 119296.	6.4	20
1364	Ultrasmall SnO2 directly grown on commercial C45 carbon as lithium-ion battery anodes for long cycling performance. Electrochimica Acta, 2021, 367, 137489.	5.2	18
1365	Roles of Enhancement of Câ^'H Activation and Diminution of Câ^'O Formation Within M1â€Phase Pores in Propane Selective Oxidation. ChemCatChem, 2021, 13, 882-899.	3.7	9
1366	Kinetic modeling of dynamic changing active sites in a Mars-van Krevelen type reaction: Ethylene oxychlorination on K-doped CuCl2/Al2O3. Chemical Engineering Journal, 2021, 407, 128013.	12.7	9
1367	Prediction and Tuning of the Defects in the Redox Catalysts: Ethylene Oxychlorination. ChemCatChem, 2021, 13, 221-226.	3.7	4
1368	Experimental methods in chemical engineering: Temperature programmed surface reaction spectroscopy— <scp>TPSR</scp> . Canadian Journal of Chemical Engineering, 2021, 99, 423-434.	1.7	7
1369	Bulk phase charge transfer in focus – And in sequential along with surface steps. Catalysis Today, 2021, 364, 2-6.	4.4	8
1370	Improved Kinetics of <i>n</i> -Butane Oxidation to Maleic Anhydride: The Role of Byproducts. Industrial & Engineering Chemistry Research, 2021, 60, 218-229.	3.7	13
1371	Synthesis of α–MnO2–like rod catalyst using YMn2O5 A–site sacrificial strategy for efficient benzene oxidation. Journal of Hazardous Materials, 2021, 403, 123811.	12.4	32
1372	Physicochemical Factors That Influence the Deoxygenation of Oxyanions in Atomically Precise, Oxygen-Deficient Vanadium Oxide Assemblies. Inorganic Chemistry, 2021, 60, 6855-6864.	4.0	8

#	Article	IF	CITATIONS
1373	Supported Fe _x Ni _y catalysts for the co-activation of CO ₂ and small alkanes. Faraday Discussions, 2021, 229, 208-231.	3.2	6
1374	Application of concepts in heterogeneous oxidation of hydrocarbons: Mo, V-based oxide catalysts for oxidation of ethane and of n- and i-butanes. Catalysis Today, 2021, 363, 15-26.	4.4	11
1375	From the Birkeland–Eyde process towards energy-efficient plasma-based NO _X synthesis: a techno-economic analysis. Energy and Environmental Science, 2021, 14, 2520-2534.	30.8	96
1376	Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. Nature Communications, 2021, 12, 46.	12.8	27
1377	Mechanistic Framework and Effects of High Coverage in Vinyl Acetate Synthesis. ACS Catalysis, 2021, 11, 1841-1857.	11.2	6
1378	Atomically precise vanadium-oxide clusters. Nanoscale Advances, 2021, 3, 1293-1318.	4.6	37
1379	The dome of gold nanolized for catalysis. Chemical Science, 2021, 12, 5664-5671.	7.4	3
1380	Heavy Oil Upgrading by Oxidative Ring-Opening of Polycyclic Aromatic Hydrocarbons. ACS Symposium Series, 2021, , 189-209.	0.5	3
1381	Spatial activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein. Catalysis Science and Technology, 2021, 11, 5781-5790.	4.1	5
1382	Reductive silylation of polyoxovanadate surfaces using Mashima's reagent. Inorganic Chemistry Frontiers, 2021, 8, 4507-4516.	6.0	3
1383	A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO ₂ hydrogenation to methanol. Chemical Science, 2021, 12, 9902-9915.	7.4	35
1384	Probing surface-sensitive redox properties of VO _x /TiO ₂ catalyst nanoparticles. Nanoscale, 2021, 13, 7266-7272.	5.6	9
1385	High-efficiency catalytic reduction of residual oxygen for purification of carbon dioxide streams from high-pressure oxy-combustion systems. Reaction Chemistry and Engineering, 2021, 6, 1220-1229.	3.7	2
1386	C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50, 4299-4358.	38.1	144
1387	Why Ca2NH works as an efficient and stable support of Ru catalyst in ammonia synthesis. Research on Chemical Intermediates, 2021, 47, 235-248.	2.7	1
1388	Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of SrFeO _{3â~Î} and Sr ₃ Fe ₂ O _{7â~Î} Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 7216-7226.	8.0	14
1389	Effect of Oxygen Vacancies on Adsorption of Small Molecules on Anatase and Rutile TiO ₂ Surfaces: A Frontier Orbital Approach. Journal of Physical Chemistry C, 2021, 125, 3827-3844.	3.1	18
1390	Spinel Co3O4 oxides-support synergistic effect on catalytic oxidation of toluene. Applied Catalysis A: General, 2021, 614, 118044.	4.3	14

#	Article	IF	CITATIONS
1391	Sizing of a washcoated reactor for the catalytic oxidation of propylene to acrolein on a solid bismuth/molybdate catalyst. Journal of Flow Chemistry, 0, , 1.	1.9	1
1392	Earthâ€Abundant Transition Metalâ€Based Mulliteâ€Type Oxide Catalysts for Heterogeneous Oxidation Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000075.	5.8	8
1393	Oxygen Evolution on Iron Oxide Nanoparticles: The Impact of Crystallinity and Size on the Overpotential. Journal of the Electrochemical Society, 2021, 168, 034518.	2.9	15
1394	Is fighting against pollutants possible with critical raw material free perovskites?. Catalysis Today, 2021, , .	4.4	0
1395	Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts, 2021, 11, 427.	3.5	19
1396	Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal of CO2 Utilization, 2021, 45, 101405.	6.8	51
1397	Predominance of Subsurface and Bulk Oxygen Vacancies in Reduced Manganese Oxide. Journal of Physical Chemistry C, 2021, 125, 7990-7998.	3.1	6
1398	Effect of Ring-Configuration on Pyrolysis and V ₂ O ₅ Catalyzed Oxidation of Polycyclic Aromatic Hydrocarbons. Energy & Fuels, 2021, 35, 7693-7707.	5.1	3
1400	Low-temperature removal of aromatics pollutants via surface labile oxygen over Mn-based mullite catalyst SmMn2O5. Chemical Engineering Journal, 2021, 410, 128305.	12.7	38
1401	Modeling the selective oxidation of n-butane to maleic anhydride: From active site to industrial reactor. Catalysis Today, 2022, 387, 82-106.	4.4	18
1402	Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanism. Cell Reports Physical Science, 2021, 2, 100438.	5.6	27
1403	Mixed Anion Control of the Partial Oxidation of Methane to Methanol on the β-PtO ₂ Surface. ACS Omega, 2021, 6, 13858-13869.	3.5	9
1404	Methanol to hydrogen conversion on cobalt–ceria catalysts prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2021, 46, 17197-17208.	7.1	7
1405	Unprecedented Catalysis of Cs ⁺ Single Sites Confined in Y Zeolite Pores for Selective C _{sp3} –H Bond Ammoxidation: Transformation of Inactive Cs ⁺ lons with a Noble Gas Electronic Structure to Active Cs ⁺ Single Sites. ACS Catalysis, 2021, 11, 6698-6708.	11.2	12
1406	Co–CeO ₂ Interaction Induces the Mars–van Krevelen Mechanism in Dehydrogenation of Ethane. Journal of Physical Chemistry C, 2021, 125, 11411-11418.	3.1	11
1407	Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO ₄ A· <i>x</i> H ₂ O. ACS Catalysis, 2021, 11, 6162-6174.	11.2	9
1408	Evaluation of NiO/TALC Catalytic performance in carbon dioxide reforming of methane. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 106-117.	5.3	5
1409	Engineering Manganese Defects in Mn ₃ O ₄ for Catalytic Oxidation of Carcinogenic Formaldehyde. ACS Applied Materials & amp; Interfaces, 2021, 13, 29664-29675.	8.0	34

