Single-molecule strong coupling at room temperature is

Nature 535, 127-130

DOI: 10.1038/nature17974

Citation Report

#	Article	IF	CITATIONS
9	Fundamental limitations in spontaneous emission rate of single-photon sources. Optica, 2016, 3, 1418.	4.8	85
10	Plasmon-controlled excitonic emission from vertically-tapered organic nanowires. Nanoscale, 2016, 8, 14803-14808.	2.8	7
11	Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Scientific Reports, 2016, 6, 37766.	1.6	13
12	Raman Activity and Dynamics of Plasmons on a Rough Gold Film Studied by Ultrafast Scanning Near-Field Optical Microscopy. ACS Symposium Series, 2016, , 121-137.	0.5	1
13	Suppressing photochemical reactions with quantized light fields. Nature Communications, 2016, 7, 13841.	5.8	249
14	Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States. ACS Nano, 2016, 10, 11360-11368.	7.3	53
15	Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects. Nanoscale, 2016, 8, 17532-17541.	2.8	54
16	Resonance Coupling in Silicon Nanosphere–J-Aggregate Heterostructures. Nano Letters, 2016, 16, 6886-6895.	4.5	58
17	Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes. Nano Letters, 2016, 16, 6504-6510.	4.5	59
18	Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities. Physical Review Letters, 2016, 117, 107401.	2.9	84
19	Plasmon–Exciton Coupling Using DNA Templates. Nano Letters, 2016, 16, 5962-5966.	4.5	94
20	When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields. Physical Review B, 2016, 94, .	1.1	63
21	Strong light-matter interactions in plasmonic lattices. , 2016, , .		0
22	Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. ACS Nano, 2016, 10, 9659-9668.	7.3	138
23	Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes. Nano Letters, 2016, 16, 7655-7663.	4.5	52
24	Hybrid Light–Matter States in a Molecular and Material Science Perspective. Accounts of Chemical Research, 2016, 49, 2403-2412.	7.6	603
25	Visible quantum plasmonics from metallic nanodimers. Scientific Reports, 2016, 6, 34772.	1.6	18
26	Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications, 2016, 7, 13078.	5 . 8	91

#	Article	IF	CITATIONS
27	Plasmon–Exciton Coupling between Metallic Nanoparticles and Dye Monomers. Journal of Physical Chemistry C, 2017, 121, 3496-3502.	1.5	36
28	Fluorescence Enhancement on Large Area Selfâ€Assembled Plasmonicâ€3D Photonic Crystals. Small, 2017, 13, 1602612.	5.2	30
29	Hybridised exciton–polariton resonances in core–shell nanoparticles. Journal of Optics (United) Tj ETQq0 0 (o rgBT /Ov	erlgck 10 Tf 5
30	Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3026-3034.	3.3	389
31	Single-Photon Nanoantennas. ACS Photonics, 2017, 4, 710-722.	3.2	228
32	Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna. Scientific Reports, 2017, 7, 42307.	1.6	53
33	Non-Markovian dynamics in plasmon-induced spontaneous emission interference. Physical Review B, 2017, 95, .	1.1	56
34	Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection. Physical Review Letters, 2017, 118, 073604.	2.9	60
35	In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement. Nano Letters, 2017, 17, 1703-1710.	4.5	114
36	How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror. ACS Photonics, 2017, 4, 469-475.	3.2	115
37	Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons. Nano Letters, 2017, 17, 3246-3251.	4.5	60
38	Quantum Optics Model of Surface-Enhanced Raman Spectroscopy for Arbitrarily Shaped Plasmonic Resonators. ACS Photonics, 2017, 4, 1245-1256.	3.2	38
39	Photon echo in exciton-plasmon nanomaterials: A time-dependent signature of strong coupling. Journal of Chemical Physics, 2017, 146, 084704.	1.2	3
40	Adsorption of methylene blue and its N-demethylated derivatives on the (111) face of coinage metals: The importance of dispersion interactions. Journal of Chemical Physics, 2017, 146, 164701.	1.2	17
41	Accurate Modeling of the Polarizability of Dyes for Electromagnetic Calculations. ACS Omega, 2017, 2, 1804-1811.	1.6	27
42	Tunable band-stop filters based on the strong coupling-like phenomenon in metal–insulator–metal cavities involving molecular J-aggregates. Journal Physics D: Applied Physics, 2017, 50, 205104.	1.3	4
43	Low-Loss Plasmonic Dielectric Nanoresonators. Nano Letters, 2017, 17, 3238-3245.	4.5	113
44	Strong Coupling Between Organic Molecules and Plasmonic Nanostructures. Springer Series in Solid-state Sciences, 2017, , 121-150.	0.3	7

#	ARTICLE	IF	Citations
45	Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe ₂ Nanostructures. ACS Photonics, 2017, 4, 1653-1660.	3.2	51
46	Optical memristive switches. Journal of Electroceramics, 2017, 39, 239-250.	0.8	40
47	Molecular Plasmonics: Strong Coupling at the Low Molecular Density Limit. Journal of Physical Chemistry C, 2017, 121, 14819-14825.	1.5	10
48	Luminescence of a Transition Metal Complex Inside a Metamaterial Nanocavity. Small, 2017, 13, 1700692.	5.2	8
49	Plasmon-enhanced fluorescence spectroscopy. Chemical Society Reviews, 2017, 46, 3962-3979.	18.7	424
50	Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chemical Science, 2017, 8, 4696-4704.	3.7	78
51	What's so Hot about Electrons in Metal Nanoparticles?. ACS Energy Letters, 2017, 2, 1641-1653.	8.8	341
52	Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe ₂ . Nano Letters, 2017, 17, 3809-3814.	4.5	270
53	Mode Evolution in Strongly Coupled Plasmonic Dolmens Fabricated by Templated Assembly. ACS Photonics, 2017, 4, 1661-1668.	3.2	11
54	Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nature Communications, 2017, 8, 15225.	5.8	158
55	Plasmon-Enhanced Resonant Excitation and Demethylation of Methylene Blue. Journal of Physical Chemistry C, 2017, 121, 7421-7428.	1.5	53
56	Control of the Stokes Shift with Strong Coupling. Advanced Optical Materials, 2017, 5, 1600941.	3.6	23
57	Plasmon–emitter interaction using integrated ring grating–nanoantenna structures. Nanotechnology, 2017, 28, 185201.	1.3	5
58	Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces. Chemical Reviews, 2017, 117, 5174-5222.	23.0	126
59	Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. ACS Nano, 2017, 11, 3067-3080.	7.3	127
60	Plasmonics for emerging quantum technologies. Nanophotonics, 2017, 6, 1185-1188.	2.9	73
61	Cavity Born–Oppenheimer Approximation for Correlated Electron–Nuclear-Photon Systems. Journal of Chemical Theory and Computation, 2017, 13, 1616-1625.	2.3	133
62	Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Letters, 2017, 17, 551-558.	4.5	167

#	Article	IF	CITATIONS
63	Unrelenting plasmons. Nature Photonics, 2017, 11, 8-10.	15.6	66
64	Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nature Communications, 2017, 8, 13687.	5 . 8	218
65	Plasmonic tunnel junctions for single-molecule redox chemistry. Nature Communications, 2017, 8, 994.	5.8	116
66	Plasmon enhanced quantum dots fluorescence and energy conversion in water splitting using shell-isolated nanoparticles. Nano Energy, 2017, 42, 232-240.	8.2	28
67	Optical Antennas: Controlling Electromagnetic Scattering, Radiation, and Emission at the Nanoscale. IEEE Antennas and Propagation Magazine, 2017, 59, 43-61.	1.2	21
68	Temporal Dynamics of Localized Exciton–Polaritons in Composite Organic–Plasmonic Metasurfaces. Nano Letters, 2017, 17, 7675-7683.	4.5	22
69	Gap enhanced fluorescence as a road map for the detection of very weakly fluorescent emitters from visible to ultraviolet. Scientific Reports, 2017, 7, 14191.	1.6	7
70	Quantum Dot Emission Driven by Mie Resonances in Silicon Nanostructures. Nano Letters, 2017, 17, 6886-6892.	4.5	127
71	3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography. Nano Letters, 2017, 17, 6773-6777.	4.5	31
72	Sculpting Fano Resonances To Control Photonic–Plasmonic Hybridization. Nano Letters, 2017, 17, 6927-6934.	4.5	45
73	A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator. ACS Photonics, 2017, 4, 2738-2744.	3.2	17
74	Many-Molecule Reaction Triggered by a Single Photon in Polaritonic Chemistry. Physical Review Letters, 2017, 119, 136001.	2.9	121
75	Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror. Journal of Chemical Physics, 2017, 147, 074117.	1.2	26
76	Mapping SERS in CB:Au Plasmonic Nanoaggregates. ACS Photonics, 2017, 4, 2681-2686.	3.2	23
77	Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow. ACS Nano, 2017, 11, 11317-11329.	7.3	25
78	Optics of exciton-plasmon nanomaterials. Journal of Physics Condensed Matter, 2017, 29, 443003.	0.7	73
79	Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators. ACS Photonics, 2017, 4, 2091-2101.	3.2	85
80	Generating an electromagnetic multipole by oscillating currents. Physical Review A, 2017, 96, .	1.0	3

#	ARTICLE	IF	Citations
81	Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials. ACS Photonics, 2017, 4, 3045-3054.	3.2	33
82	Plasmonic Nonlocal Response Effects on Dipole Decay Dynamics in the Weak- and Strong-Coupling Regimes. Journal of Physical Chemistry C, 2017, 121, 22361-22368.	1.5	24
83	Fano resonance Rabi splitting of surface plasmons. Scientific Reports, 2017, 7, 8010.	1.6	57
84	Aluminum Nanotripods for Lightâ€Matter Coupling Robust to Nanoemitter Orientation. Laser and Photonics Reviews, 2017, 11, 1700051.	4.4	13
85	Plasmonic Gold Nanocones in the Nearâ€Infrared for Quantum Nanoâ€Optics. Advanced Optical Materials, 2017, 5, 1700586.	3.6	12
86	Spatiotemporal Dynamics and Control of Strong Coupling in Plasmonic Nanocavities. ACS Photonics, 2017, 4, 2410-2418.	3.2	32
87	Plasmonic Fields Focused to Molecular Size. ChemNanoMat, 2017, 3, 843-856.	1.5	9
88	Surface Energyâ€Controlled SERS Substrates for Molecular Concentration at Plasmonic Nanogaps. Advanced Functional Materials, 2017, 27, 1703376.	7.8	84
89	Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling. Physical Review Letters, 2017, 119, 023901.	2.9	16
90	Control of the absorption of a four-level quantum system near a plasmonic nanostructure. Physical Review B, 2017, 95, .	1.1	29
91	Smart supramolecular sensing with cucurbit[<i>n</i>]urils: probing hydrogen bonding with SERS. Faraday Discussions, 2017, 205, 505-515.	1.6	20
92	Wiry matter–light coupling. Nature Materials, 2017, 16, 877-878.	13.3	5
93	Broadband room temperature strong coupling between quantum dots and metamaterials. Nanoscale, 2017, 9, 11418-11423.	2.8	15
94	Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. Journal of Chemical Theory and Computation, 2017, 13, 4324-4335.	2.3	123
95	Quantum plasmonic nanoantennas. Physical Review B, 2017, 95, .	1.1	30
96	Assembly of "3D―plasmonic clusters by "2D―AFM nanomanipulation of highly uniform and smooth gold nanospheres. Scientific Reports, 2017, 7, 6045.	1.6	23
97	Coherent Coupling of a Single Molecule to a Scanning Fabry-Perot Microcavity. Physical Review X, 2017, 7, .	2.8	49
98	Miniaturizing optical antennas using hyperbolic metamaterial wires. Physical Review B, 2017, 95, .	1.1	4

#	Article	IF	CITATIONS
99	Quantum emitter dipole–dipole interactions in nanoplasmonic systems. International Journal of Modern Physics B, 2017, 31, 1740006.	1.0	5
100	How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps. Physical Review B, 2017, 96, .	1.1	33
101	Sculpting light by arranging optical components with DNA nanostructures. MRS Bulletin, 2017, 42, 936-942.	1.7	32
102	Carbon Dots–Plasmonics Coupling Enables Energy Transfer and Provides Unique Chemical Signatures. Journal of Physical Chemistry Letters, 2017, 8, 6080-6085.	2.1	11
103	Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances. Physical Review Letters, 2017, 119, 233901.	2.9	112
104	Polariton spectrum of the Dicke-Ising model. Physical Review A, 2017, 96, .	1.0	9
105	Cavity-Enhanced Transport of Charge. Physical Review Letters, 2017, 119, 223601.	2.9	109
106	Few-Electron Ultrastrong Light-Matter Coupling at 300 GHz with Nanogap Hybrid LC Microcavities. Nano Letters, 2017, 17, 7410-7415.	4.5	57
107	Voltageâ€Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals. Chemistry - A European Journal, 2017, 23, 18166-18170.	1.7	50
108	Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. Light: Science and Applications, 2017, 6, e17111-e17111.	7.7	33
109	Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nature Communications, 2017, 8, 1413.	5.8	87
110	Antibunching dynamics of plasmonically mediated entanglement generation. Physical Review A, 2017, 96, .	1.0	17
111	Strongly Asymmetric Spectroscopy in Plasmon-Exciton Hybrid Systems due to Interference-Induced Energy Repartitioning. Physical Review Letters, 2017, 119, 177401.	2.9	26
112	Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nature Communications, 2017, 8, 1296.	5.8	290
113	Ultrafast Plasmonics. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 255-306.	0.1	1
114	Polarized surface-enhanced Raman spectroscopy of suspended carbon nanotubes by Pt-Re nanoantennas. Physical Review B, 2017, 96, .	1.1	4
115	Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Physical Review B, 2017, 95, .	1.1	55
116	Absorption and photoluminescence in organic cavity QED. Physical Review A, 2017, 95, .	1.0	84

#	Article	IF	Citations
117	Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chemical Society Reviews, 2017, 46, 3904-3921.	18.7	113
118	Plasmonic enhancement of SERS measured on molecules in carbon nanotubes. Faraday Discussions, 2017, 205, 85-103.	1.6	13
119	Room-Temperature Strong Light–Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. Nano Letters, 2017, 17, 4689-4697.	4.5	237
120	The case for quantum plasmonics. Nature Photonics, 2017, 11, 398-400.	15.6	77
121	Ultra-broadband enhancement of nonlinear optical processes from randomly patterned super absorbing metasurfaces. Scientific Reports, 2017, 7, 4346.	1.6	11
122	Plasmon resonance coupling phenomena in self-assembled colloidal monolayers. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600947.	0.8	12
123	Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Physical Review Letters, 2017, 118, 237401.	2.9	207
124	Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731.	3.6	15
125	Molecules in plasmonic nano-cavities., 2017,,.		0
126	Nonlocal plasmonic effects on dipole decay dynamics in the weak and strong coupling regimes. , 2017, , .		0
127	Suppression of fluorescence quenching and strong-coupling in plasmonic nanocavities., 2017,,.		0
128	Integrated nanoplasmonic quantum interfaces for room-temperature single-photon sources. Physical Review B, 2017, 96, .	1.1	8
129	Selectively controlling plasmon-driven photochemical reactions. , 2017, , .		0
130	Hybrid nanocavity for molecular sensing. , 2017, , .		0
131	Understanding bowtie nanoantennas excited by a localized emitter., 2017,,.		0
132	Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure. Optics Letters, 2017, 42, 2834.	1.7	10
133	Enhancing ultraviolet spontaneous emission with a designed quantum vacuum. Optics Express, 2017, 25, 4162.	1.7	3
134	In-line interferometer for broadband near-field scanning optical spectroscopy. Optics Express, 2017, 25, 15504.	1.7	1

