Axion cosmology

Physics Reports 643, 1-79 DOI: 10.1016/j.physrep.2016.06.005

Citation Report

#	Article	IF	CITATIONS
1	Quantum and classical behavior in interacting bosonic systems. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 037-037.	1.9	37
2	Topological defects and nano-Hz gravitational waves in aligned axion models. Journal of High Energy Physics, 2016, 2016, 1.	1.6	33
3	Random functions via Dyson Brownian Motion: progress and problems. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 008-008.	1.9	10
4	Neutrino Oscillations as a Probe of Light Scalar Dark Matter. Physical Review Letters, 2016, 117, 231801.	2.9	62
5	Broadband and Resonant Approaches to Axion Dark Matter Detection. Physical Review Letters, 2016, 117, 141801.	2.9	267
6	A model of the matter–antimatter asymmetry and cold dark matter with U(1)â^'⊗U(1). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 138-144.	1.5	3
7	The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 012-012.	1.9	42
8	New Target for Cosmic Axion Searches. Physical Review Letters, 2016, 117, 171301.	2.9	102
9	Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Physical Review D, 2016, 94, .	1.6	77
10	Supersymmetric axion grand unified theories and their predictions. Physical Review D, 2016, 94, .	1.6	22
11	Cosmological particle-in-cell simulations with ultralight axion dark matter. Physical Review D, 2016, 94, .	1.6	77
12	Interference of dark matter solitons and galactic offsets. Physics of the Dark Universe, 2016, 12, 50-55.	1.8	45
13	Monodromy Dark Matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 036-036.	1.9	31
14	Supermassive black holes from collapsing dark matter Bose–Einstein condensates. Classical and Quantum Gravity, 2017, 34, 035006.	1.5	8
15	A novel mechanism for the distance-redshift relation. Classical and Quantum Gravity, 2017, 34, 035014.	1.5	1
16	Spatial solitons in thermo-optical media from the nonlinear SchrĶdinger-Poisson equation and dark-matter analogs. Physical Review A, 2017, 95, .	1.0	26
17	Current status of direct dark matter detectionÂexperiments. Nature Physics, 2017, 13, 212-216.	6.5	183
18	Ultralight scalars as cosmological dark matter. Physical Review D, 2017, 95, .	1.6	1,055

#	Article	IF	CITATIONS
19	Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies. Astrophysical Journal, 2017, 836, 61.	1.6	53
20	Black hole formation from axion stars. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 055-055.	1.9	105
21	Substructure of fuzzy dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2017, 465, 941-951.	1.6	70
22	Scalar field dark matter in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3135-3149.	1.6	19
23	Cold dark matter plus not-so-clumpy dark relics. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 008-008.	1.9	32
24	Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos. European Physical Journal Plus, 2017, 132, 1.	1.2	41
25	The ALP miracle: unified inflaton and dark matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 044-044.	1.9	93
26	Comparison between the Logotropic and $\hat{\nu}CDM$ models at the cosmological scale. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 018-018.	1.9	22
27	Fuzzy Dark Matter from Infrared Confining Dynamics. Physical Review Letters, 2017, 118, 141801.	2.9	25
28	Multimessenger time delays from lensed gravitational waves. Physical Review D, 2017, 95, .	1.6	43
29	Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction. Physical Review D, 2017, 95, .	1.6	62
30	Cosmological signatures of ultralight dark matter with an axionlike potential. Physical Review D, 2017, 96, .	1.6	36
31	Window for preferred axion models. Physical Review D, 2017, 96, .	1.6	78
32	Extracting dark matter signatures from atomic clock stability measurements. Physical Review D, 2017, 96, .	1.6	22
33	Cosmological perturbations of extreme axion in the radiation era. Physical Review D, 2017, 96, .	1.6	30
34	Introduction to Dark Matter. Springer Theses, 2017, , 1-26.	0.0	0
35	Gravitational wave searches for ultralight bosons with LIGO and LISA. Physical Review D, 2017, 96, .	1.6	190
36	Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. Physical Review Letters, 2017, 119, 131101.	2.9	151

#	Article	IF	CITATIONS
37	Searching for dark absorption with direct detection experiments. Journal of High Energy Physics, 2017, 2017, 1.	1.6	110
38	Supergravity models with 50–100ÂTeV scalars, supersymmetry discovery at the LHC, and gravitino decay constraints. Physical Review D, 2017, 96, .	1.6	10
39	Damping of gravitational waves by matter. Physical Review D, 2017, 96, .	1.6	31
40	A New Signal Model for Axion Cavity Searches from N-body Simulations. Astrophysical Journal, 2017, 845, 121.	1.6	23
41	Effects of axions on Population III stars. Astronomy and Astrophysics, 2017, 605, A106.	2.1	9
42	Mass discrepancy-acceleration relation: A universal maximum dark matter acceleration and implications for the ultralight scalar dark matter model. Physical Review D, 2017, 96, .	1.6	24
43	Collapse threshold for a cosmological Klein-Gordon field. Physical Review D, 2017, 96, .	1.6	24
44	First Constraints on Fuzzy Dark Matter from Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>α</mml:mi> Forest Data and Hydrodynamical Simulations. Physical Review Letters, 2017, 119, 031302.</mml:math 	2.9	310
45	Cosmic microwave background constraints for global strings and global monopoles. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	1.9	34
46	The sign of the dipole–dipole potential by axion exchange. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 772, 127-129.	1.5	13
47	Axion mass bound in very special relativity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 772, 420-425.	1.5	10
48	Light axion-like dark matter must be present during inflation. Physical Review D, 2017, 96, .	1.6	45
49	Self-gravitating black hole scalar wigs. Physical Review D, 2017, 96, .	1.6	15
50	Axion production from primordial magnetic fields. Physical Review D, 2017, 96, .	1.6	6
51	Radiation and energy release in a background field of axion-like dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 772, 708-711.	1.5	1
52	Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Physical Review D, 2017, 95, .	1.6	23
53	Axion astronomy with microwave cavity experiments. Physical Review D, 2017, 95, .	1.6	45
54	Spectrum of the axion dark sector. Physical Review D, 2017, 96, .	1.6	36

#	Article	IF	CITATIONS
55	Possible roles of Peccei-Quinn symmetry in an effective low energy model. Physical Review D, 2017, 96, .	1.6	5
56	Limits on Axion Couplings from the First 80 Days of Data of the PandaX-II Experiment. Physical Review Letters, 2017, 119, 181806.	2.9	87
57	The effect of thermal velocities on structure formation in N-body simulations of warm dark matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 017-017.	1.9	12
58	Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields. Physical Review X, 2017, 7, .	2.8	129
59	Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities. Physical Review D, 2017, 95, .	1.6	4
60	Sourcing dark matter and dark energy from α-attractors. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 045-045.	1.9	21
61	Large Block Properties of the Entanglement Entropy of Free Disordered Fermions. Journal of Statistical Physics, 2017, 166, 1092-1127.	0.5	14
62	Ultralight Dark Matter Resonates with Binary Pulsars. Physical Review Letters, 2017, 118, 261102.	2.9	80
63	Searching for the QCD Axion with Gravitational Microlensing. Physical Review Letters, 2017, 119, 021101.	2.9	50
64	The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 012-012.	1.9	11
65	Core-halo mass relation of ultralight axion dark matter from merger history. Physical Review D, 2017, 95, .	1.6	31
66	An axion-induced SM/MSSM Higgs landscape and the Weak Gravity Conjecture. Journal of High Energy Physics, 2017, 2017, 1.	1.6	26
67	Axion dark matter detection by laser induced fluorescence in rare-earth doped materials. Scientific Reports, 2017, 7, 15168.	1.6	25
68	Refined study of isocurvature fluctuations in the curvaton scenario. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 042-042.	1.9	5
69	Axion-assisted production of sterile neutrino dark matter. Physical Review D, 2017, 95, .	1.6	21
70	Future CMB tests of dark matter: Ultralight axions and massive neutrinos. Physical Review D, 2017, 95, .	1.6	60
71	Linking axionlike dark matter to neutrino masses. Physical Review D, 2017, 96, .	1.6	12
72	Systematics of aligned axions. Journal of High Energy Physics, 2017, 2017, 1.	1.6	19

	CHANON	NREPORT	
#	Article	IF	CITATIONS
73	QCD axions and axionlike particles in a two-inflation scenario. Physical Review D, 2017, 96, .	1.6	7
74	BICEP2 / <i>Keck Array</i> IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields. Physical Review D, 2017, 96, .	1.6	39
75	Evolution of linear wave dark matter perturbations in the radiation-dominated era. Physical Review D, 2017, 96, .	1.6	25
76	Testing parity-violating physics from cosmic rotation power reconstruction. Physical Review D, 2017, 95, .	1.6	12
77	Imprints of non-standard dark energy and dark matter models on the 21cm intensity map power spectrum. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 018-018.	1.9	12
78	Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1346-1360.	1.6	77
79	Stau coannihilation, compressed spectrum, and SUSY discovery potential at the LHC. Physical Review D, 2017, 95, .	1.6	16
80	Merger rate of primordial black-hole binaries. Physical Review D, 2017, 96, .	1.6	282
81	Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts. Physical Review D, 2017, 95, .	1.6	83
82	Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores. Physical Review D, 2017, 95, .	1.6	5
83	Axion minicluster power spectrum and mass function. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 038-038.	1.9	53
84	Ultralight axion in supersymmetry and strings and cosmology at small scales. Physical Review D, 2017, 96, .	1.6	28
85	Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4606-4614.	1.6	183
86	Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4559-4570.	1.6	208
87	A Review of Gravitational Waves from Cosmic Domain Walls. Universe, 2017, 3, 40.	0.9	85
88	Dark Energy, QCD Axion, and Trans-Planckian-Inflaton Decay Constant. Universe, 2017, 3, 68.	0.9	1
89	Decay of ultralight axion condensates. Journal of High Energy Physics, 2018, 2018, 1.	1.6	28
90	Searching for an exotic spin-dependent interaction with a single electron-spin quantum sensor. Nature Communications, 2018, 9, 739.	5.8	54

	C	ITATION REPORT	
#	Article	IF	Citations
91	Tidal disruption of fuzzy dark matter subhalo cores. Physical Review D, 2018, 97, .	1.6	50
92	Cold light dark matter in extended seesaw models. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 006-006.	1.9	31
93	Polarized anisotropic spectral distortions of the CMB: galactic and extragalactic constraints on photon-axion conversion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 045-045.	1.9	20
94	Distorted neutrino oscillations from time varying cosmic fields. Physical Review D, 2018, 97, .	1.6	49
95	Axion production from Landau quantization in the strong magnetic field of magnetars. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 779, 160-165.	1.5	11
96	Structure formation and microlensing with axion miniclusters. Physical Review D, 2018, 97, .	1.6	84
97	Galaxy Formation in Sterile Neutrino Dark Matter Models. Astrophysical Journal, 2018, 854, 1.	1.6	22
98	Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate. Physical Review D, 20 97, .	1.6	3
99	Estimating the flux of the 14.4 keV solar axions. Journal of Cosmology and Astroparticle Physics, 201 2018, 021-021.	8, 1.9	10
100	Theoretical aspects of antimatter and gravity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170277.	1.6	1
101	Impact of ultralight axion self-interactions on the large scale structure of the Universe. Physical Review D, 2018, 97, .	1.6	57
102	Halo abundance and assembly history with extreme-axion wave dark matter at <i>z</i> ≥ 4. Mon Notices of the Royal Astronomical Society: Letters, 2018, 473, L36-L40.	thly 1.2	16
103	Oscillating spin-2 dark matter. Physical Review D, 2018, 97, .	1.6	46
104	Primordial gravitational waves amplification from causal fluids. Physical Review D, 2018, 97, .	1.6	9
105	Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations. Astrophysical Journal, 2018, 853, 51.	1.6	45
106	The Absence of the Selfaveraging Property of the Entanglement Entropy of Disordered Free Fermions in One Dimension. Journal of Statistical Physics, 2018, 170, 207-220.	0.5	7
107	The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance. Quantum Science and Technology, 2018, 3, 014008.	2.6	48
108	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>P</mml:mi></mml:mrow> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi>-Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and</mml:math 	nath> 2.9	56
	Molecules. Physical Review Letters, 2018, 120, 013202.		

#	Article	IF	CITATIONS
109	Neutrino mass, leptogenesis, and dark matter from the dark sector with U(1)D. Journal of High Energy Physics, 2018, 2018, 1.	1.6	1
110	Dark matter stability and one-loop neutrino mass generation based on Peccei–Quinn symmetry. European Physical Journal C, 2018, 78, 1.	1.4	13
111	Chiral gravitational waves and baryon superfluid dark matter. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 003-003.	1.9	31
112	Axion-Plasmon Polaritons in Strongly Magnetized Plasmas. Physical Review Letters, 2018, 120, 181803.	2.9	27
113	Quantum gravity fluctuations flatten the Planck-scale Higgs potential. Physical Review D, 2018, 97, .	1.6	59
114	Brief History of Ultra-light Scalar Dark Matter Models. EPJ Web of Conferences, 2018, 168, 06005.	0.1	61
115	Constraining the mass of dark photons and axion-like particles through black-hole superradiance. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 043-043.	1.9	156
116	Area law violations and quantum phase transitions in modified Motzkin walk spin chains. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 013101.	0.9	11
117	N-body simulations of structure formation in thermal inflation cosmologies. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 010-010.	1.9	2
118	Exploring axionlike particles beyond the canonical setup. Physical Review D, 2018, 98, .	1.6	13
119	Spectator dark matter. Physical Review D, 2018, 98, .	1.6	39
120	An extension of the SM based on effective Peccei–Quinn Symmetry. European Physical Journal C, 2018, 78, 1.	1.4	8
121	How do stars affect Ï^DM haloes?. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2686-2699.	1.6	27
122	Axion isocurvature perturbations in low-scale models of hybrid inflation. Physical Review D, 2018, 98,	1.6	14
123	Solar corona heating by axion quark nugget dark matter. Physical Review D, 2018, 98, .	1.6	33
124	Cosmology with 21cm intensity mapping. Journal of Physics: Conference Series, 2018, 956, 012003.	0.3	1
125	Constraints on massive axion-like particles from X-ray observations of NGC 1275. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2243-2248.	1.6	13
126	Minimum star-forming halo mass in axion cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L69-L73.	1.2	9

#	Article	IF	CITATIONS
127	Impact of Cosmic-Ray Physics on Dark Matter Indirect Searches. Advances in High Energy Physics, 2018, 2018, 1-23.	0.5	14
128	A new smooth- <i>k</i> space filter approach to calculate halo abundances. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 010-010.	1.9	17
129	Nonlinear growth of structure in cosmologies with damped matter fluctuations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 001-001.	1.9	6
130	Towards a calculation of the halo mass function of a scalar field dark matter. Journal of Physics: Conference Series, 2018, 1030, 012006.	0.3	1
131	Finding closure: approximating Vlasov-Poisson using finitely generated cumulants. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 030-030.	1.9	12
132	Axion cosmology with early matter domination. Physical Review D, 2018, 98, .	1.6	43
133	Effects of a caustic ring of dark matter on the distribution of stars and interstellar gas. Physical Review D, 2018, 98, .	1.6	3
134	Primordial Anisotropies in the Gravitational Wave Background from Cosmological Phase Transitions. Physical Review Letters, 2018, 121, 201303.	2.9	63
135	Constraining noncold dark matter models with the global 21-cm signal. Physical Review D, 2018, 98, .	1.6	66
136	Strong disorder RG approach – a short review of recent developments. European Physical Journal B, 2018, 91, 1.	0.6	61
137	Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes. Physical Review D, 2018, 98, .	1.6	44
138	Simple no-scale model of modulus fixing and inflation. Physical Review D, 2018, 98, .	1.6	0
139	Prethermalization production of dark matter. Physical Review D, 2018, 98, .	1.6	66
140	Neutrinophilic axion-like dark matter. European Physical Journal C, 2018, 78, 1.	1.4	33
141	The Importance of Quantum Pressure of Fuzzy Dark Matter on Lyα Forest. Astrophysical Journal, 2018, 863, 73.	1.6	52
142	Axion star collisions with black holes and neutron stars in full 3D numerical relativity. Physical Review D, 2018, 98, .	1.6	38
143	Lightish but clumpy: scalar dark matter from inflationary fluctuations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	1.9	40
144	Dark matter hurricane: Measuring the S1 stream with dark matter detectors. Physical Review D, 2018, 98, .	1.6	57

