Reported Distribution of Aedes (Stegomyia) aegypti and United States, 1995-2016 (Diptera: Culicidae)

Journal of Medical Entomology 53, 1169-1175 DOI: 10.1093/jme/tjw072

Citation Report

#	Article	IF	Citations
1	Insights into Zika Virus History, Human Health Effects, and Control Measures. Environmental Health Insights, 2016, 10, EHI.S40953.	0.6	2
2	Editorial brain malformation surveillance in the Zika era. Birth Defects Research Part A: Clinical and Molecular Teratology, 2016, 106, 869-874.	1.6	5
3	Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Molecular Ecology, 2016, 25, 5806-5826.	2.0	250
4	Reducing Unintended Pregnancies as a Strategy to Avert Zika-Related Microcephaly Births in the United States: A Simulation Study. Maternal and Child Health Journal, 2017, 21, 982-987.	0.7	7
5	Zika virus knowledge, attitudes, and vaccine interest among university students. Vaccine, 2017, 35, 960-965.	1.7	25
6	Zika Virus: Epidemiology, Pathogenesis and Human Disease. American Journal of the Medical Sciences, 2017, 353, 466-473.	0.4	28
7	New Records ofAedes aegyptiIn Southern Oklahoma, 2016. Journal of the American Mosquito Control Association, 2017, 33, 56-59.	0.2	6
8	Decision making in the face of uncertainty: the challenge of emerging infectious diseases. Transfusion, 2017, 57, 723-728.	0.8	5
9	Updated Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera:) Tj ETQ	900 rgE	3T /Overlock
10	Characterization of <i>Tolypocladium cylindrosporum</i> (Hypocreales: Ophiocordycipitaceae) and Its Impact Against <i>Aedes aegypti</i> and <i>Aedes albopictus</i> Eggs at Low Temperature. Journal of the American Mosquito Control Association, 2017, 33, 184-192.	0.2	8
11	Flavivirus Pathogenesis in the Mosquito Transmission Vector. Current Clinical Microbiology Reports, 2017, 4, 115-123.	1.8	2
12	Vectors, Hosts, and Control Measures for Zika Virus in the Americas. EcoHealth, 2017, 14, 821-839.	0.9	6
13	Emerging Infectious Diseases. Advances in Pediatrics, 2017, 64, 27-71.	0.5	13
	Modeling the Environmental Suitability for Aedes (Stegomvia) aegypti and Aedes (Stegomvia) albopictus		

14	Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States. Journal of Medical Entomology, 2017, 54, 1605-1614.	0.9	72
15	Duplex Real-Time PCR Assay Distinguishes Aedes aegypti From Ae. albopictus (Diptera: Culicidae) Using DNA From Sonicated First-Instar Larvae. Journal of Medical Entomology, 2017, 54, 1567-1572.	0.9	9
16	Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control. Journal of Infectious Diseases, 2017, 216, S976-S990.	1.9	69
17	First record of <i>Aedes aegypti</i> and <i>Aedes albopictus</i> in thirteen Panhandle region counties of Texas, U.S.A Journal of Vector Ecology, 2017, 42, 352-354.	0.5	3
18	Modes of Transmission of Zika Virus. Journal of Infectious Diseases, 2017, 216, S875-S883.	1.9	96