#	Article	IF	Citations
135	Second harmonic generation enhancement from a nonlinear nanocrystal integrated hyperbolic metamaterial cavity. Optics Express, 2017, 25, 21342.	1.7	11
136	Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags. Optics Express, 2017, 25, 24767.	1.7	7
137	Material platforms for integrated quantum photonics. Optical Materials Express, 2017, 7, 111.	1.6	109
138	Hybrid metal-dielectric nanocavity for enhanced light-matter interactions. Optical Materials Express, 2017, 7, 231.	1.6	13
139	Enhancing photon correlations through plasmonic strong coupling. Optica, 2017, 4, 1363.	4.8	66
140	Strong coupling between few molecular excitons and Fano-like cavity plasmon in two-layered dielectric-metal core-shell resonators. Optics Express, 2017, 25, 1495.	1.7	16
141	Cathodoluminescence spectroscopy of plasmonic patch antennas: towards lower order and higher energies. Optics Express, 2017, 25, 5488.	1.7	9
142	Coupled quantum molecular cavity optomechanics with surface plasmon enhancement. Photonics Research, 2017, 5, 450.	3.4	5
143	Strongly enhanced molecular fluorescence with ultra-thin optical magnetic mirror metasurfaces. Optics Letters, 2017, 42, 4478.	1.7	12
144	Exact functionals for correlated electron–photon systems. New Journal of Physics, 2017, 19, 113036.	1.2	19
145	Resonance Coupling between Molecular Excitons and Nonradiating Anapole Modes in Silicon Nanodisk-J-Aggregate Heterostructures. ACS Photonics, 2018, 5, 1628-1639.	3.2	56
146	Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Nano Letters, 2018, 18, 2209-2216.	4.5	96
147	From a quantum-electrodynamical light–matter description to novel spectroscopies. Nature Reviews Chemistry, 2018, 2, .	13.8	182
148	Hybridâ€State Dynamics of Dye Molecules and Surface Plasmon Polaritons under Ultrastrong Coupling Regime. Laser and Photonics Reviews, 2018, 12, 1700176.	4.4	25
149	Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host–Guest Chemistry. Journal of the American Chemical Society, 2018, 140, 4705-4711.	6.6	102
150	Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Letters, 2018, 18, 2358-2364.	4.5	137
151	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	1.0	240
152	Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity. Nature Communications, 2018, 9, 763.	5.8	30

#	ARTICLE	IF	CITATIONS
153	Near-field strong coupling of single quantum dots. Science Advances, 2018, 4, eaar4906.	4.7	175
154	Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter–metallic-nanoparticle structures. Physical Review B, 2018, 97, .	1.1	23
155	Emission Rate Modification and Quantum Efficiency Enhancement of Er ³⁺ Emitters by Near-Field Coupling with Nanohole Arrays. ACS Photonics, 2018, 5, 2189-2199.	3.2	23
156	Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS ₂ at Room Temperature. Advanced Materials, 2018, 30, e1705779.	11.1	88
157	Bose–Einstein condensation in a plasmonic lattice. Nature Physics, 2018, 14, 739-744.	6.5	151
158	Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1593-1606.	1.4	6
159	Light Interaction with Photonic and Plasmonic Resonances. Laser and Photonics Reviews, 2018, 12, 1700113.	4.4	371
160	<i>In Situ</i> Generation of Plasmonic Nanoparticles for Manipulating Photon–Plasmon Coupling in Microtube Cavities. ACS Nano, 2018, 12, 3726-3732.	7.3	20
161	Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS Nano, 2018, 12, 4775-4786.	7.3	35
162	Tunable Resonance Coupling in Single Si Nanoparticle–Monolayer WS ₂ Structures. ACS Applied Materials & Districtures. ACS Applied Materials & Districtures. ACS Applied Materials & Districtures. ACS	4.0	82
163	Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates. Modern Physics Letters B, 2018, 32, 1850046.	1.0	2
164	Aperiodic Porous Metasurface-Mediated Organic Semiconductor Fluorescence. ACS Photonics, 2018, 5, 1215-1227.	3.2	8
165	Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking. Physical Review X, 2018, 8, .	2.8	47
166	A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm. Advanced Materials, 2018, 30, e1706031.	11.1	132
167	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2018, 57, 2846-2850.	7.2	150
168	Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption. ACS Photonics, 2018, 5, 776-781.	3.2	78
169	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2018, 130, 2896-2900.	1.6	17
170	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.	3.2	171

#	Article	IF	Citations
171	Light–matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale, 2018, 10, 3589-3605.	2.8	179
172	Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures. Advanced Optical Materials, 2018, 6, 1701094.	3.6	120
173	Light-Emitting Halide Perovskite Nanoantennas. Nano Letters, 2018, 18, 1185-1190.	4.5	132
174	Luminescence Properties of ZnO Twin Nanorod–Ag Heteronanocrystals and Interfacial Exciton–Surface Plasmon Coupling. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700375.	1.2	1
175	Ultrastrong Coupling of Electrically Pumped Nearâ€Infrared Excitonâ€Polaritons in High Mobility Polymers. Advanced Optical Materials, 2018, 6, 1700962.	3.6	38
176	An Allâ€Dielectric Metasurface Building Block for the Kerker Effect between Excitons and Nanocavities: Germanium Nanogroove. Advanced Optical Materials, 2018, 6, 1701176.	3.6	7
177	Polarization-resolved optical response of plasmonic particle-on-film nanocavities. Journal of Optics (United Kingdom), 2018, 20, 024010.	1.0	22
178	Magnetic and Electric Resonances in Particle-to-Film-Coupled Functional Nanostructures. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3133-3141.	4.0	34
179	Active Tuning of Strong Coupling States between Dye Excitons and Localized Surface Plasmons via Electrochemical Potential Control. ACS Photonics, 2018, 5, 788-796.	3.2	43
180	Plasmonic Cavity Coupling. ACS Photonics, 2018, 5, 43-53.	3.2	176
181	Collective effect of light-induced and natural nonadiabatic phenomena in the dissociation dynamics of the NaI molecule. Chemical Physics, 2018, 509, 91-97.	0.9	8
182	Plasmonic Coupling Effects on the Refractive Index Sensitivities of Plane Au-Nanosphere-Cluster Sensors. Plasmonics, 2018, 13, 1729-1734.	1.8	3
183	Dynamics of a quantum emitter resonantly coupled to both external field and localized surface plasmon. Physical Review B, 2018, 97, .	1.1	5
184	Quantum description of radiative decay in optical cavities. Physical Review A, 2018, 97, .	1.0	3
185	Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces. Physical Review B, 2018, 97, .	1.1	67
186	Trapping and Deposition of Dye–Molecule Nanoparticles in the Nanogap of a Plasmonic Antenna. ACS Omega, 2018, 3, 4878-4883.	1.6	34
187	Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity. Nature Communications, 2018, 9, 1705.	5.8	32
188	Regularized quasinormal modes for plasmonic resonators and open cavities. Physical Review B, 2018, 97, .	1.1	21

#	Article	IF	CITATIONS
189	Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating. Nature Nanotechnology, 2018, 13, 322-329.	15.6	98
190	Imaging of Plasmonic Eigen Modes in Gold Triangular Mesoplates by Near-Field Optical Microscopy. Journal of Physical Chemistry C, 2018, 122, 7399-7409.	1.5	25
191	Plasmonic sphere-on-plane systems with semiconducting polymer spacer layers. Physical Chemistry Chemical Physics, 2018, 20, 11749-11757.	1.3	5
192	Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging. Nano Letters, 2018, 18, 2912-2917.	4.5	40
193	Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources. Nano Letters, 2018, 18, 2538-2544.	4.5	33
194	Broadband Dielectric–Metal Hybrid Nanoantenna: Silicon Nanoparticle on a Mirror. ACS Photonics, 2018, 5, 1986-1993.	3.2	67
195	Strong Coupling in the Structure of Single Metallic Nanoparticle Partially Buried in Molecular J-Aggregates. Plasmonics, 2018, 13, 743-747.	1.8	4
196	Plasmon-Exciton Coupling in Symmetry-Broken Nanocavities. ACS Photonics, 2018, 5, 177-185.	3.2	27
197	Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities. ACS Photonics, 2018, 5, 186-191.	3.2	137
198	Exact States and Spectra of Vibrationally Dressed Polaritons. ACS Photonics, 2018, 5, 249-257.	3.2	79
199	Dispersion Anisotropy of Plasmon–Exciton–Polaritons in Lattices of Metallic Nanoparticles. ACS Photonics, 2018, 5, 233-239.	3.2	20
200	Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials, 2018, 30, 1702669.	11.1	102
201	Light emission via surface plasmon modes in metal semi-shell cavity shaped antennas and film coupled structure. Optik, 2018, 152, 100-105.	1.4	2
202	Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States. ACS Photonics, 2018, 5, 65-79.	3.2	88
203	Ultrastrong Plasmon–Exciton Coupling by Dynamic Molecular Aggregation. ACS Photonics, 2018, 5, 143-150.	3.2	48
204	Polaritonic Chemistry with Organic Molecules. ACS Photonics, 2018, 5, 205-216.	3.2	295
205	Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity. ACS Photonics, 2018, 5, 240-248.	3.2	59
206	Can Ultrastrong Coupling Change Ground-State Chemical Reactions?. ACS Photonics, 2018, 5, 167-176.	3.2	95

#	Article	IF	CITATIONS
207	Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. ACS Photonics, 2018, 5, 2-23.	3.2	168
208	Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics, 2018, 5, 24-42.	3.2	365
209	Infrared Plasmonic Resonators Based on Self-Assembled Core–Shell Particles. ACS Photonics, 2018, 5, 844-851.	3.2	6
210	Active Control of Surface Plasmon–Emitter Strong Coupling. ACS Photonics, 2018, 5, 54-64.	3.2	55
211	Differential Wavevector Distribution of Surface-Enhanced Raman Scattering and Fluorescence in a Film-Coupled Plasmonic Nanowire Cavity. Nano Letters, 2018, 18, 650-655.	4.5	34
212	Light–matter interaction in the long-wavelength limit: no ground-state without dipole self-energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 034005.	0.6	132
213	Isotropic Magnetic Purcell Effect. ACS Photonics, 2018, 5, 678-683.	3.2	40
214	Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nature Nanotechnology, 2018, 13, 59-64.	15.6	186
215	Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Letters, 2018, 18, 405-411.	4.5	126
216	Comparative Study of Plasmonic Resonances between the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities. ACS Photonics, 2018, 5, 413-421.	3.2	42
217	Manipulation of Quenching in Nanoantenna–Emitter Systems Enabled by External Detuned Cavities: A Path to Enhance Strong-Coupling. ACS Photonics, 2018, 5, 456-461.	3.2	63
218	Large Purcell enhancement with efficient one-dimensional collection via coupled nanowire–nanorod system. Nanotechnology, 2018, 29, 045203.	1.3	11
219	Metalâ€Dielectric Nanocavity for Realâ€Time Tracing Molecular Events with Temperature Feedback. Laser and Photonics Reviews, 2018, 12, 1700227.	4.4	45
220	Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics. ACS Photonics, 2018, 5, 133-142.	3.2	30
221	Plasmon–Exciton Coupling in Complex Systems. Advanced Optical Materials, 2018, 6, 1800275.	3.6	27
222	Nanoplasmonic Enhancement of Semiconductor Quantum Emitters. , 2018, , .		0
223	Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy. Nanoscale, 2018, 10, 21742-21747.	2.8	8
224	Tensor Network Simulation of Non-Markovian Dynamics in Organic Polaritons. Physical Review Letters, 2018, 121, 227401.	2.9	82

#	Article	IF	CITATIONS
225	Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics, 2018, 7, 1865-1889.	2.9	141
226	Manipulating azobenzene photoisomerization through strong light–molecule coupling. Nature Communications, 2018, 9, 4688.	5.8	111
227	Nonradiative decay and absorption rates of quantum emitters embedded in metallic systems: Microscopic description and their determination from electronic transport. Physical Review B, 2018, 98, .	1.1	1
228	Strong-Coupling of Emitters to Different Grating Coupled Plasmonic Modes. , 2018, , .		0
229	Broadband highly directive 3D nanophotonic lenses. Nature Communications, 2018, 9, 4742.	5.8	23
230	Localized and Propagated Surface Plasmons in Metal Nanoparticles and Nanowires. , 2018, , .		1
231	Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong coupling system composed of a single silver nanoparticle dimer and a few dye molecules. Journal of Chemical Physics, 2018, 149, 244701.	1.2	20
232	Magnetic hot-spot generation at optical frequencies: from plasmonic metamolecules to all-dielectric nanoclusters. Nanophotonics, 2018, 8, 45-62.	2.9	26
233	Room-Temperature Optical Picocavities below 1 nm ³ Accessing Single-Atom Geometries. Journal of Physical Chemistry Letters, 2018, 9, 7146-7151.	2.1	88
234	Hydrophobic assembly of gold nanoparticles into plasmonic oligomers with Langmuir–Blodgett film. Japanese Journal of Applied Physics, 2018, 57, 120311.	0.8	4
235	Ultraslow Waves and Photonic Quantum Dynamics on the Nanoscale. , 2018, , .		0
236	All-optical active control of photon correlations: Dressed-state-assisted quantum interference effects. Physical Review A, 2018, 98, .	1.0	12
237	Strong Light–Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach. Advanced Quantum Technologies, 2018, 1, 1800001.	1.8	41
238	Vectorial Fluorescence Emission from Microsphere Coupled to Gold Mirror. Advanced Optical Materials, 2018, 6, 1801025.	3.6	16
239	Fabrication and simulation of V-shaped Ag nanorods as high-performance SERS substrates. Physical Chemistry Chemical Physics, 2018, 20, 25623-25628.	1.3	12
240	Recent Advances of Plasmonic Nanoparticles and their Applications. Materials, 2018, 11, 1833.	1.3	146
241	<i>Ab initio</i> nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling. Physical Review A, 2018, 98, .	1.0	126
242	Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nature Communications, 2018, 9, 4012.	5.8	171

#	Article	IF	Citations
243	Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field Inside a Fabry–Pérot Cavity. Journal of Physical Chemistry C, 2018, 122, 24917-24923.	1.5	22
244	Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes. Journal of Physical Chemistry Letters, 2018, 9, 6215-6223.	2.1	59
245	Tunable optical spin Hall effect in a liquid crystal microcavity. Light: Science and Applications, 2018, 7, 74.	7.7	44
246	Mie excitons: Understanding strong coupling in dielectric nanoparticles. Physical Review B, 2018, 98, .	1.1	40
247	Controlling gap plasmons with quantum resonances. Physical Review B, 2018, 98, .	1.1	1
248	Reaching the Limits of Enhancement in (Sub)Nanometer Metal Structures. ACS Photonics, 2018, 5, 4222-4228.	3.2	15
249	Tensor network simulation of polaron-polaritons in organic microcavities. Physical Review B, 2018, 98, .	1.1	28
250	On the Fano Line Shape of Single Molecule Electroluminescence Induced by a Scanning Tunneling Microscope. Nano Letters, 2018, 18, 6826-6831.	4.5	11
251	Free-Standing Plasmonic Chiral Metamaterials with 3D Resonance Cavities. ACS Nano, 2018, 12, 10914-10923.	7.3	40
252	Modeling Molecular Orientation Effects in Dye-Coated Nanostructures Using a Thin-Shell Approximation of Mie Theory for Radially Anisotropic Media. ACS Photonics, 2018, 5, 5002-5009.	3.2	10
253	Photoactivity and Stability Coâ€Enhancement: When Localized Plasmons Meet Oxygen Vacancies in MgO. Small, 2018, 14, e1803233.	5.2	28
254	Entanglement between living bacteria and quantized light witnessed by Rabi splitting. Journal of Physics Communications, 2018, 2, 101001.	0.5	28
255	Molecular Emission near Metal Interfaces: The Polaritonic Regime. Journal of Physical Chemistry Letters, 2018, 9, 6511-6516.	2.1	17
256	Heuristic Modeling of Strong Coupling in Plasmonic Resonators. ACS Photonics, 2018, 5, 4089-4097.	3.2	23
257	Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano, 2018, 12, 10393-10402.	7.3	151
258	Dark dimer mode excitation and strong coupling with a nanorod dipole. Photonics Research, 2018, 6, 887.	3.4	20
259	Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces. ACS Photonics, 2018, 5, 4046-4055.	3.2	37
260	Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS ₂ Monolayer at Room Temperature. ACS Photonics, 2018, 5, 3970-3976.	3.2	120