#	Article	IF	CITATIONS
145	New orbitals probes of ultra-light dark matter. International Journal of Modern Physics A, 2018, 33, 1845018.	0.5	0
146	Cosmological imprints of string axions in plateau. European Physical Journal C, 2018, 78, 1.	1.4	24
147	Dark matter is a genuine spin-2 field. International Journal of Modern Physics A, 2018, 33, 1845010.	0.5	0
148	Directional axion detection. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 051-051.	1.9	45
149	A viable QCD axion in the MeV mass range. Journal of High Energy Physics, 2018, 2018, 1.	1.6	65
150	Cosmological aspects of the clockwork axion. Journal of High Energy Physics, 2018, 2018, 1.	1.6	24
151	Resonant Absorption of Bosonic Dark Matter in Molecules. Physical Review X, 2018, 8, .	2.8	66
152	Effects of ultra-light dark matter on the gravitational quantum well. International Journal of Modern Physics D, 2018, 27, 1850098.	0.9	0
153	First star formation in ultralight particle dark matter cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L6-L10.	1.2	21
154	Phase transitions between dilute and dense axion stars. Physical Review D, 2018, 98, .	1.6	73
155	Electromagnetic waves propagating in the string axiverse. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	13
156	QCD axion window and low-scale inflation. Physical Review D, 2018, 98, .	1.6	114
157	Exploring the string axiverse and parity violation in gravity with gravitational waves. International Journal of Modern Physics D, 2018, 27, 1850096.	0.9	34
158	Dark Matter with Genuine Spin-2 Fields. Universe, 2018, 4, 90.	0.9	0
159	Axionic extension of the Proca action. Physical Review D, 2018, 98, .	1.6	3
160	Derivation of a generalized Schrödinger equation for dark matter halos from the theory of scale relativity. Physics of the Dark Universe, 2018, 22, 80-95.	1.8	20
161	Formation of relativistic axion stars. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 005-005.	1.9	38
162	Gravitational wave forest from string axiverse. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 008-008.	1.9	52

#	Article	IF	CITATIONS
163	Violation of the equivalence principle from light scalar dark matter. Physical Review D, 2018, 98, .	1.6	81
164	Searching for decaying and annihilating dark matter with line intensity mapping. Physical Review D, 2018, 98, .	1.6	25
165	New general parametrization of quintessence fields and its observational constraints. Physical Review D, 2018, 98, .	1.6	15
166	Long-term dynamics of cosmological axion strings. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	51
167	Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Physical Review D, 2018, 98, .	1.6	119
168	Vector fuzzy dark matter, fifth forces, and binary pulsars. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 044-044.	1.9	13
169	Symmetries and fundamental interactions: Precision experiments at low energies. European Physical Journal Plus, 2018, 133, 1.	1.2	0
170	PyUltraLight: a pseudo-spectral solver for ultralight dark matter dynamics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 027-027.	1.9	45
171	Cosmological implications of ultralight axionlike fields. Physical Review D, 2018, 98, .	1.6	171
172	Jeans-type instability of a complex self-interacting scalar field in general relativity. Physical Review D, 2018, 98, .	1.6	29
173	Landscape tomography through primordial non-Gaussianity. Physical Review D, 2018, 98, .	1.6	27
174	Constraints on anharmonic corrections of fuzzy dark matter. Journal of High Energy Physics, 2018, 2018, 1.	1.6	24
175	Stability of condensed fuzzy dark matter halos. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 058-058.	1.9	11
176	Extragalactic photon–axion-like particle oscillations up to 1000 TeV. Journal of High Energy Astrophysics, 2018, 20, 1-17.	2.4	30
177	Enhanced photon coupling of ALP dark matter adiabatically converted from the QCD axion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	1.9	13
178	On Nonlinear Schrödinger Equation as a Model for Dark Matter. Understanding Complex Systems, 2018, , 145-174.	0.3	0
179	Multiple-axion framework. Physical Review D, 2018, 98, .	1.6	13
180	The EDGES 21 cm anomaly and properties of dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 785, 159-164.	1.5	109

#	Article	IF	CITATIONS
181	Constraining axion-like-particles with hard X-ray emission from magnetars. Journal of High Energy Physics, 2018, 2018, 1.	1.6	37
182	Impact of Cosmological and Astrophysical Constraints on Dark Matter Simplified Models. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	10
183	Using the full power of the cosmic microwave background to probe axion dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3063-3085.	1.6	106
184	New mechanism producing axions in the AQN model and how the CAST can discover them. Physical Review D, 2018, 98, .	1.6	21
185	Behavior of axionlike particles in smoothed out domainlike magnetic fields. Physical Review D, 2018, 98, .	1.6	41
186	AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3935-3951.	1.6	58
187	Cosmological axion and a quark nugget dark matter model. Physical Review D, 2018, 97, .	1.6	31
188	Fluctuations of the gravitational field generated by a random population of extended substructures. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1482-1498.	1.6	17
189	Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight) Tj ETQq0 0 0 rgB 1447-1468.	T /Overloo 1.6	ck 10 Tf 50 4 59
190	Evidence for inflation in an axion landscape. Journal of High Energy Physics, 2018, 2018, 1.	1.6	4
190 191	Evidence for inflation in an axion landscape. Journal of High Energy Physics, 2018, 2018, 1. Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, .	1.6 1.6	4
191	Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, .	1.6	41
191 192	Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, . Detecting fluorescent dark matter with X-ray lasers. European Physical Journal C, 2018, 78, 512.	1.6	41
191 192 193	Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, . Detecting fluorescent dark matter with X-ray lasers. European Physical Journal C, 2018, 78, 512. Emergent dark energy from dark matter. Physical Review D, 2018, 97, . New experimental approaches in the search for axion-like particles. Progress in Particle and Nuclear	1.6 1.4 1.6	41 1 5
191 192 193 194	Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, . Detecting fluorescent dark matter with X-ray lasers. European Physical Journal C, 2018, 78, 512. Emergent dark energy from dark matter. Physical Review D, 2018, 97, . New experimental approaches in the search for axion-like particles. Progress in Particle and Nuclear Physics, 2018, 102, 89-159.	1.6 1.4 1.6 5.6	41 1 5 505
191 192 193 194 195	Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, . Detecting fluorescent dark matter with X-ray lasers. European Physical Journal C, 2018, 78, 512. Emergent dark energy from dark matter. Physical Review D, 2018, 97, . New experimental approaches in the search for axion-like particles. Progress in Particle and Nuclear Physics, 2018, 102, 89-159. Backreaction of axion coherent oscillations. Physical Review D, 2018, 98, . Motion in time-periodic backgrounds with applications to ultralight dark matter halos at galactic	1.6 1.4 1.6 5.6 1.6	41 1 5 505 4

ARTICLE IF CITATIONS # The median density of the Universe. Monthly Notices of the Royal Astronomical Society, 2018, 477, 199 1.6 16 3230-3246. Detecting axions via induced electron spin precession. Physical Review D, 2018, 98, . 1.6 Axion configurations around pulsars. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 201 1.9 20 044-044. Kerr–Newman-AdS black hole surrounded by perfect fluid matter in Rastall gravity. European Physical Journal C, 2018, 78, 1. Boseâ€"Einstein condensate haloes embedded in dark energy. Astronomy and Astrophysics, 2018, 611, A81. 203 2.1 3 Constraints on a Spin-Dependent Exotic Interaction between Electrons with Single Electron Spin 204 Quantum Sensors. Physical Review Letters, 2018, 121, 080402. 205 Efficient computation of galaxy bias with neutrinos and other relics. Physical Review D, 2018, 98, . 1.6 32 The total satellite population of the Milky Way. Monthly Notices of the Royal Astronomical Society, 206 1.6 2018, 479, 2853-2870. \$ ewcommand{e}{{m e}} oldsymbol {ell}\$ -boson stars. Classical and Quantum Gravity, 2018, 35, 207 1.5 52 19LT01. 208 Formation and structure of ultralight bosonic dark matter halos. Physical Review D, 2018, 98, . 1.6 143 Driven dissipative dynamics and topology of quantum impurity systems. Comptes Rendus Physique, 209 0.3 31 2018, 19, 451-483. Constraining cosmology with the velocity function of low-mass galaxies. Monthly Notices of the 1.6 Royal Astronomical Society, 2018, 475, 4809-4824. Revealing the dark matter halo with axion direct detection. Physical Review D, 2018, 97, . 211 1.6 106 $ilde{A}$ œber-gravity and the cosmological constant problem. Physics of the Dark Universe, 2018, 21, 21-26. 1.8 Fuzzy dark matter at cosmic dawn: new 21-cm constraints. Journal of Cosmology and Astroparticle 214 1.9 30 Physics, 2019, 2019, 051-051. Supermassive Black Hole May Constrain Superlight Dark Matter. Physics Magazine, 2019, 12, . 0.1 Dark Matter from Scalar Field Fluctuations. Physical Review Letters, 2019, 123, 061302. 216 2.9 36 Supersymmetric Dirac-Born-Infeld axionic inflation and non-Gaussianity. Journal of High Energy Physics, 2019, 2019, 1.

#	Article	IF	CITATIONS
218	Photoproduction of Axionlike Particles. Physical Review Letters, 2019, 123, 071801.	2.9	59
219	Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. Journal of High Energy Physics, 2019, 2019, 1.	1.6	24
220	Axion dark matter detection with CMB polarization. Physical Review D, 2019, 100, .	1.6	90
221	Brief Review on Scalar Field Dark Matter Models. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	57
222	Cosmological birefringence and the geometric phase of photons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 797, 134841.	1.5	1
223	Effect of the chiral phase transition on axion mass and self-coupling. Physical Review D, 2019, 100, .	1.6	12
224	Mixed hidden sector-visible sector dark matter and observation of a CP odd Higgs boson at HL-LHC and HE-LHC. Physical Review D, 2019, 100, .	1.6	7
225	Dark matter targets for axionlike particle searches. Physical Review D, 2019, 100, .	1.6	34
226	Flavor from the double tetrahedral group without supersymmetry: Flavorful axions and neutrinos. Physical Review D, 2019, 100, .	1.6	9
227	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 372<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2 Ta (stret</td><td>chy⁵≦"false"></td></mml:mo)></mml:mo </mml:mrow>	2 Ta (stret	chy ⁵ ≦"false">
228	D. 2019, 99, Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Progress in Particle and Nuclear Physics, 2019, 109, 103714.	5.6	152
229	Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. Physical Review Letters, 2019, 123, 051103.	2.9	116
230	Effective approximation of electromagnetism for axion haloscope searches. Physics of the Dark Universe, 2019, 26, 100362.	1.8	18
231	Time-reversal invariance violation in neutron-nucleus scattering. Physical Review C, 2019, 100, .	1.1	10
232	Cosmological window onto the string axiverse and the supersymmetry breaking scale. Physical Review D, 2019, 99, .	1.6	77
233	Radial acceleration relation from ultra-light scalar dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 206-210.	1.5	4
234	Hunting for extra dimensions in the shadow of M87*. Physical Review D, 2019, 100, .	1.6	224
235	Leptogenesis from oscillations and dark matter. European Physical Journal C, 2019, 79, 1.	1.4	11

#	Article	IF	CITATIONS
236	Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers. Journal of High Energy Physics, 2019, 2019, 1.	1.6	17
237	Future CMB constraints on cosmic birefringence and implications for fundamental physics. Physical Review D, 2019, 100, .	1.6	36
238	Ultralight Boson Dark Matter and Event Horizon Telescope Observations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">M<mml:msup><mml:mrow><mml:mn>87</mml:mn></mml:mrow><mml:mro Physical Review Letters, 2019, 123, 021102.</mml:mro </mml:msup></mml:mi </mml:mrow></mml:math 	w> ^{2,9} mml:n	no ¹⁴⁸ /mml:n
239	Coupling QCD-Scale Axionlike Particles to Gluons. Physical Review Letters, 2019, 123, 031803.	2.9	70
240	Mass-radius relation of self-gravitating Bose-Einstein condensates with a central black hole. European Physical Journal Plus, 2019, 134, 1.	1.2	19
241	Remnants of Galactic Subhalos and Their Impact on Indirect Dark-Matter Searches. Galaxies, 2019, 7, 65.	1.1	12
242	QMBlender: Particle-based visualization of 3D quantum wave function dynamics. Journal of Computational Science, 2019, 35, 44-56.	1.5	11
243	The fate of dense scalar stars. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 044-044.	1.9	24
244	Looking for ultralight dark matter near supermassive black holes. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	1.9	62
245	Very light asymmetric dark matter. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 003-003.	1.9	9
246	Axion landscape cosmology. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 062-062.	1.9	9
247	<i>Colloquium</i> : The physics of axion stars. Reviews of Modern Physics, 2019, 91, .	16.4	56
248	Early structure formation in primordial black hole cosmologies. Physical Review D, 2019, 100, .	1.6	85
249	Propagation of gravitational waves in Chern-Simons axion Einstein gravity. Physical Review D, 2019, 100, .	1.6	35
250	On long range axion hairs for black holes. Classical and Quantum Gravity, 2019, 36, 215015.	1.5	4
251	Constraining violations of the weak equivalence principle in the dark sector. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 050-050.	1.9	1
252	Axion dark matter from Higgs inflation with an intermediate <i>H</i> _* . Journal of Cosmology and Astroparticle Physics, 2019, 2019, 033-033.	1.9	41
253	Quantum field theory of axion-photon mixing and vacuum polarization. Journal of Physics: Conference Series, 2019, 1275, 012052.	0.3	0

#	Article	IF	CITATIONS
254	Axion core–halo mass and the black hole–halo mass relation: constraints on a few parsec scales. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4497-4503.	1.6	24
255	Predictions for the abundance of high-redshift galaxies in a fuzzy dark matter universe. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5551-5565.	1.6	16
256	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. II. Constraints on Fuzzy Dark Matter. Astrophysical Journal, 2019, 885, 155.	1.6	33
257	Axions are blind to anomalies. European Physical Journal C, 2019, 79, 1.	1.4	23
258	Quantum chromodynamics axion in a hot and magnetized medium. Physical Review D, 2019, 100, .	1.6	10
259	Predictive model of BEC dark matter halos with a solitonic core and an isothermal atmosphere. Physical Review D, 2019, 100, .	1.6	46
260	Charged black holes with axionic-type couplings: Classes of solutions and dynamical scalarization. Physical Review D, 2019, 100, .	1.6	50
261	Revisiting a Negative Cosmological Constant from Low-Redshift Data. Symmetry, 2019, 11, 1035.	1.1	104
262	Isocurvature bounds on axion-like particle dark matter in the post-inflationary scenario. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 021-021.	1.9	14
263	Foamy dark matter from monodromies. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	26
264	Axion RG flows and the holographic dynamics of instanton densities. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 454003.	0.7	6
265	Standard model Higgs field and hidden sector cosmology. Physical Review D, 2019, 100, .	1.6	15
266	Bounds on ultralight hidden-photon dark matter from observation of the 21Âcm signal at cosmic dawn. Physical Review D, 2019, 99, .	1.6	26
267	Impact of kinetic and potential self-interactions on scalar dark matter. Physical Review D, 2019, 100, .	1.6	18
268	Galaxy formation and dark matter: small scale problems and quantum effects on astrophysical scales. Journal of Physics: Conference Series, 2019, 1253, 012007.	0.3	1
269	Effective field theory for black holes with induced scalar charges. Physical Review D, 2019, 100, .	1.6	16
270	Ultralight dark matter in disk galaxies. Physical Review D, 2019, 99, .	1.6	51
271	Testing the nature of dark compact objects: a status report. Living Reviews in Relativity, 2019, 22, 1.	8.2	494

