Body weight lower limits of fetal postmortem MRI at 1.8

Ultrasound in Obstetrics and Gynecology 48, 92-97

DOI: 10.1002/uog.14948

Citation Report

#	Article	IF	Citations
1	Clinical utility of postmortem microcomputed tomography of the fetal heart: diagnostic imaging <i>vs</i> macroscopic dissection. Ultrasound in Obstetrics and Gynecology, 2016, 47, 58-64.	0.9	57
2	ESPR postmortem imaging task force: where we begin. Pediatric Radiology, 2016, 46, 1363-1369.	1.1	15
3	Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. British Journal of Radiology, 2016, 89, 20151028.	1.0	38
4	Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT). British Journal of Radiology, 2017, 90, 20170113.	1.0	48
5	Current issues in postmortem imaging of perinatal and forensic childhood deaths. Forensic Science, Medicine, and Pathology, 2017, 13, 58-66.	0.6	34
6	Perinatal death investigations: What is current practice?. Seminars in Fetal and Neonatal Medicine, 2017, 22, 167-175.	1.1	38
7	Postmortem microfocus computed tomography for early gestation fetuses: a validation study against conventional autopsy. American Journal of Obstetrics and Gynecology, 2018, 218, 445.e1-445.e12.	0.7	39
8	3D printing from microfocus computed tomography (micro-CT) in human specimens: education and future implications. British Journal of Radiology, 2018, 91, 20180306.	1.0	26
9	Postmortem fetal magnetic resonance imaging: where do we stand?. Insights Into Imaging, 2018, 9, 591-598.	1.6	11
10	Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clinical Radiology, 2019, 74, 733.e11-733.e18.	0.5	10
11	Potential clinical benefits and limitations of fetal virtopsy using highâ€field MRI at 7 Tesla versus stereomicroscopic autopsy to assess first trimester fetuses. Prenatal Diagnosis, 2019, 39, 505-518.	1.1	18
12	Is traditional perinatal autopsy needed after detailed fetal ultrasound and postâ€mortem MRI?. Prenatal Diagnosis, 2019, 39, 818-829.	1.1	23
13	Feasibility of Postmortem Imaging Assessment of Brain: Liver Volume Ratios with Pathological Validation. Fetal Diagnosis and Therapy, 2019, 46, 360-367.	0.6	2
14	Postmortem magnetic resonance imaging vs autopsy of second trimester fetuses terminated due to anomalies. Acta Obstetricia Et Gynecologica Scandinavica, 2019, 98, 865-876.	1.3	15
15	Latest developments in postâ€mortem foetal imaging. Prenatal Diagnosis, 2020, 40, 28-37.	1.1	25
16	The Perinatal Postmortem Examination. , 2020, , 121-130.e1.		O
17	Maceration determines diagnostic yield of fetal and neonatal whole body postâ€mortem ultrasound. Prenatal Diagnosis, 2020, 40, 232-243.	1.1	9
18	The significance of internal calcifications on perinatal post-mortem radiographs. Clinical Radiology, 2020, 75, 561.e25-561.e34.	0.5	O

#	Article	IF	CITATIONS
19	Diagnostic accuracy of postmortem ultrasound <i>vs</i> postmortem 1.5â€T MRI for nonâ€invasive perinatal autopsy. Ultrasound in Obstetrics and Gynecology, 2021, 57, 449-458.	0.9	9
20	Postmortem microfocus computed tomography for noninvasive autopsies: experience in >250 human fetuses. American Journal of Obstetrics and Gynecology, 2021, 224, 103.e1-103.e15.	0.7	25
22	Improving uptake of perinatal autopsy. Current Opinion in Obstetrics and Gynecology, 2021, 33, 129-134.	0.9	12
23	Human fetal whole-body postmortem microfocus computed tomographic imaging. Nature Protocols, 2021, 16, 2594-2614.	5.5	15
24	A pragmatic evidence-based approach to post-mortem perinatal imaging. Insights Into Imaging, 2021, 12, 101.	1.6	7
25	Micro-CT yields high image quality in human fetal post-mortem imaging despite maceration. BMC Medical Imaging, 2021, 21, 128.	1.4	8
26	Evaluation of post-mortem high-field MRI at 7T compared to conventional autopsy: a morphometric study. Obstetrica Si Ginecologie, 2021, 3, 116.	0.0	0
28	Post-mortem perinatal imaging: what is the evidence?. British Journal of Radiology, 2022, , 20211078.	1.0	5
29	Postmortem Fetal Temperature Estimation with Magnetic Resonance Imaging: Apparent Diffusion Coefficient Measurements in the Vitreous Body and Cerebrospinal Fluid. Topics in Magnetic Resonance Imaging, 2022, 31, 25-30.	0.7	0
30	Postmortem Diffusion-Weighted Magnetic Resonance Imaging of the Brain in Perinatal Death: An Animal Control Study to Detect the Influence of Postmortem Interval. Topics in Magnetic Resonance Imaging, 2022, 31, 43-50.	0.7	O
31	Are non-invasive or minimally invasive autopsy techniques for detecting cause of death in prenates, neonates and infants accurate? A systematic review of diagnostic test accuracy. BMJ Open, 2023, 13, e064774.	0.8	4
32	Postmortem MR in termination of pregnancy for central nervous system (CNS) anomalies. Journal of Maternal-Fetal and Neonatal Medicine, 2023, 36, .	0.7	O