Commercial astaxanthin production derived by green a microalgae process model and a techno-economic asses

Algal Research 18, 175-190 DOI: 10.1016/j.algal.2016.06.007

Citation Report

#	Article	IF	CITATIONS
1	Nitrogen-doped carbon dots prepared from bovine serum albumin to enhance algal astaxanthin production. Algal Research, 2017, 23, 161-165.	4.6	39
2	Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. GeroScience, 2017, 39, 19-32.	4.6	138
3	Some Promising Microalgal Species for Commercial Applications: A review. Energy Procedia, 2017, 110, 510-517.	1.8	134
4	Hydrothermal disruption of algae cells for astaxanthin extraction. Green Chemistry, 2017, 19, 106-111.	9.0	25
5	The Impact of Microalgae in Food Science and Technology. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1333-1350.	1.9	136
6	Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnology Letters, 2017, 39, 1599-1609.	2.2	129
7	Effect of macronutrient supplements on growth and biochemical compositions in photoautotrophic cultivation of isolated Asterarcys sp. (BTA9034). Energy Conversion and Management, 2017, 149, 39-51.	9.2	22
8	Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2017, 2, 287-294.	3.7	115
9	Screening for enhanced astaxanthin accumulation among Spirulina platensis mutants generated by atmospheric and room temperature plasmas. Algal Research, 2017, 25, 464-472.	4.6	32
10	Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. Journal of Fungi (Basel, Switzerland), 2017, 3, 44.	3.5	92
11	Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products. , 0, , .		33
12	Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresource Technology, 2018, 256, 548-551.	9.6	80
13	Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system. Bioresource Technology, 2018, 260, 68-75.	9.6	14
14	Preliminary characterization of the structure and immunostimulatory and anti-aging properties of the polysaccharide fraction of <i>Haematococcus pluvialis </i> . RSC Advances, 2018, 8, 9243-9252.	3.6	27
15	Green microalgae biomolecule separations and recovery. Bioresources and Bioprocessing, 2018, 5, .	4.2	88
16	Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1. Bioresource Technology, 2018, 255, 229-237.	9.6	43
17	Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renewable Energy, 2018, 119, 731-740.	8.9	93
18	Effective Astaxanthin Extraction from Wet <i>Haematococcus pluvialis</i> Using Switchable Hydrophilicity Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 1560-1563.	6.7	43

#	Article	IF	CITATIONS
19	Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture, 2018, 10, 738-773.	9.0	249
20	Interface design, cytocompatibility, and biological activity of astaxanthin/polyester composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 564-571.	3.4	2
21	Emerging microalgae technology: a review. Sustainable Energy and Fuels, 2018, 2, 13-38.	4.9	74
22	Chemically-Induced Production of Anti-Inflammatory Molecules in Microalgae. Marine Drugs, 2018, 16, 478.	4.6	33
23	Incorporation of salinity, nitrogen, and shading stress factors into the Huesemann Algae Biomass Growth model. Algal Research, 2018, 35, 462-470.	4.6	15
24	The effects of concentration and supplementation time of natural and synthetic sources of astaxanthin on the colouration of the prawn Penaeus monodon. Algal Research, 2018, 35, 577-585.	4.6	26
25	Bioaccessibility of Marine Carotenoids. Marine Drugs, 2018, 16, 397.	4.6	52
26	Outdoor Cultivation of Spirulina platensis for Mass Production. Notulae Scientia Biologicae, 2018, 10, 38-44.	0.4	14
27	Catalytic solar pyrolysis of microalgae Chlamydomonas reinhardtii. Solar Energy, 2018, 173, 928-938.	6.1	24
28	Enhancement of astaxanthin production from <i>Haematococcus pluvialis</i> under autotrophic growth conditions by a sequential stress strategy. Preparative Biochemistry and Biotechnology, 2018, 48, 528-534.	1.9	36
29	Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids. Biology, 2018, 7, 2.	2.8	46
30	Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula. Marine Drugs, 2018, 16, 186.	4.6	14
31	The potential of microalgae biorefineries in Belgium and India: An environmental techno-economic assessment. Bioresource Technology, 2018, 267, 271-280.	9.6	48
32	Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of Biotechnology, 2018, 283, 51-61.	3.8	126
33	Rapid selection of astaxanthin-hyperproducing Haematococcus mutant via azide-based colorimetric assay combined with oil-based astaxanthin extraction. Bioresource Technology, 2018, 267, 175-181.	9.6	39
34	Extraction of astaxanthin from microalgae: process design and economic feasibility study. IOP Conference Series: Materials Science and Engineering, 2018, 323, 012011.	0.6	13
35	A Mathematical Model to Predict the Microalgal Growth in an Open Pond Cultivation : A location based approach. , 2018, , .		0
36	Extended Value Chain Synthesis towards the Design of Multi-Feedstock Algae Biorefineries. Computer Aided Chemical Engineering, 2018, 43, 645-650.	0.5	5