#	Article	IF	CITATIONS
261	Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics, 2018, 7, 1479-1501.	2.9	181
262	Dumbbell gold nanoparticle dimer antennas with advanced optical properties. Beilstein Journal of Nanotechnology, 2018, 9, 2188-2197.	1.5	8
263	Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard. Optics Express, 2018, 26, 23534.	1.7	15
264	Quantitative Nanoplasmonics. ACS Central Science, 2018, 4, 1303-1314.	5.3	38
265	Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light: Science and Applications, 2018, 7, 56.	7.7	94
266	From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nature Reviews Chemistry, 2018, 2, 216-230.	13.8	337
267	On-demand quantitative SERS bioassays facilitated by surface-tethered ratiometric probes. Chemical Science, 2018, 9, 8089-8093.	3.7	41
268	Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics. Physical Review B, 2018, 97, .	1.1	43
269	Organic Photodiodes with an Extended Responsivity Using Ultrastrong Light–Matter Coupling. ACS Photonics, 2018, 5, 2921-2927.	3.2	49
270	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	23.0	80
271	Morphology dependent near-field response in atomistic plasmonic nanocavities. Nanoscale, 2018, 10, 11410-11417.	2.8	34
272	Fourier-transform spatial modulation spectroscopy of single gold nanorods. Nanophotonics, 2018, 7, 715-726.	2.9	6
273	Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities. Physical Review B, 2018, 97, .	1.1	34
274	Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces. Nanoscale, 2018, 10, 13607-13616.	2.8	10
275	Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas. Nano Letters, 2018, 18, 4837-4844.	4.5	121
276	Light-Forbidden Transitions in Plasmon-Emitter Interactions beyond the Weak Coupling Regime. ACS Photonics, 2018, 5, 3415-3420.	3.2	40
277	Hybridized Plasmonic Gap Mode of Gold Nanorod on Mirror Nanoantenna for Spectrally Tailored Fluorescence Enhancement. ACS Photonics, 2018, 5, 3421-3427.	3.2	46
278	Photonic trimming of quantum emitters via direct fabrication of metallic nanofeatures. APL Photonics, 2018, 3, 071301.	3.0	2

#	Article	IF	CITATIONS
279	Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems. Physical Review B, 2018, 98, .	1.1	32
280	High-dielectric constant enhanced photon–exciton coupling in an evanescent vacuum. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1475.	0.9	7
281	Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure. Optics Express, 2018, 26, 1390.	1.7	10
282	Color rendering based on a plasmon fullerene cavity. Optics Express, 2018, 26, 9984.	1.7	3
283	Optical trapping of single quantum dots for cavity quantum electrodynamics. Photonics Research, 2018, 6, 182.	3.4	33
284	Hybrid silicon nonlinear photonics [Invited]. Photonics Research, 2018, 6, B13.	3.4	30
285	Photon statistics in collective strong coupling: Nanocavities and microcavities. Physical Review A, 2018, 98, .	1.0	31
286	Strong Light–Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Monoand Multilayer WSe ₂ . Nano Letters, 2018, 18, 5938-5945.	4.5	131
287	Nanoimaging and Control of Molecular Vibrations through Electromagnetically Induced Scattering Reaching the Strong Coupling Regime. ACS Photonics, 2018, 5, 3594-3600.	3.2	46
288	Quantized pseudomodes for plasmonic cavity QED. Optics Letters, 2018, 43, 1834.	1.7	25
289	Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system. Journal of Physics Condensed Matter, 2018, 30, 305302.	0.7	6
290	Light–Matter Interaction within Extreme Dimensions: From Nanomanufacturing to Applications. Advanced Optical Materials, 2018, 6, 1800444.	3.6	22
291	Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Science Advances, 2018, 4, eaas 9552.	4.7	199
292	Fabrication method of two-photon luminescent organic nano-architectures using electron-beam irradiation. Applied Physics Letters, 2018, 112, .	1.5	3
293	Radiative Pumping and Propagation of Plexcitons in Diffractive Plasmonic Crystals. Nano Letters, 2018, 18, 4927-4933.	4.5	25
294	Size-Dependent Coupling of Hybrid Core–Shell Nanorods: Toward Single-Emitter Strong-Coupling. Journal of Physical Chemistry C, 2018, 122, 17976-17982.	1.5	16
295	Controlling the 3D Electromagnetic Coupling in Co-Sputtered Ag–SiO2 Nanomace Arrays by Lateral Sizes. Nanomaterials, 2018, 8, 493.	1.9	5
296	Zigzag Localized Surface Plasmon Resonance Wavelength Shift of Asymmetric V-Shape Ag Nanorods. Journal of Physical Chemistry C, 2018, 122, 17400-17405.	1.5	3

#	Article	IF	CITATIONS
297	Shaping Polaritons to Reshape Selection Rules. ACS Photonics, 2018, 5, 3064-3072.	3.2	15
298	Strong Spatial and Spectral Localization of Surface Plasmons in Individual Randomly Disordered Gold Nanosponges. Nano Letters, 2018, 18, 4957-4964.	4.5	20
299	Plasmon-Enhanced Generation of Nonclassical Light. ACS Photonics, 2018, 5, 3447-3451.	3.2	66
300	Influence of Surface Roughness on Strong Light-Matter Interaction of a Quantum Emitter-Metallic Nanoparticle System. Scientific Reports, 2018, 8, 7115.	1.6	16
301	Interaction and Coherence of a Plasmon–Exciton Polariton Condensate. ACS Photonics, 2018, 5, 3666-3672.	3.2	35
302	Surface Plasmon Polariton-Controlled Molecular Switch. Journal of Physical Chemistry C, 2018, 122, 20083-20089.	1.5	12
303	High- <i>Q</i> , low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling. Nanoscale, 2018, 10, 17148-17155.	2.8	22
304	Dynamics of Strongly Coupled Hybrid States by Transient Absorption Spectroscopy. Advanced Functional Materials, 2018, 28, 1801761.	7.8	17
305	Optical Absorption of Dye Molecules in a Spherical Shell Geometry. Journal of Physical Chemistry C, 2018, 122, 19110-19115.	1.5	12
306	Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics. Photonics Research, 2018, 6, 867.	3.4	15
307	Coherent Light Harvesting through Strong Coupling to Confined Light. Journal of Physical Chemistry Letters, 2018, 9, 4848-4851.	2.1	63
308	Aqueous Gold Nanoparticle Solutions for Improved Efficiency in Electrogenerated Chemiluminescent Reactions. ACS Applied Nano Materials, 2018, 1, 5307-5315.	2.4	10
309	Coupling between the Mie Resonances of Cu ₂ O Nanospheres and the Excitons of Dye Aggregates. ACS Photonics, 2018, 5, 3838-3848.	3.2	33
310	Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews, 2018, 118, 5912-5951.	23.0	931
311	Confining light to the atomic scale. Nature Nanotechnology, 2018, 13, 442-443.	15.6	1
312	Selective manipulation of electronically excited states through strong light–matter interactions. Nature Communications, 2018, 9, 2273.	5.8	155
313	Normalization approach for scattering modes in classical and quantum electrodynamics. Physical Review A, 2018, 97, .	1.0	1
314	Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities. EPJ Applied Metamaterials, 2018, 5, 6.	0.8	12

#	Article	IF	CITATIONS
315	Polariton chemistry: controlling molecular dynamics with optical cavities. Chemical Science, 2018, 9, 6325-6339.	3.7	403
316	Shaping excitons in light-harvesting proteins through nanoplasmonics. Chemical Science, 2018, 9, 6219-6227.	3.7	9
317	Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering. Nano Letters, 2018, 18, 4409-4416.	4.5	32
318	Optomagnetic Effect Induced by Magnetized Nanocavity Plasmon. Journal of the American Chemical Society, 2019, 141, 13795-13798.	6.6	16
319	Tunable Openâ€Access Microcavities for Solidâ€State Quantum Photonics and Polaritonics. Advanced Quantum Technologies, 2019, 2, 1900060.	1.8	30
320	Photoinduced anomalous Coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. II. Effects of electron-phonon coupling and vibrational relaxation. Journal of Chemical Physics, 2019, 151, 054704.	1.2	3
321	Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS ₂ Monolayer Coupled with Plasmonic Nanocavities. Advanced Optical Materials, 2019, 7, 1900857.	3.6	48
322	Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light. Frontiers of Physics, 2019, 14, 1.	2.4	6
323	Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Science Advances, 2019, 5, eaav5931.	4.7	107
324	Investigation on Fano resonance and energy transfer of Hyper Ring–Loop nanostructure. Optics Communications, 2019, 452, 434-439.	1.0	3
325	Electric field amplification of plasmonâ€molecule hybrids revealed by firstâ€principles time dependent density functional theory calculations. International Journal of Quantum Chemistry, 2019, 119, e26021.	1.0	2
326	Mechanism of Bimodal Light Emission in a Molecule-Mediated Scanning Tunneling Microscopy Junction. Journal of Physical Chemistry C, 2019, 123, 18508-18515.	1.5	2
327	Theory and Limits of On-Demand Single-Photon Sources Using Plasmonic Resonators: A Quantized Quasinormal Mode Approach. ACS Photonics, 2019, 6, 2168-2180.	3.2	26
328	Uniaxial transition dipole moments in semiconductor quantum rings caused by broken rotational symmetry. Nature Communications, 2019, 10, 3253.	5.8	19
329	Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting. Nanoscale, 2019, 11, 14540-14552.	2.8	124
330	Enhanced Spontaneous Emission Rate in a Low-Q Hybrid Photonic-Plasmonic Nanoresonator. Journal of Physical Chemistry C, 2019, 123, 19862-19870.	1.5	9
331	Hidden Symmetries in Bowtie Nanocavities and Diabolo Nanoantennas. ACS Photonics, 2019, 6, 2014-2024.	3.2	11
332	Quantum Plasmonic Immunoassay Sensing. Nano Letters, 2019, 19, 5853-5861.	4.5	55

#	Article	IF	Citations
333	Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling. Nature Communications, 2019, 10, 3336.	5.8	67
334	Coupling of atomic quadrupole transitions with resonant surface plasmons. Physical Review A, 2019, 99, .	1.0	10
335	Elucidating Molecule–Plasmon Interactions in Nanocavities with 2 nm Spatial Resolution and at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2019, 58, 12133-12137.	7.2	29
336	Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach. Journal of Chemical Physics, 2019, 151, 014105.	1.2	33
337	Elucidating Molecule–Plasmon Interactions in Nanocavities with 2 nm Spatial Resolution and at the Singleâ€Molecule Level. Angewandte Chemie, 2019, 131, 12261-12265.	1.6	12
338	Synthesis and plasmonic properties of self-assembled Ag superstructures. Journal of Alloys and Compounds, 2019, 803, 700-703.	2.8	1
339	Ultrafast dynamics in the vicinity of quantum light-induced conical intersections. New Journal of Physics, 2019, 21, 093040.	1.2	36
340	Implementations of more general solid-state (SWAP) $1\mathrm{Im}$ and controlled-(swap) $1\mathrm{Im}$ gates. New Journal of Physics, 2019, 21, 103018.	1.2	7
341	Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions. Journal of Chemical Physics, 2019, 151, 154109.	1.2	24
342	Selfâ€Assembly of Nanoparticleâ€Spiked Pillar Arrays for Plasmonic Biosensing. Advanced Functional Materials, 2019, 29, 1904257.	7.8	47
343	Demonstration of Robust Plexcitonic Coupling in Organic Moleculesâ€Mediated Toroidal Metaâ€Atoms. Advanced Optical Materials, 2019, 7, 1901248.	3.6	25
344	A Review on the Application of Integral Equationâ€Based Computational Methods to Scattering Problems in Plasmonics. Advanced Theory and Simulations, 2019, 2, 1900087.	1.3	12
345	Strong coupling with directional absorption features of Ag@Au hollow nanoshell/J-aggregate heterostructures. Nanophotonics, 2019, 8, 1835-1845.	2.9	20
346	A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces. Micromachines, 2019, 10, 673.	1.4	20
347	Hierarchical TiO2–Ag composite with three-dimensional hot spots for trace detection. Journal of Alloys and Compounds, 2019, 811, 151994.	2.8	3
348	Hybrid plasmonic metasurfaces. Journal of Applied Physics, 2019, 126, .	1.1	19
349	Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light–Matter Interaction at the Nanoscale. ACS Nano, 2019, 13, 11770-11780.	7. 3	32
350	Modal analysis for nanoplasmonics with nonlocal material properties. Physical Review B, 2019, 100, .	1.1	15

#	Article	IF	CITATIONS
351	Single-Molecule Surface-Enhanced Raman Scattering as a Probe of Single-Molecule Surface Reactions: Promises and Current Challenges. Accounts of Chemical Research, 2019, 52, 3008-3017.	7.6	60
352	Multi-level quantum Rabi model for anharmonic vibrational polaritons. Journal of Chemical Physics, 2019, 151, 144116.	1.2	51
353	Visualizing Spatial Variations of Plasmon–Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Letters, 2019, 19, 8171-8181.	4.5	77
354	Antifreezing Gold Colloids. Journal of the American Chemical Society, 2019, 141, 18682-18693.	6.6	38
355	Plasmonic quantum effects on single-emitter strong coupling. Nanophotonics, 2019, 8, 1821-1833.	2.9	24
356	Plasmonic Metamaterials for Nanochemistry and Sensing. Accounts of Chemical Research, 2019, 52, 3018-3028.	7.6	85
357	Aluminum Metasurface with Hybrid Multipolar Plasmons for 1000-Fold Broadband Visible Fluorescence Enhancement and Multiplexed Biosensing. ACS Nano, 2019, 13, 13775-13783.	7.3	39
358	Diversified and Precise Plasmonic Color Tuning by Three-Dimensional Air-Gap Nanocavities. , 2019, , .		0
360	Soft Robotics Programmed with Double Crosslinking DNA Hydrogels. Advanced Functional Materials, 2019, 29, 1905911.	7.8	62
361	Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Physical Review A, 2019, 100, .	1.0	27
362	109 Evaluation of the Efficacy and Safety of Fractional Picosecond 1064-nm Laser Treatment for Skin Rejuvenation. Journal of Investigative Dermatology, 2019, 139, S233.	0.3	0
363	Absorption cross-section spectroscopy of a single strong-coupling system between plasmon and molecular exciton resonance using a single silver nanoparticle dimer generating surface-enhanced resonant Raman scattering. Physical Review B, 2019, 99, .	1.1	17
364	Tunable Fluorescence from Dyeâ∈Modified DNAâ∈Assembled Plasmonic Nanocube Arrays. Advanced Materials, 2019, 31, e1904448.	11.1	24
365	Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2019, 10, 5476-5483.	2.1	100
366	Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe ₂ : Determination of Ultrafast Decay Rates in Nanometer Dimension. Nano Letters, 2019, 19, 6284-6291.	4.5	71
367	Investigating New Reactivities Enabled by Polariton Photochemistry. Journal of Physical Chemistry Letters, 2019, 10, 5519-5529.	2.1	96
368	Correlative Dark-Field and Photoluminescence Spectroscopy of Individual Plasmon–Molecule Hybrid Nanostructures in a Strong Coupling Regime. ACS Photonics, 2019, 6, 2570-2576.	3.2	33
369	Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers. ACS Nano, 2019, 13, 11453-11459.	7.3	38