\mathbf{C}	TAT	ION	Dr		пт
	ITAT	IUN	IKE	РU	IK I

#	Article	IF	CITATIONS
272	Scalar field effects on the orbit of S2 star. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4606-4621.	1.6	37
273	Ultra-light scalar saving the 3 + 1 neutrino scheme from the cosmological bounds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 797, 134911.	1.5	31
274	Production and Detection of an Axion Dark Matter Echo. Physical Review Letters, 2019, 123, 131804.	2.9	32
275	Tunable Axion Plasma Haloscopes. Physical Review Letters, 2019, 123, 141802.	2.9	130
276	Proposal to Detect Dark Matter using Axionic Topological Antiferromagnets. Physical Review Letters, 2019, 123, 121601.	2.9	93
277	Peccei-Quinn symmetry from a hidden gauge group structure. Physical Review D, 2019, 99, .	1.6	23
278	Axion–photon mixing in quantum field theory and vacuum energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 790, 427-435.	1.5	28
279	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
280	New mechanism of producing superheavy Dark Matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 794, 69-76.	1.5	10
281	A model of neutrino mass, baryon asymmetry, and asymmetric dark matter with SU(2)D⊗U(1)D′ dark sector. Nuclear Physics B, 2019, 944, 114643.	0.9	3
282	Scalar field dark matter spectator during inflation: the effect of self-interaction. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	1.9	21
283	Lattice formulation of axion inflation. Application to preheating. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 002-002.	1.9	61
284	Scalar field dark matter with a cosh potential, revisited. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 009-009.	1.9	11
285	The 21Âcm absorption line and the axion quark nugget dark matter model. Physics of the Dark Universe, 2019, 24, 100295.	1.8	31
286	Probing the early Universe with axion physics and gravitational waves. Physical Review D, 2019, 99, .	1.6	43
287	Dark Matter With Stückelberg Axions. Frontiers in Physics, 2019, 7, .	1.0	1
288	A new experimental approach to probe QCD axion dark matter in the mass range above \$\${ 40},{upmu }mathrm{{eV}}\$\$ 40 1¼ eV. European Physical Journal C, 2019, 79, 1.	1.4	86
289	Gravitational waves from binary axionic black holes. European Physical Journal C, 2019, 79, 1.	1.4	2

#	Article	IF	CITATIONS
290	Follow-up signals from superradiant instabilities of black hole merger remnants. Physical Review D, 2019, 99, .	1.6	33
291	Cosmological magnetic field and dark energy as two sides of the same coin. Physical Review D, 2019, 99, .	1.6	3
292	Minimal Yukawa deflection of AMSB from the Kahler potential. Journal of High Energy Physics, 2019, 2019, 1.	1.6	2
293	Full 3D numerical relativity simulations of neutron star–boson star collisions with BAM. Classical and Quantum Gravity, 2019, 36, 025002.	1.5	19
294	Cosmological Simulation for Fuzzy Dark Matter Model. Frontiers in Astronomy and Space Sciences, 2019, 5, .	1.1	27
295	<pre><mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 50="" 537<="" etqq1="" overlock="" pre="" rgbt="" tf="" tj=""></mml:mo)></mml:mrow></mml:math></pre>	T ⊈.6 stretc	h y ≠"false">
296	dark matter. Physical Review D, 2019, 99, . Axion structure formation – I: the co-motion picture. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1809-1821.	1.6	7
297	Heating of Milky Way disc stars by dark matter fluctuations in cold dark matter and fuzzy dark matter paradigms. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2861-2876.	1.6	55
298	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow></mml:math>		

	Сіта	tion Report	
#	Article	IF	CITATIONS
308	Numerical and perturbative computations of the fuzzy dark matter model. Physical Review D, 2019, 99, .	. 1.6	58
309	New predictions from the logotropic model. Physics of the Dark Universe, 2019, 24, 100271.	1.8	14
310	Blasts of Light from Axions. Physical Review Letters, 2019, 122, 081101.	2.9	66
311	X-ray polarization signals from magnetars with axion-like-particles. Journal of High Energy Physics, 2019, 2019, 1.	1.6	23
312	Neutron star–axion star collisions in the light of multimessenger astronomy. Monthly Notices of the Royal Astronomical Society, 2019, 483, 908-914.	1.6	29
313	Solutions to axion electrodynamics in various geometries. Physical Review D, 2019, 99, .	1.6	40
314	Acoustic modes of pulsating axion stars: Nonradial oscillations. International Journal of Modern Physics D, 2019, 28, 1950111.	0.9	4
315	New scalar field quartessence. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	1.9	16
316	Use of Geodesy and Geophysics Measurements to Probe the Gravitational Interaction. Fundamental Theories of Physics, 2019, , 317-358.	0.1	1
317	Testing extreme-axion wave-like dark matter using the BOSS Lyman-alpha forest data. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4273-4286.	1.6	38
318	ν-inflaton dark matter. Journal of High Energy Physics, 2019, 2019, 1.	1.6	9
319	Spherical collapse of fuzzy dark matter. Physical Review D, 2019, 99, .	1.6	5
320	Gravitationally bound axions and how one can discover them. Physical Review D, 2019, 99, .	1.6	12
321	Measuring the small-scale matter power spectrum with high-resolution CMB lensing. Physical Review D, 2019, 99, .	1.6	19
322	Primordial lithium puzzle and the axion quark nugget dark matter model. Physical Review D, 2019, 99, .	1.6	24
323	Cosmic reionization history and dark matter scenarios. Physical Review D, 2019, 99, .	1.6	12
324	Axionic instabilities and new black hole solutions. Physical Review D, 2019, 99, .	1.6	59
325	Emergent/composite axions. Journal of High Energy Physics, 2019, 2019, 1.	1.6	12

		ATION REPORT	
#	Article	IF	CITATIONS
326	Dynamical axion misalignment with small instantons. Journal of High Energy Physics, 2019, 2019, 1.	1.6	15
327	Axion scales and couplings with Stückelberg mixing. Journal of High Energy Physics, 2019, 2019, 1.	1.6	4
328	Axion superradiance in rotating neutron stars. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 051-051.	1.9	36
329	Photon-dark photon conversions in extreme background electromagnetic fields. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	9
330	SAGE: A proposal for a space atomic gravity explorer. European Physical Journal D, 2019, 73, 1.	0.6	75
331	Gravitationally trapped axions on the Earth. Physical Review D, 2019, 100, .	1.6	19
332	Gravitational wave signatures of dark matter cores in binary neutron star mergers by using numerical simulations. Physical Review D, 2019, 100, .	1.6	34
333	Pati-Salam unification with a spontaneous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <mml:mi> C </mml:mi> <mml:mi> P </mml:mi> violation. Physical Review D, 2019, 100.</mml:math 	, 1.6	5
334	Cooling binary neutron star remnants via nucleon-nucleon-axion bremsstrahlung. Physical Review D, 2019, 100, .	1.6	15
335	Field-theoretic approach to large-scale structure formation. Physical Review D, 2019, 100, .	1.6	5
336	Axions as a probe of solar metals. Physical Review D, 2019, 100, .	1.6	15
337	Stochastic gravitational-wave background from axion-monodromy oscillons in string theory during preheating. Physical Review D, 2019, 100, .	1.6	29
338	Co-interacting dark matter. Physical Review D, 2019, 100, .	1.6	2
339	Mixed WIMP-axion dark matter. Physical Review D, 2019, 100, .	1.6	3
340	Optical Kerr effect in vacuum. Physical Review A, 2019, 100, .	1.0	8
341	Direct limits on the interaction of antiprotons with axion-like dark matter. Nature, 2019, 575, 310-314.	. 13.7	47
342	Forbidden frozen-in dark matter. Journal of High Energy Physics, 2019, 2019, 1.	1.6	27
343	<i>Z</i> ′ mediated WIMPs: dead, dying, or soon to be detected?. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 024-024.	1.9	27

#	Article	IF	CITATIONS
344	Derivation of the core mass-halo mass relation of fermionic and bosonic dark matter halos from an effective thermodynamical model. Physical Review D, 2019, 100, .	1.6	32
345	Energy balance of a Bose gas in a curved space-time. General Relativity and Gravitation, 2019, 51, 1.	0.7	7
346	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	27
347	Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3227-3243.	1.6	100
348	Cosmic infrared background excess from axionlike particles and implications for multimessenger observations of blazars. Physical Review D, 2019, 99, .	1.6	29
349	De Sitter vs Quintessence in String Theory. Fortschritte Der Physik, 2019, 67, 1800079.	1.5	117
350	Black hole formation in relativistic Oscillaton collisions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 027-027.	1.9	14
351	From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems. Physica D: Nonlinear Phenomena, 2020, 403, 132301.	1.3	25
352	On the inexistence of self-gravitating solitons in generalised axion electrodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 800, 135076.	1.5	7
353	How sound are our ultralight axion approximations?. Physical Review D, 2020, 101, .	1.6	19
354	Sublunar-mass primordial black holes from closed axion domain walls. Physics of the Dark Universe, 2020, 27, 100440.	1.8	13
355	Searching for anisotropic cosmic birefringence with polarization data from SPTpol. Physical Review D, 2020, 102, .	1.6	43
356	Rotating neutron stars in F(R) gravity with axions. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3616-3623.	1.6	19
357	Multiple ultralight axionic wave dark matter and astronomical structures. Physics of the Dark Universe, 2020, 30, 100636.	1.8	25
358	Wave turbulence in self-gravitating Bose gases and nonlocal nonlinear optics. Physical Review A, 2020, 102, .	1.0	15
359	Unified framework for early dark energy from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>α</mml:mi></mml:mrow> -attractors. Physical Review D. 2020, 102</mml:math 	1.6	66
360	Implications for dark matter direct detection in the presence of LIGO-motivated primordial black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135566.	1.5	11
361	Anomalous scattering and transport in chiral matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 808, 135680.	1.5	3

#	Article	IF	CITATIONS
362	XENON1T Excess from Anomaly-Free Axionlike Dark Matter and Its Implications for Stellar Cooling Anomaly. Physical Review Letters, 2020, 125, 161801.	2.9	66
363	Naturalness, Fine-tuning, and Observer Selection in Cosmology. , 2020, , 67-110.		0
364	Scale and quality of Peccei-Quinn symmetry and weak gravity conjectures. Journal of High Energy Physics, 2020, 2020, 1.	1.6	16
365	Imprints of the early Universe on axion dark matter substructure. Physical Review D, 2020, 101, .	1.6	31
366	New perspectives on axion misalignment mechanism. Physical Review D, 2020, 102, .	1.6	23
367	Inflaton clusters and inflaton stars. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 030-030.	1.9	23
368	Revisiting the stability of quadratic Poincar $ ilde{A}$ © gauge gravity. European Physical Journal C, 2020, 80, 1.	1.4	22
369	DAMA/LIBRA annual modulation and axion quark nugget dark matter model. Physical Review D, 2020, 101, .	1.6	13
370	Pulsar timing residual induced by ultralight vector dark matter. European Physical Journal C, 2020, 80, 1.	1.4	18
371	New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1188-1201.	1.6	25
372	Constraining the nature of ultra light dark matter particles with the 21Âcm forest. Physical Review D, 2020, 101, .	1.6	15
373	Intensity mapping as a probe of axion dark matter. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3162-3177.	1.6	28
374	New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Physical Review Letters, 2020, 125, 221301.	2.9	119
375	Constraints on Axion-Lepton coupling from Big Bang Nucleosynthesis. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 060-060.	1.9	16
376	QCD Î,-vacuum energy and axion properties. Journal of High Energy Physics, 2020, 2020, 1.	1.6	13
377	Accessing the axion via compact object binaries. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 005-005.	1.9	15
378	Gravitational Waves in Axion Dark Matter. Universe, 2020, 6, 89.	0.9	10
379	Unifying holographic inflation with holographic dark energy: A covariant approach. Physical Review D, 2020, 102, .	1.6	81

		ATION REPORT	
#	Article	IF	CITATIONS
380	Topology and axions in QCD. International Journal of Modern Physics A, 2020, 35, 2030010.	0.5	31
381	Axion quark nuggets and how a global network can discover them. Physical Review D, 2020, 101, .	1.6	20
382	Axionlike particle constraints in gauged <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N<mml:mo>=</mml:mo><mml:mn>2</mml:mn> supergravity. Physical Review D, 2020, 101, .</mml:mi </mml:math 	1.6	0
383	Cosmological evolution of light dark photon dark matter. Physical Review D, 2020, 101, .	1.6	59
384	Gravitational wave signals from multiple hidden sectors. Physical Review D, 2020, 101, .	1.6	12
385	Local group star formation in warm and self-interacting dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 702-717.	1.6	9
386	Resolving the Hubble tension with new early dark energy. Physical Review D, 2020, 102, .	1.6	119
387	Resonant instability of axionic dark matter clumps. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 038-038.	1.9	13
388	Probing ALP-sterile neutrino couplings at the LHC. Journal of High Energy Physics, 2020, 2020, 1.	1.6	8
389	Pulsar timing array constraints on spin-2 ULDM. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 031-031.	1.9	14
390	Cosmological constraints on ultra-light axion fields. Research in Astronomy and Astrophysics, 2020, 20, 055.	0.7	4
391	Constraining the gravitational coupling of axion dark matter at LIGO. Physical Review D, 2020, 102, .	1.6	15
392	Dark Matters on the Scale of Galaxies. Universe, 2020, 6, 107.	0.9	62
393	Fermion-boson stars with a quartic self-interaction in the boson sector. Physical Review D, 2020, 102, .	1.6	21
394	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	0.7	198
395	Constraining cosmic polarization rotation and implications for primordial B-modes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006.	1.9	3
396	Axino phenomenology. European Physical Journal: Special Topics, 2020, 229, 3221-3228.	1.2	2
397	Imprints of axion superradiance in the CMB. Physical Review D, 2020, 102, .	1.6	20