TION RE

#	Article	IF	CITATIONS
37	Enhancement of carotenoid biosynthesis in <i>Phaffia rhodozyma</i> PR106 under stress conditions. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2375-2385.	1.3	27
38	Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole. Bioresource Technology, 2019, 292, 122002.	9.6	34
39	Biolistic Transformation of Haematococcus pluvialis With Constructs Based on the Flanking Sequences of Its Endogenous Alpha Tubulin Gene. Frontiers in Microbiology, 2019, 10, 1749.	3.5	12
40	Biodiesel From Microalgae. , 2019, , 601-628.		8
41	One-Pot, Simultaneous Cell Wall Disruption and Complete Extraction of Astaxanthin from <i>Haematococcus pluvialis</i> at Room Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 13898-13910.	6.7	30
42	Direct extraction of astaxanthin from the microalgae <i>Haematococcus pluvialis</i> using liquid–liquid chromatography. RSC Advances, 2019, 9, 22779-22789.	3.6	42
43	Microalgae as a Potential Source of Proteins. , 2019, , 63-96.		19
44	Enhancement of Astaxanthin Biosynthesis in Oleaginous Yeast Yarrowia lipolytica via Microalgal Pathway. Microorganisms, 2019, 7, 472.	3.6	65
45	Effects of gluconate on biomass improvement and light stress tolerance of Haematococcus pluvialis in mixotrophic culture. Algal Research, 2019, 43, 101647.	4.6	18
46	Microalgae–nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods, 2019, 62, 103545.	3.4	147
47	Rapeseed meal hydrolysate as substrate for microbial astaxanthin production. Biochemical Engineering Journal, 2019, 151, 107330.	3.6	20
48	Safe and Complete Extraction of Astaxanthin from <i>Haematococcus pluvialis</i> by Efficient Mechanical Disruption of Cyst Cell Wall. International Journal of Food Engineering, 2019, 15, .	1.5	10
49	Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresource Technology, 2019, 278, 346-359.	9.6	198
50	Technoâ€economics and Sensitivity Analysis of Microalgae as Commercial Feedstock for Bioethanol Production. Environmental Progress and Sustainable Energy, 2019, 38, 13157.	2.3	64
51	Influence of agriculture fertilizer for the enhanced growth and astaxanthin production from Haematococcus lacustris RRGK isolated from Himachal Pradesh, India. SN Applied Sciences, 2019, 1, 1.	2.9	4
52	Astaxanthin Production by Microalgae Haematococcus pluvialis Through Wastewater Treatment: Waste to Resource. , 2019, , 17-39.		8
53	Extraction and milking of astaxanthin from <i>Haematococcus pluvialis</i> cultures. Green Chemistry, 2019, 21, 3621-3628.	9.0	29
54	Effect of culturing parameters on the vegetative growth ofHaematococcus alpinus(strain lcrâ€ccâ€261f) and modeling of its growth kinetics. Journal of Phycology, 2019, 55, 1071-1081.	2.3	2

		O ICI	
#	Article	IF	CITATIONS
55	Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, 2019, 17, 304.	4.6	355
56	Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients, 2019, 11, 1226.	4.1	168
57	Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 2019, 288, 121606.	9.6	200
58	Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO2 into Red Gold Astaxanthin: The Potential Applicability. Energies, 2019, 12, 1718.	3.1	41
59	A Simple and Efficient Method for the Partial Synthesis of Pure (3R,3'S)-Astaxanthin from (3R,3'R,6'R)-Lutein and Lutein Esters via (3R,3'S)-Zeaxanthin and Theoretical Study of Their Formation Mechanisms. Molecules, 2019, 24, 1386.	3.8	9
60	Esterified carotenoids as new food components in cyanobacteria. Food Chemistry, 2019, 287, 295-302.	8.2	21
61	Microalgae: the next best alternative to fossil fuels after biomass. A review. Mental Illness, 2019, 10, .	0.8	24
63	Brassinosteroids in Microalgae: Application for Growth Improvement and Protection Against Abiotic Stresses. , 2019, , 45-58.		10
64	Effect of Ca(OH)2 dosing on thermophilic composting of anaerobic sludge to improve the NH3 recovery. Science of the Total Environment, 2019, 670, 1133-1139.	8.0	13
65	Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Critical Reviews in Biotechnology, 2019, 39, 469-488.	9.0	55
66	Can solar control infrared blocking films be used to replace evaporative cooling for growth of Nannochloropsis sp. in plate photobioreactors?. Algal Research, 2019, 39, 101441.	4.6	15
67	Brewing Change: Dark Fermentation of Photosynthetic Microalgae. Industrial Biotechnology, 2019, 15, 3-8.	0.8	3
68	Engineering of plastids to optimize the production of high-value metabolites and proteins. Current Opinion in Biotechnology, 2019, 59, 8-15.	6.6	28
69	Strategy and regulatory mechanisms of glutamate feeding to enhance astaxanthin yield in Xanthophyllomyces dendrorhous. Enzyme and Microbial Technology, 2019, 125, 45-52.	3.2	23
70	Microalgae as healthy ingredients for functional foods. , 2019, , 103-137.		6
71	Effect of nutrients on the growth of a new alpine strain of <i>Haematococcus</i> (Chlorophyceae) from New Zealand. Phycological Research, 2019, 67, 21-27.	1.6	12
72	The effects of medium salinity on the delivery of carbon dioxide to microalgae from capture solvents using a polymeric membrane system. Journal of Applied Phycology, 2019, 31, 1615-1622.	2.8	3
73	Engineering Microorganisms for Enhanced CO2 Sequestration. Trends in Biotechnology, 2019, 37, 532-547.	9.3	86