#	Article	IF	CITATIONS
1410	O ₂ Activation with a Sterically Encumbered, Oxygen-Deficient Polyoxovanadate-Alkoxide Cluster. Inorganic Chemistry, 2021, 60, 13833-13843.	4.0	8
1411	Study of energy release in Fe2O3/Al nano-thermite with graphene as an additional fuel. Physica B: Condensed Matter, 2021, 610, 412803.	2.7	10
1412	A simultaneous operando FTIR & Raman study of propane ODH mechanism over V-Zr-O catalysts. Catalysis Today, 2022, 387, 197-206.	4.4	10
1413	Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants. Applied Materials Today, 2021, 23, 100993.	4.3	21
1414	Mechanistic Insights into Oxygen Dynamics in Soot Combustion over Cryptomelane Catalysts in Tight and Loose Contact Modes via ¹⁸ O ₂ / ¹⁶ O ₂ lsotopic Variable Composition Measurements – A Hot Ring Model of the Catalyst Operation. ACS Catalysis, 2021, 11, 9530-9546.	11.2	15
1415	Detection of a real heterogeneous catalyst with an inactive oxygen-covered surface: Au/Li4Ti5O12. Applied Surface Science, 2021, 554, 149624.	6.1	5
1416	How Chemoresistive Sensors Can Learn from Heterogeneous Catalysis. Hints, Issues, and Perspectives. Chemosensors, 2021, 9, 193.	3.6	6
1417	$\hat{I}^2(L)$ -Bi2Mo2O9: A new, highly active and selective, mild oxidation bismuth molybdate catalyst. Journal of Catalysis, 2022, 408, 413-422.	6.2	12
1418	Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021, 49, 351-377.	14.2	91
1419	Investigation of Potential Catalytic Active Sites of Pd/SSZ-13: A DFT Perspective. Journal of Physical Chemistry C, 2021, 125, 15262-15274.	3.1	9
1420	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	47.7	61
1421	Oxygen-vacancy-mediated catalytic methanation of lignocellulose at temperatures below 200°C. Joule, 2021, 5, 3031-3044.	24.0	39
1422	Extension of the Linear Response Function of Electron Density to a Plane-wave Basis and the First Application to Periodic Surface Systems. Chemistry Letters, 2021, 50, 1801-1805.	1.3	2
1423	Selective hydrogen combustion as an effective approach for intensified chemical production via the chemical looping strategy. Fuel Processing Technology, 2021, 218, 106827.	7.2	17
1424	Titanium-doped Boron Nitride Fullerenes as Novel Single-atom Catalysts for CO Oxidation. Catalysis Letters, 2022, 152, 1742-1751.	2.6	4
1425	The role of CO2 in the dehydrogenation of n-octane using Cr-Fe catalysts supported on MgAl2O4. Molecular Catalysis, 2021, 513, 111782.	2.0	1
1426	Synergistic Effect Between Ca 4 V 4 O 14 and Vanadium‧ubstituted Hydroxyapatite in the Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3995-4009.	3.7	3
1427	Exploring catalyst dynamics in a fixed bed reactor by correlative operando spatially-resolved structure-activity profiling. Journal of Catalysis, 2022, 408, 372-387.	6.2	8

#	Article	IF	CITATIONS
1428	Enhanced activity of Co catalysts supported on tungsten carbide-activated carbon for CO2 reforming of CH4 to produce syngas. International Journal of Hydrogen Energy, 2021, 46, 28613-28625.	7.1	13
1429	Direct methanation of biomass: A unique oxygen-vacancy-mediated catalytic process under mild conditions. Chem Catalysis, 2021, 1, 765-767.	6.1	2
1430	Understanding the mechanism(s) of ketone oxidation on VOx/γ-Al2O3. Journal of Catalysis, 2021, 404, 109-127.	6.2	2
1431	Experimental methods in chemical engineering: <scp>X</scp> â€ray absorption spectroscopy— <scp>XAS</scp> , <scp>XANES</scp> , <scp>EXAFS</scp> . Canadian Journal of Chemical Engineering, 2022, 100, 3-22.	1.7	41
1432	Industrially Produced Fe- and Mn-Based Perovskites: Effect of Synthesis on Reactivity in Three-Way Catalysis: Part 1. ACS Omega, 2021, 6, 24325-24337.	3.5	3
1433	Time-Resolved XAS Provides Direct Evidence for Oxygen Activation on Cationic Iron in a Bimetallic Pt-FeO <i>_x</i> /Al ₂ O ₃ Catalyst. ACS Catalysis, 2021, 11, 11793-11805.	11.2	16
1435	Industrially Produced Fe- and Mn-Based Perovskites: Effect of Synthesis on Reactivity in Three-Way Catalysis: Part 2. ACS Omega, 2021, 6, 24316-24324.	3.5	1
1436	Influence of different alumina powders on thermal decomposition of CNTs during debinding of CNT/Al2O3-composite ceramics. Open Ceramics, 2021, 7, 100166.	2.0	5
1437	Regenerability of complex (PdO)xPd0.05-xCe0.95O2-y catalyst stabilized on functionalized alumina surface. Materials Research Bulletin, 2021, 141, 111357.	5.2	5
1438	Dynamic structure of highly disordered manganese oxide catalysts for low-temperature CO oxidation. Journal of Catalysis, 2021, 401, 115-128.	6.2	31
1439	Atomic Origin of the Autocatalytic Reduction of Monoclinic CuO in a Hydrogen Atmosphere. Journal of Physical Chemistry Letters, 2021, 12, 9547-9556.	4.6	12
1440	Catalytic Oxidation of Soot and Volatile Organic Compounds over Cu and Fe Doped Manganese Oxides Prepared via Sol-Gel Synthesis. , 0, , .		1
1441	First-Principles investigation on the behavior of Pt single and triple atoms supported on monolayer CuO (1 1 0) in CO oxidation. Applied Surface Science, 2021, 564, 150435.	6.1	3
1442	Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ. Applied Catalysis B: Environmental, 2021, 297, 120450.	20.2	24
1443	Catalyst design strategies for aqueous N2 electroreduction. Applied Materials Today, 2021, 25, 101184.	4.3	3
1445	Uniform platinum nanoparticles loaded on Universitetet i Oslo-66 (UiO-66): Active and stable catalysts for gas toluene combustion. Journal of Colloid and Interface Science, 2022, 606, 1811-1822.	9.4	57
1446	First-principles-based microkinetic rate equation theory for oxygen carrier reduction in chemical looping. Chemical Engineering Science, 2022, 247, 117042.	3.8	14
1447	The Role of Differential Equations in Applied Statistics. Springer Optimization and Its Applications, 2021, , 209-230.	0.9	0

#	Article	IF	CITATIONS
1448	Properties of titanium dioxide. , 2021, , 13-66.		12
1449	Comparison study of the effect of CeO ₂ -based carrier materials on the total oxidation of CO, methane, and propane over RuO ₂ . Catalysis Science and Technology, 2021, 11, 6839-6853.	4.1	6
1450	Vacancy engineering of WO _{3â^'x} nanosheets for electrocatalytic NRR process – a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 16658-16663.	2.8	9
1453	Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Advanced Functional Materials, 2021, 31, 2008983.	14.9	124
1454	Mechanistic Study on the Selective Oxidation of Acrolein to Acrylic Acid concerning the Role of Water. ChemCatChem, 2020, 12, 3560-3575.	3.7	3
1455	Preparation of pyridinemonocarboxylic acids by catalytic vapour phase oxidation of alkylpyridines. II. Oxidation of 2-methyl-5-ethylpyridine to niacin. Journal of Biochemical Toxicology, 1977, 27, 510-521.	0.4	1
1456	Selective heterogeneous hydrocarbon oxidation over oxide catalysts. Journal of Applied Chemistry and Biotechnology, 1972, 22, 759-768.	0.0	4
1457	Reactive gas adsorption. , 2006, , 149-190.		2
1458	Catalysts. , 2004, , 369-375.		1
1459	Heterogeneous Catalysis by Polyoxometalate-Intercalated Layered Double Hydroxides. , 2010, , 319-397.		11
1461	Catalysis by Solid Surfaces. , 1976, , 1-124.		13
1462	The Development of Ambient Pressure X-Ray Photoelectron Spectroscopy and Its Application to Surface Science. , 2014, , 197-229.		2
1464	Production of Maleic Anhydride. , 1982, , 17-40.		4
1465	Surface Reactions Controlled by the Bulk Migration of Oxide Ions. Fundamental and Applied Catalysis, 1993, , 283-305.	0.9	4
1466	Scanning Tunneling Microscopy at Elevated Pressure. Springer Series in Materials Science, 2014, , 181-206.	0.6	1
1467	Catalytic Processes in Organic Conversions. , 1983, , 1-38.		1
1468	Divided Catalytic Processes. Springer Series in Chemical Physics, 2004, , 505-520.	0.2	2
1469	The Activity of Metal Oxides in the Oxidation of Hydrogen and Carbon Monoxide. , 1983, , 493-532.		4