		CITATION R	EPORT	
#	Article		IF	CITATIONS
398	Mixed state dynamics with non-local interactions. Nuclear Physics B, 2020, 961, 1152	14.	0.9	0
399	Spin Hall effect of light in inhomogeneous axion field. Physics Letters, Section B: Nucle Particle and High-Energy Physics, 2020, 811, 135968.	ar, Elementary	1.5	0
400	Relaxation times for Bose-Einstein condensation in axion miniclusters. Physical Review	D, 2020, 102, .	1.6	27
401	Irreducible background of gravitational waves from a cosmic defect network: Update a of numerical techniques. Physical Review D, 2020, 102, .	ind comparison	1.6	25
402	21Âcm forest probes on axion dark matter in postinflationary Peccei-Quinn symmetry scenarios. Physical Review D, 2020, 102, .	breaking	1.6	5
403	Quantum tunneling rate of dilute axion stars close to the maximum mass. Physical Rev	iew D, 2020, 102,	1.6	10
404	Dark matter axion detection in the radio/mm waveband. Physical Review D, 2020, 102	,.	1.6	45
405	Simulating mixed fuzzy and cold dark matter. Physical Review D, 2020, 102, .		1.6	46
406	Ejection of supermassive black holes and implications for merger rates in fuzzy dark m Monthly Notices of the Royal Astronomical Society, 2020, 499, 2575-2586.	atter haloes.	1.6	6
407	Axion quark nugget dark matter: Time modulations and amplifications. Physical Review	v D, 2020, 101, .	1.6	8
408	Tidal effects and disruption in superradiant clouds: A numerical investigation. Physical 2020, 101, .	Review D,	1.6	26
409	Is the Axionic Dark Matter an Equilibrium System?. Universe, 2020, 6, 192.		0.9	13
410	QCD axion and topological susceptibility in chiral effective Lagrangian models at finite Physical Review D, 2020, 102, .	temperature.	1.6	7
411	Nonrelativistic formation of scalar clumps as a candidate for dark matter. Physical Revi 102, .	ew D, 2020,	1.6	6
412	Probing the angle of birefringence due to long range axion hair from pulsars. Physical F 102, .	leview D, 2020,	1.6	17
413	Reexamining the Solar Axion Explanation for the XENON1T Excess. Physical Review Let 131806.	ters, 2020, 125,	2.9	52
414	Probing a cosmic axion-like particle background within the jets of active galactic nucle Cosmology and Astroparticle Physics, 2020, 2020, 055-055.	i. Journal of	1.9	6
415	Gravitational atoms: General framework for the construction of multistate axially symr solutions of the SchrĶdinger-Poisson system. Physical Review D, 2020, 101, .	netric	1.6	23

CITATI	F)	_
		ZEDU	DT
CITAT			IC I

#	ARTICLE	IF	CITATIONS
416	Axion Search with a Quantum-Limited Ferromagnetic Haloscope. Physical Review Letters, 2020, 124, 171801.	2.9	92
417	Constraints on the Velocity and Spin Dependent Exotic Interaction at the Micrometer Range. Physical Review Letters, 2020, 124, 161801.	2.9	21
418	Constraints on the Velocity Dispersion of Dark Matter from Cosmology and New Bounds on Scattering from the Cosmic Dawn. Astrophysical Journal, 2020, 894, 40.	1.6	0
419	Implications of MilkyÂWay substructures for the nature of dark matter. Physical Review D, 2020, 101, .	1.6	24
420	Soliton Random Walk and the Cluster-Stripping Problem in Ultralight Dark Matter. Physical Review Letters, 2020, 124, 201301.	2.9	37
421	Probing the small-scale matter power spectrum with large-scale 21-cm data. Physical Review D, 2020, 101, .	1.6	57
422	Small-scale structure of fuzzy and axion-like dark matter. Progress in Particle and Nuclear Physics, 2020, 113, 103787.	5.6	101
423	Light scalar dark matter coupled to a trace of energy-momentum tensor. Physical Review D, 2020, 101, .	1.6	1
424	New Directions for Axion Searches via Scattering at Reactor Neutrino Experiments. Physical Review Letters, 2020, 124, 211804.	2.9	41
425	<pre><mml:math altimg="si5.svg" display="inline" id="d1e21" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>F</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi>< gravity with an axion-like particle: Dynamics, gravity waves, late and early-time phenomenology. Annals of Physics. 2020. 418. 168186.</mml:mrow></mml:mrow></mml:math></pre>	mml:mo>) 1.0)<
426	Constraining structure formation using EDGES. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 004-004.	1.9	9
427	Black Hole Superradiant Instability from Ultralight Spin-2 Fields. Physical Review Letters, 2020, 124, 211101.	2.9	62
431	The Standard Model of Electroweak and Strong Interactions. , 2020, , 59-84.		0
432	Weak Decays at Tree Level. , 2020, , 87-102.		0
433	Weak Decays at Tree Level. , 2020, , 103-129.		0
434	Short-Distance Structure ofWeak Decays. , 2020, , 130-178.		0
435	Effective Hamiltonians for FCNC Processes. , 2020, , 179-252.		0
436	Nonperturbative Methods in Weak Decays. , 2020, , 253-282.		0

		CHAHON KL		
#	Article		IF	CITATIONS
437	Particle-Antiparticle Mixing and CP Violation in the Standard Model. , 2020, , 283-328.			0
438	Rare B and K Decays in the Standard Model. , 2020, , 329-387.			0
439	ε′/ε in the Standard Model. , 2020, , 388-401.			0
440	Charm Flavor Physics. , 2020, , 402-409.			0
441	Status of Flavor Physics within the Standard Model. , 2020, , 410-414.			0
442	First Steps beyond the Standard Model. , 2020, , 417-432.			0
443	Standard Model Effective Field Theory. , 2020, , 433-465.			0
444	Simplest Extensions of the SM. , 2020, , 466-532.			0
445	Specific Models. , 2020, , 533-579.			0
446	Beyond Quark Flavor Physics. , 2020, , 580-621.			0
447	Grand Summary of New Physics Models. , 2020, , 622-627.			0
448	Flavor Expedition to the Zeptouniverse. , 2020, , 628-640.			0
449	Summary and Shopping List. , 2020, , 641-646.			0
456	Evolution of diffuse scalar clouds around binary black holes. Physical Review D, 2020, 1	01,.	1.6	9
457	Large-volume centimeter-wave cavities for axion searches. Journal of Cosmology and As Physics, 2020, 2020, 010-010.	stroparticle	1.9	4
458	Collective Scalarization or Tachyonization: When Averaging Fails. Physical Review Letter 221104.	ers, 2020, 124,	2.9	8
459	Early structure formation constraints on the ultralight axion in the postinflation scenar Review D, 2020, 101, .	io. Physical	1.6	23
460	Probing axion mediated fermion–fermion interaction by means of entanglement. Phy Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 804, 135407.	vsics Letters,	1.5	14

#	Article	IF	CITATIONS
461	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>k</mml:mi></mml:math> -essence scalar dark matter solitons around supermassive black holes. Physical Review D, 2020, 101, .	1.6	7
462	Detecting axionlike dark matter with linearly polarized pulsar light. Physical Review D, 2020, 101, .	1.6	24
463	Precision gravity tests and the Einstein Equivalence Principle. Progress in Particle and Nuclear Physics, 2020, 112, 103772.	5.6	56
464	A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches. Universe, 2020, 6, 28.	0.9	0
465	Is it mixed dark matter or neutrino masses?. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	9
466	Supermassive neutron stars in axion F(R) gravity. Monthly Notices of the Royal Astronomical Society, 2020, 493, 78-86.	1.6	14
467	Oscillating scalar fields and the Hubble tension: A resolution with novel signatures. Physical Review D, 2020, 101, .	1.6	183
468	Aspects of axion F(R) gravity. Europhysics Letters, 2020, 129, 40001.	0.7	40
469	Fate of scalar dark matter solitons around supermassive galactic black holes. Physical Review D, 2020, 101, .	1.6	22
470	Secular effects of ultralight dark matter on binary pulsars. Physical Review D, 2020, 101, .	1.6	21
471	Revisiting longitudinal plasmon-axion conversion in external magnetic fields. Physical Review D, 2020, 101, .	1.6	31
472	Neutron Stars in f(R)-Gravity and Its Extension with a Scalar Axion Field. Particles, 2020, 3, 532-542.	0.5	5
473	Optical properties of dynamical axion backgrounds. Physical Review D, 2020, 101, .	1.6	20
474	Core mass-halo mass relation of bosonic and fermionic dark matter halos harboring a supermassive black hole. Physical Review D, 2020, 101, .	1.6	15
475	The landscape of QCD axion models. Physics Reports, 2020, 870, 1-117.	10.3	357
476	No static regular black holes in Einstein-complex-scalar-Gauss-Bonnet gravity. Physical Review D, 2020, 102, .	1.6	14
477	Resonant magnetogenesis from axions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 043-043.	1.9	18
478	Oscillons and dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006.	1.9	37

#	Article	IF	CITATIONS
479	<tt>hi_class</tt> background evolution, initial conditions and approximation schemes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 008-008.	1.9	34
480	Axion miniclusters in modified cosmological histories. Physical Review D, 2020, 101, .	1.6	37
481	Investigation of two colliding solitonic cores in fuzzy dark matter models. Physical Review D, 2020, 101, .	1.6	16
482	Misalignment & Co.: (pseudo-)scalar and vector dark matter with curvature couplings. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 014-014.	1.9	50
483	Lighting the Dark: Evolution of the Postinflationary Universe. Physical Review Letters, 2020, 124, 061301.	2.9	38
484	The effect of fluctuating fuzzy axion haloes on stellar dynamics: a stochastic model. Monthly Notices of the Royal Astronomical Society, 2020, 492, 877-894.	1.6	23
485	Binary pulsars as probes for spin-2 ultralight dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 053-053.	1.9	13
486	The Kreuzer-Skarke axiverse. Journal of High Energy Physics, 2020, 2020, 1.	1.6	63
487	Real-time dynamics of axion particle production due to spontaneous decay of a coherent axion field. Physical Review D, 2020, 101, .	1.6	4
488	Fingerprints of the Cosmological Constant: Folds in the Profiles of the Axionic Dark Matter Distribution in a Dyon Exterior. Symmetry, 2020, 12, 455.	1.1	4
489	Chiral Froggatt-Nielsen models, gauge anomalies and flavourful axions. Journal of High Energy Physics, 2020, 2020, 1.	1.6	16
490	Axion resonances in binary pulsar systems. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 061-061.	1.9	10
491	Image-processing the topological charge density in the \$mathbb{C}P^{N-1}\$ model. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	4
492	Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter. Physical Review D, 2020, 101, .	1.6	118
493	Nonadiabatic cosmological production of ultralight dark matter. Physical Review D, 2020, 101, .	1.6	23
494	Infinite distances and the axion weak gravity conjecture. Journal of High Energy Physics, 2020, 2020, 1.	1.6	28
495	Early-Universe Simulations of the Cosmological Axion. Physical Review Letters, 2020, 124, 161103.	2.9	125
496	Dynamic signatures of black hole binaries with superradiant clouds. Physical Review D, 2020, 101, .	1.6	43

#	ARTICLE Ghost-free non-local <mml:math <="" display="inline" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
497	id="d1e106" altimg="si17.svg"> <mml:mrow><mml:mi>F</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>Rgravity cosmology. Physics of the Dark Universe, 2020, 28, 100541.</mml:mi></mml:mrow></mml:mrow>	→ < 1.8 - < m iml:mc	»>) [€] /mml:mo>
498	Searching for Scalar Dark Matter with Compact Mechanical Resonators. Physical Review Letters, 2020, 124, 151301.	2.9	28
499	Big Bang Nucleosynthesis hunts chameleon dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	8
500	Geometric inflation and dark energy with axion <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>F</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo> gravity. Physical Review D. 2020. 101</mml:mo </mml:math 	1.6	73
501	Baryon-driven growth of solitonic cores in fuzzy dark matter halos. Physical Review D, 2020, 101, .	1.6	39
502	Unique Multimessenger Signal of QCD Axion Dark Matter. Physical Review Letters, 2020, 124, 161101.	2.9	36
503	Propagation of gravitational waves in Chern–Simons axion <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e306" altimg="si5.svg"><mml:mrow><mml:mi>F</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi> gravity. Physics of the Dark Universe, 2020, 28, 100514.</mml:mrow></mml:mrow></mml:math 	:mmi:mo>)<
504	A New Equation for a Scalar Field from Thermodynamics First Law and Its Cosmological Implications. Gravitation and Cosmology, 2021, 27, 1-10.	0.3	Ο
505	Model of nonlinear axion-electrodynamics. International Journal of Modern Physics D, 2021, 30, 2150025.	0.9	4
506	Mixing Dynamics of Dimension-Five Interactions (Scalar/Pseudoscalar-Photon) in Magnetized Medium. Springer Proceedings in Physics, 2021, , 293-298.	0.1	Ο
507	Vortices and waves in light dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 011-011.	1.9	39
508	Probing axion dark matter with 21Âcm fluctuations from minihalos. Physical Review D, 2021, 103, .	1.6	4
509	Black-Hole Superradiance: Searching for Ultralight Bosons with Gravitational Waves. , 2021, , 1-33.		0
510	Stability of multistate configurations of fuzzy dark matter. Astronomische Nachrichten, 2021, 342, 398-403.	0.6	5
511	The axion quality problem: global symmetry breaking and wormholes. Journal of High Energy Physics, 2021, 2021, 1.	1.6	19
512	Light dark matter: A common solution to the lithium and problems. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 812, 136008.	1.5	25
513	Isocurvature modes: joint analysis of the CMB power spectrum and bispectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004-004.	1.9	1
515	Oscillations and random walk of the soliton core in a fuzzy dark matter halo. Physical Review D, 2021, 103, .	1.6	36

#	Article	IF	CITATIONS
516	Oneâ€parametric description for scalar field dark matter potentials. Astronomische Nachrichten, 2021, 342, 404-410.	0.6	4
517	Constraining early dark energy with gravitational waves before recombination. Physical Review D, 2021, 103, .	1.6	21
518	Remarks on axion-electrodynamics. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 197-200.	0.7	2
519	What if ALP dark matter for the XENON1T excess is the inflaton. Journal of High Energy Physics, 2021, 2021, 1.	1.6	20
520	Growth of accretion driven scalar hair around Kerr black holes. Physical Review D, 2021, 103, .	1.6	21
521	Electromagnetic bursts from mergers of oscillons in axion-like fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 024-024.	1.9	20
522	Unifying inflation with early and late dark energy epochs in axion <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>F</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo> gravity. Physical Review D, 2021, 103, .</mml:mo </mml:math 	1.6	87
523	Detection of isotropic cosmic birefringence and its implications for axionlike particles including dark energy. Physical Review D, 2021, 103, .	1.6	44
524	Gravitational waves from the fragmentation of axion-like particle dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 003-003.	1.9	16
525	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, .	16.4	181
525 526		16.4 1.9	181 4
	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, . Symmetrically tuned large-volume conic shell-cavities for axion searches. Journal of Cosmology and		
526	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, . Symmetrically tuned large-volume conic shell-cavities for axion searches. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018-018.	1.9	4
526 527	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, . Symmetrically tuned large-volume conic shell-cavities for axion searches. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018-018. Quasibound states of charged dilatonic black holes. Physical Review D, 2021, 103, . Searching for Vector Dark Matter with an Optomechanical Accelerometer. Physical Review Letters,	1.9 1.6	4 13
526 527 528	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, . Symmetrically tuned large-volume conic shell-cavities for axion searches. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018-018. Quasibound states of charged dilatonic black holes. Physical Review D, 2021, 103, . Searching for Vector Dark Matter with an Optomechanical Accelerometer. Physical Review Letters, 2021, 126, 061301. Can axion clumps be formed in a pre-inflationary scenario?. Journal of Cosmology and Astroparticle	1.9 1.6 2.9	4 13 27
526 527 528 529	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, . Symmetrically tuned large-volume conic shell-cavities for axion searches. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018-018. Quasibound states of charged dilatonic black holes. Physical Review D, 2021, 103, . Searching for Vector Dark Matter with an Optomechanical Accelerometer. Physical Review Letters, 2021, 126, 061301. Can axion clumps be formed in a pre-inflationary scenario?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 015-015.	1.9 1.6 2.9 1.9	4 13 27 10
526 527 528 529 530	Invisible axion search methods. Reviews of Modern Physics, 2021, 93, . Symmetrically tuned large-volume conic shell-cavities for axion searches. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018-018. Quasibound states of charged dilatonic black holes. Physical Review D, 2021, 103, . Searching for Vector Dark Matter with an Optomechanical Accelerometer. Physical Review Letters, 2021, 126, 061301. Can axion clumps be formed in a pre-inflationary scenario?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 015-015. Weyl-invariant gravity and the nature of dark matter. Classical and Quantum Gravity, 2021, 38, 085001.	1.9 1.6 2.9 1.9 1.5	4 13 27 10 1