#	Article	IF	CITATIONS
74	Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochemical Engineering Journal, 2019, 144, 28-39.	3.6	27
75	Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin. Journal of Agricultural and Food Chemistry, 2019, 67, 1072-1080.	5.2	63
76	Design scenario analysis for porous substrate photobioreactor assemblies. Journal of Applied Phycology, 2019, 31, 1623-1636.	2.8	4
77	Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 2019, 59, 1880-1902.	10.3	208
78	Process Simulation and Techno Economic Analysis of Astaxanthin Production from Agro-Industrial Wastes. Waste and Biomass Valorization, 2020, 11, 943-954.	3.4	20
79	Bioconversion of Agro-Industrial Waste to Value-Added Product Lycopene by Photosynthetic Bacterium Rhodopseudomonas faecalis and Its Carotenoid Composition. Waste and Biomass Valorization, 2020, 11, 2375-2386.	3.4	29
80	Algal biorefinery models with self-sustainable closed loop approach: Trends and prospective for blue-bioeconomy. Bioresource Technology, 2020, 295, 122128.	9.6	106
81	Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renewable Energy, 2020, 145, 1620-1632.	8.9	65
82	Production of fungal and bacterial pigments and their applications. , 2020, , 327-361.		26
83	Design of an artificial culture medium to optimize Haslea ostrearia biomass and marennine production. Algal Research, 2020, 45, 101653.	4.6	8
84	Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. Advances in Food and Nutrition Research, 2020, 92, 127-185.	3.0	27
85	Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. Journal of Cleaner Production, 2020, 251, 119718.	9.3	20
86	Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports (Amsterdam,) Tj ETQq0 0 0 rgBT /Ove	erlææk 10 T	f 5 9 257 Td
87	Value Chain Synthesis in Algae Biorefineries under Uncertainty. Computer Aided Chemical Engineering, 2020, 48, 829-834.	0.5	1
88	Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Research, 2020, 51, 102046.	4.6	114
89	(Bio)Technological aspects of microalgae pigments for cosmetics. Applied Microbiology and Biotechnology, 2020, 104, 9513-9522.	3.6	55
90	Application of surfactants for controlling destructive fungus contamination in mass cultivation of Haematococcus pluvialis. Bioresource Technology, 2020, 317, 124025.	9.6	19
91	Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 2020, 43, 107602.	11.7	107

#	ARTICLE	IF	CITATIONS
92	Single cell protein production from food waste using purple non-sulfur bacteria shows economically viable protein products have higher environmental impacts. Journal of Cleaner Production, 2020, 276, 123114.	9.3	32
93	Matrix solid-phase dispersion as a greener alternative to obtain bioactive extracts from <i>Haematococcus pluvialis</i> . Characterization by UHPLC-QToF. RSC Advances, 2020, 10, 27995-28006.	3.6	8
94	Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules, 2020, 25, 3406.	3.8	131
95	Bioactive potential of Cyanobium sp. pigment-rich extracts. Journal of Applied Phycology, 2020, 32, 3031-3040.	2.8	24
96	Comparative life cycle assessment of astaxanthin production with Haematococcus pluvialis in different photobioreactor technologies. Algal Research, 2020, 50, 102005.	4.6	43
97	Pigments from microalgae. , 2020, , 465-492.		17
98	UV-screening from microalgae. , 2020, , 647-657.		1
99	Microalgal biorefineries. , 2020, , 771-798.		5
100	An Integrated Strategy for Nutraceuticals from Haematoccus pluvialis: From Cultivation to Extraction. Antioxidants, 2020, 9, 825.	5.1	17
101	Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability, 2020, 12, 9980.	3.2	84
102	Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. Journal of Marine Science and Engineering, 2020, 8, 789.	2.6	67
103	Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Applied Microbiology and Biotechnology, 2020, 104, 5725-5737.	3.6	90
104	Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnology Advances, 2020, 43, 107567.	11.7	103
105	Process Simulation of Integrated Xanthan Gum and Sorbitol Bioproduction: Economic and Sensitivity Analysis with Taguchi Approach. Process Integration and Optimization for Sustainability, 2020, 4, 279-295.	2.6	3
106	Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, 2020, 25, 101580.	3.1	115
107	Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science, 2020, 11, 279.	3.6	192
108	Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant. Applied Microbiology and Biotechnology, 2020, 104, 6977-6989.	3.6	18
109	Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Conversion and Biorefinery, 2022, 12, 4215-4230.	4.6	47

#		IE	CITATIONS
#	Akticle	IF	CHATIONS
110	Algae for the production of bio-based products. , 2020, , 203-243.		10
111	Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability. Bioresource Technology, 2020, 303, 122862.	9.6	51
112	Morphological Change and Cell Disruption of Haematococcus pluvialis Cyst during High-Pressure Homogenization for Astaxanthin Recovery. Applied Sciences (Switzerland), 2020, 10, 513.	2.5	24
113	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 2020, 716, 137116.	8.0	299
114	Enhancing Astaxanthin Biosynthesis by Rhodosporidium toruloides Mutants and Optimization of Medium Compositions Using Response Surface Methodology. Processes, 2020, 8, 497.	2.8	9
115	Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Marine Drugs, 2020, 18, 197.	4.6	57
116	Heterologous expression of a mutant Orange gene from Brassica oleracea increases carotenoids and induces phenotypic changes in the microalga Chlamydomonas reinhardtii. Algal Research, 2020, 47, 101871.	4.6	19
117	Comparative transcriptome analysis unveils mechanisms underlying the promoting effect of potassium iodide on astaxanthin accumulation in Haematococcus pluvialis under high light stress. Aquaculture, 2020, 525, 735279.	3.5	23
118	Foodomics: To Discover the Health Potential of Microalgae. , 2021, , 658-671.		3
119	Prospects of Industry 5.0 in algae: Customization of production and new advance technology for clean bioenergy generation. Energy Conversion and Management: X, 2021, 10, 100048.	1.6	51
120	Fed-batch bioprocess development for astaxanthin production by Xanthophyllomyces dendrorhous based on the utilization of Prosopis sp. pods extract. Biochemical Engineering Journal, 2021, 166, 107844.	3.6	12
121	A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting. Science of the Total Environment, 2021, 752, 141708.	8.0	32
122	Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresource Technology, 2021, 320, 124421.	9.6	59
123	Review on extraction of polyhydroxyalkanoates and astaxanthin from food and beverage processing wastewater. Journal of Water Process Engineering, 2021, 40, 101775.	5.6	8
124	Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Research, 2021, 53, 102151.	4.6	26
125	Potential of reverse osmosis reject water as a growth medium for the production of algal metabolites–A state-of-the-art review. Journal of Water Process Engineering, 2021, 40, 101849.	5.6	5
126	Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene. Applied Biochemistry and Biotechnology, 2021, 193, 52-64.	2.9	11
127	High-pressure extraction of astaxanthin from Haematococcus pluvialis. , 2021, , 355-373.		1