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1470	Computer Simulation of Structural, Defect and Surface Properties of Solids. , 1997, , 4	79-521.		2
1471	Influence of metal nuclearity and physicochemical properties of ceria on the oxidation monoxide. Chinese Journal of Catalysis, 2020, 41, 951-962.	of carbon	14.0	19
1472	Critical review of catalytic oxidization and chemisorption methods for indoor formalde removal. HVAC and R Research, 2011, 17, 476-503.	hyde	0.6	22
1473	Optimization of CO Oxidation Catalysts for Thermocatalytic and Semiconducting Gas Russian Journal of Inorganic Chemistry, 2020, 65, 1948-1957.	Sensors.	1.3	5
1474	Direct Benzyl Alcohol and Benzaldehyde Synthesis from Toluene over Keggin-Type Poly Catalysts: Kinetic and Mechanistic Studies. Journal of Chemistry, 2019, 2019, 1-11.	/oxometalates	1.9	2
1475	Catalysis by Metal Oxides. , 2006, , 39-62.			1
1476	Algorithm for Automatic Detection of Surface Atoms. Transactions of the Materials Re of Japan, 2020, 45, 115-120.	search Society	0.2	6
1477	Oxidation of <i>o</i> -Xylene over Vanadium Oxide-Potassium Sulfate Cataly Gakkaishi (Journal of the Japan Petroleum Institute), 1967, 10, 337-341.	vsts (IV). Sekiyu	0.1	1
1478	Environment friendly spin-catalysis for dioxygen activation. Chemistry and Chemical Te 4, 1-16.	echnology, 2010,	1.1	16
1479	Ethyl acetate oxidation over MnOx-CoOx. Relationship between oxygen and catalytic a Ciencia, Tecnologia Y Futuro, 2015, 6, 45-56.	activity. CTyF -	0.5	4
1480	Production of Ethylene and its Commercial Importance in the Global Market. Advances and Materials Engineering Book Series, 2016, , 82-115.	; in Chemical	0.3	10
1481	A Study on Catalysis by Ferrospinels for Preventing Atmospheric Pollution from Carbor Open Journal of Physical Chemistry, 2011, 01, 124-130.	n Monoxide.	0.6	17
1482	Enhancing the activity of gold supported catalysts by oxide coating: towards efficient Green Chemistry, 2021, 23, 8453-8457.	oxidations.	9.0	19
1483	Ammonia Synthesis at Ambient Conditions via Electrochemical Atomic Hydrogen Perm Energy Letters, 2021, 6, 3817-3823.	eation. ACS	17.4	19
1484	Ga-doped Pd/CeO <mml:math di<br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e727" altimg="si34.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> mode oxidation reactivity: A density functional theory study. Applied Surface Science, 2022,	el catalysts for CO	6.1	23
1485	Atomic level fluxional behavior and activity of CeO2-supported Pt catalysts for CO oxid Communications, 2021, 12, 5789.	lation. Nature	12.8	53
1486	Effects of surface species and homogeneous reactions on rates and selectivity in ethar oxide catalysts. AICHE Journal, 2021, 67, e17483.	ne oxidation on	3.6	5
1487	Ambient Air Purification by Nanotechnologies: From Theory to Application. Catalysts, 2	2021, 11, 1276.	3.5	13

# 1488	ARTICLE Kinetics of Oxidative Dehydrogenation of Isobutyric Acid Over K2HPMo12O40 Catalyst. Collection of Czechoslovak Chemical Communications, 2001, 66, 575-587.	IF 1.0	CITATIONS
1489	Catalysis by Metal Oxides. , 2006, , 53-76.		0
1491	Catalytic Roles of V2O5 on Benzene Ring Decomposition using Ab Initio Molecular Orbital Method. Journal of Environmental Chemistry, 2007, 17, 37-45.	0.2	0
1492	A Survey of the Bi2O3–MoO3 Binary System. , 2007, , 754-777.		0
1493	Oxidation Catalysts. Fundamental and Applied Catalysis, 2011, , 119-167.	0.9	2
1494	Surface Sites in Heterogeneous Catalysis. , 1977, , 327-362.		0
1495	Supported Liquid Phase Catalysts. , 1981, , 541-576.		1
1496	Temporal Analysis of Products (TAP): A Unique Catalyst Evaluation System with Sub-Millisecond Time Resolution. , 1988, , 310-310.		20
1497	Biocatalytic, Biomimetic and Suprabiotic Oxidation of Alkanes. , 1998, , 259-295.		0
1498	Crystallinity of CrOx/TiO2Catalysts and Their Activity in TCE Oxidation. Journal of Environmental Science International, 2014, 23, 829-837.	0.2	0
1500	Alkaline Ceramics-based High-temperature CO2 Sorbents. Inorganic Materials Series, 2018, , 238-280.	0.7	0
1501	Theoretical Analysis of NO-CO Reaction Involving Lattice Oxygen. Journal of Computer Chemistry Japan, 2019, 18, 139-141.	0.1	0
1502	Novel Inorganic Compound Based Sensors for Their Application in Nuclear Energy Programs. , 2019, , 1-53.		0
1503	A Study on the Removal of Benzene and the Properties of Catalysts Prepared by Framework Substitution of Copper and Manganese in ZSM-5. Journal of Korean Society for Atmospheric Environment, 2019, 35, 625-635.	1.1	0
1504	Molecularly Dispersed Vanadium Oxide: Structure–Reactivity Relationships for Reducibility and Hydrocarbon Oxidation. RSC Catalysis Series, 2020, , 321-339.	0.1	0
1506	Catalytic combustion of propane on Pd-modified Al–La–Ce catalyst –Âfrom reaction kinetics and mechanism to monolithic reactor tests and scale-up. International Journal of Chemical Reactor Engineering, 2020, 18, .	1.1	1
1507	Deep Insight into the Mechanism of Catalytic Combustion of CO and CH ₄ over SrTi _{1–<i>x</i>} B _{<i>x</i>} O ₃ (B = Co, Fe, Mn, Ni, and Cu) Perovskite via Flame Spray Pyrolysis. ACS Applied Materials & Interfaces, 2021, 13, 52571-52587.	8.0	18
1508	Complementary operando insights into the activation of multicomponent selective propylene oxidation catalysts. Journal of Catalysis, 2022, 408, 339-355.	6.2	9