CITATION REPORT

#	Article	IF	CITATIONS
19	Zika Virus Infection in Patient with No Known Risk Factors, Utah, USA, 2016. Emerging Infectious Diseases, 2017, 23, 1260-1267.	2.0	13
20	Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathogens, 2017, 13, e1006378.	2.1	201
21	Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA. PLoS Neglected Tropical Diseases, 2017, 11, e0005623.	1.3	46
22	Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Neglected Tropical Diseases, 2017, 11, e0005640.	1.3	131
23	Detection and Establishment of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Mosquitoes in California, 2011–2015. Journal of Medical Entomology, 2017, 54, 533-543.	0.9	50
24	Assessment of the Probability of Autochthonous Transmission of Chikungunya Virus in Canada under Recent and Projected Climate Change. Environmental Health Perspectives, 2017, 125, 067001.	2.8	27
25	Where vectors collide: the importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes. Biological Invasions, 2018, 20, 1913-1929.	1.2	44
26	Detection of Aedes (Stegomyia) aegypti (Diptera: Culicidae) Populations in Southern Alabama Following a 26-yr Absence and Public Perceptions of the Threat of Zika Virus. Journal of Medical Entomology, 2018, 55, 1319-1324.	0.9	5
27	Male origin determines satyrization potential of Aedes aegypti by invasive Aedes albopictus. Biological Invasions, 2018, 20, 653-664.	1.2	14
28	Screening for Zika virus in deceased organ donors in Florida. American Journal of Transplantation, 2018, 18, 731-736.	2.6	10
29	Determining environmental and anthropogenic factors which explain the global distribution of <i>Aedes aegypti</i> and <i>Ae. albopictus</i> . BMJ Global Health, 2018, 3, e000801.	2.0	64
30	Potential of <i>Aedes albopictus</i> as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Microbes and Infections, 2018, 7, 1-8.	3.0	47
31	Zika Virus Prevention: U.S. Travelers' Knowledge, Risk Perceptions, and Behavioral Intentions—A National Survey. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1837-1847.	0.6	18
32	Surveillance of Mosquitoes (Diptera: Culicidae) in Southern Iowa, 2016. Journal of Medical Entomology, 2018, 55, 1341-1345.	0.9	3
33	Comparative development and growth of <scp><i>Aedes albopictus</i></scp> in response to native <scp><i>Quercus rubra</i></scp> and invasive <scp><i>Lonicera maackii</i></scp> leaf litter. Ecological Entomology, 2018, 43, 850-853.	1.1	2
34	First Record of Aedes albopictus (Diptera: Culicidae) and Second Record of Aedes japonicus (Diptera:) Tj ETQq1 Entomology, 2018, 55, 1617-1621.	1 0.78431 0.9	4 rgBT /Overl 2
35	Viral Infections of the Fetus and Newborn. , 2018, , 482-526.e19.		2
36	Susceptibility and Vectorial Capacity of American <i>Aedes albopictus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae) to American Zika Virus Strains. Journal of Medical Entomology, 2019, 56, 233-240.	0.9	21