#	Article	IF	CITATIONS
128	Revealing mechanisms of algal astaxanthin production and bioengineering potential using multiomics. , 2021, , 181-208.		1
129	Bioextraction of astaxanthin adopting varied techniques and downstream processing methodologies. , 2021, , 313-339.		0
130	Mixotrophic Growth of Astaxanthin-Rich Alga Haematococcus pluvialis using Refined Crude Glycerol as Carbon Substrate: Batch and Fed-Batch Cultivations. Walailak Journal of Science and Technology, 2021, 18, .	0.5	5
131	Production of nutraceutical astaxanthin from waste resources. , 2021, , 181-205.		1
132	Industrial perspective on downstream processing of Haematococcus pluvialis. , 2021, , 283-311.		2
133	Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. Frontiers in Chemical Engineering, 2021, 2, .	2.7	21
134	Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Progress in Lipid Research, 2021, 81, 101083.	11.6	39
135	Astaxanthin production by autotrophic cultivation of Haematococcus pluvialis: A success story. , 2021, , 71-89.		2
136	Astaxanthin-biological production and regulation for enhanced yields. , 2021, , 131-149.		0
137	Cosmetics applications. , 2021, , 313-338.		2
138	Opportunities and Challenges of Algal Protein Extraction and Production. , 2021, , 216-233.		3
139	Metabolic engineering of astaxanthin pathway and heterologous production in novel organisms. , 2021, , 151-179.		1
140	Turning leftover to treasure: An overview of astaxanthin from shrimp shell wastes. , 2021, , 253-279.		0
141	Optimization of astaxanthin production processes from microalga Haematococcus. , 2021, , 91-120.		0
142	Astaxanthin from Chromochloris zofingiensis: Feasibility analysis. , 2021, , 37-59.		0
143	Techno-economic assessment of microalgae cultivation in a tubular photobioreactor for food in a humid continental climate. Clean Technologies and Environmental Policy, 2021, 23, 1475-1492.	4.1	22
144	Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Marine Drugs, 2021, 19, 188.	4.6	94
145	Potential natural carotenoid sources for the colouration of ornamental fish: a review. Aquaculture International, 2021, 29, 1507-1528.	2.2	13

#	Article	IF	Citations
146	Rubi-colored crops with built-in ketocarotenoid biosynthetic pathway. Plant Biotechnology Reports, 2021, 15, 125-138.	1.5	1
147	Harvesting microalgae for health beneficial dietary supplements. Algal Research, 2021, 54, 102189.	4.6	27
148	Protective effects of astaxanthin from Haematococcus pluvialis on the survival and oxidative stress of zebrafish embryos induced by microcystin-LR. Journal of Applied Phycology, 2021, 33, 2261-2271.	2.8	12
150	Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Critical Reviews in Food Science and Nutrition, 2022, 62, 6932-6946.	10.3	39
151	Optimization of the growth and marennine production by the diatom Haslea ostrearia in photobioreactor. Algal Research, 2021, 55, 102251.	4.6	3
152	Adonis amurensis Is a Promising Alternative to Haematococcus as a Resource for Natural Esterified (3S,3′S)-Astaxanthin Production. Plants, 2021, 10, 1059.	3.5	11
153	Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules, 2021, 11, 735.	4.0	52
154	Astaxanthin for the Food Industry. Molecules, 2021, 26, 2666.	3.8	117
156	Extraction of Pigments from Microalgae and Cyanobacteria—A Review on Current Methodologies. Applied Sciences (Switzerland), 2021, 11, 5187.	2.5	39
157	Epigenomic stability assessment during cryopreservation and physiology among various strains of Chromochloris zofingiensis (Chlorophyceae) and their genetic variability revealed by AFLP and MS-AFLP. Journal of Applied Phycology, 2021, 33, 2327-2340.	2.8	1
158	Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. Algal Research, 2021, 57, 102353.	4.6	89
159	Process Parameter Screening for the Microalga <i>Chlamydomonas asymmetrica</i> in Batch and Turbidostat Cultivations. Chemie-Ingenieur-Technik, 2021, 93, 1565-1572.	0.8	3
160	Advances and trends in biotechnological production of natural astaxanthin by <i>Phaffia rhodozyma</i> yeast. Critical Reviews in Food Science and Nutrition, 2023, 63, 1862-1876.	10.3	27
161	A Method of Solubilizing and Concentrating Astaxanthin and Other Carotenoids. Marine Drugs, 2021, 19, 462.	4.6	5
162	Examination of Photo-, Mixo-, and Heterotrophic Cultivation Conditions on Haematococcus pluvialis Cyst Cell Germination. Applied Sciences (Switzerland), 2021, 11, 7201.	2.5	9
163	Techno-Economic Analysis and Neuro-Fuzzy Production Rate Prediction of Sorghum (Sorghum) Tj ETQq1 1 0.784	1314 rgBT	Oyerlock 10
164	Microalgal nanocellulose – opportunities for a circular bioeconomy. Trends in Plant Science, 2021, 26, 924-939.	8.8	25
165	Beneficial effects and health benefits of Astaxanthin molecules on animal production: A review. Research in Veterinary Science, 2021, 138, 69-78.	1.9	39