#	Article	IF	CITATIONS
370	Tunable Light Emission by Electrically Excited Plasmonic Antenna. ACS Photonics, 2019, 6, 2392-2396.	3.2	23
371	Splitting in lateral shift induced by strong coupling in Kretschmann configuration involving molecular J-aggregates. Modern Physics Letters B, 2019, 33, 1950370.	1.0	5
372	Terahertz field confinement and enhancement in various sub-wavelength structures. Journal of Applied Physics, 2019, 126, .	1.1	16
373	Purcell-Enhanced Spontaneous Emission from Perovskite Quantum Dots Coupled to Plasmonic Crystal. Journal of Physical Chemistry C, 2019, 123, 25359-25365.	1.5	12
374	Light–Matter Response in Nonrelativistic Quantum Electrodynamics. ACS Photonics, 2019, 6, 2757-2778.	3.2	79
375	Surface Plasmon Polaritons Emission with Nanopatch Antennas: Enhancement by Means of Mode Hybridization. ACS Photonics, 2019, 6, 2788-2796.	3.2	25
376	New design strategy for broadband perfect absorber by coupling effects between metamaterial and epsilon-near-zero mode. Optical Materials, 2019, 96, 109347.	1.7	11
377	Effect of Film Thickness on the Far- and Near-Field Optical Response of Nanoparticle-on-Film Systems. Journal of Physical Chemistry C, 2019, 123, 25801-25808.	1.5	22
378	Fabrication of a 1D Mn ₃ O ₄ nano-rod electrode for aqueous asymmetric supercapacitors and capacitive deionization. Inorganic Chemistry Frontiers, 2019, 6, 355-365.	3.0	11
379	Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2019, 52, 456-464.	7.6	76
380	Converting plasmonic light scattering to confined light absorption and creating plexcitons by coupling a gold nano-pyramid array onto a silica–gold film. Nanoscale Horizons, 2019, 4, 516-525.	4.1	29
381	Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews, 2019, 48, 937-961.	18.7	260
382	Plasmon-induced optical control over dithionite-mediated chemical redox reactions. Faraday Discussions, 2019, 214, 455-463.	1.6	10
383	Electronic Structure Effects in the Coupling of a Single Molecule with a Plasmonic Antenna. Journal of Physical Chemistry C, 2019, 123, 4446-4456.	1.5	6
384	Non-hermitian Hamiltonian description for quantum plasmonics: from dissipative dressed atom picture to Fano states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 055404.	0.6	21
385	Excitation of surface plexciton wave at interface of a metal and a columnar thin film infiltrated with Jaggregate dyes. Optics Communications, 2019, 439, 8-15.	1.0	1
386	Thermal Redistribution of Exciton Population in Monolayer Transition Metal Dichalcogenides Probed with Plasmon–Exciton Coupling Spectroscopy. ACS Photonics, 2019, 6, 411-421.	3.2	42
387	Two-path self-interference in PTCDA active waveguides maps the dispersion and refraction of a single waveguide mode. APL Photonics, 2019, 4, .	3.0	2

#	ARTICLE	IF	Citations
388	Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures. Applied Materials Today, 2019, 15, 145-152.	2.3	23
389	Tunable strong plasmon-exciton coupling between single silver nanocube dimer and J-aggregates. Physica B: Condensed Matter, 2019, 569, 40-47.	1.3	9
390	Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 2019, 7, 1900028.	3.6	28
391	Generating Ultrabroadband Deep-UV Radiation and Sub-10 nm Gap by Hybrid-Morphology Gold Antennas. Nano Letters, 2019, 19, 4779-4786.	4.5	15
392	Hybridization of Multiple Vibrational Modes via Strong Coupling Using Confined Light Fields. Advanced Optical Materials, 2019, 7, 1900403.	3.6	29
393	Nonclassical Optical Properties of Mesoscopic Gold. Physical Review Letters, 2019, 122, 246802.	2.9	10
394	Linear acene molecules in plasmonic cavities: mapping evolution of optical absorption spectra and electric field intensity enhancements. New Journal of Chemistry, 2019, 43, 10774-10783.	1.4	13
395	Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity. Physical Review X, 2019, 9, .	2.8	112
396	Spatial Variations in Femtosecond Field Dynamics within a Plasmonic Nanoresonator Mode. Nano Letters, 2019, 19, 4651-4658.	4.5	14
397	Level shift and decay dynamics of a quantum emitter around a plasmonic nanostructure. Physical Review A, 2019, 99, .	1.0	9
398	Exceptional magnetic sensitivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math> -symmetric cavity magnon polaritons. Physical Review B, 2019, 99, .	1.1	55
399	Optically accessible memristive devices. Nanophotonics, 2019, 8, 1579-1589.	2.9	15
400	Electromagnetic interactions of dye molecules surrounding a nanosphere. Nanoscale, 2019, 11, 12177-12187.	2.8	15
401	Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips. Nano Letters, 2019, 19, 3597-3602.	4.5	33
402	Overcoming quantum decoherence with plasmonics. Science, 2019, 364, 532-533.	6.0	84
403	Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot. Journal of Physical Chemistry Letters, 2019, 10, 2874-2878.	2.1	18
404	Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. Journal of Materials Chemistry B, 2019, 7, 3480-3496.	2.9	115
405	Auxiliary Master Equation for Nonequilibrium Dual-Fermion Approach. Physical Review Letters, 2019, 122, 186803.	2.9	12

#	Article	IF	CITATIONS
406	Scanning Near-Field Optical Nanospectrophotometry: a New Method for Nanoscale Measurements of the Absorption Spectra of Single Nanoobjects. Technical Physics Letters, 2019, 45, 138-141.	0.2	0
407	Electronic friction in interacting systems. Journal of Chemical Physics, 2019, 150, 174101.	1.2	12
408	Scalable electrochromic nanopixels using plasmonics. Science Advances, 2019, 5, eaaw2205.	4.7	139
409	Resonant Far- to Near-Field Channeling in Synergetic Multiscale Antennas. ACS Photonics, 2019, 6, 1466-1473.	3.2	4
410	Vectorial near-field coupling. Nature Nanotechnology, 2019, 14, 698-704.	15.6	29
411	Variational Theory of Nonrelativistic Quantum Electrodynamics. Physical Review Letters, 2019, 122, 193603.	2.9	46
412	Electron transfer in confined electromagnetic fields. Journal of Chemical Physics, 2019, 150, 174122.	1.2	56
413	Hybrid cavity-antenna systems for quantum optics outside the cryostat?. Nanophotonics, 2019, 8, 1513-1531.	2.9	44
414	Momentumâ€Resolved Surface Enhanced Raman Scattering from a Nanowire–Nanoparticle Junction Cavity. Advanced Optical Materials, 2019, 7, 1900304.	3.6	5
415	Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nature Nanotechnology, 2019, 14, 679-683.	15.6	235
416	Molecular Optomechanics in the Anharmonic Cavity-QED Regime Using Hybrid Metal–Dielectric Cavity Modes. ACS Photonics, 2019, 6, 1400-1408.	3.2	40
417	Anisotropy and Controllable Band Structure in Suprawavelength Polaritonic Metasurfaces. Physical Review Letters, 2019, 122, 173902.	2.9	20
418	Very Large and Reversible Stark-Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride. Physical Review Applied, 2019, 11, .	1.5	48
419	Exciton–Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Nano Letters, 2019, 19, 3273-3279.	4.5	26
420	Quantum plasmonics get applied. Progress in Quantum Electronics, 2019, 65, 1-20.	3.5	70
421	Plasmon-mediated nonradiative energy transfer from a conjugated polymer to a plane of graphene-nanodot-supported silver nanoparticles: an insight into characteristic distance. Nanoscale, 2019, 11, 6737-6746.	2.8	9
422	Optical detection and storage of entanglement in plasmonically coupled quantum-dot qubits. Physical Review A, 2019, 99, .	1.0	5
423	Watching a Single Fluorophore Molecule Walk into a Plasmonic Hotspot. ACS Photonics, 2019, 6, 985-993.	3.2	34

#	Article	IF	CITATIONS
424	Optical characteristics of nanospace of silver nanowire on a silver mirror. Electronics and Communications in Japan, 2019, 102, 49-57.	0.3	0
425	Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chemical Society Reviews, 2019, 48, 2458-2494.	18.7	91
426	Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nature Communications, 2019, 10, 1049.	5.8	114
427	Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5925-5930.	3.3	24
428	Quantum correlations in quantum emitters strongly coupled with metallic nanoparticles. Quantum Information Processing, 2019, 18 , 1 .	1.0	7
429	Single-Crystalline Gold Nanodisks on WS ₂ Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics, 2019, 6, 994-1001.	3.2	80
430	Nonlinear dynamic instability of Landau-quantized graphene inside an optical ring cavity. Laser Physics Letters, 2019, 16, 025202.	0.6	2
431	Polariton chemistry: Thinking inside the (photon) box. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5214-5216.	3.3	48
432	Real-Time Tunable Strong Coupling: From Individual Nanocavities to Metasurfaces. ACS Photonics, 2019, 6, 838-843.	3.2	30
433	Compounding Plasmon–Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting. Nanomaterials, 2019, 9, 564.	1.9	12
434	Multiscale modelling of photoinduced processes in composite systems. Nature Reviews Chemistry, 2019, 3, 315-330.	13.8	78
435	Extreme nanophotonics from ultrathin metallic gaps. Nature Materials, 2019, 18, 668-678.	13.3	488
436	Tunable Valley Polarized Plasmon-Exciton Polaritons in Two-Dimensional Semiconductors. ACS Nano, 2019, 13, 1333-1341.	7.3	29
437	DNAâ€Mediated Selfâ€Assembly of Plasmonic Antennas with a Single Quantum Dot in the Hot Spot. Small, 2019, 15, e1804418.	5.2	29
438	Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution. Nano Letters, 2019, 19, 2051-2058.	4.5	35
439	Three-dimensional photonic band gap cavity with finite support: Enhanced energy density and optical absorption. Physical Review B, 2019, 99, .	1.1	29
440	Quantum dot plasmonics: from weak to strong coupling. Nanophotonics, 2019, 8, 559-575.	2.9	112
441	Turning a molecule into a coherent two-level quantum system. Nature Physics, 2019, 15, 483-489.	6.5	118

#	Article	IF	CITATIONS
442	Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light–Matter Interactions. Journal of Physical Chemistry C, 2019, 123, 6745-6752.	1.5	8
443	Nanoscale Design of the Local Density of Optical States. Nano Letters, 2019, 19, 1613-1617.	4.5	38
444	Applications of Hybrid Nanoparticles in Biosensors. , 2019, , 431-455.		3
445	Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics, 2019, 8, 641-654.	2.9	47
446	Effects of Radiation on the Environment. Springer Series on Polymer and Composite Materials, 2019, , 1-34.	0.5	0
447	Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Advances in Physics, 2019, 68, 225-333.	35.9	54
448	Electrocatalytic glycerol oxidation enabled by surface plasmon polariton-induced hot carriers in Kretschmann configuration. Nanoscale, 2019, 11, 23234-23240.	2.8	5
449	Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film. Journal of Materials Chemistry C, 2019, 7, 13526-13535.	2.7	6
450	Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference. Journal of Chemical Physics, 2019, 151, 244113.	1.2	37
451	Controlling spins with surface magnon polaritons. Physical Review B, 2019, 100, .	1.1	19
452	Polymer spacer tunable Purcell-enhanced spontaneous emission in perovskite quantum dots coupled to plasmonic nanowire networks. Physical Chemistry Chemical Physics, 2019, 21, 22831-22838.	1.3	6
453	Chiral cavity quantum electrodynamics with coupled nanophotonic structures. Physical Review A, 2019, 100, .	1.0	24
454	Bounds on hotspots in unidirectional waveguides and photonic topological insulators for strong, broadband light-matter interaction. , 2019, , .		0
455	Theory for the stationary polariton response in the presence of vibrations. Physical Review B, 2019, 100, .	1.1	7
456	Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light: Science and Applications, 2019, 8, 115.	7.7	36
457	Upconversion superburst with sub-2 Î⅓s lifetime. Nature Nanotechnology, 2019, 14, 1110-1115.	15.6	130
458	Inverting singlet and triplet excited states using strong light-matter coupling. Science Advances, 2019, 5, eaax4482.	4.7	116
459	A general theoretical and experimental framework for nanoscale electromagnetism. Nature, 2019, 576, 248-252.	13.7	103

#	Article	IF	CITATIONS
460	Single-Photon Emission Mediated by Single-Electron Tunneling in Plasmonic Nanojunctions. Physical Review Letters, 2019, 123, 246601.	2.9	20
461	Near-field analysis of strong coupling between localized surface plasmons and excitons. Physical Review B, 2019, 100, .	1.1	5
462	Colloidal Selfâ€Assembly Concepts for Plasmonic Metasurfaces. Advanced Optical Materials, 2019, 7, 1800564.	3.6	108
463	High-contrast flicker luminescence on dynamic covalent structure based nanoaggregates. Science China Chemistry, 2019, 62, 220-225.	4.2	13
464	Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers. Nano Letters, 2019, 19, 948-957.	4.5	61
465	Induced Transparency in Plasmon–Exciton Nanostructures for Sensing Applications. Laser and Photonics Reviews, 2019, 13, 1800176.	4.4	35
466	Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application. Laser and Photonics Reviews, 2019, 13, 1800219.	4.4	45
467	Vacuum-enhanced optical nonlinearities with disordered molecular photoswitches. Physical Review B, 2019, 99, .	1.1	8
468	Toward Plasmonic Tunnel Gaps for Nanoscale Photoemission Currents by On-Chip Laser Ablation. Nano Letters, 2019, 19, 1172-1178.	4.5	35
469	Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1, 19-40.	11.9	916
470	Resonance Coupling in Heterostructures Composed of Silicon Nanosphere and Monolayer WS ₂ : A Magnetic-Dipole-Mediated Energy Transfer Process. ACS Nano, 2019, 13, 1739-1750.	7.3	90
471	Enhanced optical properties in a polarization-matched semiconductor plasmonic nanocavity. Materials Letters, 2019, 236, 574-578.	1.3	1
472	Impact of dipole orientation on strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 035503.	0.6	1
473	Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters, 2019, 19, 108-115.	4.5	23
474	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
475	Strong exciton–plasmon couplings dependent on two localized modes in cuboid dielectric–metal core–shell resonators. Optics Communications, 2020, 458, 124882.	1.0	0
476	Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 2020, 120, 986-1041.	23.0	333
477	Nanoâ€Cavity QED with Tunable Nanoâ€Tip Interaction. Advanced Quantum Technologies, 2020, 3, 1900087.	1.8	22

#	Article	IF	Citations
478	Manipulating nonadiabatic conical intersection dynamics by optical cavities. Chemical Science, 2020, 11, 1290-1298.	3.7	58
479	Strong coupling between magnetic resonance and propagating surface plasmons at visible light frequencies. Journal of Chemical Physics, 2020, 152, 014702.	1.2	9
480	Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation. ACS Photonics, 2020, 7, 463-471.	3.2	53
481	Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system. Nanophotonics, 2020, 9, 133-142.	2.9	39
482	Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal–insulator–metal nanocavities in near-ultraviolet spectrum. Nanoscale, 2020, 12, 3112-3120.	2.8	9
483	Effects of Plasmon Modes on Resonant Raman Images of a Single Molecule. Journal of Physical Chemistry Letters, 2020, 11, 407-411.	2.1	7
484	Electron Beam Interrogation and Control of Ultrafast Plexcitonic Dynamics. ACS Photonics, 2020, 7, 401-410.	3.2	6
485	Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons. ACS Photonics, 2020, 7, 43-48.	3.2	9
486	Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. Nano Letters, 2020, 20, 592-598.	4. 5	28
487	Host–Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO ₂ Reduction. ACS Catalysis, 2020, 10, 751-761.	5 . 5	43
488	Appropriate Nonlocal Hydrodynamic Models for the Characterization of Deepâ€Nanometer Scale Plasmonic Scatterers. Advanced Theory and Simulations, 2020, 3, 1900172.	1.3	24
489	Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator. Physical Review B, 2020, 101, .	1.1	20
490	Nanoscale quantum plasmon sensing based on strong photon–exciton coupling. Nanotechnology, 2020, 31, 125001.	1.3	13
491	Spectra of plasmon-exciton composite under weak coherent pumping within cavity QED treatment. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 035401.	0.6	1
492	Probing graphene's nonlocality with singular metasurfaces. Nanophotonics, 2020, 9, 309-316.	2.9	11
493	Polariton Assisted Down-Conversion of Photons via Nonadiabatic Molecular Dynamics: A Molecular Dynamical Casimir Effect. Journal of Physical Chemistry Letters, 2020, 11, 152-159.	2.1	28
494	Ultrastrong coupling in single plexcitonic nanocubes. Nanophotonics, 2020, 9, 257-266.	2.9	19
495	Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D-3D perovskite solar cells through sequential deposition process. Chemical Engineering Journal, 2020, 391, 123589.	6.6	34