#	Article	IF	CITATIONS
38	Downgrading disease transmission risk estimates using terminal importations. PLoS Neglected Tropical Diseases, 2019, 13, e0007395.	1.3	6
39	Aedes Vector Surveillance in the Southeastern United States Reveals Growing Threat of Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus. Journal of Medical Entomology, 2019, 56, 1745-1749.	0.9	5
40	Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Computational Biology, 2019, 15, e1007369.	1.5	14
41	A Statewide Survey of Container <i>Aedes</i> Mosquitoes (Diptera: Culicidae) in North Carolina, 2016: A Multiagency Surveillance Response to Zika Using Ovitraps. Journal of Medical Entomology, 2019, 56, 483-490.	0.9	12
42	Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics, 2019, 28, 100344.	1.5	40
43	<i>Wolbachia pipientis</i> occurs in <i>Aedes aegypti</i> populations in New Mexico and Florida, USA. Ecology and Evolution, 2019, 9, 6148-6156.	0.8	37
44	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	5.9	699
45	Metagenomic Analysis Reveals Three Novel and Prevalent Mosquito Viruses from a Single Pool of Aedes vexans nipponii Collected in the Republic of Korea. Viruses, 2019, 11, 222.	1.5	26
46	Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A PLoS ONE, 2019, 14, e0212693.	1.1	39
47	Surveillance of Aedes aegypti indoors and outdoors using Autocidal Gravid Ovitraps in South Texas during local transmission of Zika virus, 2016 to 2018. Acta Tropica, 2019, 192, 129-137.	0.9	29
48	The Influence of New Surveillance Data on Predictive Species Distribution Modeling of Aedes aegypti and Aedes albopictus in the United States. Insects, 2019, 10, 400.	1.0	10
49	A global model for predicting the arrival of imported dengue infections. PLoS ONE, 2019, 14, e0225193.	1.1	20
50	Serological Evidence of Dengue and West Nile Virus Human Infection in Juarez City, Mexico. Vector-Borne and Zoonotic Diseases, 2019, 19, 134-141.	0.6	7
51	Current and Future Distribution of the Lone Star Tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. PLoS ONE, 2019, 14, e0209082.	1.1	137
52	Discovery of an <i>Aedes</i> (<i>Stegomyia</i>) <i>albopictus</i> population and first records of <i>Aedes</i> (<i>Stegomyia</i>) <i>aegypti</i> in Canada. Medical and Veterinary Entomology, 2020, 34, 10-16.	0.7	27
53	A bacterium against the tiger: preliminary evidence of fertility reduction after release of <i>Aedes albopictus</i> males with manipulated <i>Wolbachia</i> infection in an Italian urban area. Pest Management Science, 2020, 76, 1324-1332.	1.7	42
54	Short-Term, Large-Area Survey of Container <i>Aedes spp.</i> (Diptera: Culicidae): Presence and Abundance is Associated with Fine-scale Landscape Factors in North Carolina, USA. Environmental Health Insights, 2020, 14, 117863022095280.	0.6	3
55	An Investigation of Human–Mosquito Contact Using Surveys and Its Application in Assessing Dengue Viral Transmission Risk. Journal of Medical Entomology, 2020, 57, 1942-1954.	0.9	4

CITATION REPORT

#	Article	IF	CITATIONS
56	Sunshine versus gold: The effect of population age on genetic structure of an invasive mosquito. Ecology and Evolution, 2020, 10, 9588-9599.	0.8	4
57	Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution; International Journal of Organic Evolution, 2020, 74, 1451-1465.	1.1	44
58	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. PLoS ONE, 2020, 15, e0229829.	1.1	15
59	Spatial, Temporal, and Genetic Invasion Dynamics of Aedes albopictus (Diptera: Culicidae) in Illinois. Journal of Medical Entomology, 2020, 57, 1488-1500.	0.9	8
60	High Rate of Non-Human Feeding by Aedes aegypti Reduces Zika Virus Transmission in South Texas. Viruses, 2020, 12, 453.	1.5	23
61	Estimations of Fine-Scale Species Distributions of <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae) in Eastern Florida. Journal of Medical Entomology, 2021, 58, 699-707.	0.9	13
62	The influence of different sources of blood meals on the physiology of Aedes aegypti harboring Wolbachia wMel: mouse blood as an alternative for mosquito rearing. Parasites and Vectors, 2021, 14, 21.	1.0	3
63	Host interactions of Aedes albopictus, an invasive vector of arboviruses, in Virginia, USA. PLoS Neglected Tropical Diseases, 2021, 15, e0009173.	1.3	16
64	A machine-learning approach to map landscape connectivity in <i>Aedes aegypti</i> with genetic and environmental data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
65	Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Neglected Tropical Diseases, 2021, 15, e0009063.	1.3	16
66	Mosquitoes Know No Borders: Surveillance of Potential Introduction of Aedes Species in Southern Québec, Canada. Pathogens, 2021, 10, 998.	1.2	8
67	Examining Wing Length–Abundance Relationships and Pyrethroid Resistance Mutations among Aedes albopictus in a Rapidly Growing Urban Area with Implications for Mosquito Surveillance and Control. International Journal of Environmental Research and Public Health, 2021, 18, 9443.	1.2	0
68	Intersecting vulnerabilities: climatic and demographic contributions to future population exposure to Aedes-borne viruses in the United States. Environmental Research Letters, 2020, 15, 084046.	2.2	9
72	Current and Projected Distributions of <i>Aedes aegypti</i> and <i>Ae. albopictus</i> in Canada and the U.S Environmental Health Perspectives, 2020, 128, 57007.	2.8	27
73	Targeting a Hidden Enemy: Pyriproxyfen Autodissemination Strategy for the Control of the Container Mosquito Aedes albopictus in Cryptic Habitats. PLoS Neglected Tropical Diseases, 2016, 10, e0005235.	1.3	39
74	Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Neglected Tropical Diseases, 2017, 11, e0005718.	1.3	65
75	Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City. PLoS Neglected Tropical Diseases, 2017, 11, e0005828.	1.3	25
76	Efficacy of <i>Heterorhabdits indica</i> LPP35 against <i>Aedes aegypti</i> in domiciliary oviposition sites. Journal of Nematology, 2019, 51, 1-7.	0.4	5