#	Article	IF	CITATIONS
1509	High-pressure cell to study the catalytic behavior of bulk samples and surface deposited mass-selected nanoclusters at atmospheric conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	2
1510	On the role of oxidation states in the electronic structure via the formation of oxygen vacancies of a doped MoVTeNbOx in propylene oxidation. Applied Surface Science, 2022, 573, 151428.	6.1	13
1511	On the ensemble requirement of fully selective chemical looping methane partial oxidation over La-Fe-based perovskites. Applied Catalysis B: Environmental, 2022, 301, 120788.	20.2	34
1512	Thin Oxide Films as Model Systems for Heterogeneous Catalysts. Springer Handbooks, 2020, , 267-328.	0.6	1
1513	CHAPTER 3. Aerobic Oxidation Reactions Using Metal-based Heterogeneous Systems. RSC Catalysis Series, 2020, , 50-77.	0.1	0
1514	Chapter 15. Theoretical Mechanistic Analysis on Vanadium Oxidation Catalysis. RSC Catalysis Series, 2020, , 374-399.	0.1	0
1516	Surface reducibility, reactivity, and stability induced by noble metal modifications on the <i> γ </i> -Fe ₂ O ₃ maghemite (001) surfaces. Journal of Physics Condensed Matter, 2020, 32, 425004.	1.8	0
1517	Dynamic Estimation Method of Effective Active Site on Palladium Methane Oxidation Catalyst in Exhaust Gas of Marine Lean Burn Gas Engine. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	2
1518	Detecting Framework Distortions Predicted by Hybrid-DFT: An Opportunity to Improve the M1 Catalyst. Journal of Physical Chemistry Letters, 2021, 12, 11158-11163.	4.6	1
1519	Highly stable activity of cobalt based catalysts with tungsten carbide-activated carbon support for dry reforming of methane: Role of tungsten carbide. Fuel, 2022, 311, 122512.	6.4	19
1520	New Insight into the Interplay of Method of Deposition, Chemical State of Pd, Oxygen Storage Capability and Catalytic Activity of Pd-Containing Perovskite Catalysts for Combustion of Methane. Catalysts, 2021, 11, 1399.	3.5	1
1521	Synergy of the successive modification of cryptomelane MnO2 by potassium insertion and nitrogen doping for catalytic formaldehyde oxidation. Chemical Engineering Journal, 2022, 431, 133928.	12.7	18
1522	Reactivity and catalytic activity of layered YBa2Cu3O7-δ (123) type defect perovskites. Journal of Chemical Sciences, 1994, 106, 1363-1373.	1.5	2
1523	Dual roles of graphitic carbon nitride in the electrosynthesis of ammonia under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 27518-27528.	10.3	4
1524	Introduction to Molecular Catalysis. , 2022, , 55-83.		0
1526	Preguntas orientadoras para la sÃntesis de catalizadores y su uso en reacciones de oxidación catalÃtica selectiva. Revista UIS IngenierÃas, 2020, 20, .	0.2	0
1527	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	2.8	27
1528	Ammonia as a carrier of renewable energy: Recent progress of ammonia synthesis by homogeneous catalysts, heterogeneous catalysts, and electrochemical method. , 2022, , 265-291.		1

#	Article	IF	CITATIONS
1530	Advances of manganese-oxides-based catalysts for indoor formaldehyde removal. Green Energy and Environment, 2023, 8, 626-653.	8.7	15
1531	Magnesium as a Methanation Suppressor for Iron- and Cobalt-Based Oxide Catalysts during the Preferential Oxidation of Carbon Monoxide. Catalysts, 2022, 12, 118.	3.5	4
1532	Unravelling the redox mechanism and kinetics of a highly active and selective Ni-based material for the oxidative dehydrogenation of ethane. Reaction Chemistry and Engineering, 2022, 7, 619-640.	3.7	8
1533	Reaction kinetics and mechanism of the catalytic oxidation of propane over Co–ZSM-5 zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 83-103.	1.7	4
1534	Discovery of a New Solvent Co-Catalyzed Mechanism in Heterogeneous Catalysis: A First-Principles Study with Molecular Dynamics on Acetaldehyde Hydrogenation on Birnessite. Jacs Au, 2022, 2, 328-334.	7.9	10
1535	Experiment and Theory Clarify: Sc + Receives One Oxygen Atom from SO 2 to Form ScO + , which Proves to be a Catalyst for the Hidden Oxygenâ€Exchange with SO 2. ChemPhysChem, 2021, , .	2.1	2
1536	Role of multi-layered graphene as an additional fuel on energy release of Al/MoO ₃ nano-thermite. Philosophical Magazine, 2022, 102, 803-822.	1.6	1
1537	Plasma treated M1 MoVNbTeO –CeO2 composite catalyst for improved performance of oxidative dehydrogenation of ethane. Green Energy and Environment, 2023, 8, 904-914.	8.7	7
1538	ВЫЧÐ~СЛЕÐÐ~Е ЗÐÐЧЕÐÐ~Й TOF Ð~ ΤΟΝ Ð' ГЕТЕÐОГЕÐÐОМ КÐТÐЛÐ~ЗЕ: З€	₽ĵ@2Đ¡Đ~{)œ₽žĐ¡Đ¢Đ
1539	Effects of pH and vanadium concentration during the impregnation of Na-SiO2 supported catalysts for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158.	2.0	5
1539 1540		2.0 18.8	5
	for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and		
1540	for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389.	18.8	46
1540 1541	 for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389. Oxygen Exchange on Vanadium Pentoxide. Journal of Physical Chemistry C, 2022, 126, 3443-3456. CO Oxidation Activity of Au on Spinel Titanate Supports: Improvement of Catalytic Activity via Alkali 	18.8 3.1	46 8
1540 1541 1542	 for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389. Oxygen Exchange on Vanadium Pentoxide. Journal of Physical Chemistry C, 2022, 126, 3443-3456. CO Oxidation Activity of Au on Spinel Titanate Supports: Improvement of Catalytic Activity via Alkali Cation Substitution from Li4Ti5O12 to Na3LiTi5O12. Chemistry Letters, 2022, 51, 157-161. Selective catalytic oxidation of ammonia to nitric oxide via chemical looping. Nature 	18.8 3.1 1.3	46 8 1
1540 1541 1542 1543	 for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389. Oxygen Exchange on Vanadium Pentoxide. Journal of Physical Chemistry C, 2022, 126, 3443-3456. CO Oxidation Activity of Au on Spinel Titanate Supports: Improvement of Catalytic Activity via Alkali Cation Substitution from Li4Ti5O12 to Na3LiTi5O12. Chemistry Letters, 2022, 51, 157-161. Selective catalytic oxidation of ammonia to nitric oxide via chemical looping. Nature Communications, 2022, 13, 718. Enhancing catalytic performance of Ag-CeO2 catalysts for catalytic CO combustion: Ag-CeO2 interface 	18.8 3.1 1.3 12.8	46 8 1 18
1540 1541 1542 1543 1544	for the oxidation of propane. Molecular Catalysis, 2022, 520, 112158. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389. Oxygen Exchange on Vanadium Pentoxide. Journal of Physical Chemistry C, 2022, 126, 3443-3456. CO Oxidation Activity of Au on Spinel Titanate Supports: Improvement of Catalytic Activity via Alkali Cation Substitution from Li4Ti5O12 to Na3LiTi5O12. Chemistry Letters, 2022, 51, 157-161. Selective catalytic oxidation of ammonia to nitric oxide via chemical looping. Nature Communications, 2022, 13, 718. Enhancing catalytic performance of Ag-CeO2 catalysts for catalytic CO combustion: Ag-CeO2 interface interaction and Na-promoting action. Fuel, 2022, 317, 123439. Influence of zirconia addition in TiO ₂ and TiO ₂ &&CeO ₂ aerogels on the textural, structural and catalytic properties of supported vanadia in chlorobenzene oxidation.	18.8 3.1 1.3 12.8 6.4	46 8 1 18 6