#	Article	IF	CITATIONS
496	Strong Coupling with Light Enhances the Photoisomerization Quantum Yield of Azobenzene. CheM, 2020, 6, 250-265.	5.8	59
497	Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics, 2020, 9, 295-308.	2.9	23
498	Dissipative modes, Purcell factors, and directional beta factors in gold bowtie nanoantenna structures. Physical Review B, 2020, 102, .	1.1	8
499	Photo-induced electron transfer between a metal nanoparticle and a collection of molecular emitters. Chemical Physics Letters, 2020, 758, 137905.	1.2	6
500	Light–matter interactions with photonic quasiparticles. Nature Reviews Physics, 2020, 2, 538-561.	11.9	178
501	A single bottom facet outperforms random multifacets in a nanoparticle-on-metallic-mirror system. Nanoscale, 2020, 12, 22452-22461.	2.8	14
502	Quantum theory of radiative decay rate and frequency shift of surface plasmon modes. Physical Review A, 2020, 102 , .	1.0	6
503	Light Engineering in Nanometer Space. Advanced Materials, 2020, 32, 2003051.	11.1	4
505	Catenary Functions Meet Electromagnetic Waves: Opportunities and Promises. Advanced Optical Materials, 2020, 8, 2001194.	3.6	42
506	Spontaneous emission in anisotropic dielectrics. Physical Review A, 2020, 102, .	1.0	8
507	The Role of Long-Lived Excitons in the Dynamics of Strongly Coupled Molecular Polaritons. ACS Photonics, 2020, 7, 2292-2301.	3.2	34
508	High-Speed Fluctuations in Surface-Enhanced Raman Scattering Intensities from Various Nanostructures. Applied Spectroscopy, 2020, 74, 1398-1406.	1.2	9
509	Fundamental Radiative Processes in Near-Zero-Index Media of Various Dimensionalities. ACS Photonics, 2020, 7, 1965-1970.	3.2	32
510	Spectroelectrochemical measurement and modulation of exciton-polaritons. APL Photonics, 2020, 5, 076107.	3.0	2
511	Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature. Science Advances, 2020, 6, .	4.7	17
512	Cascade domino lithography for extreme photon squeezing. Materials Today, 2020, 39, 89-97.	8.3	29
513	Impact of Vibrational Modes in the Plasmonic Purcell Effect of Organic Molecules. ACS Photonics, 2020, 7, 3369-3375.	3.2	19
514	Hybrid theoretical models for molecular nanoplasmonics. Journal of Chemical Physics, 2020, 153, 200901.	1.2	27

#	Article	IF	CITATIONS
515	Fine-tuning of polariton energies in a tailored plasmon cavity and J-aggregates hybrid system. Nanoscale, 2020, 12, 23069-23076.	2.8	7
516	Optically addressable molecular spins for quantum information processing. Science, 2020, 370, 1309-1312.	6.0	148
517	Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition. Physical Review X, 2020, 10, .	2.8	72
518	Strong Coupling beyond the Light-Line. ACS Photonics, 2020, 7, 2448-2459.	3.2	19
519	Strongly coupled exciton–plasmon nanohybrids reveal extraordinary resistance to harsh environmental stressors: temperature, pH and irradiation. Nanoscale, 2020, 12, 16875-16883.	2.8	9
520	Core–Shell Nanocuboid Dimers with Nanometric Gaps. Journal of Physical Chemistry C, 2020, 124, 18690-18697.	1.5	3
521	Non-adiabatic stripping of a cavity field from electrons in the deep-strong coupling regime. Nature Photonics, 2020, 14, 675-679.	15.6	33
522	Tunable plexciton dynamics in electrically biased nanojunctions. Journal of Applied Physics, 2020, 128, 063101.	1.1	4
523	The Role of Strong Coupling in the Process of Photobleaching Suppression. Journal of Physical Chemistry C, 2020, 124, 18234-18242.	1.5	9
524	Light–Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics. Journal of Chemical Theory and Computation, 2020, 16, 5601-5620.	2.3	19
525	Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. ACS Nano, 2020, 14, 11670-11676.	7.3	71
526	Design of Armrest Ag Nanorod Arrays with High SERS Performance for Sensitive Biomolecule Detection. Journal of Physical Chemistry C, 2020, 124, 21054-21062.	1.5	14
527	Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2020, 11, 6796-6804.	2.1	19
528	Largeâ€Scale Subâ€1â€nm Random Gaps Approaching the Quantum Upper Limit for Quantitative Chemical Sensing. Advanced Optical Materials, 2020, 8, 2001634.	3.6	3
529	Coherent photon coincidence spectroscopy of single quantum systems. Physical Review A, 2020, 102, .	1.0	1
530	Partial Cloaking of a Gold Particle by a Single Molecule. Physical Review Letters, 2020, 125, 103603.	2.9	12
531	Toroidal Metaphotonics and Metadevices. Laser and Photonics Reviews, 2020, 14, 1900326.	4.4	95
532	Influence of Gold Nano-Bipyramid Dimensions on Strong Coupling with Excitons of Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 46406-46415.	4.0	16

#	ARTICLE	IF	Citations
533	Quantum emitter interacting with a h -BN layer in the strong-coupling regime. Physical Review B, 2020, 102 , .	1.1	5
534	Switching Quantum Interference in Phenoxyquinone Single Molecule Junction with Light. Nanomaterials, 2020, 10, 1544.	1.9	2
535	Spontaneous Emission of Plasmonâ€Exciton Polaritons Revealed by Ultrafast Nonradiative Decays. Laser and Photonics Reviews, 2020, 14, 2000233.	4.4	8
536	<i>Ab initio</i> polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. Journal of Chemical Physics, 2020, 153, 094116.	1.2	44
537	Photoprotecting Uracil by Coupling with Lossy Nanocavities. Journal of Physical Chemistry Letters, 2020, 11, 8810-8818.	2.1	47
538	Cold and Hot Spots: From Inhibition to Enhancement by Nanoscale Phase Tuning of Optical Nanoantennas. Nano Letters, 2020, 20, 6756-6762.	4.5	4
539	Resonance Coupling in an Individual Gold Nanorod–Monolayer WS ₂ Heterostructure: Photoluminescence Enhancement with Spectral Broadening. ACS Nano, 2020, 14, 13841-13851.	7.3	48
540	Molecule Detection with Graphene Dimer Nanoantennas. Journal of Physical Chemistry C, 2020, 124, 28210-28219.	1.5	9
541	Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. Journal of Chemical Physics, 2020, 153, 184102.	1.2	17
542	Single-nanorod plasmon nanolaser: A route toward a three-dimensional ultraconfined lasing mode. Physical Review A, 2020, 102, .	1.0	2
543	Hot-carrier enhanced light emission: The origin of above-threshold photons from electrically driven plasmonic tunnel junctions. Journal of Applied Physics, 2020, 128, .	1.1	10
544	Topologically Protected Strong Coupling and Entanglement Between Distant Quantum Emitters. Physical Review Applied, 2020, 14, .	1.5	10
545	Exciton-induced transparency in hybrid plasmonic systems. Physical Review B, 2020, 102, .	1.1	9
546	Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Physical Review X, 2020, 10, .	2.8	102
547	Challenges in Plasmonic Catalysis. ACS Nano, 2020, 14, 16202-16219.	7.3	203
548	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.	4.5	16
549	Hyperbolic Metamaterial with Quantum Dots for Enhanced Emission and Collection Efficiencies. Advanced Optical Materials, 2020, 8, 2000368.	3.6	21
550	The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2020, 74, 1313-1340.	1.2	26

#	Article	IF	Citations
551	Resonant Optical Antennas with Atomic-Sized Tips and Tunable Gaps Achieved by Mechanical Actuation and Electrical Control. Nano Letters, 2020, 20, 4346-4353.	4.5	11
552	Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications. ACS Nano, 2020, 14, 7581-7592.	7.3	15
553	Rabi oscillation study of strong coupling in a plasmonic nanocavity. New Journal of Physics, 2020, 22, 063053.	1.2	10
554	Substrate-Enabled Plasmonic Color Switching with Colloidal Gold Nanorings. , 2020, 2, 744-753.		11
555	Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities. Journal of Physical Chemistry C, 2020, 124, 12030-12038.	1.5	23
556	The tunable optical properties and characterization of plasmon mode of single nanoparticle-plane antenna. Optical and Quantum Electronics, 2020, 52, 1.	1.5	0
557	Single plasmonic nanostructures for biomedical diagnosis. Journal of Materials Chemistry B, 2020, 8, 6197-6216.	2.9	10
558	Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chemical Reviews, 2020, 120, 6247-6287.	23.0	71
559	Cooperative Conical Intersection Dynamics of Two Pyrazine Molecules in an Optical Cavity. Journal of Physical Chemistry Letters, 2020, 11, 5555-5562.	2.1	32
560	Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science, 2020, 368, 1219-1223.	6.0	114
561	All-dielectric materials and related nanophotonic applications. Materials Science and Engineering Reports, 2020, 141, 100563.	14.8	28
562	Cascaded nanooptics to probe microsecond atomic-scale phenomena. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14819-14826.	3.3	27
563	Exciton-surface plasmon polariton interactions. Advances in Physics: X, 2020, 5, 1749884.	1.5	7
564	Plasmon Hybridization in Compressible Metal–Insulator–Metal Nanocavities: An Optical Approach for Sensing Deep Subâ€Wavelength Deformation. Advanced Optical Materials, 2020, 8, 2000609.	3.6	14
565	Controlled Cavity-Free, Single-Photon Emission and Bipartite Entanglement of Near-Field-Excited Quantum Emitters. Nano Letters, 2020, 20, 5830-5836.	4.5	14
566	Atomic-Scale Dynamics Probed by Photon Correlations. ACS Nano, 2020, 14, 6366-6375.	7.3	17
567	Optical Scattering of Liquid Gallium Nanoparticles Coupled to Thin Metal Films. Nanomaterials, 2020, 10, 1052.	1.9	7
568	Strong plasmon–exciton coupling in bimetallic nanorings and nanocuboids. Journal of Materials Chemistry C, 2020, 8, 7672-7678.	2.7	14

#	Article	IF	Citations
569	Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Science Advances, 2020, 6, eaba6012.	4.7	41
570	Local density of optical states in the three-dimensional band gap of a finite photonic crystal. Physical Review B, 2020, 101, .	1.1	13
571	Bridging the hydrodynamic Drude model and local transformation optics theory. Physical Review B, $2020,101,$	1.1	2
572	Hydrophobic Plasmonic Nanoacorn Array for a Label-Free and Uniform SERS-Based Biomolecular Assay. ACS Applied Materials & Diterfaces, 2020, 12, 29917-29927.	4.0	15
573	Strong-field nano-optics. Reviews of Modern Physics, 2020, 92, .	16.4	141
574	Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. Journal of Chemical Physics, 2020, 152, 104706.	1.2	21
575	Polaritonic molecular clock for all-optical ultrafast imaging of wavepacket dynamics without probe pulses. Nature Communications, 2020, 11, 1423.	5.8	21
576	Optical properties of periodically driven open nonequilibrium quantum systems. Journal of Chemical Physics, 2020, 152, 094101.	1.2	13
577	Principle and Applications of the Coupling of Surface Plasmons and Excitons. Applied Sciences (Switzerland), 2020, 10, 1774.	1.3	12
578	Molecular polaritons for controlling chemistry with quantum optics. Journal of Chemical Physics, 2020, 152, 100902.	1.2	186
579	Bose–Einstein Condensation of Exciton-Polaritons in Organic Microcavities. Annual Review of Physical Chemistry, 2020, 71, 435-459.	4.8	84
580	Impact of Surface Roughness in Nanogap Plasmonic Systems. ACS Photonics, 2020, 7, 908-913.	3.2	25
581	Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas. Light: Science and Applications, 2020, 9, 33.	7.7	23
582	Green's function methods for single molecule junctions. Journal of Chemical Physics, 2020, 152, 090901.	1.2	39
583	Ensemble-Induced Strong Light-Matter Coupling of a Single Quantum Emitter. Physical Review Letters, 2020, 124, 113602.	2.9	40
584	Classical antennas, quantum emitters, and densities of optical states. Journal of Optics (United) Tj ETQq1 1 0.78	4314 rgBT 1.0	 Qyerlock 1
585	Microscopic Theory of Plasmons in Substrate-Supported Borophene. Nano Letters, 2020, 20, 2986-2992.	4.5	11
586	Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe ₂ . Nanoscale, 2020, 12, 9708-9716.	2.8	29

#	Article	IF	CITATIONS
587	Three-player polaritons: nonadiabatic fingerprints in an entangled atom–molecule–photon system. New Journal of Physics, 2020, 22, 053001.	1.2	10
588	Nonmodal Plasmonics: Controlling the Forced Optical Response of Nanostructures. Physical Review X, 2020, 10, .	2.8	25
589	Dielectric Microsphere Coupled to a Plasmonic Nanowire: A Selfâ€Assembled Hybrid Optical Antenna. Advanced Optical Materials, 2020, 8, 1901672.	3.6	13
590	Colloidal Bimetallic Nanorings for Strong Plasmon Exciton Coupling. Journal of Physical Chemistry C, 2020, 124, 8334-8340.	1.5	21
591	Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19866-19873.	4.0	27
592	Sub-nanoscale probing of nanojunction using heterogeneous gap-mode Raman spectroscopy. Chemical Communications, 2020, 56, 4047-4050.	2.2	1
593	Strong Exciton–Plasmon Coupling in a WS ₂ Monolayer on Au Film Hybrid Structures Mediated by Liquid Ga Nanoparticles. Laser and Photonics Reviews, 2020, 14, 1900420.	4.4	39
594	Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry–Perot Plasmonic Resonators. Nano Letters, 2020, 20, 2695-2702.	4.5	17
595	Exploiting clock transitions for the chemical design of resilient molecular spin qubits. Chemical Science, 2020, 11, 10718-10728.	3.7	21
596	Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis. Nature Communications, 2020, 11, 2930.	5.8	16
597	Photochemistry in the strong coupling regime: A trajectory surface hopping scheme. Journal of Computational Chemistry, 2020, 41, 2033-2044.	1.5	25
598	Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 2020, 4, 490-504.	13.8	247
599	On the applicability of quantum-optical concepts in strong-coupling nanophotonics. Reports on Progress in Physics, 2020, 83, 082401.	8.1	51
600	Recent Progress and Prospects in Plasmon-Mediated Chemical Reaction. Matter, 2020, 3, 42-56.	5.0	65
601	Influence of the Chemical Structure on Molecular Light Emission in Strongly Localized Plasmonic Fields. Journal of Physical Chemistry C, 2020, 124, 4674-4683.	1.5	16
602	Nonequilibrium dual-boson approach. Physical Review B, 2020, 101, .	1.1	3
603	Plasmonic resonators: fundamental properties and applications. Journal Physics D: Applied Physics, 2020, 53, 443002.	1.3	21
604	Controlling the nonadiabatic electron-transfer reaction rate through molecular-vibration polaritons in the ultrastrong coupling regime. Scientific Reports, 2020, 10, 7318.	1.6	29

#	Article	IF	Citations
605	On the origin of ground-state vacuum-field catalysis: Equilibrium consideration. Journal of Chemical Physics, 2020, 152, 234107.	1.2	81
606	Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2020, 11, 5948-5955.	2.1	24
607	Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism. Journal of Chemical Physics, 2020, 152, 054710.	1.2	12
608	Fabrication of Au network by low-degree solid state dewetting: Continuous plasmon resonance over visible to infrared region. Acta Materialia, 2020, 188, 599-608.	3.8	21
609	Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM. Nature Communications, 2020, 11, 1021.	5.8	29
610	Cumulant expansion for the treatment of light–matter interactions in arbitrary material structures. Journal of Chemical Physics, 2020, 152, 034108.	1.2	24
611	Quantum Antennas. Advanced Quantum Technologies, 2020, 3, 1900120.	1.8	19
612	Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions. Physical Review Letters, 2020, 124, 063902.	2.9	85
613	Ultrastrong coupling effects in molecular cavity QED. Nanophotonics, 2020, 9, 277-281.	2.9	9
614	Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities. Nano Letters, 2020, 20, 1766-1773.	4.5	21
615	Plasmonic nanofocusing spectral interferometry. Nanophotonics, 2020, 9, 491-508.	2.9	12
616	Accurately Predicting the Radiation Enhancement Factor in Plasmonic Optical Antenna Emitters. Journal of Physical Chemistry Letters, 2020, 11, 1947-1953.	2.1	4
617	Monitoring strong coupling in nonlocal plasmonics with electron spectroscopies. Physical Review B, 2020, 101, .	1.1	12
618	Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation. Nanoscale, 2020, 12, 6609-6616.	2.8	24
619	Collectively induced exceptional points of quantum emitters coupled to nanoparticle surface plasmons. Physical Review A, 2020, 101, .	1.0	16
620	Multiple resonance coupling in an individual germanium nanogroove with organic dyes. Journal Physics D: Applied Physics, 2020, 53, 215103.	1.3	1
621	Nonlocal effects in plasmonic metasurfaces with almost touching surfaces. Physical Review B, 2020, 101, .	1.1	6
622	Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics, 2020, 7, 975-990.	3.2	105