#	Article	IF	CITATIONS
534	Testing gravity with cold atom interferometry: results and prospects. Quantum Science and Technology, 2021, 6, 024014.	2.6	65
535	Core-halo mass relation in scalar field dark matter models and its consequences for the formation of supermassive black holes. Physical Review D, 2021, 103, .	1.6	23
536	QCD axion and gravitational waves in light of NANOGrav results. Physical Review D, 2021, 103, .	1.6	23
537	Probing axionlike particles via cosmic microwave background polarization. Physical Review D, 2021, 103, .	1.6	30
538	A detailed exploration of the EDGES 21cm absorption anomaly and axion-induced cooling. International Journal of Modern Physics D, 2021, 30, 2150041.	0.9	6
539	Consequences for the Scalar Field Dark Matter Model from the McGaugh Observed-baryon Acceleration Correlation. Astrophysical Journal, 2021, 909, 162.	1.6	4
540	Testing the ALP-photon coupling with polarization measurements of Sagittarius A [⋆] . Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018.	1.9	16
541	Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies. Physical Review D, 2021, 103, .	1.6	72
542	Searching for Solar Axions Using Data from the Sudbury Neutrino Observatory. Physical Review Letters, 2021, 126, 091601.	2.9	14
543	Searching for ultralight bosons within spin measurements of a population of binary black hole mergers. Physical Review D, 2021, 103, .	1.6	28
544	Production of thermal axions across the electroweak phase transition. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 090.	1.9	23
545	In medium properties of an axion within a 2+1 flavor Polyakov loop enhanced Nambu–Jona-Lasinio model. Physical Review D, 2021, 103, .	1.6	2
546	A dark matter telescope probing the 6 to 60 GHz band. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 075.	1.9	6
547	Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass. Physical Review Letters, 2021, 126, 171301.	2.9	37
548	Kilobyte Cosmic Birefringence from ALP domain walls. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	1.9	40
549	Dark matter and the early Universe: A review. Progress in Particle and Nuclear Physics, 2021, 119, 103865.	5.6	82
550	Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons. Physical Review D, 2021, 103, .	1.6	37
551	Nonlinear cosmological structure with ultralight bosons via modified gravity. Physical Review D, 2021, 103, .	1.6	4

#	Article	IF	CITATIONS
552	The mysterious bursts observed by telescope array and axion quark nuggets. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 065201.	1.4	9
553	Remarks on the weak cosmic censorship conjecture of RN-AdS black holes with cloud of strings and quintessence under the scalar field. Nuclear Physics B, 2021, 965, 115335.	0.9	13
554	Limits on axionlike particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT. Physical Review D, 2021, 103, .	1.6	34
555	Massive photon propagator in the presence of axionic fluctuations. Physical Review B, 2021, 103, .	1.1	1
556	Gravitational Wave Physics and Astronomy in the nascent era. Progress of Theoretical and Experimental Physics, 0, , .	1.8	3
557	Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2. Physical Review Letters, 2021, 126, 151102.	2.9	48
558	Low scale leptogenesis in a model with promising CP structure. European Physical Journal C, 2021, 81, 1.	1.4	3
559	Teleparallel axions and cosmology. European Physical Journal C, 2021, 81, 1.	1.4	20
560	The String Theory Swampland in the Euclid, Square Kilometer Array, and Vera Rubin Observatory Era. Astrophysical Journal, 2021, 912, 99.	1.6	1
561	Evolution of perturbation and power spectrum in a two-component ultralight axionic universe. Physical Review D, 2021, 103, .	1.6	4
562	Large-N random matrix gravity and the double hierarchy problem. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 065.	1.9	0
563	Axionlike Particles at Future Neutrino Experiments: Closing the Cosmological Triangle. Physical Review Letters, 2021, 126, 201801.	2.9	27
564	Bridging the gap: spectral distortions meet gravitational waves. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4396-4405.	1.6	22
565	Axions: From magnetars and neutron star mergers to beam dumps and BECs. International Journal of Modern Physics D, 2021, 30, 2130002.	0.9	15
566	Proposed network to detect axion quark nugget dark matter. Physical Review D, 2021, 103, .	1.6	7
567	U(1) symmetry resolved entanglement in free 1+1 dimensional field theories via form factor bootstrap. Journal of High Energy Physics, 2021, 2021, 1.	1.6	37
568	Global fits of axion-like particles to XENON1T and astrophysical data. Journal of High Energy Physics, 2021, 2021, 1.	1.6	25
569	Axion quark nuggets. Dark matter and matter–antimatter asymmetry: Theory, observations and future experiments. Modern Physics Letters A, 2021, 36, 2130017.	0.5	20

#	Article	IF	CITATIONS
570	Properties of ultralight bosons from heavy quasar spins via superradiance. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	1.9	22
571	Hidden photon dark matter interacting via axion-like particles. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 070.	1.9	12
572	CMB birefringence from ultralight-axion string networks. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 055.	1.9	22
573	Testing clockwork axion with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 049.	1.9	18
574	New horizons in cosmology with spectral distortions of the cosmic microwave background. Experimental Astronomy, 2021, 51, 1515-1554.	1.6	68
575	Self-gravitating vector dark matter. Physical Review D, 2021, 103, .	1.6	25
576	New cosmological bounds on hot relics: axions and neutrinos. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2703-2711.	1.6	30
577	Standard model from a supergravity model with a naturally small cosmological constant. Journal of High Energy Physics, 2021, 2021, 1.	1.6	6
578	Analytic study of dark photon and gravitational wave production from axion. Journal of High Energy Physics, 2021, 2021, 1.	1.6	13
579	Soliton oscillations and revised constraints from Eridanus II of fuzzy dark matter. Physical Review D, 2021, 103, .	1.6	19
580	The design of the n2EDM experiment. European Physical Journal C, 2021, 81, 512.	1.4	27
581	Axion induced spin effective couplings. Physical Review D, 2021, 103, .	1.6	1
582	Jeans mass-radius relation of self-gravitating Bose-Einstein condensates and typical parameters of the dark matter particle. Physical Review D, 2021, 103, .	1.6	20
583	Stringy-running-vacuum-model inflation: from primordial gravitational waves and stiff axion matter to dynamical dark energy. European Physical Journal: Special Topics, 2021, 230, 2077-2110.	1.2	31
584	Coherent Soliton States Hidden in Phase Space and Stabilized by Gravitational Incoherent Structures. Physical Review Letters, 2021, 127, 014101.	2.9	5
585	Cosmological perturbations for ultralight axionlike particles in a state of Bose-Einstein condensate. Physical Review D, 2021, 103, .	1.6	2
586	Axial Anomaly in Galaxies and the Dark Universe. Universe, 2021, 7, 198.	0.9	6
587	Dark radiation from inflationary fluctuations. Physical Review D, 2021, 103, .	1.6	3

#	ARTICLE	IF	CITATIONS
588	Rapid onset of the 21-cm signal suggests a preferred mass range for dark matter particle. Physical Review D, 2021, 103, .	1.6	7
589	Electroweak axion string and superconductivity. Journal of High Energy Physics, 2021, 2021, 1.	1.6	8
590	Dipole radiation and beyond from axion stars in electromagnetic fields. Journal of High Energy Physics, 2021, 2021, 1.	1.6	17
591	Relativistic viscous effects on the primordial gravitational waves spectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008.	1.9	8
592	CMB mode coupling with isotropic polarization rotation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1250-1257.	1.6	7
593	Landau equation for self-gravitating classical and quantum particles: application to dark matter. European Physical Journal Plus, 2021, 136, 1.	1.2	22
594	Relaxation in a Fuzzy Dark Matter Halo. II. Self-consistent Kinetic Equations. Astrophysical Journal, 2021, 915, 27.	1.6	11
595	Exploring axion dark matter through radio signals from magnetic white dwarf stars. Physical Review D, 2021, 103, .	1.6	12
596	Structure formation in large-volume cosmological simulations of fuzzy dark matter: impact of the non-linear dynamics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2603-2618.	1.6	52
597	TwInflation. Journal of High Energy Physics, 2021, 2021, 1.	1.6	1
598	Sterile Neutrinos as Dark Matter: Alternative Production Mechanisms in the Early Universe. Universe, 2021, 7, 264.	0.9	2
599	Gravitational waves from an axion-dark photon system: A lattice study. SciPost Physics, 2021, 11, .	1.5	15
600	Interaction of the axionic dark matter, dynamic aether, spinor and gravity fields as an origin of oscillations of the fermion effective mass. European Physical Journal C, 2021, 81, 1.	1.4	2
601	Flavored axion in the UV-complete Froggatt–Nielsen models. European Physical Journal C, 2021, 81, 1.	1.4	4
602	Superradiance in string theory. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033.	1.9	58
603	Strong CP problem and axion dark matter with small instantons. Journal of High Energy Physics, 2021, 2021, 1.	1.6	16
604	Production of the axion-like particles on electron–nucleus and ultraperipheral heavy ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 085005.	1.4	1
605	Microwave spectro-polarimetry of matter and radiation across space and time. Experimental Astronomy, 2021, 51, 1471-1514.	1.6	15

#	Article	IF	CITATIONS
606	Complex Scalar Field Reheating and Primordial Black Hole production. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 001.	1.9	8
607	Spectral distortion constraints on photon injection from low-mass decaying particles. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3148-3178.	1.6	38
608	Does Planck actually "see―the Bunch-Davies state?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 050.	1.9	2
609	The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics. Universe, 2021, 7, 273.	0.9	68
610	To Observe, or Not to Observe, Quantum-Coherent Dark Matter in the Milky Way, That is a Question. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	1
611	Axion spectra and the associated x-ray spectra of low-mass stars. Physical Review D, 2021, 104, .	1.6	1
612	Simulations of axion minihalos. Physical Review D, 2021, 104, .	1.6	28
613	Unifying dark matter and dark energy with non-canonical scalars. European Physical Journal C, 2021, 81, 1.	1.4	4
614	In the realm of the Hubble tension—a review of solutions [*] . Classical and Quantum Gravity, 2021, 38, 153001.	1.5	816
615	Precision axion physics with running axion couplings. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
616	Probing ultralight dark matter with future ground-based gravitational-wave detectors. Physical Review D, 2021, 104, .	1.6	23
617	Looking at the NANOGrav signal through the anthropic window of axionlike particles. Physical Review D, 2021, 104, .	1.6	30
618	Axi-Higgs cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 057.	1.9	20
619	Press–Schechter primordial black hole mass functions and their observational constraints. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4804-4825.	1.6	9
620	PASSAT at future neutrino experiments: Hybrid beam-dump-helioscope facilities to probe light axionlike particles. Physical Review D, 2021, 104, .	1.6	4
621	Scale-dependence in DHOST inflation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 061.	1.9	2
622	The axion-baryon coupling in SU(3) heavy baryon chiral perturbation theory. Journal of High Energy Physics, 2021, 2021, 1.	1.6	4
623	Axion quasiparticles for axion dark matter detection. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 066.	1.9	51

#	Article	IF	CITATIONS
624	Axion dark matter search using arm cavity transmitted beams of gravitational wave detectors. Physical Review D, 2021, 104, .	1.6	16
625	Moduli and graviton production during moduli stabilization. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008.	1.9	2
626	High-quality axions in solutions to the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>î¼</mml:mi></mml:math> problem. Physical Review D, 2021, 104, .	1.6	7
627	Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	150
628	Beyond Schr¶dinger-Poisson: nonrelativistic effective field theory for scalar dark matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	17
629	Stellar disruption of axion miniclusters in the MilkyÂWay. Physical Review D, 2021, 104, .	1.6	21
630	Probing Axionâ€Likeâ€Particles at the CERN Gamma Factory. Annalen Der Physik, 2022, 534, 2100222.	0.9	5
631	Wave Dark Matter. Annual Review of Astronomy and Astrophysics, 2021, 59, 247-289.	8.1	133
632	Anisotropic hyperbolic inflation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 026.	1.9	13
633	Early-time thermalization of cosmic components? A hint for solving cosmic tensions. Physical Review D, 2021, 104, .	1.6	6
634	The Future of Solar Neutrinos. Annual Review of Nuclear and Particle Science, 2021, 71, 491-528.	3.5	30
635	Stimulated radiation from axion cluster evolution in static spacetimes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 034.	1.9	0
636	Recent Progress in the Physics of Axions and Axion-Like Particles. Annual Review of Nuclear and Particle Science, 2021, 71, 225-252.	3.5	73
637	Boson stars and oscillatons: A review. International Journal of Modern Physics D, 2021, 30, .	0.9	52
638	Photon-axion mixing in thermal emission of isolated neutron stars. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 821, 136615.	1.5	9
639	Strongly-interacting ultralight millicharged particles. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 822, 136653.	1.5	12
640	Galaxies with fuzzy dark matter. Journal of the Korean Physical Society, 2021, 78, 873-877.	0.3	0
641	Linking the supersymmetric standard model to the cosmological constant. Journal of High Energy Physics, 2021, 2021, 117.	1.6	4

#	Article	IF	CITATIONS
642	Opening the 1 Hz axion window. Journal of High Energy Physics, 2021, 2021, 1.	1.6	14
643	Axion dark matter, proton decay and unification. Journal of High Energy Physics, 2020, 2020, 1.	1.6	21
644	Non-derivative axionic couplings to nucleons at large and small N. Journal of High Energy Physics, 2020, 2020, 1.	1.6	9
645	Axion fragmentation. Journal of High Energy Physics, 2020, 2020, 1.	1.6	35
646	Axion periodicity and coupling quantization in the presence of mixing. Journal of High Energy Physics, 2020, 2020, 1.	1.6	8
647	Dark photon dark matter in the presence of inhomogeneous structure. Journal of High Energy Physics, 2020, 2020, 1.	1.6	30
648	A search for axion-like particles in light-by-light scattering at the CLIC. Journal of High Energy Physics, 2020, 2020, 1.	1.6	17
649	Axion clockworks from heterotic M-theory: the QCD-axion and its ultra-light companion. Journal of High Energy Physics, 2019, 2019, 1.	1.6	3
650	Symmetry resolved entanglement in integrable field theories via form factor bootstrap. Journal of High Energy Physics, 2020, 2020, 1.	1.6	59
651	BBN constraints on universally-coupled ultralight scalar dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	13
652	Condensate dynamics with non-local interactions. Nuclear Physics B, 2020, 952, 114937.	0.9	6
653	Radial oscillations of boson stars made of ultralight repulsive dark matter. Nuclear Physics B, 2020, 961, 115266.	0.9	5
655	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	2.1	1,261
656	SCALAR: an AMR code to simulate axion-like dark matter models. Astronomy and Astrophysics, 2020, 641, A107.	2.1	8
657	Merger of dark matter axion clumps and resonant photon emission. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 067-067.	1.9	38
658	Primordial dark matter from curvature induced symmetry breaking. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 002-002.	1.9	9
659	Search for ultralight scalar dark matter with NANOGrav pulsar timing arrays. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 036-036.	1.9	12
660	How to suppress exponential growth—on the parametric resonance of photons in an axion background. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013.	1.9	26