CITATION REPORT

#	Article	IF	CITATIONS
77	Origin of Aedes aegypti In Clark County, Nevada. Journal of the American Mosquito Control Association, 2018, 34, 302-305.	0.2	6
78	Rescuing Troves of Hidden Ecological Data to Tackle Emerging Mosquito-Borne Diseases. Journal of the American Mosquito Control Association, 2019, 35, 75-83.	0.2	23
79	Microclimate and Larval Habitat Density Predict Adult Aedes albopictus Abundance in Urban Areas. American Journal of Tropical Medicine and Hygiene, 2019, 101, 362-370.	0.6	30
85	A Simple Model to Predict the Potential Abundance of Aedes aegypti Mosquitoes One Month in Advance. American Journal of Tropical Medicine and Hygiene, 2018, 100, 434-437.	0.6	6
86	New County Records of Aedes aegypti and Aedes epactius in Colorado. Journal of the American Mosquito Control Association, 2019, 35, 47-50.	0.2	1
91	Vector Competence of Aedes albopictus Populations from the Northeastern United States for Chikungunya, Dengue, and Zika Viruses. American Journal of Tropical Medicine and Hygiene, 2020, , .	0.6	16
92	MOSQUITO OCCURRENCE IN 36 COUNTIES OF SOUTHERN AND WESTERN MISSOURI. Southwestern Naturalist, 2020, 64, 73.	0.1	2
93	Surveillance and genetic data support the introduction and establishment of Aedes albopictus in Iowa, USA. Scientific Reports, 2022, 12, 2143.	1.6	2
95	Relación espacial entre Aedes aegypti (Linnaeus, 1762) y la enfermedad de dengue en Guatemala. Revista CientÃfica De La Facultad De Ciencias QuÃmicas Y Farmacia, 2019, 28, 1-18.	0.1	0
96	Vector competence of Anopheles quadrimaculatus and Aedes albopictus for genetically distinct Jamestown Canyon virus strains circulating in the Northeast United States. Parasites and Vectors, 2022, 15, .	1.0	3
97	Origins of high latitude introductions of Aedes aegypti to Nebraska and Utah during 2019. Infection, Genetics and Evolution, 2022, 103, 105333.	1.0	3
98	An alien in Marseille: investigations on a single <i>Aedes aegypti</i> mosquito likely introduced by a merchant ship from tropical Africa to Europe. Parasite, 2022, 29, 42.	0.8	0
99	Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA. NeoBiota, 0, 78, 99-127.	1.0	2
100	<i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae) Oviposition Activity and the Associated Socio-environmental Factors in the New Orleans Area. Journal of Medical Entomology, 0, ,	0.9	2
101	A bacterium against the tiger: further evidence of the potential of nonâ€inundative releases of males with manipulated Wolbachia infection in reducing fertility of <i>Aedes albopictus</i> field populations in Italy. Pest Management Science, 0, , .	1.7	2