#	Article	IF	CITATIONS
623	Trends in Quantum Nanophotonics. Advanced Quantum Technologies, 2020, 3, 1900126.	1.8	37
624	Dipolar and quadrupolar excitons coupled to a nanoparticle-on-mirror cavity. Physical Review B, 2020, 101, .	1.1	21
625	Measuring nanoparticle-induced resonance energy transfer effect by electrogenerated chemiluminescent reactions. RSC Advances, 2020, 10, 3861-3871.	1.7	0
626	Strongly coupled, high-quality plasmonic dimer antennas fabricated using a sketch-and-peel technique. Nanophotonics, 2020, 9, 401-412.	2.9	13
627	Plasmon–emitter interactions at the nanoscale. Nature Communications, 2020, 11, 366.	5.8	84
628	Nanoscopy through a plasmonic nanolens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2275-2281.	3.3	24
629	Strong Light–Matter Interactions Enabled by Polaritons in Atomically Thin Materials. Advanced Optical Materials, 2020, 8, 1901473.	3.6	56
630	Low‣oss Hybrid Highâ€Index Dielectric Particles on a Mirror for Extreme Light Confinement. Advanced Optical Materials, 2020, 8, 1901820.	3.6	20
631	<i>AbÂlnitio</i> Few-Mode Theory for Quantum Potential Scattering Problems. Physical Review X, 2020, 10, .	2.8	16
632	Grain Boundary and Interface Passivation with Core–Shell Au@CdS Nanospheres for Highâ€Efficiency Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908408.	7.8	78
633	Generation of macroscopic entangled cat states in a longitudinally coupled cavity-QED model. Physical Review A, 2020, 101, .	1.0	7
634	A quantum phase gate capable of effectively collecting photons based on a gap plasmon structure. Nanoscale, 2020, 12, 10082-10089.	2.8	6
635	Near-field to far-field transformations of optical quasinormal modes and efficient calculation of quantized quasinormal modes for open cavities and plasmonic resonators. Physical Review B, 2020, 101, .	1.1	17
636	Collective Rayleigh Scattering from Molecular Ensembles under Strong Coupling. Journal of Physical Chemistry Letters, 2020, 11, 3803-3808.	2.1	9
637	Theoretical study of photoluminescence spectroscopy of strong exciton-polariton coupling in dielectric nanodisks with anapole states. Materials Today Chemistry, 2020, 16, 100254.	1.7	10
638	Extracting Electronic Transition Bands of Adsorbates from Molecule–Plasmon Excitation Coupling. Journal of Physical Chemistry Letters, 2020, 11, 3507-3514.	2.1	14
639	Optomechanical Collective Effects in Surface-Enhanced Raman Scattering from Many Molecules. ACS Photonics, 2020, 7, 1676-1688.	3.2	25
640	Directional off-Normal Photon Streaming from Hybrid Plasmon-Emitter Coupled Metasurfaces. ACS Photonics, 2020, 7, 1111-1116.	3.2	17

#	Article	IF	Citations
641	Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. Advances in Physics: X, 2020, 5, 1734083.	1.5	26
642	Generalized input-output method to quantum transport junctions. II. Applications. Physical Review B, 2020, 101, .	1.1	12
643	Wafer-scale SERS metallic nanotube arrays with highly ordered periodicity. Sensors and Actuators B: Chemical, 2021, 329, 129132.	4.0	16
644	Visible Light Driven Hotâ€Electron Injection by Pd Nanoparticles: Fast Response in Metal–Semiconductor Photodetection. Advanced Optical Materials, 2021, 9, .	3.6	24
645	Recent advances in plasmonic nanocavities for single-molecule spectroscopy. Nanoscale Advances, 2021, 3, 633-642.	2.2	61
646	Non-Markovian Spontaneous Emission Dynamics of a Quantum Emitter Near a Transition-Metal Dichalcogenide Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	1.9	5
647	Dynamics of deterministically positioned singleâ€bond surfaceâ€enhanced Raman scattering from DNA origami assembled in plasmonic nanogaps. Journal of Raman Spectroscopy, 2021, 52, 348-354.	1.2	8
648	Cucurbiturilsâ€Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis. Advanced Functional Materials, 2021, 31, .	7.8	79
649	Toroidal Metamaterials. Engineering Materials, 2021, , .	0.3	3
650	Continuous mechanical tuning of plasmonic nanoassemblies for tunable and selective SERS platforms. Nano Research, 2021, 14, 275-284.	5.8	13
651	Born–Oppenheimer approximation in optical cavities: from success to breakdown. Chemical Science, 2021, 12, 1251-1258.	3.7	27
652	Static and ultrafast optical response of two metal nanoparticles glued with a semiconductor quantum dot. Photonics and Nanostructures - Fundamentals and Applications, 2021, 43, 100869.	1.0	1
653	Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nature Nanotechnology, 2021, 16, 318-324.	15.6	47
654	Molecular Radiative Energy Shifts under Strong Oscillating Fields. Small, 2021, 17, 2007244.	5.2	2
655	Machine Learning for Integrated Quantum Photonics. ACS Photonics, 2021, 8, 34-46.	3.2	30
656	Near-field engineering for boosting the photoelectrochemical activity to a modal strong coupling structure. Chemical Communications, 2021, 57, 524-527.	2.2	6
657	Plasmonic Particle-on-Film Nanocavity in Tightly Focused Vector Beam: a Full-Wave Theoretical Analysis from Near-Field Enhancement to Far-Field Radiation. Plasmonics, 2021, 16, 215-225.	1.8	3
658	Quantum control in open and periodically driven systems. Advances in Physics: X, 2021, 6, 1870559.	1.5	3

#	Article	IF	CITATIONS
659	Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4886-4893.	4.0	33
660	Strong optomechanical coupling at room temperature by coherent scattering. Nature Communications, 2021, 12, 276.	5.8	35
661	Bright Plasmons with Cubic Nanometer Mode Volumes through Mode Hybridization. ACS Photonics, 2021, 8, 307-314.	3.2	30
663	Absorption Reduction of Large Purcell Enhancement Enabled by Topological State-Led Mode Coupling. Physical Review Letters, 2021, 126, 023901.	2.9	21
664	Cavity-modified Chemistry: Towards Vacuum-field Catalysis. RSC Theoretical and Computational Chemistry Series, 2021, , 343-393.	0.7	8
665	Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral bimetallic nanocrystals. Nanoscale Advances, 2021, 3, 1674-1681.	2.2	7
666	Selective switching of multiple plexcitons in colloidal materials: directing the energy flow at the nanoscale. Nanoscale, 2021, 13, 6005-6015.	2.8	12
667	A Programmable DNAâ€Silicificationâ€Based Nanocavity for Singleâ€Molecule Plasmonic Sensing. Advanced Materials, 2021, 33, e2005133.	11.1	27
668	Between plasmonics and surface-enhanced resonant Raman spectroscopy: toward single-molecule strong coupling at a hotspot. Nanoscale, 2021, 13, 1566-1580.	2.8	27
669	Tip-Enhanced Strong Coupling of Quantum Dot Single Photon Emitters. , 2021, , .		0
670	Boosting Strong Coupling in a Hybrid WSe ₂ Monolayer–Anapole–Plasmon System. ACS Photonics, 2021, 8, 489-496.	3.2	50
671	Enhancing Vibrational Light–Matter Coupling Strength beyond the Molecular Concentration Limit Using Plasmonic Arrays. Nano Letters, 2021, 21, 1320-1326.	4.5	20
672	Nanoscale electromagnetic boundary conditions based on Maxwell's equations. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
673	Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters. Journal of Chemical Physics, 2021, 154, 014703.	1.2	4
674	Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection. Nanoscale, 2021, 13, 5187-5201.	2.8	11
675	Plexcitons, electric field gradient and electron–phonon coupling in tip-enhanced Raman spectroscopy (TERS). Nanoscale, 2021, 13, 10712-10725.	2.8	14
676	Refined effective-medium model for the optical properties of nanoparticles coated with anisotropic molecules. Physical Review B, 2021, 103, .	1.1	6
677	Ultrafast Transient Holographic Microscopy. Nano Letters, 2021, 21, 1666-1671.	4.5	16

#	Article	IF	CITATIONS
678	$F\tilde{A}\P$ rster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps. Journal of Physical Chemistry Letters, 2021, 12, 1507-1513.	2.1	13
679	Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nature Communications, 2021, 12, 1310.	5.8	44
680	Strongly Coupled Systems for Nonlinear Optics. Laser and Photonics Reviews, 2021, 15, 2000514.	4.4	31
681	Methodology for binary detection analysis of inkjet-printed optical sensors for chemical detection. MRS Advances, 2021, 6, 1-5.	0.5	4
682	Effective permittivity of co-evaporated metal-organic mixed films. Journal of Applied Physics, 2021, 129,	1.1	3
683	Strong-coupling-assisted formation of coherent radiation below the lasing threshold. Optics Express, 2021, 29, 5624.	1.7	11
684	Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9113-9121.	4.0	11
685	Optical-Cavity Manipulation of Conical Intersections and Singlet Fission in Pentacene Dimers. Journal of Physical Chemistry Letters, 2021, 12, 2052-2056.	2.1	30
686	Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers. Chinese Physics Letters, 2021, 38, 023301.	1.3	1
687	Surface Enhanced Raman Scattering from Single-Walled Carbon Nanotube Decorated on Ag Nanowires. Plasmonics, 2021, 16, 1339-1348.	1.8	1
688	Manipulating Core Excitations in Molecules by X-Ray Cavities. Physical Review Letters, 2021, 126, 053201.	2.9	13
689	Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering. Analytical Chemistry, 2021, 93, 4299-4307.	3.2	16
690	Polar diatomic molecules in optical cavities: Photon scaling, rotational effects, and comparison with classical fields. Journal of Chemical Physics, 2021, 154, 094120.	1.2	10
691	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	3.2	2
692	A stop-band filter based on metal-medium-metal structure with molecular J-aggregates. Modern Physics Letters B, 2021, 35, 2150279.	1.0	1
693	Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. Journal of Chemical Physics, 2021, 154, 094112.	1.2	44
694	Light–matter interaction of a molecule in a dissipative cavity from first principles. Journal of Chemical Physics, 2021, 154, 104109.	1.2	35
695	Role of emitter position and orientation on silicon nanoparticle-enhanced fluorescence. OSA Continuum, 2021, 4, 918.	1.8	8

#	Article	IF	Citations
696	Vibrational Strong Coupling in Subwavelength Nanogap Patch Antenna at the Single Resonator Level. Journal of Physical Chemistry Letters, 2021, 12, 3171-3175.	2.1	18
697	High-efficiency coupling of single quantum emitters into hole-tailored nanofibers. Optics Express, 2021, 29, 11158.	1.7	4
698	Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2021, 125, 7523-7532.	1.5	11
699	Transmitting Surface Plasmon Polaritons across Nanometer-Sized Gaps by Optical near-Field Coupling. ACS Photonics, 2021, 8, 832-840.	3.2	16
700	Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS. Nano Letters, 2021, 21, 2512-2518.	4.5	31
701	Broadband Field Localization, Density of States, and Nonlinearity Enhancement in Nonreciprocal and Topological Hotspots. Physical Review Applied, 2021, 15, .	1.5	2
702	Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip. Nanophotonics, 2021, 10, 1387-1435.	2.9	32
703	Intermolecular interactions in optical cavities: An <i>ab initio</i> QED study. Journal of Chemical Physics, 2021, 154, 094113.	1.2	81
704	Near-field modulation of single photon emitter with a plasmonic probe. Applied Physics Letters, 2021, 118, .	1.5	9
706	Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Applied Physics Letters, 2021, 118, .	1.5	21
707	Plasmonic Modulation of Valleytronic Emission in Twoâ€Dimensional Transition Metal Dichalcogenides. Advanced Functional Materials, 2021, 31, 2010234.	7.8	21
708	Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging. Nanomaterials, 2021, 11, 644.	1.9	9
709	Tracking the Coupling of Single Emitters to Plasmonic Nanoantennas with Single-Molecule Super-Resolution Imaging. ACS Photonics, 2021, 8, 1020-1026.	3.2	4
710	Augmenting photoluminescence of monolayer MoS ₂ using high order modes in a metal dimer-on-film nanocavity. Photonics Research, 2021, 9, 501.	3.4	12
711	Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters, 2021, 21, 2596-2602.	4.5	21
712	Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. Journal of Chemical Physics, 2021, 154, 104305.	1.2	24
713	Tailored Subcycle Nonlinearities of Ultrastrong Light-Matter Coupling. Physical Review Letters, 2021, 126, 177404.	2.9	21
714	From molecular to supramolecular electronics. Nature Reviews Materials, 2021, 6, 804-828.	23.3	169

#	Article	IF	CITATIONS
715	Strong Coupling, Hyperbolic Metamaterials and Optical Tamm States in Layered Dielectric-Plasmonic Media. Frontiers in Nanotechnology, 2021, 3, .	2.4	0
716	Using Bottom-Up Lithography and Optical Nonlocality to Create Short-Wave Infrared Plasmonic Resonances in Graphene. ACS Photonics, 2021, 8, 1277-1285.	3.2	3
717	Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths. Physical Review Letters, 2021, 126, 153603.	2.9	44
718	Nonlinear valley phonon scattering under the strong coupling regime. Nature Materials, 2021, 20, 1210-1215.	13.3	32
719	Gauge freedom, quantum measurements, and time-dependent interactions in cavity QED. Physical Review Research, 2021, 3, .	1.3	20
720	Collectively driven optical nanoantennas. Physical Review A, 2021, 103, .	1.0	4
721	Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Letters, 2021, 21, 3573-3580.	4.5	38
722	Ultralarge Rabi splitting and broadband strong coupling in a spherical hyperbolic metamaterial cavity. Photonics Research, 2021, 9, 829.	3.4	6
723	Charge-transfer chemical reactions in nanofluidic Fabry-Pérot cavities. Physical Review B, 2021, 103, .	1.1	13
724	Quantum Plasmonics: Energy Transport Through Plasmonic Gap. Advanced Materials, 2021, 33, e2006606.	11.1	19
725	Quantifying photoinduced carriers transport in exciton–polariton coupling of MoS2 monolayers. Npj 2D Materials and Applications, 2021, 5, .	3.9	12
726	Multiscale structure enabled effective plasmon coupling and molecular enriching for SERS detection. Applied Surface Science, 2021, 544, 148908.	3.1	11
727	Spontaneous PT-symmetry breaking in lasing dynamics. Communications Physics, 2021, 4, .	2.0	7
728	Quantum electrodynamics description of localized surface plasmons at a metal nanosphere. Physical Review A, 2021, 103, .	1.0	2
729	Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities. ACS Photonics, 2021, 8, 1863-1872.	3.2	11
730	Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health. ACS Sensors, 2021, 6, 1704-1716.	4.0	20
731	Integrating photoluminescent nanomaterials with photonic nanostructures. Journal of Luminescence, 2021, 233, 117870.	1.5	10
732	Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. Advanced Materials, 2021, 33, e2006966.	11.1	58