#	Article	IF	CITATIONS
1549	Biomimetic Lightâ€Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal. Advanced Science, 2022, 9, e2105819.	11.2	13
1551	Modeling surface spin polarization on ceria-supported Pt nanoparticles. Journal of Physics Condensed Matter, 2022, , .	1.8	0
1552	Single Atom Catalysts: An Overview of the Coordination and Interactions with Metallic Supports. Chemical Record, 2022, 22, e202100328.	5.8	14
1553	Cu ₂ Oâ^CD nanosuperstructures as a Biomimetic Catalyst for Oxidation of Benzylic <i>sp</i> ^{<i>3</i>} Câ^H bonds and Secondary Amines using Molecular Oxygen: First Total Synthesis of proposed Swerilactone O. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
1554	Gas-Phase Selective Oxidation of Methane into Methane Oxygenates. Catalysts, 2022, 12, 314.	3.5	8
1555	Cerium-Copper Oxides Synthesized in a Multi-Inlet Vortex Reactor as Effective Nanocatalysts for CO and Ethene Oxidation Reactions. Catalysts, 2022, 12, 364.	3.5	4
1556	Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism. Journal of Alloys and Compounds, 2022, 910, 164814.	5.5	9
1557	Reaction kinetics and mechanism of n-hexane catalytic combustion over Co-ZSM-5 zeolites. Materials Today: Proceedings, 2022, , .	1.8	1
1558	Oxygen Storage Capacity of Co-Doped SrTiO ₃ with High Redox Performance. Journal of Physical Chemistry C, 2022, 126, 4415-4422.	3.1	7
1559	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	47.7	50
1560	Recent Advances in Complete Methane Oxidation using Zeolite‣upported Metal Nanoparticle Catalysts. ChemCatChem, 2022, 14, .	3.7	12
1561	Synergy of CuNiFe-LDH based catalysts for enhancing low-temperature SCR-C3H6 performance: Surface properties and reaction mechanism. Chemical Engineering Journal, 2022, 438, 135570.	12.7	19
1562	Ultra-light 3D MnO2-agar network with high and longevous performance for catalytic formaldehyde oxidation. Science of the Total Environment, 2022, 830, 154818.	8.0	8
1563	Insights into Tuning of Moâ€Based Structures toward Enhanced Electrocatalytic Performance of Nitrogenâ€toâ€Ammonia Conversion. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	3
1564	Effect of MnO ₂ Polymorphs' Structure on Low-Temperature Catalytic Oxidation: Crystalline Controlled Oxygen Vacancy Formation. ACS Applied Materials & Interfaces, 2022, 14, 18525-18538.	8.0	27
1569	Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective. Catalysis Science and Technology, 2022, 12, 3650-3669.	4.1	9
1570	Mechanistic insight into rapid oxygen-atom transfer from a calix-functionalized polyoxovanadate. Chemical Communications, 2022, , .	4.1	2
1571	Direct visualisation of the surface atomic active sites of carbonâ€supported Co3O4 nanocrystals via highâ€resolution phase restoration. ChemPhysChem, 2022, , .	2.1	1

#	Article	IF	CITATIONS
1572	Toward rational design of supported vanadia catalysts of lignin conversion to phenol. Chemical Engineering Journal, 2022, 446, 136965.	12.7	4
1573	Selective oxidation of biomassâ€based 5â€hydroxymethylfurfural to 2,5â€diformylfuran catalyzed by multicomponent molybdenum based catalyst. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	0
1574	Selective Oxidation of Propylene to Acrolein over Silver Molybdate-Coated MoO ₃ Nanobelts. ACS Applied Nano Materials, 2022, 5, 7187-7197.	5.0	5
1575	Revisiting the mechanism of highly efficient CO oxidation by single iron atom catalysis on Pt(100). Materials Today Communications, 2022, 31, 103609.	1.9	0
1576	Fuel oxygenation as a novel method to reduce sooting propensity of fuels: An investigation with gasoline surrogate fuels. Fuel, 2022, 324, 124562.	6.4	6
1577	Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review. Journal of Environmental Sciences, 2023, 125, 112-134.	6.1	53
1578	Surface Oxygen Vacancies Confined by Ferroelectric Polarization for Tunable CO Oxidation Kinetics. Advanced Materials, 2022, 34, e2202072.	21.0	13
1579	Catalytic O2-steam gasification of biomass over Fe2-xMnxO3 oxides supported on ceramic foam filters. Fuel, 2022, 324, 124566.	6.4	7
1580	Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science, 2022, 376, 982-987.	12.6	127
1581	Onâ€purpose Ethylene Production via CO ₂ â€assisted Ethane Oxidative Dehydrogenation: Selectivity Control of Iron Oxide Catalysts. ChemCatChem, 2022, 14, .	3.7	6
1582	Surface Anchoring and Active Sites of [Mo ₃ S ₁₃] ^{2–} Clusters as Co-Catalysts for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2022, 12, 6641-6650.	11.2	19
1583	Reaction Kinetics and Mechanism of VOCs Combustion on Mn-Ce-SBA-15. Catalysts, 2022, 12, 583.	3.5	3
1584	A first-principles investigation of nitrogen reduction to ammonia on zirconium nitride and oxynitride surfaces. Journal of Materials Science, 2022, 57, 10213-10224.	3.7	8
1585	Water durability modification of cerium-manganese oxide by tin shell for efficient airborne benzene oxidation. Journal of Hazardous Materials, 2022, 436, 129207.	12.4	5
1587	Perovskite oxides as active materials in novel alternatives to well-known technologies: A review. Ceramics International, 2022, 48, 27240-27261.	4.8	42
1588	Recent Advances in Application of Graphitic Carbon Nitrideâ€Based Catalysts for Photocatalytic Nitrogen Fixation. Small, 2022, 18, .	10.0	37
1589	Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. Catalysis Reviews - Science and Engineering, 0, , 1-54.	12.9	12
1591	Tailoring single site VO4 on flame-made V/Al2O3 catalysts for selective oxidation of n-butane. Journal of Catalysis, 2022, 413, 93-105.	6.2	4

#	Article	IF	CITATIONS
1592	Empowering carbon materials robust gas desulfurization capability through an inclusion of active inorganic phases: A review of recent approaches. Journal of Hazardous Materials, 2022, 437, 129414.	12.4	11
1593	Volatile organic compounds (VOC) emissions control in iron ore sintering process: Recent progress and future development. Chemical Engineering Journal, 2022, 448, 137601.	12.7	37
1594	Graphene oxide-based photocatalysts for CO2 reduction. , 2022, , 93-134.		0
1595	Dataâ€driven Interpretable Descriptors for Structureâ€Activity Relation of Surface Lattice Oxygen on Doped Vanadium Oxides. Angewandte Chemie, 0, , .	2.0	0
1596	Dataâ€Ðriven Interpretable Descriptors for the Structure–Activity Relationship of Surface Lattice Oxygen on Doped Vanadium Oxides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
1597	Active coordination sites of Co spinel oxides for NO reduction by CO. Catalysis Today, 2023, 411-412, 113816.	4.4	2
1598	Dynamic behavior of Pd/Ca2AlMnO5+ \hat{l} for purifying automotive exhaust gases under fluctuating oxygen concentration. Catalysis Today, 2022, , .	4.4	0
1599	Nickel oxide-based catalysts for ethane oxidative dehydrogenation: a review. Comptes Rendus Chimie, 2022, 25, 119-152.	0.5	0
1600	Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catalysis, 2022, 12, 8936-8975.	11.2	41
1601	Boosting the Activity of Single-Atom Pt ₁ /CeO ₂ via Co Doping for Low-Temperature Catalytic Oxidation of CO. Inorganic Chemistry, 2022, 61, 11932-11938.	4.0	11
1602	Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: Atomistic features and viewpoints. Materials Today, 2022, 58, 221-237.	14.2	11
1603	Insights into the substitutional chemistry of La1â^'xSrxCo1â^'yMyO3 (M = Pd, Ru, Rh, and Pt) probed by in situ DRIFTS and DFT analysis of CO oxidation. Applied Catalysis A: General, 2022, 643, 118768.	4.3	4
1604	Citrate-regulated synthesis of hydrotalcite-like compounds as peroxymonosulfate activator - Investigation of oxygen vacancies and degradation pathways by combining DFT. Applied Catalysis B: Environmental, 2022, 317, 121704.	20.2	87
1605	Alkali metal halide–coated perovskite redox catalysts for anaerobic oxidative dehydrogenation of <i>n</i> -butane. Science Advances, 2022, 8, .	10.3	4
1606	Rational design and modulation strategies of Mo-based electrocatalysts and photo/electrocatalysts towards nitrogen reduction to ammonia (NH3). Chemical Engineering Journal, 2023, 451, 138320.	12.7	29
1607	Progress and key challenges in catalytic combustion of lean methane. Journal of Energy Chemistry, 2022, 75, 173-215.	12.9	71
1608	Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis. Catalysis Today, 2023, 423, 113874.	4.4	11
1609	Oxygen Healing and CO ₂ /H ₂ /Anisole Dissociation on Reduced Molybdenum Oxide Surfaces Studied by Density Functional Theory. ChemPhysChem, 2022, 23, .	2.1	1