#	Article	IF	CITATIONS
166	Sustainable cultivation of <scp><i>Haematococcus pluvialis</i></scp> and <scp><i>Chromochloris zofingiensis</i></scp> for the production of astaxanthin and coâ€products. Canadian Journal of Chemical Engineering, 2022, 100, 2835-2849.	1.7	15
167	Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods, 2021, 10, 2303.	4.3	50
168	Production of high value-added biomolecules by microalgae cultivation in wastewater from anaerobic digestates of food waste: a review. Biomass Conversion and Biorefinery, 2023, 13, 9625-9642.	4.6	9
169	Robust cyst germination induction in Haematococcus pluvialis to enhance astaxanthin productivity in a semi-continuous outdoor culture system using power plant flue gas. Bioresource Technology, 2021, 338, 125533.	9.6	19
170	Evaluating the feasibility of a pilot-scale shrimp biorefinery via techno-economic analysis. Journal of Cleaner Production, 2021, 320, 128740.	9.3	9
171	A biorefinery approach for high value-added bioproduct (astaxanthin) from alga Haematococcus sp. and residue pyrolysis for biochar synthesis and metallic iron production from hematite (Fe2O3). Fuel, 2021, 304, 121150.	6.4	9
172	Maximizing the simultaneous production of lipids and carotenoids by Rhodosporidium toruloides from wheat straw hydrolysate and perspectives for large-scale implementation. Bioresource Technology, 2021, 340, 125598.	9.6	23
173	Improvement and screening of astaxanthin producing mutants of newly isolated Coelastrum sp. using ethyl methane sulfonate induced mutagenesis technique. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784	13 }4 4rgBT	/Omerlock 1
174	A joint strategy comprising melatonin and 3-methyladenine to concurrently stimulate biomass and astaxanthin hyperaccumulation by Haematococcus pluvialis. Bioresource Technology, 2021, 341, 125784.	9.6	16
175	Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 2022, 307, 121782.	6.4	190
176	Controlled release of water-soluble astaxanthin from carboxymethyl cellulose/gelatin and octenyl succinic anhydride starch/gelatin blend films. Food Hydrocolloids, 2022, 123, 107179.	10.7	21
177	Microalgae as a source of pigments for food applications. , 2021, , 177-198.		5
178	Synthesis of astaxanthin and its esters. , 2021, , 3-18.		0
179	Astaxanthin Production from Microalgae. , 2020, , 175-242.		9
180	Effect of CO2 Flow Rate on the Extraction of Astaxanthin and Fatty Acids from Haematococcus pluvialis Using Supercritical Fluid Technology. Molecules, 2020, 25, 6044.	3.8	19
181	Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 2018, 23, 229-241.	2.5	150
182	Microorganisms as a sustainable aquafeed ingredient: A review. Aquaculture Research, 2022, 53, 746-766.	1.8	15
183	Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Marine Drugs, 2021, 19, 573.	4.6	29

#	Article	IF	CITATIONS
184	Sequential Continuous Mixotrophic and Phototrophic Cultivation Might Be a Cost-Effective Strategy for Astaxanthin Production From the Microalga Haematococcus lacustris. Frontiers in Bioengineering and Biotechnology, 2021, 9, 740533.	4.1	7
185	The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants. Algal Research, 2021, 60, 102515.	4.6	29
186	Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Research International, 2021, 150, 110746.	6.2	32
187	Komputerowy system sterowania hodowlÄ biomasy mikroalg Haematococcus pluvialis do produkcji astaksantyny / The computer control biomass cultivation system of microalga Haematococcus pluvialis for the production of astaxanthin. Prace Naukowe Uniwersytetu Ekonomicznego We WrocÅ.awiu. 2016	0.1	0
189	Influência do CO2 no Crescimento de Haematococcus Pluvialis e na Produção de Carotenoides. UniciÊncias, 2019, 22, 25-29.	0.0	0
190	Integrated Biorefineries for Algal Biomolecules. Grand Challenges in Biology and Biotechnology, 2019, , 293-317.	2.4	0
191	Astaxanthin biosynthesis: A two-step optimization approach and model construction with Response Surface Methodology and Artificial Neural Network. International Journal of Agriculture Environment and Food Sciences, 0, , 171-181.	0.6	0
192	The Bioeconomy of Production of Microalgal Pigments. , 2020, , 325-362.		4
193	High-value biochemical products & applications of freshwater eukaryotic microalgae. Science of the Total Environment, 2022, 809, 151111.	8.0	25
194	Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO2. Bioresource Technology, 2022, 344, 126255.	9.6	13
195	Investigation of the Effect of Organic and Inorganic Carbon on Biomass Production and Astaxanthin Accumulation of the Microalga Haematococcus pluvialis Using Artificial Neural Network. , 2020, , .		4
196	Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Bioresource Technology, 2022, 343, 126124.	9.6	50
197	Carbon dioxide capture for biofuel production. , 2022, , 605-619.		5
198	Integrated anaerobic and algal bioreactors: A promising conceptual alternative approach for conventional sewage treatment. Bioresource Technology, 2022, 343, 126115.	9.6	8
199	Biorefinery involving terrestrial and marine lignocellulosics: concept, potential, and current status. , 2022, , 167-188.		0
200	Algal Metabolites and Phyco-Medicine. , 2020, , 291-316.		4
201	Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis. Bioresources and Bioprocessing, 2021, 8, .	4.2	10
202	An Insight into the Potential Application of Microalgae in Pharmaceutical and Nutraceutical Production. , 2021, , 135-179.		6