#	Article	IF	Citations
733	Copperâ€Based Plasmonic Catalysis: Recent Advances and Future Perspectives. Advanced Materials, 2021, 33, e2008145.	11.1	131
734	Nanoscale Light Confinement: the Q's and V's. ACS Photonics, 2021, 8, 1522-1538.	3.2	38
735	Self-Assembled Nano–Lotus Pod Metasurface for Light Trapping. ACS Photonics, 2021, 8, 1616-1622.	3.2	8
736	On Quantum Efficiency Measurements and Plasmonic Antennas. ACS Photonics, 2021, 8, 1508-1521.	3.2	13
737	Direct Transition from Triplet Excitons to Hybrid Light–Matter States via Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2021, 143, 7501-7508.	6.6	27
738	Quantum technology applications of exciton-polariton condensates. Emergent Materials, 2021, 4, 971-988.	3.2	8
739	Suppressing decoherence in quantum plasmonic systems by the spectral-hole-burning effect. Physical Review A, 2021, 103, .	1.0	3
740	Directional Emission from Tungsten Disulfide Monolayer Coupled to Plasmonic Nanowireâ€onâ€Mirror Cavity. Advanced Photonics Research, 2021, 2, 2100002.	1.7	8
741	A Semiclassical Model for Plasmon-Exciton Interaction From Weak to Strong Coupling Regime. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	0
742	Relativity and diversity of strong coupling in coupled plasmon-exciton systems. Physical Review B, 2021, 103, .	1.1	12
743	Nucleation and Growth-Controlled Facile Fabrication of Gold Nanoporous Structures for Highly Sensitive Surface-Enhanced Raman Spectroscopy Applications. Nanomaterials, 2021, 11, 1463.	1.9	2
744	Roadmap on bio-nano-photonics. Journal of Optics (United Kingdom), 2021, 23, 073001.	1.0	4
745	Topological aspects of cavityâ€induced degeneracies in polyatomic molecules. International Journal of Quantum Chemistry, 2022, 122, e26750.	1.0	4
746	Deep- and vacuum-ultraviolet metaphotonic light sources. Materials Today, 2021, 51, 208-221.	8.3	22
747	Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light–matter interaction. Science China Materials, 2021, 64, 3007-3016.	3.5	14
748	Quantum exceptional chamber induced by large nondipole effect of a quantum dot coupled to a nano-plasmonic resonator. Nanophotonics, 2021, 10, 2431-2440.	2.9	5
749	Optical force mapping at the single-nanometre scale. Nature Communications, 2021, 12, 3865.	5.8	30
750	Nanoimprint Lithography Facilitated Plasmonicâ€Photonic Coupling for Enhanced Photoconductivity and Photocatalysis. Advanced Functional Materials, 2021, 31, 2105054.	7.8	38

#	Article	IF	CITATIONS
751	Combining Optical Strong Mode Coupling with Polaritonic Coupling in a λ/2 Fabry–Pérot Microresonator. Journal of Physical Chemistry C, 2021, 125, 13024-13032.	1.5	3
752	Engineering mode coupling in a hybrid plasmon-photonic cavity for dual-band infrared spectroscopic gas sensing. OSA Continuum, 2021, 4, 1827.	1.8	1
753	Non-Markovian perturbation theories for phonon effects in strong-coupling cavity quantum electrodynamics. Physical Review B, 2021, 103, .	1.1	13
754	Photonic-plasmonic hybrid microcavities: Physics and applications*. Chinese Physics B, 2021, 30, 117801.	0.7	7
755	Mesoscopic electrodynamics at metal surfaces. Nanophotonics, 2021, 10, 2563-2616.	2.9	49
756	Bright Optical Eigenmode of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext>â€% volume. Physical Review Letters, 2021, 126, 257401.</mml:mtext></mml:math>	ՠ Ձւ թ> <m< td=""><td>mtøni>nm∢</td></m<>	m tø ni>nm∢
757	Plexciton and electron–phonon interaction in tipâ€enhanced resonance Raman scattering. Journal of Raman Spectroscopy, 2021, 52, 1685.	1.2	5
758	Impact of cavity on interatomic Coulombic decay. Nature Communications, 2021, 12, 4083.	5.8	18
759	Transition to strong coupling regime in hybrid plasmonic systems: exciton-induced transparency and Fano interference. Nanophotonics, 2021, 10, 3735-3744.	2.9	5
760	Single-molecule laser nanospectroscopy with micro–electron volt energy resolution. Science, 2021, 373, 95-98.	6.0	47
761	Water-Wettable Open Plasmonic Nanocavities for Ultrasensitive Molecular Detections in Multiple Phases. Nano Letters, 2021, 21, 6194-6201.	4. 5	3
762	Mesoporous Au@Cu _{2â^'<i>x</i>} S Coreâ€"Shell Nanoparticles with Double Localized Surface Plasmon Resonance and Ligand Modulation for Holeâ€Selective Passivation in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100358.	3.1	13
763	Conformational changes of a membrane protein determined by infrared difference spectroscopy beyond the diffraction limit. Physical Review Applied, 2021, 16, .	1.5	8
764	Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity. Nature Communications, 2021, 12, 4326.	5.8	54
765	Beaming Elastic and SERS Emission from Bent-Plasmonic Nanowire on a Mirror Cavity. Journal of Physical Chemistry Letters, 2021, 12, 6589-6595.	2.1	10
766	Distortion of the local density of states in a plasmonic cavity by a quantum emitter. New Journal of Physics, 2021, 23, 073011.	1.2	4
767	Single quantum emitter Dicke enhancement. Physical Review Research, 2021, 3, .	1.3	4
768	Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Physical Review B, 2021, 104, .	1.1	15

#	Article	IF	Citations
769	Microscale whispering-gallery-mode light sources with lattice-confined atoms. Scientific Reports, 2021, 11, 13899.	1.6	9
770	Exciton–Photonics: From Fundamental Science to Applications. ACS Nano, 2021, 15, 12628-12654.	7. 3	47
771	Polarization-dependent mode coupling in hyperbolic nanospheres. Nanophotonics, 2021, 10, 2737-2751.	2.9	3
772	Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nature Communications, 2021, 12, 4425.	5.8	42
773	Tuning Hybrid exciton–Photon Fano Resonances in Two-Dimensional Organic–Inorganic Perovskite Thin Films. Nano Letters, 2021, 21, 6124-6131.	4.5	11
774	Rabi splitting obtained in exciton-plasmon polaritons coupling between monolayer black phosphorus with metal. Applied Physics Express, 0, , .	1.1	2
775	Strong couplings between magnetic quantum emitters and subwavelength all-dielectric resonators with whispering gallery modes. Optics Express, 2021, 29, 26028.	1.7	7
776	Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores. ACS Nano, 2021, 15, 13085-13093.	7.3	2
777	Molecules strongly coupled with plasmon polaritons: a macroscopic quantum electrodynamics approach. , 2021, , .		0
778	Unified treatment of scattering, absorption, and luminescence spectra from a plasmon–exciton hybrid by temporal coupled-mode theory. Journal of Chemical Physics, 2021, 155, 074104.	1.2	6
779	Vacuum anomalous Hall effect in gyrotropic cavity. Physical Review B, 2021, 104, .	1.1	7
780	Colloidal solution of boron and phosphorus codoped silicon quantum dots -from material development to applications. Japanese Journal of Applied Physics, 0, , .	0.8	1
781	Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quantum technology. Journal of Chemical Physics, 2021, 155, 050901.	1.2	36
782	Emission Manipulation by DNA Origamiâ€Assisted Plasmonic Nanoantennas. Advanced Optical Materials, 2021, 9, 2100848.	3.6	13
783	Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami. Nano Research, 2022, 15, 1327-1337.	5.8	6
784	Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments. Journal of Chemical Physics, 2021, 155, 074101.	1.2	8
785	Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors, 2021, 21, 5262.	2.1	54
786	DNA Origami Nanoantennas for Fluorescence Enhancement. Accounts of Chemical Research, 2021, 54, 3338-3348.	7.6	24

#	Article	IF	CITATIONS
787	Polaritonic nonlocality in light–matter interaction. Nature Photonics, 2021, 15, 690-695.	15.6	36
788	Controllable Plexcitonic Coupling in a WS ₂ -Ag Nanocavity with Solvents. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43554-43561.	4.0	5
789	Transition to strong coupling regime for a quantum emitter coupled to a plasmonic resonator. , 2021, , .		0
790	Towards strong linear and nonlinear light-matter interactions in hybrid nanostructures of a single molecule and a plasmonic nanocavity. Physical Review B, 2021, 104, .	1.1	4
791	Colloidal Mie resonant silicon nanoparticles. Nanotechnology, 2021, 32, 452001.	1.3	12
792	A bibliometric analysis of quantum computing literature: mapping and evidences from scopus. Technology Analysis and Strategic Management, 2021, 33, 1347-1363.	2.0	12
793	Vanishing polaritons at the nonlocal limit. Nature Photonics, 2021, 15, 640-641.	15.6	0
794	Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs. ACS Photonics, 2021, 8, 2811-2817.	3.2	10
795	Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. Journal of Physical Chemistry C, 2021, 125, 18119-18128.	1.5	21
796	Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching. Nanotechnology, 2021, 32, 475202.	1.3	14
797	Thin-shell approximation of Mie theory for a thin anisotropic layer spaced away from a spherical core: Application to dye-coated nanostructures. Physical Review A, 2021, 104, .	1.0	5
798	Electronic Exciton–Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture. Nano Letters, 2021, 21, 8466-8473.	4.5	8
799	Single-Molecule Vacuum Rabi Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level. Physical Review Letters, 2021, 127, 133603.	2.9	38
800	Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe–Salpeter Equation Formalisms. Journal of Chemical Theory and Computation, 2021, 17, 6314-6329.	2.3	8
801	Plexcitonic Nanohybrids Based on Gold Nanourchins: The Role of the Capping Layer. Journal of Physical Chemistry C, 2021, 125, 19897-19905.	1.5	10
802	Single-photon nonlinearity at room temperature. Nature, 2021, 597, 493-497.	13.7	77
803	Engineering Efficient Self-Assembled Plasmonic Nanostructures by Configuring Metallic Nanoparticle's Morphology. International Journal of Molecular Sciences, 2021, 22, 10595.	1.8	8
804	Memory effects and quantum speedup for a quantum emitter near a molybdenum disulfide nanodisk. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114780.	1.3	4

#	Article	IF	CITATIONS
805	Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna. Chinese Physics B, 2022, 31, 014209.	0.7	1
806	Few-Molecule Strong Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA. ACS Nano, 2021, 15, 14732-14743.	7.3	27
807	Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer. Nature Nanotechnology, 2021, 16, 1121-1129.	15.6	16
808	Light detection nears its quantum limit. Nature, 2021, 597, 483-484.	13.7	1
809	Plasmon–Exciton Interactions: Spontaneous Emission and Strong Coupling. Advanced Functional Materials, 2021, 31, 2100889.	7.8	44
810	Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration. Photonics Research, 2021, 9, 2398.	3.4	24
811	Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2021, 2, .	5.5	28
812	Tuning surface plasmon-exciton coupling via thickness controlling of excitonic layer. Europhysics Letters, 2021, 135, 57001.	0.7	2
813	Polaritonic Unitary Coupled Cluster for Quantum Computations. Journal of Physical Chemistry Letters, 2021, 12, 9100-9107.	2.1	33
814	Asymmetric Cavity Mode Engineering in a Single Plasmonic Nanowire. Journal of Lightwave Technology, 2021, 39, 5855-5863.	2.7	3
815	Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica, 2021, 8, 1416.	4.8	12
816	Strong coupling regime and hybrid quasinormal modes from a single plasmonic resonator coupled to a transition metal dichalcogenide monolayer. Physical Review B, 2021, 104, .	1.1	12
817	Sub-wavelength plasmon polaritons channeling of whispering gallery modes of fluorescent silica microresonator. Materials Research Bulletin, 2021, 142, 111412.	2.7	1
818	Deterministic coupling of quantum emitter to surface plasmon polaritons, Purcell enhanced generation of indistinguishable single photons and quantum information processing. Optics Communications, 2021, 496, 127139.	1.0	5
819	Optical soliton in a one-dimensional array of a metal nanoparticle-microcavity complex. Communications in Theoretical Physics, 2021, 73, 115105.	1.1	0
820	Molecular photodissociation enabled by ultrafast plasmon decay. Journal of Chemical Physics, 2021, 154, 014303.	1.2	17
821	Fabrication of hydrogels with nanoparticles as surface-enhanced Raman scattered (SERS) substrates and their application in Raman imaging. Materials Research Express, 2021, 8, 015008.	0.8	6
822	Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission*. Chinese Physics B, 2021, 30, 027801.	0.7	3

#	Article	IF	CITATIONS
823	Dynamics and control of entangled electron-photon states in nanophotonic systems with time-variable parameters. Physical Review A, 2021, 103, .	1.0	7
824	Enhanced Photon-Emitter Coupling in Micro/Nano Photonic Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-10.	1.9	6
825	Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 2021, 13, 4408-4419.	2.8	44
826	Manipulating valence and core electronic excitations of a transition-metal complex using UV/Vis and X-ray cavities. Chemical Science, 2021, 12, 8088-8095.	3.7	9
827	Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles. Nanoscale, 2021, 13, 15812-15818.	2.8	4
828	Precise Control of Nanoscale Interface for Efficient Electrochemical Reactions. Electrochemistry, 2021, , .	0.6	2
829	Terahertz Sensing with Optimized <i>Q</i> / <i>$Veff Metasurface Cavities.$ Advanced Optical Materials, 2020, 8, 1902025.</i>	3.6	73
830	Unidirectional, Ultrafast, and Bright Spontaneous Emission Source Enabled By a Hybrid Plasmonic Nanoantenna. Laser and Photonics Reviews, 2020, 14, 1900213.	4.4	18
831	Tunneling Plasmonics: Vacuum Rabi Oscillations in Carbon Nanotube Mediated Electromigrated Nanojunctions. Journal of Physical Chemistry C, 2021, 125, 782-791.	1.5	20
832	Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. Journal of Physical Chemistry Letters, 2021, 12, 508-516.	2.1	65
833	Plexcitonic Optical Chirality: Strong Exciton–Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes. ACS Nano, 2021, 15, 2292-2300.	7.3	38
834	Inch-Scale Ball-in-Bowl Plasmonic Nanostructure Arrays for Polarization-Independent Second-Harmonic Generation. ACS Nano, 2021, 15, 1291-1300.	7.3	19
835	Ten years of spasers and plasmonic nanolasers. Light: Science and Applications, 2020, 9, 90.	7.7	192
836	Spectrally tunable infrared plasmonic F,Sn:In2O3 nanocrystal cubes. Journal of Chemical Physics, 2020, 152, 014709.	1.2	33
837	Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full-and reduced-dimensionality studies. Journal of Chemical Physics, 2020, 153, 234302.	1.2	9
838	Light interaction with extended quantum systems in dispersive media. New Journal of Physics, 2020, 22, 123047.	1.2	5
839	Optical signatures of electron-phonon decoupling due to strong light-matter interactions. Physical Review B, 2020, 102, .	1.1	15
840	Signatures of quantized coupling between quantum emitters and localized surface plasmons. Physical Review Research, 2019, 1, .	1.3	25