#	Article	IF	CITATIONS
1610	Effect of O-Vacancy Concentration and Proximity on Electronic Metal–Support Interactions: Ru/ZrO ₂ Catalysts. ACS Catalysis, 2022, 12, 10065-10079.	11.2	5
1/11	Boosting Electrical Response toward Trace Volatile Organic Compounds Molecules via Pulsed	0.6	11
1611	Temperature Modulation of Pt Anchored WO ₃ Chemiresistor. Small Methods, 2022, 6, .	8.6	11
1612	Exploring the roles of oxygen species in H2 oxidation at β-MnO2 surfaces using operando DRIFTS-MS. Communications Chemistry, 2022, 5, .	4.5	13
1613	Sustainable, economic, and simple preparation of an efficient catalyst for Li–O2 batteries. Journal of Power Sources, 2022, 546, 231942.	7.8	4
1614	CHAPTER 12. Oxidative Dehydrogenation of Ethane to Ethylene Over Two-dimensional Nanomaterial Catalysts Using CO2. , 2022, , 320-340.		0
1615	Advances and future trends in selective oxidation catalysis: a critical review. Catalysis Science and Technology, 2022, 12, 7245-7269.	4.1	9
1616	The Emergence of the Ubiquity of Cerium in Heterogeneous Oxidation Catalysis Science and Technology. Catalysts, 2022, 12, 959.	3.5	5
1617	STUDY OF Pt/Ce-Mn-Ox CATALYSTS FOR THE LOW-TEMPERATURE CO OXIDATION REACTION. Journal of Structural Chemistry, 2022, 63, 1199-1214.	1.0	3
1618	Phonon Resonance Catalysis in NO Oxidation on Mn-Based Mullite. ACS Catalysis, 2022, 12, 12113-12122.	11.2	2
1619	Kinetic Coupling of Redox and Acid Chemistry in Methanol Partial Oxidation on Vanadium Oxide Catalysts. ACS Catalysis, 2022, 12, 11801-11820.	11.2	7
1620	High-Surface-Area Synthesis of Iron-Doped CaTiO ₃ at Low Temperatures: New Insights into Oxygen Activation, Iron States, and the Impact on Methane Oxidation. Inorganic Chemistry, 2022, 61, 15432-15443.	4.0	3
1621	Insights into Chlorobenzene Catalytic Oxidation over Noble Metal Loading {001}-TiO ₂ : The Role of NaBH ₄ and Subnanometer Ru Undergoing Stable Ru ⁰ ↔ Ru ⁴⁺ Circulation. Environmental Science & amp; Technology, 2022, 56, 16292-16302.	10.0	10
1622	Solution Plasma Processing Singleâ€Atom Au ₁ on CeO ₂ Nanosheet for Low Temperature Photoâ€Enhanced Mars–van Krevelen CO Oxidation. Advanced Functional Materials, 2022, 32, .	14.9	21
1623	Modeling Interfacial Interaction between Gas Molecules and Semiconductor Metal Oxides: A New View Angle on Gas Sensing. Advanced Science, 2022, 9, .	11.2	42
1624	Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts, 2022, 12, 1134.	3.5	15
1625	Catalysis Chemistry of Crystalline Complex Metal Oxide Catalysts. , 2022, , 53-81.		0
1626	Metal Oxide Catalysts in Relation to Environmental Protection and Energy Conversion. , 2022, , 301-323.		2
1627	An Atomâ€Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16

#	Article	IF	CITATIONS
1628	An Atomâ€Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angewandte Chemie, 2022, 134, .	2.0	3
1629	Lithium promotes Ag-CoOx composite for formaldehyde oxidation at ambient temperature: Chemically adsorbed oxidative oxygen formed by the interaction between AgCoO2 and catalyst parent. Journal of Environmental Chemical Engineering, 2022, 10, 108844.	6.7	6
1630	Photothermal synergistic engineering of CeO2 and Au co-modified VO2 for efficient and selective oxidation of aromatic alcohols. Applied Surface Science, 2023, 611, 155616.	6.1	8
1631	Promoted catalytic performance of Ag-Mn bimetal catalysts synthesized through reduction route. Journal of Environmental Sciences, 2024, 137, 358-369.	6.1	4
1632	Propylene Oxidation to Acrolein over Cu/MoO ₃ Nanobelt Composites. ChemNanoMat, 2023, 9, .	2.8	1
1633	Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. Chinese Journal of Catalysis, 2022, 43, 2987-3018.	14.0	45
1634	Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. Journal of Catalysis, 2023, 417, 60-73.	6.2	4
1635	Insights into the state of ceria during ethanol steam reforming over Ir/CeO ₂ . Catalysis Science and Technology, 2023, 13, 558-572.	4.1	5
1638	Preparation of a Nanorod-like Mo-VO _{<i>x</i>} Catalyst for Gas Phase Selective Oxidation of Methyl Lactate with Air. Industrial & Engineering Chemistry Research, 2023, 62, 302-313.	3.7	1
1639	Mechanistic Insights on the Low-Temperature Oxidation of CO Catalyzed by Isolated Co Ions in N-Doped Carbon. ACS Catalysis, 2022, 12, 15529-15540.	11.2	1
1640	Recent Advances in NH ₃ Synthesis with Chemical Looping Technology. Industrial & Engineering Chemistry Research, 2022, 61, 18215-18231.	3.7	6
1641	Pt-Modified Nano-Sized Mn2O3 Oxide Prepared from the Mn3O4 Phase with Tetragonal Symmetry for CO Oxidation. Symmetry, 2022, 14, 2543.	2.2	0
1642	In situ infrared absorption probing of plasma catalysis: vibrationally-excited species induced Mars–van Krevelen type mechanism. Plasma Sources Science and Technology, 2022, 31, 124005.	3.1	1
1643	The Synthesis of Different Series of Cobalt BEA Zeolite Catalysts by Post-Synthesis Methods and Their Characterization. Catalysts, 2022, 12, 1644.	3.5	3
1644	Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nature Chemistry, 2023, 15, 286-293.	13.6	24
1645	Recent Progress in Electrochemical Nitrogen Reduction on Transition Metal Nitrides. ChemSusChem, 2023, 16, .	6.8	9
1646	State-of-the-Art Review of Oxidative Dehydrogenation of Ethane to Ethylene over MoVNbTeOx Catalysts. Catalysts, 2023, 13, 204.	3.5	8
1647	Review and Perspective on Transition Metal Electrocatalysts Toward Carbon-Neutral Energy. Energy & Fuels, 2023, 37, 1545-1576.	5.1	16