#	Article	IF	CITATIONS
661	Post-inflationary axion isocurvature perturbations facing CMB and large-scale structure. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 046-046.	1.9	9
662	The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	148
663	New results by low momentum approximation from relativistic quantum mechanics equations and suggestion of experiments. Journal of Physics Communications, 2020, 4, 125004.	0.5	8
664	Scaling relations of fuzzy dark matter haloes – I. Individual systems in their cosmological environment. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1539-1556.	1.6	31
665	Prospects and limitations for constraining light relics with primordial abundance measurements. Physical Review D, 2020, 101, .	1.6	4
666	Atacama Cosmology Telescope: Constraints on cosmic birefringence. Physical Review D, 2020, 101, .	1.6	50
667	Cornering the axion with CP -violating interactions. Physical Review D, 2020, 102, .	1.6	31
668	Inflation and DM phenomenology in a scotogenic model extended with a real singlet scalar. Physical Review D, 2020, 102, .	1.6	6
669	Impulsive radio events in quiet solar corona and axion quark nugget dark matter. Physical Review D, 2020, 102, .	1.6	8
670	Spectator dark matter in nonstandard cosmologies. Physical Review D, 2020, 102, .	1.6	3
671	New application of the Killing vector field formalism: modified periodic potential and two-level profiles of the axionic dark matter distribution. European Physical Journal C, 2020, 80, 1.	1.4	6
672	Study of the interactions of the axion with mesons and photons using a chiral effective Lagrangian model. European Physical Journal C, 2020, 80, 1.	1.4	4
673	Bounds on very weakly interacting ultra light scalar and pseudoscalar dark matter from quantum gravity. European Physical Journal C, 2020, 80, 1.	1.4	7
674	Nonminimal dyons with regular gravitational, electric and axion fields. International Journal of Modern Physics D, 2020, 29, 2050083.	0.9	1
675	On the matter of topological insulators as magnetoelectrics. SciPost Physics, 2019, 6, .	1.5	43
676	Diversity of Dark Matter Density Profiles in the Galactic Dwarf Spheroidal Satellites. Astrophysical Journal, 2020, 904, 45.	1.6	46
677	Jets and photons spectroscopy of Higgs-ALP interactions. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
678	Constraints on global symmetry breaking in quantum gravity from cosmic birefringence measurements. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 823–136752	1.5	9

		CITATION REPORT		
#	Article		IF	CITATIONS
679	Axion dark matter in the time of primordial black holes. Physical Review D, 2021, 104,		1.6	22
680	Cosmological structure formation in scalar field dark matter with repulsive self-interaction incredible shrinking Jeans mass. Monthly Notices of the Royal Astronomical Society 145-173.	tion: <i>the y, 2021, 509,</i>	1.6	16
681	Searching for ultralight bosons with supermassive black hole ringdown. Physical Review .	м D, 2021, 104,	1.6	16
682	Long-wavelength nonlinear perturbations of a complex scalar field. Physical Review D,	2021, 104, .	1.6	2
683	Hidden photon and axion dark matter from symmetry breaking. Journal of High Energy 2021, 1.	Physics, 2021,	1.6	28
684	Challenges for heavy QCD axion inflation. Journal of Cosmology and Astroparticle Phys 057.	sics, 2021, 2021,	1.9	19
685	The dynamics of three nearby EO galaxies in refracted gravity. Astronomy and Astrophy	/sics, 0, , .	2.1	4
686	Achieving the highest temperature during reheating with the Higgs condensate. Physic 2021, 104, .	cal Review D,	1.6	7
687	Dark matter from an even lighter QCD axion: trapped misalignment. Journal of Cosmo Astroparticle Physics, 2021, 2021, 001.	ogy and	1.9	31
688	Non-Hermitian Yukawa interactions of fermions with axions: potential microscopic orig dynamical mass generation. Journal of Physics: Conference Series, 2021, 2038, 01201	gin and 9.	0.3	3
689	Multi-Modal Clustering Events Observed by Horizon-10T and Axion Quark Nuggets. Ur 384.	iverse, 2021, 7,	0.9	9
690	New insights into the formation and growth of boson stars in dark matter halos. Physi 2021, 104, .	cal Review D,	1.6	43
691	Using the redshift evolution of the Lyman-Î \pm effective opacity as a probe of dark matter of Cosmology and Astroparticle Physics, 2021, 2021, 077.	r models. Journal	1.9	3
692	ABRACADABRA: A Broadband/Resonant Search for Axions. Springer Proceedings in Phy 135-142.	sics, 2018, ,	0.1	1
693	Optical manifestations of domains with constant topological charge density. Physical Research, 2019, 1, .	Review	1.3	0
694	Two-component axionic dark matter halos. Modern Physics Letters A, 2020, 35, 20502	227.	0.5	2
695	Inflation connected to the origin of CP violation. Physical Review D, 2021, 104, .		1.6	2
696	Self Interactions in Warm Dark Matter: A View from Cosmological Perturbation Theory Reports, 2021, 65, 1068-1073.	. Astronomy	0.2	1

#	Article	IF	CITATIONS
697	Dark sector to restore cosmological concordance. Physical Review D, 2021, 104, .	1.6	41
698	Thermal QCD Axions across Thresholds. Journal of High Energy Physics, 2021, 2021, 1.	1.6	23
699	Searching for axionlike particles from core-collapse supernovae with <i>Fermi</i> LAT's low-energy technique. Physical Review D, 2021, 104, .	1.6	7
700	Common origin of warm dark matter and dark radiation. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 024-024.	1.9	4
701	The effect of change in entropy on primordial nucleosynthesis. Journal of Physics: Conference Series, 2020, 1697, 012028.	0.3	0
702	Resonant gravitational waves in dynamical Chern–Simons–axion gravity. Classical and Quantum Gravity, 2021, 38, 045010.	1.5	5
703	Nonlinear Maxwell equations and the Poynting theorem. European Journal of Physics, 2020, 42, 015201.	0.3	1
704	A left-right mirror symmetric model: common origin of neutrino mass, baryon asymmetry and dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	0
705	Black Holes and Superradiant Instabilities. Lecture Notes in Physics, 2020, , 107-198.	0.3	0
706	Nonlinear Axion Electrodynamics: Axionically Induced Electric Flares in the Early Magnetized Universe. Symmetry, 2021, 13, 2038.	1.1	3
707	New opportunities for axion dark matter searches in nonstandard cosmological models. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 003.	1.9	12
708	Clarifying transfer function approximations for the large-scale gravitational wave background in Ĵ·CDM. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1366-1376.	1.6	12
709	Axion Oscillations in Binary Systems: Angle-action Surgery. Astrophysical Journal, 2020, 901, 85.	1.6	3
710	Higher topological charge and the QCD vacuum. Physical Review Research, 2020, 2, .	1.3	4
711	What is the halo mass function in a fuzzy dark matter cosmology?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1425-1430.	1.6	17
712	Modifying PyUltraLight to model scalar dark matter with self-interactions. Physical Review D, 2021, 104, .	1.6	12
713	Detecting axion dark matter through the radio signal from Omega Centauri. Physical Review D, 2021, 104, .	1.6	11
714	Dynamical friction from scalar dark matter in the relativistic regime. Physical Review D, 2021, 104, .	1.6	35

	CHARON		
#	Article	IF	CITATIONS
715	Photon-jet events as a probe of axionlike particles at the LHC. Physical Review D, 2021, 104, .	1.6	17
716	Hunting for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> -violating axionlike particle interactions. Physical Review D, 2021, 104, .	1.6	11
717	Feebly-interacting particles: FIPs 2020 workshop report. European Physical Journal C, 2021, 81, 1.	1.4	130
718	Search for axion-like dark matter with spin-based amplifiers. Nature Physics, 2021, 17, 1402-1407.	6.5	47
719	Using atomic clocks to detect local dark matter halos. Physical Review D, 2021, 104, .	1.6	3
720	Detecting an axion-like particle with machine learning at the LHC. Journal of High Energy Physics, 2021, 2021, 1.	1.6	15
721	Cosmic axion force. Physical Review D, 2021, 104, .	1.6	12
722	Probing charged lepton flavor violation with axion-like particles at Belle II. Journal of High Energy Physics, 2021, 2021, 1.	1.6	8
723	Phase diagram of the SU(3) Fermi–Hubbard model with next-neighbor interactions. European Physical Journal B, 2021, 94, 1.	0.6	4
724	Microlensing constraints on axion stars including finite lens and source size effects. Physical Review D, 2021, 104, .	1.6	9
725	Gravitational lensing <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>O</mml:mn></mml:msub></mml:math> tension from ultralight axion galactic cores. Physical Review D, 2021, 104, .	1.6	8
726	Spontaneous Symmetry Breaking via Inhomogeneities and the Differential Surface Tension. Physical Review Letters, 2021, 127, 232002.	2.9	4
727	Assessing the quality of a network of vector-field sensors. European Physical Journal D, 2022, 76, 1.	0.6	3
728	Dark sound: Collective modes of the axionic dark matter condensate. Physical Review D, 2022, 105, .	1.6	1
730	Probing ultra-light axion dark matter from 21 cm tomography using Convolutional Neural Networks. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 020.	1.9	2
731	Gravitational waves from superradiant instabilities of rotating black holes. Modern Physics Letters A, 2021, 36, .	0.5	2
732	A multi-messenger view of cosmic dawn: <i>Conquering the final frontier</i> . International Journal of Modern Physics D, 2021, 30, .	0.9	3
733	Torsion in String-Inspired Cosmologies and the Universe Dark Sector. Universe, 2021, 7, 480.	0.9	11

		CITATION REPORT	
#	Article	IF	CITATIONS
734	LHC constraints on hidden gravitons. Journal of High Energy Physics, 2022, 2022, 1.	1.6	1
735	Toward Constraining Axions with Polarimetric Observations of the Isolated Neutron Star R≀ J1856.5–3754. Astrophysical Journal, 2022, 925, 80.	۲.6	1
736	Parity and time-reversal invariance violation in neutron-nucleus scattering. Physical Review 105, .	C, 2022, 1.1	0
737	On the origin and the detection of characteristic axion wiggles in photon spectra. Journal o Cosmology and Astroparticle Physics, 2022, 2022, 025.	f 1.9	7
738	Search of spin-dependent fifth forces with precision magnetometry. Physical Review D, 202	22, 105, . 1.6	7
739	Refined ultralight scalar dark matter searches with compact atom gradiometers. Physical R 2022, 105, .	eview D, 1.6	9
740	Reconstructing cosmic polarization rotation with ResUNet-CMB. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 030.	1.9	6
741	Cosmoparticle Physics of Dark Universe. Symmetry, 2022, 14, 112.	1.1	2
742	Diluted axion star collisions with neutron stars. Journal of Cosmology and Astroparticle Phy 2022, 2022, 041.	vsics, 1.9	8
743	Primordial Weibel instability. Journal of Cosmology and Astroparticle Physics, 2022, 2022,	028. 1.9	2
744	Constraining ultralight axions with galaxy surveys. Journal of Cosmology and Astroparticle 2022, 2022, 049.	Physics, 1.9	41
745	Non-Gaussianity in DHOST inflation. Journal of Cosmology and Astroparticle Physics, 2022,	2022, 026. 1.9	2
746	Dark matter from entropy perturbations in curved field space. Physical Review D, 2022, 10	5, . 1.6	4
747	Constraints on self-interacting Bose-Einstein condensate dark matter using large-scale obs Journal of Cosmology and Astroparticle Physics, 2022, 2022, 005.	ervables. 1.9	8
748	Cosmological implications of axion-matter couplings. Journal of Cosmology and Astropartic Physics, 2022, 2022, 019.	sle 1.9	13
749	Large-scale dark matter simulations. Living Reviews in Solar Physics, 2022, 8, 1.	5.0	57
750	Love numbers and magnetic susceptibility of charged black holes. Physical Review D, 2022	, 105, . 1.6	14
751	Resurrecting low-mass axion dark matter via a dynamical QCD scale. Journal of High Energy 2021, 2021, 1.	Physics, 1.6	5

	CHATION K		
#	Article	IF	CITATIONS
752	Stochastic fluctuations of bosonic dark matter. Nature Communications, 2021, 12, 7321.	5.8	59
753	Search for topological defect dark matter with a global network of optical magnetometers. Nature Physics, 2021, 17, 1396-1401.	6.5	42
754	Quintessential inflation and nonlinear effects of the tachyonic trap mechanism. Physical Review D, 2022, 105, .	1.6	3
755	Harvesting quantum coherence from axion dark matter. Modern Physics Letters A, 2022, 37, .	0.5	3
756	Resonant excitation of the axion field during the QCD phase transition. Physical Review D, 2022, 105, .	1.6	6
757	Relevance of VHE blazar spectra models with axion-like particles. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 025.	1.9	5
758	Constraints on axions from cosmic distance measurements. Journal of High Energy Physics, 2022, 2022, 1.	1.6	8
759	Solitons in the dark: First approach to non-linear structure formation with fuzzy dark matter. Astronomy and Astrophysics, 2022, 662, A29.	2.1	15
760	Soliton boson stars, Q-balls and the causal Buchdahl bound. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 032.	1.9	19
761	Dark matter from axion strings with adaptive mesh refinement. Nature Communications, 2022, 13, 1049.	5.8	82
762	Axions, higher-groups, and emergent symmetry. Journal of High Energy Physics, 2022, 2022, 1.	1.6	30
763	Calculated Event Rates for Axion Detection via Atomic and Nuclear Processes. Advances in High Energy Physics, 2022, 2022, 1-24.	0.5	2
764	暗物è⁺ç"ç©¶èį›å±•. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, , .	0.2	0
765	Radiation from global topological strings using adaptive mesh refinement: Methodology and massless modes. Physical Review D, 2022, 105, .	1.6	6
766	A heuristic wave equation parameterizing BEC dark matter halos with a quantum core and an isothermal atmosphere. European Physical Journal B, 2022, 95, 1.	0.6	9
767	Gravitational waves and kicks from the merger of unequal mass, highly compact boson stars. Physical Review D, 2022, 105, .	1.6	31
768	Pion axioproduction: The <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:math> resonance contribution. Physical Review D, 2022, 105, .	1.6	2
769	Axion as a fuzzy dark matter candidate: proofs in different gauges. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 001.	1.9	6

#	Article	IF	CITATIONS
770	Cosmic birefrigence: cross-spectra and cross-bispectra with CMB anisotropies. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 050.	1.9	11
771	Geometrical origins of the universe dark sector: string-inspired torsion and anomalies as seeds for inflation and dark matter. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210188.	1.6	6
772	New scenario of QCD axion clump formation. Part I. Linear analysis. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 039.	1.9	7
773	Extreme â""-boson stars. Classical and Quantum Gravity, 2022, 39, 094001.	1.5	13
774	Gravitational waves from global cosmic strings and cosmic archaeology. Journal of High Energy Physics, 2022, 2022, 1.	1.6	25
775	Simulations of axionlike particles in the postinflationary scenario. Physical Review D, 2022, 105, .	1.6	19
776	Cosmic Birefringence from the <i>Planck</i> Data Release 4. Physical Review Letters, 2022, 128, 091302.	2.9	54
777	Two Sides of the Same Coin: Sterile Neutrinos and Dark Radiation, Status and Perspectives. Universe, 2022, 8, 175.	0.9	10
778	Search for photoproduction of axionlike particles at GlueX. Physical Review D, 2022, 105, .	1.6	8
779	An introduction to axions and their detection. SciPost Physics Lecture Notes, 0, , .	0.0	12
780	Building instructions for a ferromagnetic axion haloscope. European Physical Journal Plus, 2022, 137, 1.	1.2	1
781	Axion-like particle searches with MeerKAT and SKA. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 005.	1.9	2
782	Hyperbolic compactification of M-theory and de Sitter quantum gravity. SciPost Physics, 2022, 12, .	1.5	15
783	Threshold and infrared singularities: Time evolution, asymptotic state, and entanglement entropy. Physical Review D, 2022, 105, .	1.6	1
784	Yoga Dark Energy: natural relaxation and other dark implications of a supersymmetric gravity sector. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 064.	1.9	18
785	Near-horizon microstructure and superradiant instabilities of black holes. Physical Review D, 2022, 105, .	1.6	6
786	Cosmological effects of Peccei-Quinn symmetry breaking on QCD axion dark matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 026.	1.9	6
787	Dynamical friction from ultralight dark matter. Physical Review D, 2022, 105, .	1.6	12