#	Article	IF	CITATIONS
203	Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renewable and Sustainable Energy Reviews, 2022, 154, 111852.	16.4	107
204	Photoautotrophic organic acid production: Glycolic acid production by microalgal cultivation. Chemical Engineering Journal, 2022, 433, 133636.	12.7	12
205	Main Carotenoids Produced by Microorganisms. Encyclopedia, 2021, 1, 1223-1245.	4.5	23
206	Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development. Foods, 2021, 10, 2835.	4.3	4
207	Identification and Content of Astaxanthin and Its Esters from Microalgae Haematococcus pluvialis by HPLC-DAD and LC-QTOF-MS after Extraction with Various Solvents. Plants, 2021, 10, 2413.	3.5	11
208	Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. Journal of Basic Microbiology, 2022, 62, 1064-1082.	3.3	59
209	Optimizing the growth of Haematococcus pluvialis based on a novel microbubble-driven photobioreactor. IScience, 2021, 24, 103461.	4.1	12
210	Dermocosmetic applications of microalgal pigments. Advances in Applied Microbiology, 2021, 117, 63-93.	2.4	4
211	Techno-Economic Analysis of Cyanobacterial PHB Bioplastic Production. SSRN Electronic Journal, 0, , .	0.4	0
213	Recent Advances in Algae-Derived Biofuels and Bioactive Compounds. Industrial & Engineering Chemistry Research, 2022, 61, 1232-1249.	3.7	8
214	Roadmap from microalgae to biorefinery: A circular bioeconomy approach. , 2022, , 339-360.		3
215	Algae as sustainable food in space missions. , 2022, , 517-540.		5
217	Critical assessment of the filamentous green microalga Oedocladium carolinianum for astaxanthin and oil production. Algal Research, 2022, 61, 102599.	4.6	7
218	A Two-Step Process for Improved Biomass Production and Non-Destructive Astaxanthin and Carotenoids Accumulation in Haematococcus pluvialis. Applied Sciences (Switzerland), 2022, 12, 1261.	2.5	9
219	Dynamics of luminescence characteristics of <scp><i>Haematococcus lacustris</i></scp> cultures in different cultivation conditions . Luminescence, 2022, 37, 455-462.	2.9	1
220	Multifaceted applications of microalgal biomass valorization to enriched biorenewables, a review of futuristic biorefinery paradigm. Bioresource Technology Reports, 2022, 17, 100972.	2.7	7
221	Recovery of value-added products by mining microalgae. Journal of Environmental Management, 2022, 307, 114512.	7.8	15
222	Nutraceutical productions from microalgal derived compounds via circular bioeconomy perspective. Bioresource Technology, 2022, 347, 126575.	9.6	5

		CITATION REPORT	
#	Article	IF	CITATIONS
223	Physical-chemical characteristics of "Red Mealâ€, a novel non-defatted additive in the fish feed f cracked biomass of Haematococcus pluvialis. Animal Feed Science and Technology, 2022, 285, 115	rom 2.2	2
224	Astaxanthin bioaccumulation in microalgae under environmental stress simulated in industrial effluents highlighting prospects of Haematococcus pluvialis: knowledge gaps and prospective approaches. Phytochemistry Reviews, 2023, 22, 1041-1066.	6.5	12
225	Multicomponent bioactive extract from red stage Haematococcus pluvialis wet paste: avoiding the drying step and toxic solvents. Journal of Applied Phycology, 0, , 1.	2.8	3
226	Haematococcus pluvialis: A potential feedstock for multiple-product biorefining. Journal of Cleaner Production, 2022, 344, 131103.	9.3	28
227	Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synthetic and Systems Biotechnology, 2022, 7, 689-704.	3.7	34
228	Techno-economic analysis of cyanobacterial PHB bioplastic production. Journal of Environmental Chemical Engineering, 2022, 10, 107502.	6.7	19
229	Microalgae as a Potential Source of Bioactive Food Compounds. Current Research in Nutrition and Food Science, 2021, 9, 917-927.	0.8	3
230	Diversity and Content of Carotenoids and Other Pigments in the Transition from the Green to the R Stage of Haematococcus pluvialis Microalgae Identified by HPLC-DAD and LC-QTOF-MS. Plants, 202 1026.	ed 22, 11, 3.5	4
231	Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. Fermentation, 2022, 8, 179.	3.0	14
232	Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules, 2022, 27, 2540.	3.8	12
233	Astaxanthin as a Potential Antioxidant to Improve Health and Production Performance of Broiler Chicken. Veterinary Medicine International, 2022, 2022, 1-9.	1.5	14
234	Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research, 2022, 64, 102696.	4.6	29
236	Antioxidant Activity and Carotenoid Content Responses of Three Haematococcus sp. (Chlorophyta) Strains Exposed to Multiple Stressors. Applied Biochemistry and Biotechnology, 2022, 194, 4492-4) 510. 2.9	4
237	Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototax Technology. Marine Drugs, 2022, 20, 220.	is 4.6	4
238	Microalgae carotenoids: An overview of biomedical applications. , 2022, , 409-425.		0
239	Efecto de los parÃ;metros cinéticos de escalamiento del cultivo de Haematococcus pluvialis en fotobiorreactores para producir astaxantina. Mutis, 2021, 12, .	0.1	0
240	Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis. Foo 2022, 11, 1352.	ds, 4.3	7
241	Haematococcus pluvialis Microalgae Extract Inhibits Proliferation, Invasion, and Induces Apoptosis i Breast Cancer Cells. Frontiers in Nutrition, 2022, 9, .	n 3.7	7