#	Article	IF	CITATIONS
1648	Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. , 2023, 5, .		33
1649	Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO ₃ Perovskite Catalysts. ACS Applied Materials & Interfaces, 2023, 15, 5293-5300.	8.0	3
1650	State of the art and perspectives of the CO2 chemisorption in ceramics with its simultaneous or subsequent chemical transformation. Carbon Capture Science & Technology, 2023, 7, 100101.	10.4	5
1651	Comparative study of the oxidative dehydrogenation of cyclohexane over vanadium isomorphic-substituted hydroxyapatite and hydroxyapatite-supported vanadium oxide. Molecular Catalysis, 2023, 542, 113105.	2.0	1
1652	TiO2-CeO2 assisted heterostructures for photocatalytic mitigation of environmental pollutants: A comprehensive study on band gap engineering and mechanistic aspects. Inorganic Chemistry Communication, 2023, 151, 110564.	3.9	9
1653	Cobalt on dealuminated-Siβ as a catalyst for the oxidative dehydrogenation of propane. Applied Catalysis A: General, 2023, 657, 119119.	4.3	3
1654	Pivotal role of MnOx physicochemical structure in soot oxidation activity. Fuel, 2023, 346, 128287.	6.4	4
1655	Low-temperature gas-phase toluene catalytic combustion over modified CoCr2O4 spinel catalysts: Effect of Co/Cr content and calcination temperature. Applied Catalysis A: General, 2023, 657, 119162.	4.3	5
1656	Oxygen vacancy promoted H2O activation over K+-doped ε-MnO2 for low-temperature HCHO oxidation. Applied Surface Science, 2023, 624, 157127.	6.1	2
1657	Kinetic Relevance of Surface Reactions and Lattice Diffusion in the Dynamics of Ce–Zr Oxides Reduction–Oxidation Cycles. Journal of Physical Chemistry C, 2023, 127, 2936-2952.	3.1	3
1658	Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science. Progress in Energy and Combustion Science, 2023, 96, 101074.	31.2	13
1659	The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts. ACS Catalysis, 2023, 13, 3066-3084.	11.2	32
1661	Theoretical Insight into Oxidation of Anilines to Azobenzenes Catalyzed by Hexamolybdate: Outer-Sphere Electron and Proton Transfer. Journal of Physical Chemistry C, 2023, 127, 4124-4131.	3.1	1
1662	Promoted coke resistance of Ni by surface carbon for the dry reforming of methane. IScience, 2023, 26, 106237.	4.1	2
1663	Role of the Support Oxidation State on the Catalytic Activity of Two-Dimensional Pt/TiO _{<i>x</i>} Catalysts. Journal of Physical Chemistry C, 2023, 127, 4096-4103.	3.1	1
1664	Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence from In Situ XPS/NEXAFS and DFT + <i>U</i> Calculation. ACS Catalysis, 2023, 13, 3444-3455.	11.2	20
1665	Co ₃ O ₄ /TiO ₂ catalysts studied <i>in situ</i> during the preferential oxidation of carbon monoxide: the effect of different TiO ₂ polymorphs. Catalysis Science and Technology, 2023, 13, 2038-2052.	4.1	1
1666	CO ₂ Hydrogenation to Methanol over a Pt-Loaded Molybdenum Suboxide Nanosheet with Abundant Surface Oxygen Vacancies. Journal of Physical Chemistry C, 2023, 127, 4942-4952.	3.1	1

#	Article	IF	CITATIONS
1668	Theoretical insights into the support effect on the NO activation over platinum-group metal catalysts. Journal of Chemical Physics, 2023, 158, .	3.0	2
1669	Tuning the surface reactivity of oxides by peroxide species. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
1670	Tuning catalysis by surface-deposition of elements on oxidation catalysts <i>via</i> atomic layer deposition. Catalysis Science and Technology, 2023, 13, 4117-4130.	4.1	1
1671	A DFT study of the catalytic ODH of n-hexane over a cluster model of vanadium oxide. Molecular Catalysis, 2023, 541, 113078.	2.0	0
1672	Role of La-based perovskite catalysts in environmental pollution remediation. Reviews in Chemical Engineering, 2024, 40, 193-228.	4.4	1
1673	Insights into the mechanism of carboxylic acid hydrogenation into alcohols at the MnO/Cu (111) interface: a combined DFT and kinetic study. Catalysis Science and Technology, 2023, 13, 3158-3173.	4.1	1
1674	Reaction and Reactor Engineering. , 2017, , 589-708.		0
1675	Sr-doped calcium and barium manganites as catalysts in heterogeneous oxidation of volatile organic compounds. Catalysis Communications, 2023, 178, 106677.	3.3	0
1676	Benzene abatement catalyzed by Ceria-Supported platinum nanoparticles and single atoms. Chemical Engineering Journal, 2023, 467, 143407.	12.7	1
1677	Temperature-Programmed (TP) Techniques. Springer Handbooks, 2023, , 1005-1029.	0.6	0
1678	Selective Oxidation of Allylbenzene to Cinnamaldehyde over BiMoO _{<i>x</i>} -Loaded CoFeMoO _{<i>x</i>} Catalysts and Kinetic Analysis Including Oxygen Transfer of CoFeMoO _{<i>x</i>} Supports. Industrial & Engineering Chemistry Research, 2023, 62, 8232-8243.	3.7	0
1679	Case Studies: Raman Spectroscopy. Springer Handbooks, 2023, , 111-129.	0.6	0
1680	Revealing the Mechanistic Details for the Selective Deoxygenation of Carboxylic Acids over Dynamic MoO ₃ Catalysts. ACS Catalysis, 2023, 13, 8455-8466.	11.2	2
1681	Toluene and 2-propanol mixture oxidation over Mn2O3 catalysts: Study of inhibition/promotion effects by in-situ DRIFTS. Chemical Engineering Journal, 2023, 470, 144114.	12.7	4
1682	Conversion of glycerol to acrylic acid: a review of strategies, recent developments and prospects. Reaction Chemistry and Engineering, 2023, 8, 1819-1838.	3.7	2
1683	Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide. Catalysts, 2023, 13, 1052.	3.5	2
1684	Role and dynamics of transition metal carbides in methane coupling. Chemical Science, 2023, 14, 5899-5905.	7.4	6
1685	Hydrogenation of CO ₂ over Mn-Substituted SrTiO ₃ Based on the Reverse Mars–van Krevelen Mechanism. Journal of Physical Chemistry C, 2023, 127, 8946-8952.	3.1	0

#	Article	IF	CITATIONS
1686	In Situ Spectroscopic Studies of NH ₃ Oxidation of Fe-Oxide/Al ₂ O ₃ . ACS Omega, 2023, 8, 18064-18073.	3.5	0
1687	Kinetic analysis of aerobic oxidation catalyzed by a hybrid heterogeneous-homogeneous system containing supported Mn and V oxides and N-hydroxyphthalimide. Journal of Catalysis, 2023, 424, 197-210.	6.2	0
1688	Mechanistic Origin of Selective Methane to Methanol Oxidation on Vanadium-Doped Mesoporous Amorphous Silica Photocatalyst. Journal of Physical Chemistry C, 2023, 127, 10488-10498.	3.1	1
1689	Catalytic methane combustion at low temperatures over YSZ-supported metal oxides: Evidence for lattice oxygen participation via the use of C18O2. Catalysis Communications, 2023, 180, 106704.	3.3	0
1690	Nitrogen Electrocatalysis: Electrolyte Engineering Strategies to Boost Faradaic Efficiency. ChemSusChem, 2023, 16, .	6.8	2
1691	DFT Studies of the Adsorption of Propane and Propene on Metallic Surfaces in Ag/ZrO2 Catalysts as a Model for Catalytic Combustion Reactions of Light Hydrocarbons. Catalysts, 2023, 13, 1068.	3.5	0
1692	Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review. Catalysts, 2023, 13, 1165.	3.5	3
1693	A New Marsâ€van Krevelen Mechanism for CO Oxidation on a Tiâ€Decorated MXene. Advanced Materials Interfaces, 0, , .	3.7	0
1694	Reactivity of Group 5 and 6 Single-Site Photocatalysts for Partial Oxidation of Methane: Comparison of Chromium, Niobium, and Tungsten-Doped Mesoporous Amorphous Silica. Journal of Physical Chemistry A, 2023, 127, 6974-6988.	2.5	1
1695	A review on exhaust gas after-treatment of lean-burn natural gas engines – From fundamentals to application. Applied Catalysis B: Environmental, 2024, 340, 123241.	20.2	3
1696	Highly Efficient RGO-Supported Pd Catalyst for Low Temperature Hydrocarbon Oxidation. Catalysts, 2023, 13, 1224.	3.5	1
1697	Optimizing Citrate Combustion Synthesis of A-Site-Deficient La,Mn-Based Perovskites: Application for Catalytic CH4 Combustion in Stoichiometric Conditions. Catalysts, 2023, 13, 1177.	3.5	1
1698	Reconfigurable Manipulation of Oxygen Content on Metal Oxide Surfaces and Applications to Gas Sensing. ACS Nano, 2023, 17, 17790-17798.	14.6	5
1699	Interfacial Interaction Model Between Gas Molecules and Semiconducting Metal Oxides. , 2023, , 189-252.		0
1700	Microporous exposure on catalytic performance of MoVNbTeOx mixed metal oxides in the oxidative dehydrogenation of ethane. Journal of Catalysis, 2023, 426, 308-318.	6.2	3
1701	A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2023, , 109141.	9.0	0
1702	Origin of Rate and Selectivity Trends and Exceptional Yield in Sulfur-Oxidative Propane Dehydrogenation Over Supported Vanadium Catalysts. ACS Catalysis, 2023, 13, 13395-13413.	11.2	1
1703	Dry reforming of methane over gallium-based supported catalytically active liquid metal solutions. Communications Chemistry, 2023, 6, .	4.5	0