		CITATION REPORT		
#	Article		IF	CITATIONS
788	Ultralight axions and the kinetic Sunyaev-Zel'dovich effect. Physical Review D, 202	2, 105, .	1.6	10
789	Resonant nonlinear pairs in the axiverse and their late-time direct and astrophysical sig Physical Review D, 2022, 105, .	natures.	1.6	12
790	Systematics of type IIB moduli stabilisation with odd axions. Journal of High Energy Phy 1.	/sics, 2022, 2022,	1.6	13
791	Axion homeopathy: screening dilaton interactions. Journal of Cosmology and Astropart 2022, 2022, 007.	icle Physics,	1.9	13
792	Search for an Axionlike Particle in <mml:math inline"="" xmlns:mml="http://www.w3.org/1998/M
display="><mml:mi>B</mml:mi></mml:math> Meson Decays. Physical Review Le 131802.	ath/MathML" etters, 2022, 128,	2.9	11
793	Flavor violating axions in the early Universe. Physical Review D, 2022, 105, .		1.6	11
794	New Roads to the Small-scale Universe: Measurements of the Clustering of Matter with High-redshift UV Galaxy Luminosity Function. Astrophysical Journal Letters, 2022, 928,		3.0	19
795	MiMeS: Misalignment mechanism solver. Computer Physics Communications, 2022, 22	75, 108311.	3.0	4
796	Interaction of inhomogeneous axions with magnetic fields in the early universe. Physic: Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 829, 137039.	s Letters,	1.5	2
797	Probing photon-ALP oscillations from the flat spectrum radio quasar 4C+21.35. Physics Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 829, 137047.	s Letters,	1.5	7
798	Global 4-group symmetry and 't Hooft anomalies in topological axion electrodynan Theoretical and Experimental Physics, 2022, 2022, .	nics. Progress of	1.8	16
799	Stability of domain walls in models with asymmetric potentials. Physical Review D, 202	1, 104, .	1.6	13
800	Axion fragmentation on the lattice. Journal of High Energy Physics, 2021, 2021, .		1.6	8
801	Passage of test particles through oscillating spherically symmetric dark matter configu Physical Review D, 2021, 104, .	rations.	1.6	3
802	Neutron interferometry, fifth force and axion like particles. European Physical Journal C	, 2021, 81, 1.	1.4	10
803	ALP dark matter in a primordial black hole dominated universe. Physical Review D, 202	1, 104, .	1.6	20
804	Ultralight dark matter or dark radiation cosmologically produced from infrared dressing Review D, 2021, 104, .	g. Physical	1.6	2
805	The Cusp–Core Problem in Gas-Poor Dwarf Spheroidal Galaxies. Galaxies, 2022, 10, 5). 	1.1	9

#	Article	IF	Citations
806	Observing light-by-light scattering in vacuum with an asymmetric photon collider. Physical Review D, 2021, 104, .	1.6	9
807	Dark matter, supernova neutrinos and other backgrounds in direct dark matter searches. The ANDES laboratory prospects. International Journal of Modern Physics E, 2021, 30, .	0.4	1
808	Lepto-axiogenesis in minimal SUSY KSVZ model. Journal of High Energy Physics, 2022, 2022, 1.	1.6	9
809	Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition. Physical Review Letters, 2022, 128, 152001.	2.9	22
810	Dynamical friction of black holes in ultralight dark matter. Physical Review D, 2022, 105, .	1.6	32
811	Galactic Anomalies and Particle Dark Matter. Symmetry, 2022, 14, 812.	1.1	3
812	Electromagnetically-induced-transparency spectroscopy of high-lying Rydberg states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts> <mml:mi mathvariant="normal">K <mml:mprescripts></mml:mprescripts> <mml:none /> <mml:mn> 39 </mml:mn> </mml:none </mml:mi </mml:mmultiscripts> . Physical Review A, 2022, 105, .</mml:math 	1.0	3
813	Phenomenology of CP-even ALP. Journal of High Energy Physics, 2022, 2022, 1.	1.6	8
814	Mitigating foreground bias to the CMB lensing power spectrum for a CMB-HD survey. Physical Review D, 2022, 105, .	1.6	7
815	Superradiance evolution of black hole shadows revisited. Physical Review D, 2022, 105, .	1.6	63
817	Direct detection of dark matter—APPEC committee report*. Reports on Progress in Physics, 2022, 85, 056201.	8.1	92
818	Axion isocurvature collider. Journal of High Energy Physics, 2022, 2022, 1.	1.6	19
819	Axion-like Particles Implications for High-Energy Astrophysics. Universe, 2022, 8, 253.	0.9	19
820	Photon-ALP interaction as a measure of initial photon polarization. Physical Review D, 2022, 105, .	1.6	7
821	Chiral models of composite axions and accidental Peccei-Quinn symmetry. Journal of High Energy Physics, 2022, 2022, 1.	1.6	10
822	Frequency-dependent constraints on cosmic birefringence from the LFI and HFI <i>Planck</i> Data Release 4. Astronomy and Astrophysics, 2022, 662, A10.	2.1	30
823	Deep Zoom-In Simulation of a Fuzzy Dark Matter Galactic Halo. Physical Review Letters, 2022, 128, 181301.	2.9	16
824	Dark matter and dark energy from a Kaluza–Klein inspired Brans–Dicke gravity with barotropic fluid. European Physical Journal C, 2022, 82, .	1.4	1

#	Article	IF	CITATIONS
825	A Stringy Model of Pointlike Particles. Nuclear Physics B, 2022, , 115826.	0.9	1
826	How Do Magnetic Field Models Affect Astrophysical Limits on Light Axion-like Particles? An X-Ray Case Study with NGC 1275. Astrophysical Journal, 2022, 930, 90.	1.6	12
827	Searching for axion-like particles with the blazar observations of MAGIC and Fermi-LAT *. Chinese Physics C, 2022, 46, 085105.	1.5	9
828	Scalar field dark matter with two components: Combined approach from particle physics and cosmology. Physical Review D, 2022, 105, .	1.6	5
829	Lessons for adaptive mesh refinement in numerical relativity. Classical and Quantum Gravity, 2022, 39, 135006.	1.5	15
830	Nonminimally coupled ultralight axions as cold dark matter. Physical Review D, 2022, 105, .	1.6	1
831	Cosmological constraints on light but massive relics. Physical Review D, 2022, 105, .	1.6	11
832	New physics from the polarized light of the cosmic microwave background. Nature Reviews Physics, 2022, 4, 452-469.	11.9	46
833	Could trapped quintessence account for the laser-detuning-dependent acceleration of cold atoms in varying-frequency time-of-flight experiments?. Physical Review D, 2022, 105, .	1.6	1
834	Generalized entanglement entropies in two-dimensional conformal field theory. Journal of High Energy Physics, 2022, 2022, .	1.6	10
835	Audible axions with a booster: Stochastic gravitational waves from rotating ALPs. SciPost Physics, 2022, 12, .	1.5	13
836	Fuzzy Dark Matter candidates from string theory. Journal of High Energy Physics, 2022, 2022, .	1.6	26
837	Chirality of gravitational waves in Chern-Simons <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo> gravity cosmology. Physical Review D, 2022, 105, .</mml:mo </mml:math 	1.6	25
838	B-field induced mixing between Langmuir waves and axions. Physical Review D, 2022, 105, .	1.6	1
839	Strange physics of dark baryons. Physical Review D, 2022, 105, .	1.6	15
840	Shining ALP dark radiation. Physical Review D, 2022, 105, .	1.6	6
841	Are there ALPs in the asymptotically safe landscape?. Journal of High Energy Physics, 2022, 2022, .	1.6	10
842	Neutrino meets ultralight dark matter: 0ν2ββ decay and cosmology. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 034.	1.9	13

#	Article	IF	CITATIONS
843	Probing virtual axion-like particles by precision phase measurements. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	4
844	Review on Higgs Hidden–Dark Sector Physics at High-Energy Colliders. Symmetry, 2022, 14, 1299.	1.1	2
845	Who's Afraid of the Supersymmetric Dark? The Standard Model vs Lowâ€Energy Supergravity. Fortschritte Der Physik, 2022, 70, .	1.5	5
846	Bremsstrahlung in chiral medium: Anomalous magnetic contribution to the Bethe-Heitler formula. Physical Review D, 2022, 105, .	1.6	2
847	Science potential for stellar-mass black holes as neighbors of Sgr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">A</mml:mi </mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup> Physical Review D, 2022, 105, .</mml:mrow></mml:math 	1.6 >≺/mml:mi	1 row>
848	Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 014.	1.9	7
849	Is cosmic birefringence due to dark energy or dark matter? A tomographic approach. Physical Review D, 2022, 105, .	1.6	20
850	Analytic treatment of underdamped axionic blue isocurvature perturbations. Physical Review D, 2022, 105, .	1.6	3
851	Analytic Approximations for the Velocity Suppression of Dark Matter Capture. Astrophysical Journal, 2022, 932, 46.	1.6	3
852	Accurate effective fluid approximation for ultralight axions. Physical Review D, 2022, 105, .	1.6	6
853	Black-Hole Superradiance: Searching for Ultralight Bosons with Gravitational Waves. , 2022, , 1377-1410.		0
854	Tidal disruption of solitons in self-interacting ultralight axion dark matter. Physical Review D, 2022, 105, .	1.6	9
855	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	8.2	82
856	Ultralight millicharged dark matter via misalignment. Journal of High Energy Physics, 2022, 2022, .	1.6	6
857	Relaxation times for Bose-Einstein condensation by self-interaction and gravity. Physical Review D, 2022, 106, .	1.6	9
858	Search for Dark-Matter-Induced Oscillations of Fundamental Constants Using Molecular Spectroscopy. Physical Review Letters, 2022, 129, .	2.9	21
859	Axion electrodynamics and magnetohydrodynamics. Physical Review D, 2022, 106, .	1.6	4
860	CP-violating axion interactions in effective field theory. Journal of High Energy Physics, 2022, 2022, .	1.6	8

#	ARTICLE	IF	CITATIONS
861	MiMeS, the Misalignment Mechanism Solver. , 2022, , .		0
862	Challenges for <mml:math <br="" altimg="si238.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e11032"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246
863	Anomaly-free axion dark matter in three Higgs doublet model and its phenomenological implications. Journal of High Energy Physics, 2022, 2022, .	1.6	2
864	Dynamics of scalar hair with self-interactions around a Schwarzchild black hole. Physical Review D, 2022, 106, .	1.6	1
865	Fuzzy dark matter and the Dark Energy Survey Year 1 data. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5646-5664.	1.6	21
866	Cosmological simulations of self-interacting Bose-Einstein condensate dark matter. Astronomy and Astrophysics, 2022, 666, A95.	2.1	7
867	Analysis of Bose-Einstein condensation times for self-interacting scalar dark matter. Physical Review D, 2022, 106, .	1.6	7
868	Nondegenerate internal squeezing: An all-optical, loss-resistant quantum technique for gravitational-wave detection. Physical Review D, 2022, 106, .	1.6	3
869	Oscillating gravitational potential due to ultralight axion: Linear theory. Physics of the Dark Universe, 2022, 37, 101108.	1.8	2
870	Probing ultralight axions with the 21-cm signal during cosmic dawn. Physical Review D, 2022, 106, .	1.6	9
871	Boson mixing and flavor oscillations in curved spacetime. Physical Review D, 2022, 106, .	1.6	6
872	Early dark sector, the Hubble tension, and the swampland. Physical Review D, 2022, 106, .	1.6	27
873	Einstein–Yang–Mills-Aether Theory with Nonlinear Axion Field: Decay of Color Aether and the Axionic Dark Matter Production. Symmetry, 2022, 14, 1621.	1.1	2
874	Formulation of axion-electrodynamics with Dirac fields. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, .	0.7	0
875	Nonclassicality of axionlike dark matter through gravitational self-interactions. Physical Review D, 2022, 106, .	1.6	2
876	Kinetic axion <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>F</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math> gravity inflation. Physical Review D, 2022, 106, .	1.6	21
877	Galaxy Phase-Space Density Data Preclude That Bose–Einstein Condensate Be the Total Dark Matter. Universe, 2022, 8, 419.	0.9	2
878	Cosmic birefringence from monodromic axion dark energy. Journal of Cosmology and Astroparticle	1.9	16

49

#	Article	IF	CITATIONS
879	Covariant coordinate transformations and scalar-field – matter interactions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, .	0.7	0
880	Rényi entropy and negativity for massless Dirac fermions at conformal interfaces and junctions. Journal of High Energy Physics, 2022, 2022, .	1.6	11
881	Viability of ultralight bosonic dark matter in dwarf galaxies. Physical Review D, 2022, 106, .	1.6	5
882	The <mml:math <br="" display="inline" id="d1e7979" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si300.svg"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>0Olympics: A fair ranking of proposed models. Physics Reports, 2022, 984, 1-55.</mml:mn></mml:mrow></mml:msub></mml:math>	រ៣ ៤លាន > រ</td <td>ຠຒຘຑnrow></td>	ຠ ຒຘຑ nrow>
883	Quench Dynamics of Rényi Negativities and the Quasiparticle Picture. Quantum Science and Technology, 2022, , 397-424.	1.5	2
884	Astrophysical Searches and Constraints. , 2023, , 73-122.		1
885	Constraining fundamental constant variations from ultralight dark matter with pulsar timing arrays. Physical Review D, 2022, 106, .	1.6	10
886	Predictive model of fermionic dark matter halos with a quantum core and an isothermal atmosphere. Physical Review D, 2022, 106, .	1.6	8
887	Cosmology from Strong Interactions. Universe, 2022, 8, 451.	0.9	3
888	Freeze-in and freeze-out of sterile neutrino dark matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 070.	1.9	3
889	Primordial black holes and gravitational waves in multiaxion-Chern-Simons inflation. Physical Review D, 2022, 106, .	1.6	4
890	Closing the window on fuzzy dark matter with the 21-cm signal. Physical Review D, 2022, 106, .	1.6	16
891	ANITA anomalous events and axion quark nuggets. Physical Review D, 2022, 106, .	1.6	8
892	Novel cosmological bounds on thermally-produced axion-like particles. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 021.	1.9	15
893	Axions in string theory — slaying the Hydra of dark radiation. Journal of High Energy Physics, 2022, 2022, .	1.6	8
894	Vector dark radiation and gravitational-wave polarization. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 014.	1.9	1
895	R ² gravity effects on the kinetic axion phase space. Europhysics Letters, 2022, 139, 69004.	0.7	5
896	Implications of the cosmic birefringence measurement for the axion dark matter search. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 062.	1.9	12