#	Article	IF	CITATIONS
242	Dietary Klebsormidium sp. Supplementation Improves Growth Performance, Antioxidant and Anti-Inflammatory Status, Metabolism, and Mid-Intestine Morphology of Litopenaeus Vannamei. Frontiers in Nutrition, 2022, 9, .	3.7	4
243	Techno-economic modelling of high-value metabolites and secondary products from microalgae cultivated in closed photobioreactors with supplementary lighting. Algal Research, 2022, 65, 102733.	4.6	11
244	Effects of Nitrogen and Light Intensity on the Astaxanthin Accumulation in Motile Cells of Haematococcus pluvialis. Frontiers in Marine Science, 2022, 9, .	2.5	5
245	Application of Algae in Food Science, Antioxidants, Animal Feed, and Aquaculture. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 397-417.	0.4	0
246	The Economics of Aquatic Plants: The Case of Algae and Duckweed. Annual Review of Resource Economics, 2022, 14, 555-577.	3.7	3
247	Selection of Strains and Breeding of Algae. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 58-83.	0.4	0
248	Saccharified sugarcane bagasse as a substrate for astaxanthin production by Xanthophyllomyces dendrorhous. Biomass Conversion and Biorefinery, 2024, 14, 8071-8079.	4.6	0
249	Progress towards a targeted biorefinery of Chromochloris zofingiensis: a review. Biomass Conversion and Biorefinery, 0, , .	4.6	2
250	Insights into using green and unconventional technologies to recover natural astaxanthin from microbial biomass. Critical Reviews in Food Science and Nutrition, 2023, 63, 11211-11225.	10.3	10
251	Oxidative stress modulates astaxanthin synthesis in Haematococcus pluvialis. Journal of Applied Phycology, 2022, 34, 2327-2338.	2.8	2
252	Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere, 2022, 305, 135508.	8.2	38
253	Supercritical fluid extraction of astaxanthin-rich extracts from Haematococcus pluvialis: Economic assessment. Bioresource Technology, 2022, 361, 127706.	9.6	12
254	Freshwater Microalgae as Promising Food Sources: Nutritional and Functional Properties. Open Microbiology Journal, 2022, 16, .	0.7	5
255	Algal biorefinery culminating multiple value-added products: recent advances, emerging trends, opportunities, and challenges. 3 Biotech, 2022, 12, .	2.2	7
256	Superstructure Optimization for the Design of an Algae Biorefinery Producing Added Value Products. Computer Aided Chemical Engineering, 2022, , 277-282.	0.5	1
257	Obtaining commodity chemicals by bio-refining of algal biomass. , 2022, , 261-270.		0
258	Cyanobacterial myxoxanthophylls: biotechnological interventions and biological implications. Critical Reviews in Biotechnology, 2024, 44, 63-77.	9.0	2
259	Single-cell protein production from purple non-sulphur bacteria-based wastewater treatment.	8.1	14

#	Article	IF	CITATIONS
260	Growth and biochemical profiling of marine microalgae <i>Chlorella salina</i> with response to nitrogen starvation. Marine Biology Research, 2022, 18, 307-314.	0.7	3
261	Process model and techno-economic analysis of natural astaxanthin production from microalgae incorporating geospatial variabilities. Bioresource Technology Reports, 2022, 20, 101260.	2.7	2
262	Microalgae as sources of green bioactives for health-enhancing food supplements and nutraceuticals: A review of literature. , 0, 2, 10.		0
263	Large-scale bioproduction of natural astaxanthin in Yarrowia lipolytica. Bioresource Technology Reports, 2023, 21, 101289.	2.7	3
264	Utilization of astaxanthin from microalgae and carotenoid rich algal biomass as a feed supplement in aquaculture and poultry industry: An overview. Journal of Applied Phycology, 2023, 35, 145-171.	2.8	16
265	Natural Astaxanthin Is a Green Antioxidant Able to Counteract Lipid Peroxidation and Ferroptotic Cell Death. International Journal of Molecular Sciences, 2022, 23, 15137.	4.1	6
266	Identifying Key Environmental Indicators in the Assessment of the Proof-of-Concept in Pigment Production from the Marine Cyanobacterium Cyanobium sp Applied Sciences (Switzerland), 2022, 12, 12999.	2.5	1
267	Commercial Astaxanthin Production from Green Alga Haematococcus pluvialis. , 2023, , 279-304.		1
268	Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. Phytochemistry Reviews, 2023, 22, 903-933.	6.5	8
269	Bioprospection of marine microalgae for novel antioxidants in human health and medicine. , 2023, , 295-310.		0
270	Botryococcus terribilis Ethanol Extract Exerts Anti-inflammatory Effects on Murine RAW264 Cells. International Journal of Molecular Sciences, 2023, 24, 6666.	4.1	1
271	A strategy to maximize astaxanthin production from Haematococcus pluvialis in a cost-effective process by utilizing a PBR-LGP-PBR array (PLPA) hybrid system using light guide panel (LGP) and solar cells. Bioresource Technology, 2023, 376, 128902.	9.6	0
272	Valuable Compounds Produced by Microalgae. , 2023, , 1-19.		1
273	Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants, 2023, 12, 328.	5.1	13
274	Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules, 2023, 28, 2089.	3.8	1
275	Valorisation of crustacean and bivalve processing side streams for industrial fast time-to-market products: A review from the European Union regulation perspective. Frontiers in Marine Science, 0, 10,	2.5	4
276	Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Marine Drugs, 2023, 21, 176.	4.6	15
277	Production of indigo by recombinant bacteria. Bioresources and Bioprocessing, 2023, 10, .	4.2	4