#	Article	IF	CITATIONS
1704	From atomistic to collective dynamics: Bridging gaps in gas-phase electron microscopy for catalysis. MRS Bulletin, 2023, 48, 842-851.	3.5	1
1706	Oxygen-vacancy-type Mars–van Krevelen mechanism drives ultrafast dioxygen electroreduction to hydrogen peroxide. Materials Today Energy, 2023, 38, 101430.	4.7	1
1707	CO and Propane Combustion on La0.8Sr0.2CoxFe1â^'xO3â^'δ Perovskites: Effect of Fe-to-Co Ratio on Catalytic Activity. Catalysts, 2023, 13, 1342.	3.5	0
1708	Identifying and avoiding dead ends in the characterization of heterogeneous catalysts at the gas–solid interface. Nature Catalysis, 2023, 6, 873-884.	34.4	2
1709	A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis. Journal of Environmental Sciences, 0, 147, 22-35.	6.1	0
1710	Closed-loop optimization of catalysts for oxidative propane dehydrogenation with CO2 using artificial intelligence. Journal of CO2 Utilization, 2023, 78, 102620.	6.8	0
1711	Toward Fully Selective Ethylene Oxychlorination through Engineering the Cu Oxidation State Spatial Profile. ACS Catalysis, 2023, 13, 15107-15114.	11.2	0
1712	Low-temperature CeCoMnOx spinel-type catalysts prepared by oxalate co-precipitation for selective catalytic reduction of NO using NH3: A structure–activity relationship study. Journal of Colloid and Interface Science, 2024, 657, 414-427.	9.4	0
1713	Bio-glycerol hydrodeoxygenation to propylene: advancing knowledge on Mo-based catalyst characteristics and reaction pathways under flow conditions. Green Chemistry, 2023, 25, 10043-10060.	9.0	0
1714	The Origin of the Size Effect in the Oxidation of CO on Supported Palladium Nanoparticles. Catalysts, 2023, 13, 1435.	3.5	0
1715	Oxygen vacancy clusters in bulk cerium oxide and the impact of gold atoms. Cell Reports Physical Science, 2023, 4, 101699.	5.6	0
1716	Highly efficient MnCe/Ti catalyst for NH3-SCR of NO from sintering flue gas at low temperature: CO tolerance and reaction mechanism assessed by in situ DRIFTS. Molecular Catalysis, 2024, 553, 113743.	2.0	1
1717	An Overview of Low-Temperature Fischer–Tropsch Synthesis: Market Conditions, Raw Materials, Reactors, Scale-Up, Process Intensification, Mechanisms, and Outlook. Energy & Fuels, 0, , .	5.1	0
1718	Reaction Pathway for the Aerobic Oxidation of Phosphines Catalyzed by Oxomolybdenum Salen Complexes. European Journal of Inorganic Chemistry, 2024, 27, .	2.0	0
1719	Tailored Platinum Group Metal/Spinel Oxide Catalysts for Dynamically Enhanced Methane Oxidation. ACS Engineering Au, 0, , .	5.1	0
1720	Exploring nitrogen reduction reaction mechanisms in electrocatalytic ammonia synthesis: A comprehensive review. Journal of Energy Chemistry, 2024, 92, 681-697.	12.9	0
1721	Aerobic Oxidation of Methyl Glycolate by α-Fe ₂ O ₃ for the Eco-Friendly Synthesis of Methyl Glyoxylate. ACS Catalysis, 2024, 14, 728-740.	11.2	0
1722	Solvothermal synthesis of VO ₂ nanoparticles with locally patched V ₂ O ₅ surface layer and their morphology-dependent catalytic properties for the oxidation of alcohols. Dalton Transactions, 2024, 53, 3132-3142.	3.3	0

#	Article	IF	CITATIONS
1723	Electrochemical Synthesis of Ammonia via Nitrogen Reduction and Oxygen Evolution Reactions—A Comprehensive Review on Electrolyte-Supported Cells. Energies, 2024, 17, 441.	3.1	1
1724	High-pressure hydrothermal dope Ce into MoVTeNbOx for one-step oxidation of propylene to acrylic acid. Catalysis Communications, 2024, 187, 106849.	3.3	0
1725	Promoted catalytic oxidation of benzene over Mn-Ni solid solutions: Effect of metal oxygen bond parameters. Applied Catalysis A: General, 2024, 671, 119575.	4.3	0
1726	Removal of CO in flue gas by catalytic oxidation: a review. Zeitschrift Fur Physikalische Chemie, 2024, .	2.8	0
1727	Vitamin C-regulated CoAl- layered double hydroxide with oxygen vacancies to efficiently activate peroxydisulfate for sulfamethoxazole removal triggered via reactive oxygen and high-valent cobalt species. Chemosphere, 2024, 351, 141207.	8.2	0
1728	Gas-Phase Oxidative Dehydrogenation of n-Octane over Metal Oxide Catalysts: A Review. Catalysts, 2024, 14, 100.	3.5	0
1729	Propene ammoxidation over an industrial bismuth molybdate-based catalyst using forced dynamic operation. Applied Catalysis A: General, 2024, 672, 119585.	4.3	0
1730	Influence of Precipitation Conditions on Properties of Ceria and their Implications on the Marsâ€vanâ€Krevelen Active Surface Area. ChemCatChem, 2024, 16, .	3.7	0
1731	Revealing the Lattice Carbonate Mediated Mechanism in Cu ₂ (OH) ₂ CO ₃ for Electrocatalytic Reduction of CO ₂ to C ₂ H ₄ . Advanced Science, 2024, 11, .	11.2	0
1732	Oxygen Dynamics in Lean Propylene Catalytic Combustion over CeO ₂ and Pr ₆ O ₁₁ : Roles and Interplay between Lattice and Adsorbed Oxygen Species. ACS Catalysis, 2024, 14, 2924-2937.	11.2	0
1733	Fundamentals and development of oxidation catalysts: the acrylic acid manufacture case. Catalysis Reviews - Science and Engineering, 0, , 1-38.	12.9	0
1734	Mechanistic Study of Selective Oxidation of Methanol over a Monolayer V ₂ O ₅ /CeO ₂ Catalyst. Journal of Physical Chemistry C, 2024, 128, 3193-3203.	3.1	0
1735	Effective formaldehyde elimination over pyrolusite-manganite hybrid catalysts promoted by Keggin acid decoration: Tungsten doping and chemically adsorbed active oxygen. Journal of Environmental Chemical Engineering, 2024, 12, 112541.	6.7	0