#	Article	IF	CITATIONS
897	Prospects for searching for axion-like particles at the CEPC. Journal of Physics G: Nuclear and Particle Physics, 2022, 49, 115002.	1.4	3
898	Early dark energy from a higher-dimensional gauge theory. Physical Review D, 2022, 106, .	1.6	7
899	A self-consistent wave description of axion miniclusters and their survival in the galaxy. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 081.	1.9	6
900	A haloscope amplification chain based on a traveling wave parametric amplifier. Review of Scientific Instruments, 2022, 93, .	0.6	7
901	Improved constraints on cosmic birefringence from the WMAP and <i>Planck</i> cosmic microwave background polarization data. Physical Review D, 2022, 106, .	1.6	38
902	Constraints on the mass and self-coupling of ultra-light scalar field dark matter using observational limits on galactic central mass. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 074.	1.9	8
903	A machine learning algorithm for direct detection of axion-like particle domain walls. Physics of the Dark Universe, 2022, 37, 101118.	1.8	3
904	Magnetar hard X-ray emission from axion-like particle conversion. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 009.	1.9	0
905	Nonperturbative structure in coupled axion sectors and implications for direct detection. Physical Review D, 2022, 106, .	1.6	6
906	Galaxy number-count dipole and superhorizon fluctuations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 019.	1.9	11
907	One small step for an inflaton, one giant leap for inflation: A novel non-Gaussian tail and primordial black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 834, 137461.	1.5	23
908	Dark matter candidate from torsion. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 834, 137488.	1.5	4
909	All-Sky Monitor for High-Accuracy Measurement of the Cosmic X-ray Background Onboard the International Space Station. Astronomy Letters, 2022, 48, 222-242.	0.1	0
910	Probing cosmic birefringence with polarized Sunyaev-Zel'dovich tomography. Physical Review D, 2022, 106, .	1.6	11
911	Phenomenology of the companion-axion model: photon couplings. European Physical Journal C, 2022, 82, .	1.4	5
912	Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release. Physical Review D, 2022, 106, .	1.6	19
913	Fermion-axion stars: Static solutions and dynamical stability. Physical Review D, 2022, 106, .	1.6	4
914	Searching for axion dark matter with the MeerKAT radio telescope. Physical Review D, 2022, 106, .	1.6	1

#	Article	IF	CITATIONS
915	Classification of Abelian domain walls. Physical Review D, 2022, 106, .	1.6	3
916	ALP dark matter from kinetic fragmentation: opening up the parameter window. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 053.	1.9	19
917	Strong constraints on decay and annihilation of dark matter from heating of gas-rich dwarf galaxies. Physical Review D, 2022, 106, .	1.6	15
918	When quantum corrections alter the predictions of classical field theory for scalar field dark matter. Physical Review D, 2022, 106, .	1.6	4
919	Structure of axion miniclusters. Physical Review D, 2022, 106, .	1.6	16
920	Flavour anomalies and dark matter assisted unification in SO(10) GUT. Journal of High Energy Physics, 2022, 2022, .	1.6	2
921	Ultralight pion and superheavy baryon dark matter. Physical Review D, 2022, 106, .	1.6	5
922	Is the W-boson mass enhanced by the axion-like particle, dark photon, or chameleon dark energy?. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	11
923	Anisotropic cosmic optical background bound for decaying dark matter in light of the LORRI anomaly. Physical Review D, 2022, 106, .	1.6	10
924	Dark radiation as a probe for a phase transition in the early Universe. Physical Review D, 2022, 106, .	1.6	0
925	Shadow of black hole surrounded by magnetized plasma: Axion-plasmon cloud. Nuclear Physics B, 2022, 985, 116014.	0.9	14
926	Mapping for BPS Solitons of Scalar Field Potentials in \$\$1 + 1\$\$ Dimensions and Family of Solutions. Brazilian Journal of Physics, 2023, 53, .	0.7	0
927	The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 044.	1.9	12
928	Primordial black holes induced stochastic axion-photon oscillations in primordial magnetic field. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 045.	1.9	3
929	Neutrinos as the Cold Dark Matter: A critical review, KATRIN and new research directions. Physics of the Dark Universe, 2023, 39, 101149.	1.8	0
930	Analytical approach to the core-halo structure of fuzzy dark matter. Physical Review D, 2022, 106, .	1.6	4
931	Formation of a chiral soliton lattice. Physical Review D, 2022, 106, .	1.6	9
932	Generalized symmetry breaking scales and weak gravity conjectures. Journal of High Energy Physics, 2022, 2022, .	1.6	20

#	Article	IF	CITATIONS
933	Weak lensing, Hawking radiation and greybody factor bound by a charged black holes with non-linear electrodynamics corrections. International Journal of Geometric Methods in Modern Physics, 2023, 20, .	0.8	8
934	QCD Axion Kinetic Misalignment without Prejudice. Universe, 2022, 8, 634.	0.9	6
935	Indirect detection of eV dark matter via infrared spectroscopy. Physical Review D, 2022, 106, .	1.6	7
936	Self-interacting superfluid dark matter droplets. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4064-4072.	1.6	9
937	Implications for cosmic domain walls from the first three observing runs of LIGO-Virgo. Physical Review D, 2022, 106, .	1.6	3
938	Can ultralight dark matter explain the age–velocity dispersion relation of the Milky Way disc: A revised and improved treatment. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4045-4063.	1.6	5
939	Probing cosmic inflation with the <i>LiteBIRD</i> cosmic microwave background polarization survey. Progress of Theoretical and Experimental Physics, 2023, 2023, .	1.8	63
940	Cosmological constraints on the multiscalar field dark matter model. Physical Review D, 2022, 106, .	1.6	8
941	Crossing the dark matter soliton core: A possible reversed orbital precession. Physical Review D, 2022, 106, .	1.6	0
942	The gravitational afterglow of boson stars. Classical and Quantum Gravity, 2023, 40, 065001.	1.5	7
943	Axion effects in the stability of hybrid stars. Physical Review D, 2022, 106, .	1.6	3
944	Cosmological constraints on decaying axion-like particles: a global analysis. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 027.	1.9	15
945	Probing high-energy solar axion flux with a large scintillation neutrino detector. Physical Review D, 2022, 106, .	1.6	6
946	Searching for dark matter axions with Berry phase. European Physical Journal C, 2022, 82, .	1.4	0
947	Brownian axionlike particles. Physical Review D, 2022, 106, .	1.6	7
948	If Dark Matter is Fuzzy, the First Stars Form in Massive Pancakes. Astrophysical Journal Letters, 2022, 941, L18.	3.0	4
949	Searching for dilaton fields in the Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>α</mml:mi></mml:mrow> forest. Physical Review D, 2022, 106, .</mml:math 	1.6	3
950	Unveiling cosmological information on small scales with line intensity mapping. Physical Review D, 2022, 106, .	1.6	6

#	Article	IF	CITATIONS
951	On the cosmic web elongation in fuzzy dark matter cosmologies: Effects on density profiles, shapes, and alignments of haloes. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4183-4202.	1.6	8
952	Extraterrestrial Axion Search with the Breakthrough Listen Galactic Center Survey. Physical Review Letters, 2022, 129, .	2.9	19
953	Standard Model ofÂElementary Particles. Springer Theses, 2022, , 9-71.	0.0	0
954	Dynamical friction in fuzzy dark matter: Circular orbits. Physical Review D, 2023, 107, .	1.6	7
955	Relation of entanglement entropy and particle number fluctuations in one-dimensional Hubbard model. Journal of the Korean Physical Society, 0, , .	0.3	0
956	The emergence of universal relations in the AdS black holes thermodynamics. Physica Scripta, 2023, 98, 025305.	1.2	5
957	Gravitational waves and neutrino oscillations in Chern-Simons axion gravity. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 011.	1.9	11
958	ALP dark matter mini-clusters from kinetic fragmentation. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 009.	1.9	3
959	Axion-Higgs cosmology: Cosmic microwave background and cosmological tensions. Physical Review D, 2023, 107, .	1.6	2
960	The interaction of extended Bose–Einstein condensate dark matter with viscous <mml:math altimg="si5.svg" display="inline" id="d1e826" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>w><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>T</mml:mi>< gravity. Physics of the Dark Universe. 2023. 39. 101167.</mml:mrow></mml:mi></mml:math>	118 mml:mo>,	<
961	Top-philic dark matter in a hybrid KSVZ axion framework. Journal of High Energy Physics, 2022, 2022, .	1.6	1
962	New physics searches with an optical dump at LUXE. Physical Review D, 2022, 106, .	1.6	5
963	Black hole merger simulations in wave dark matter environments. Physical Review D, 2023, 107, .	1.6	11
964	Axion-like dark matter detection using Stern–Gerlach interferometer. European Physical Journal C, 2023, 83, .	1.4	1
965	Robustness of cosmic birefringence measurement against Galactic foreground emission and instrumental systematics. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 044.	1.9	10
966	Axionic Festina Lente. Journal of High Energy Physics, 2023, 2023, .	1.6	5
967	New Explicit and Approximate Solutions of the Newton-Schrödinger System. Journal of Nonlinear Mathematical Physics, 0, , .	0.8	0
968	A comparison between the Jordan and Einstein frames in Brans-Dicke theories with torsion. European Physical Journal Plus, 2023, 138, .	1.2	1

ARTICLE IF CITATIONS # Asteroseismology: Looking for Axions in the Red Supergiant Star Alpha Ori. Astrophysical Journal, 969 1.6 1 2023, 943, 95. 970 Dark energy with a triplet of classical U(1) fields. Physical Review D, 2023, 107, . 1.6 Scalar dark matter production from preheating and structure formation constraints. Physical Review 971 1.6 8 D, 2023, 107, . Effects of the axion through the Higgs portal on primordial gravitational waves during the electroweak breaking. Physical Review D, 2023, 107, . Magnetic Misalignment of Interstellar Dust Filaments. Astrophysical Journal, 2023, 946, 106. 973 1.6 4 Kinetic axion dark matter in string corrected <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e782" 974 altimg="si6.svg"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>)</mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>)</mml:mo> Late-time cosmology in a model of modified gravity with an exponential function of the curvature. 975 1.8 2 Physics of the Dark Universe, 2023, 40, 101207. Standard Model ofÂCosmology. Springer Theses, 2022, , 73-176. Consistency tests of structure formation simulations of Âscalar field dark matter. Astronomische 978 0.6 1 Nachrichten, 2023, 344, . Search prospects for axionlike particles at rare nuclear isotope accelerator facilities. Physical 979 1.6 Review D, 2023, 107, . Photon-ALP oscillations inducing modifications to photon polarization. Physical Review D, 2023, 107, . 980 1.6 5 Impact of anisotropic birefringence on measuring cosmic microwave background lensing. Physical 1.6 Review D, 2023, 107, . Searches for New Particles Including Dark MatterÂwith Atomic, Molecular and Optical Systems. 982 0.3 1 Springer Handbooks, 2023, , 461-469. Cosmic birefringence tomography and calibration independence with reionization signals in the CMB. 1.6 Monthly Notices of the Royal Astronomical Society, 2023, 520, 3298-3304. 984 Magnetic Dynamo Caused by Axions in Neutron Stars. Physical Review Letters, 2023, 130, . 2.9 3 Gravitational recoil from binary black hole mergers in scalar field clouds. Physical Review D, 2023, The Atacama Cosmology Telescope: limits on dark matter-baryon interactions from DR4 power spectra. 986 1.9 1 Journal of Cosmology and Astroparticle Physics, 2023, 2023, 046. Optical circular polarization induced by axionlike particles in blazars. Physical Review D, 2023, 107, .

#	Article	IF	CITATIONS
988	Coherent and incoherent structures in fuzzy dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3625-3647.	1.6	8
989	Probing a light dark sector at future lepton colliders via invisible decays of the SM-like and dark Higgs bosons. Physical Review D, 2023, 107, .	1.6	5
990	Self-interacting scalar field distributions around Schwarzschild black holes. Physical Review D, 2023, 107, .	1.6	2
991	Boson stars and their relatives in semiclassical gravity. Physical Review D, 2023, 107, .	1.6	9
992	Recent Developments in Warm Inflation. Universe, 2023, 9, 124.	0.9	11
994	Theory and Phenomenology. Springer Theses, 2023, , 39-57.	0.0	0
995	Axion dark matter from first-order phase transition, and very high energy photons from GRB 221009A. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 839, 137824.	1.5	25
996	Cosmological structure formation and soliton phase transition in fuzzy dark matter with axion self-interactions. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2608-2615.	1.6	14
997	Unequal-mass boson-star binaries: initial data and merger dynamics. Classical and Quantum Gravity, 2023, 40, 085009.	1.5	11
998	Nonequilibrium dynamics of axionlike particles: The quantum master equation. Physical Review D, 2023, 107, .	1.6	5
999	Simulations of multifield ultralight axionlike dark matter. Physical Review D, 2023, 107, .	1.6	8
1000	Prospects of probing dark matter condensates with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 041.	1.9	3
1001	Improved mixed dark matter halo model for ultralight axions. Physical Review D, 2023, 107, .	1.6	5
1002	Demonstration of Models and Detection Scenarios for WIMP And Axion. , 0, 38, 665-671.		0
1003	Pulsar Polarization Arrays. Physical Review Letters, 2023, 130, .	2.9	6
1004	Measuring the Quantum State of Dark Matter. Annalen Der Physik, 2024, 536, .	0.9	0
1005	Search for New Physics in Ultraperipheral Collisions at the Large Hadron Collider. Physics of Atomic Nuclei, 2022, 85, 942-950.	0.1	0
1006	The cosmological axion dark matter decay. European Physical Journal Plus, 2023, 138, .	1.2	1

#	Article	IF	CITATIONS
1007	Axion-like ALPs. Journal of High Energy Physics, 2023, 2023, .	1.6	5
1008	Black hole images: A review. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	15
1009	Axion effects on gamma-ray spectral irregularities with AGN redshift uncertainty. Physical Review D, 2023, 107, .	1.6	1
1010	Probing new physics at DUNE operating in a beam-dump mode. Physical Review D, 2023, 107, .	1.6	7
1011	Dark Energy Is the Cosmological Quantum Vacuum Energy of Light Particles—The Axion and the Lightest Neutrino. Universe, 2023, 9, 167.	0.9	2
1012	Lensing constraints on ultradense dark matter halos. Physical Review D, 2023, 107, .	1.6	6
1013	Cosmological simulations of two-component wave dark matter. Monthly Notices of the Royal Astronomical Society, 2023, 522, 515-534.	1.6	7
1014	Friction on ALP domain walls and gravitational waves. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 008.	1.9	11
1015	Subdominant modes of the scalar superradiant instability and gravitational wave beats. Physical Review D, 2023, 107, .	1.6	0
1016	Probing axions via light circular polarization and event horizon telescope. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 017.	1.9	4
1017	Exact formulations of relativistic electrodynamics and magnetohydrodynamics with helically coupled scalar field. Physical Review D, 2023, 107, .	1.6	3
1018	Axion cosmology with post-Newtonian corrections. Physical Review D, 2023, 107, .	1.6	1
1019	Fuzzy Dark Matter as a Solution to Reconcile the Stellar Mass Density of High-z Massive Galaxies and Reionization History. Astrophysical Journal, 2023, 947, 28.	1.6	10
1020	Fuzzy Aquarius: evolution of a Milky-way like system in the Fuzzy Dark Matter scenario. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1451-1463.	1.6	5
1021	European Spallation Source as a searching tool for an ultralight scalar field. Physical Review D, 2023, 107, .	1.6	3
1022	Einstein rings modulated by wavelike dark matter from anomalies in gravitationally lensed images. Nature Astronomy, 2023, 7, 736-747.	4.2	10
1023	Invisible neutrino decays as origin of TeV gamma rays from GRB221009A. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 056.	1.9	10
1024	Fermionic Dark Matter: Physics, Astrophysics, and Cosmology. Universe, 2023, 9, 197.	0.9	3

		CITATION REPORT		
#	Article	IF	CITATIONS	
1104	Universality of Bose–Einstein condensation and quenched formation dynamics. , 2024, , 84-123		1	
1148	Feebly-interacting particles: FIPs 2022 Workshop Report. European Physical Journal C, 2023, 83, .	1.4	10	