#	Article	IF	CITATIONS
278	Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon, 2023, 9, e14708.	3.2	13
279	Use microfluidics to create microdroplets for culturing and investigating algal cells in a high-throughput manner. Microfluidics and Nanofluidics, 2023, 27, .	2.2	0
281	Can Canthaxanthin Intensify The Color of the Blood Swordtail <i>Xiphophorus helleri</i> ?. Journal of Fish Biology, 0, , .	1.6	0
282	An extensive review of marine pigments: sources, biotechnological applications, and sustainability. Aquatic Sciences, 2023, 85, .	1.5	5
283	Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. Journal of Fungi (Basel, Switzerland), 2023, 9, 578.	3.5	3
285	Simulation and Economic Analysis of the Biotechnological Potential of Biomass Production from a Microalgal Consortium. Marine Drugs, 2023, 21, 321.	4.6	1
286	Metabolomics of astaxanthin hyperaccumulation in Haematococcus pluvialis under high light stress. Journal of Oceanology and Limnology, 0, , .	1.3	0
287	The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity. Annual Review of Phytopathology, 2023, 61, 231-255.	7.8	4
288	Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Molecular Biotechnology, 2024, 66, 402-423.	2.4	5
289	A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Research, 2023, 74, 103168.	4.6	1
290	A cascaded biorefinery for the sustainable valorization of Arthrospira maxima biomass: A circular bioeconomy approach. Bioresource Technology Reports, 2023, 23, 101510.	2.7	1
291	Astaxanthin from Haematococcus: Production, applications, and advances. , 2023, , 221-236.		0
292	Microalgae in food and feed: Safety and toxicological aspects. , 2023, , 549-565.		0
293	Microbial astaxanthin: from bioprocessing to the market recognition. Applied Microbiology and Biotechnology, 2023, 107, 4199-4215.	3.6	2
294	Phaffia rhodozyma biorefinery: A sustainable pathway to obtain natural pigments and production of methane biogas as renewable fuel. Chemical Engineering Journal, 2023, 473, 145350.	12.7	2
296	Valuable bioproducts from microalgae - A superstructure optimization approach. Algal Research, 2023, 75, 103259.	4.6	0
297	Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnology Advances, 2023, 68, 108236.	11.7	8
298	Production of Astaxanthin Using CBFD1/HFBD1 from Adonis aestivalis and the Isopentenol Utilization Pathway in Escherichia coli. Bioengineering, 2023, 10, 1033.	3.5	0

#	Article	IF	CITATIONS
299	Commercialization of Haematococcus-Based Products: Current Status and Future Forecast. , 2023, , 321-337.		0
300	Bottlenecks in the Cultivation Processes of Haematococcus pluvialis. , 2023, , 69-77.		0
301	Microalgae Biomass and Bioactive Compounds Change According to the Medium's N and pH. Brazilian Archives of Biology and Technology, 0, 66, .	0.5	0
302	Spatio-temporal techno-economic assessment of the algae-based supply chain: A proof-of-concept for North-West Europe. Algal Research, 2023, 76, 103312.	4.6	1
303	Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods, 2023, 12, 4080.	4.3	0
304	Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Research International, 2024, 176, 113841.	6.2	1
305	Smart aviation biofuel energy system coupling with machine learning technology. Renewable and Sustainable Energy Reviews, 2024, 189, 113914.	16.4	0
306	Abiotic stress as a dynamic strategy for enhancing high value phytochemicals in microalgae: Critical insights, challenges and future prospects. Biotechnology Advances, 2024, 70, 108280.	11.7	1
307	Effect of 4 microalgal diets on the proximal composition, chlorophyll concentration, and total carotenoid content in Artemia franciscana. Ciencias Marinas, 0, , .	0.4	0
308	Exploring the dynamics of astaxanthin production in <i>Haematococcus pluvialis</i> biofilms using a rotating biofilmâ€based system. Biotechnology and Bioengineering, 2024, 121, 991-1004.	3.3	0
309	From present to prosperity: assessing the current status and envisioning opportunities in the industrial-scale cultivation of Haematococcus pluvialis for astaxanthin production. Phytochemistry Reviews, 0, , .	6.5	1
310	Variación espaciotemporal del fitoplancton nocivo en playas recreativas de Campeche, sureste del golfo de México. Ciencias Marinas, 0, , .	0.4	0
311	Biotechnological strategies overcoming limitations to <i>H. pluvialis</i> -derived astaxanthin production and Morocco's potential. Critical Reviews in Food Science and Nutrition, 0, , 1-16.	10.3	0
312	The Effect of Dietary Supplementation with Haematococcus pluvialis for Enhanced Pigmentation in Amphiprion ocellaris. Aquaculture Research, 2023, 2023, 1-9.	1.8	0
313	On-Chip Photoacoustics-Activated Cell Sorting (PA-ACS) for Label-Free and High-Throughput Detection and Screening of Microalgal Cells. Analytical Chemistry, 2024, 96, 1301-1309.	6.5	0
314	A Two-Stage Cascade for Increased High-Value Product Accumulation in Chlamydomonas asymmetrica. Fermentation, 2024, 10, 38.	3.0	0
315	Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiologica, 0, , .	2.3	0
316	Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies. Science of the Total Environment, 2024, 920, 170918.	8.0	0

#	Article	IF	CITATIONS
317	Is the carotenoid production from Phaffia rhodozyma yeast genuinely sustainable? a comprehensive analysis of biocompatibility, environmental assessment, and techno-economic constraints. Bioresource Technology, 2024, 397, 130456.	9.6	0
318	Catalytic Upgrading of Pyrolysis Vapors from Scenedesmus sp. Microalgae towards Renewable Hydrocarbons using a Low-Cost Zeolite Synthesized from Rice Husk Ash and Diatomite Residue. Bioenergy Research, 0, , .	3.9	0
319	Effects of Different Astaxanthin Sources on Fillet Coloration and Energy Deposition in Rainbow Trout (Oncorhynchus mykiss). Aquaculture Nutrition, 2024, 2024, 1-11.	2.7	0