#	Article	IF	CITATIONS
841	Precise determination of excitation energies in condensed-phase molecular systems based on exciton-polariton measurements. Physical Review Research, 2019, 1 , .	1.3	5
842	Polaritonic coupled-cluster theory. Physical Review Research, 2020, 2, .	1.3	57
843	Strong coupling as an interplay of quantum emitter hybridization with plasmonic dark and bright modes. Physical Review Research, 2020, 2, .	1.3	12
844	Acoustic diamond resonators with ultrasmall mode volumes. Physical Review Research, 2020, 2, .	1.3	8
845	Molecule-photon interactions in phononic environments. Physical Review Research, 2020, 2, .	1.3	18
846	Quantized quasinormal-mode description of nonlinear cavity-QED effects from coupled resonators with a Fano-like resonance. Physical Review Research, 2020, 2, .	1.3	35
847	Improved regressions with convolutional neural networks for surface enhanced Raman scattering sensing of metabolite biomarkers. , 2019, , .		2
848	Numerically stable formulation of Mie theory for an emitter close to a sphere. Applied Optics, 2020, 59, 1293.	0.9	12
849	Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.	12.1	105
850	Quantum dipole emitters in structured environments: a scattering approach: tutorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 186.	0.8	17
851	Strong light–matter coupling and exciton-polariton condensation in lattices of plasmonic nanoparticles [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E88.	0.9	28
852	Coupling phenomena and collective effects in resonant meta-atoms supporting both plasmonic and (opto-)magnetic functionalities: an overview on properties and applications [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E112.	0.9	25
853	Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Optics Express, 2018, 26, 31116.	1.7	27
854	Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity. Optics Express, 2018, 26, 31391.	1.7	10
855	Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 2019, 27, 1479.	1.7	4
856	Plasmonic color generation and refractive index sensing with three-dimensional air-gap nanocavities. Optics Express, 2019, 27, 6283.	1.7	11
857	Accumulation and directionality of large spontaneous emission enabled by epsilon-near-zero film. Optics Express, 2019, 27, 7426.	1.7	10
858	Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS ₂ . Optics Express, 2019, 27, 22951.	1.7	39

#	Article	IF	CITATIONS
859	Nonlocal collective ultrastrong interaction of plasmonic metamaterials and photons in a terahertz photonic crystal cavity. Optics Express, 2019, 27, 24455.	1.7	19
860	Identical emission enhancement for arbitrary-orientation magnetic dipole emitters in silicon hollow nanocavity. Optics Express, 2019, 27, 25931.	1.7	8
861	Channel competition in emitter-plasmon coupling. Optics Express, 2019, 27, 30893.	1.7	2
862	Tunable strong coupling of two adjacent optical î»/2 Fabry-Pérot microresonators. Optics Express, 2020, 28, 485.	1.7	9
863	Large Purcell enhancement with nanoscale non-reciprocal photon transmission in chiral gap-plasmon-emitter systems. Optics Express, 2020, 28, 33890.	1.7	5
864	Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V. Optics Letters, 2020, 45, 4794.	1.7	22
865	Dynamic tuning of photon-plasmon interaction based on three-dimensionally confined microtube cavities. Optics Letters, 2020, 45, 5720.	1.7	2
866	Metal-dielectric nanoantenna for radiation control of a single-photon emitter. Optical Materials Express, 2020, 10, 29.	1.6	15
867	Origin of the asymmetric light emission from molecular exciton–polaritons. Optica, 2018, 5, 1247.	4.8	49
868	Collecting quantum dot fluorescence with a hybrid plasmonic probe. OSA Continuum, 2019, 2, 881.	1.8	2
869	Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system. Photonics Research, 2020, 8, 343.	3.4	13
870	Selective excitation of a three-dimensionally oriented single plasmonic dipole. Photonics Research, 2019, 7, 693.	3.4	10
871	Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures. Photonics Research, 2019, 7, 1142.	3.4	17
873	Magnetic and electric Mie-exciton polaritons in silicon nanodisks. Nanophotonics, 2020, 9, 803-814.	2.9	38
874	Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics, 2020, 9, 1115-1137.	2.9	93
875	Multiparticle quantum plasmonics. Nanophotonics, 2020, 9, 1243-1269.	2.9	32
876	Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics, 2020, 9, 3347-3356.	2.9	13
877	Flexibly tunable surface plasmon resonance by strong mode coupling using a random metal nanohemisphere on mirror. Nanophotonics, 2020, 9, 3409-3418.	2.9	21

#	Article	IF	CITATIONS
878	Effects of gap thickness and emitter location on the photoluminescence enhancement of monolayer MoS2 in a plasmonic nanoparticle-film coupled system. Nanophotonics, 2020, 9, 2097-2105.	2.9	23
879	Generation and dynamics of entangled fermion–photon–phonon states in nanocavities. Nanophotonics, 2020, 10, 491-511.	2.9	7
880	Polariton panorama. Nanophotonics, 2020, 10, 549-577.	2.9	155
881	Macroscopic QED for quantum nanophotonics: emitter-centered modes as a minimal basis for multiemitter problems. Nanophotonics, 2020, 10, 477-489.	2.9	45
882	Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics, 2021, 10, 1189-1196.	2.9	37
883	Fluorescence of molecules placed near a spherical particle: Rabi splitting. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2017, 20, 458-464.	0.3	1
884	Interaction and Entanglement of a Pair of Quantum Emitters near a Nanoparticle: Analysis beyond Electric-Dipole Approximation. Entropy, 2020, 22, 135.	1.1	1
885	Recent progress of the application of surface plasmon polariton in quantum information processing. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 144202.	0.2	7
886	Some recent advances on quantum plasmonics. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147103.	0.2	3
887	Quasinormal Mode Analysis of Polygon-on-Mirror Geometries. , 2021, , .		0
888	Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities. Small, 2021, 17, e2103994.	5.2	6
889	Making ab initio QED functional(s): Nonperturbative and photon-free effective frameworks for strong lightâ \in matter coupling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
890	Electrochemical Synthesis of 3D Plasmonicâ€Molecule Nanocomposite Materials for In Situ Labelâ€Free Molecular Detections. Advanced Materials Interfaces, 2021, 8, 2101201.	1.9	2
891	Optical Memristive Switches. Kluwer International Series in Electronic Materials: Science and Technology, 2022, , 355-376.	0.3	0
892	Topological hybrid nanocavity for coupling phase transition. Journal of Optics (United Kingdom), 2021, 23, 124002.	1.0	6
893	Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. Journal of Chemical Physics, 2021, 155, 134117.	1.2	9
894	Mirror-enhanced directional out-coupling of SERS by remote excitation of a nanowire-nanoparticle cavity. Journal of Optics (United Kingdom), 2021, 23, 124001.	1.0	1
895	Plasmonic hot-carriers and their applications: opinion. Optical Materials Express, 2021, 11, 3827.	1.6	5

#	Article	IF	CITATIONS
896	Long-Range Dipole–Dipole Interactions in a Plasmonic Lattice. Nano Letters, 2022, 22, 22-28.	4.5	28
897	Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots. APL Photonics, 2021, 6, .	3.0	10
898	Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Letters, 2021, 21, 8979-8986.	4.5	41
899	Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering. ACS Photonics, 2021, 8, 2868-2875.	3.2	17
900	Atom-surface physics: A review. AVS Quantum Science, 2021, 3, .	1.8	13
901	Hybrid Nano-Gap LC-Metasurface at 300 GHz Ultrastrongly Coupled to Less than 100 Electrons. , 2018, , .		0
902	Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement. , 2018, , .		0
903	Temporal dynamics of strongly coupled exciton-localized surface plasmons beyond Rabi oscillations. , 2018, , .		0
904	Optical Characteristics of Nano Space of Silver Nanowire on a Silver Mirror. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 509-515.	0.0	0
905	Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147301.	0.2	1
907	Functionalisation and Self-assembly of Nanoparticles through Cucurbit $[\langle i \rangle n \langle i \rangle]$ uril-based Binding Motifs. Monographs in Supramolecular Chemistry, 2019, , 362-406.	0.2	1
908	Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147104.	0.2	6
909	Cavity-induced modification of molecules: From ground-state chemistry to ultrafast dynamics. , 2019, , .		0
910	Interactions between photons and excitons in micro-nano photonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 144201.	0.2	1
911	Tip Enhanced Strong Coupling of a Single Emitter at Room Temperature. , 2019, , .		0
912	Quantum tomography of the photon-plasmon conversion process in a metal hole array. Optics Express, 2019, 27, 13809.	1.7	1
914	Luminescence enhancement by collective Mie-resonances. , 2019, , .		0
915	Quantum Corrections in Plasmonics andÂPlasmon–Emitter Interactions. Springer Theses, 2020, , 157-202.	0.0	0

#	Article	IF	Citations
917	General Conclusions and Perspective. Springer Theses, 2020, , 157-163.	0.0	0
918	Fundamentals of Quantum Optics. Biological and Medical Physics Series, 2020, , 299-344.	0.3	0
919	Screening of the quantum dot Förster coupling at small distances. Optics Letters, 2020, 45, 3357.	1.7	1
920	Optically induced crossover from weak to strong coupling regime between surface plasmon polaritons and photochromic molecules. Optics Express, 2020, 28, 26509.	1.7	3
921	Toroidal Metadevices. Engineering Materials, 2021, , 123-142.	0.3	0
922	Hybrid photonic-plasmonic mode-coupling induced enhancement of the spontaneous emission rate of CdS/CdSe quantum emitters. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 115017.	1.3	5
923	Single-Photon Generation Engineering. ACS Photonics, 2021, 8, 3119-3124.	3.2	5
924	Light–Matter Interactions between Germanium Nanocavities and Quantum Dots at Visible Wavelengths. Journal of Physical Chemistry C, 2021, 125, 812-818.	1.5	2
925	Long-distance heat transfer between molecular systems through a hybrid plasmonic-photonic nanoresonator. Journal of Optics (United Kingdom), 2021, 23, 015003.	1.0	1
926	Strong confinement of gap modes induced by the film modified electric and magnetic modes in dielectric nanoparticle dimers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120465.	2.0	1
928	Manipulating Photochemistry. Springer Theses, 2020, , 99-120.	0.0	0
929	Theory of Polaritonic Chemistry. Springer Theses, 2020, , 87-98.	0.0	0
931	Molecular Cavity QED. Biological and Medical Physics Series, 2020, , 345-383.	0.3	0
932	Electrodynamics of Metals Beyond the Local-Response Approximation: Nonlocal Effects. Springer Theses, 2020, , 121-137.	0.0	0
934	Cavity Ground-State Chemistry. Springer Theses, 2020, , 121-156.	0.0	0
935	From symmetric to asymmetric bowtie nanoantennas: electrostatic conformal mapping perspective. Nanophotonics, 2020, 9, 1177-1187.	2.9	6
936	Landau-damping-induced limits to light–matter interactions in sub-10-nm planar plasmonic nanocavities. Optics Express, 2021, 29, 39801-39810.	1.7	1
937	Focusing the electromagnetic field to $10\hat{a}^{\circ}\hat{6l}$ for ultra-high enhancement of field-matter interaction. Nature Communications, 2021, 12, 6389.	5.8	14

#	ARTICLE	IF	CITATIONS
938	$\label{lem:model-Based} \mbox{Model-Based Insight into Single-Molecule Plasmonic Mislocalization.} \mbox{ Journal of Physical Chemistry C, } \mbox{0, , .}$	1.5	3
939	Visualization of Plasmon–Exciton Interactions by Scanning Near-Field Optical Microscopy. Journal of Physical Chemistry C, 2021, 125, 24515-24520.	1.5	4
940	Extreme field confinement in zigzag plasmonic crystals. Nanotechnology, 2020, 31, 495206.	1.3	0
941	Cooperative Molecular Rabi Splitting for Strong Coupling between a Plain Au Layer and an Azo-Dye. Photonics, 2021, 8, 531.	0.9	2
942	Strong coupling between two-dimensional transition metal dichalcogenides and plasmonic-optical hybrid resonators. Physical Review B, 2021, 104, .	1.1	2
943	Optical force induced by strong exciton-plasmon coupling. Optics Express, 2021, 29, 41600.	1.7	1
944	Quantum surface effects in strong coupling dynamics. Physical Review B, 2021, 104, .	1.1	10
945	60-nt DNA Direct Detection without Pretreatment by Surface-Enhanced Raman Scattering with Polycationic Modified Ag Microcrystal Derived from AgCl Cube. Molecules, 2021, 26, 6790.	1.7	1
946	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nature Communications, 2021, 12, 6519.	5.8	32
947	Isolating Polaritonic 2D-IR Transmission Spectra. Journal of Physical Chemistry Letters, 2021, 12, 11406-11414.	2.1	19
948	Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science, 2021, 374, 1268-1271.	6.0	61
949	Anomalous spectral response of plasmon-exciton strong coupling beyond J-C model. Results in Physics, 2021, 31, 105064.	2.0	2
950	Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations. ACS Nanoscience Au, 2021, 1, 38-46.	2.0	6
951	Highly Polarized Light Emission of Monolayer WSe ₂ Coupled with Gapâ€Plasmon Nanocavity. Advanced Optical Materials, 2022, 10, .	3.6	8
952	Plasmon enhanced light–matter interaction of rice-like nanorods by a cube-plate nanocavity. Nanoscale Advances, 2022, 4, 1145-1150.	2,2	1
953	Tuning the Optical Properties of a MoSe ₂ Monolayer Using Nanoscale Plasmonic Antennas. Nano Letters, 2022, 22, 561-569.	4.5	11
954	Strong coupling between an inverse bowtie Nano-Antenna and a J-aggregate. Journal of Colloid and Interface Science, 2022, 610, 438-445.	5.0	5
955	On the Radiative Emission and Excitation Rate of Quantum Emitters in Plasmonic Nanostructures. , 2020, , .		0

#	Article	IF	CITATIONS
957	Enhanced excitation and readout of plasmonic cavity modes in NPoM via SiN waveguides for on-chip SERS. Optics Express, 2022, 30, 4553.	1.7	5
958	Applications of Hybrid Metalâ€Dielectric Nanostructures: State of the Art. Advanced Photonics Research, 2022, 3, .	1.7	30
959	Analytical Model and Solution Illustrating Classical Optical Contribution to Giant Spectral Splitting in Strongly-Coupled Micro/nanocavity-atom System. Frontiers in Physics, 2022, 10, .	1.0	2
960	Probing Light-Induced Conical Intersections by Monitoring Multidimensional Polaritonic Surfaces. Journal of Physical Chemistry Letters, 2022, 13, 1172-1179.	2.1	10
961	Comparing the nature of quantum plasmonic excitations for closely spaced silver and gold dimers. Journal of Chemical Physics, 2022, 156, 074102.	1.2	7
962	Double Rabi splitting in methylene blue dye-Ag nanocavity. Nanophotonics, 2022, 11, 603-611.	2.9	11
963	Perspective on 2D material polaritons and innovative fabrication techniques. Applied Physics Letters, 2022, 120, .	1.5	11
964	Vibrational Strong Coupling between Surface Phonon Polaritons and Organic Molecules via Single Quartz Micropillars. Advanced Materials, 2022, 34, e2109088.	11.1	15
965	Strong Coupling of Multimolecular Species to Soft Microcavities. Journal of Physical Chemistry Letters, 2022, 13, 1019-1024.	2.1	3
966	Strong coupling between colloidal quantum dots and a microcavity with hybrid structure at room temperature. Photonics Research, 2022, 10, 913.	3.4	3
967	Observation of the plasmon mode transition from triangular to hexagonal nanoplates. Journal of Chemical Physics, 2022, 156, 044702.	1.2	3
968	Floquet Time-Dependent Configuration Interaction for Modeling Ultrafast Electron Dynamics. Journal of Chemical Theory and Computation, 2022, 18, 795-806.	2.3	2
969	Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission. Nanoscale, 2022, 14, 2287-2295.	2.8	5
970	Plexcitonic strong coupling: unique features, applications, and challenges. Journal Physics D: Applied Physics, 2022, 55, 203002.	1.3	31
971	Dynamics of disordered Tavis–Cummings and Holstein–Tavis–Cummings models. Journal of Chemical Physics, 2022, 156, 024102.	1.2	23
972	Low-Symmetry Nanophotonics. ACS Photonics, 2022, 9, 2-24.	3.2	13
973	Polariton chemistry: Molecules in cavities and plasmonic media. Journal of Chemical Physics, 2022, 156, 030401.	1.2	20
974	Strong Coupling of Single Plasmonic Nanoparticles and Nanogaps with Quantum Emitters. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	1

#	Article	IF	Citations
975	Nanoparticle-on-mirror cavity: a historical view across nanophotonics and nanochemistry. Journal of the Korean Physical Society, 2022, 81, 502-509.	0.3	6
976	Equation-of-motion cavity quantum electrodynamics coupled-cluster theory for electron attachment. Journal of Chemical Physics, 2022, 156, 054105.	1.2	22
977	Polarization-controlled single-particle scattering imaging spectroscopy using waveguide excitation. Optics Express, 2022, 30, 4875.	1.7	1
978	Analysis of the classical trajectory treatment of photon dynamics for polaritonic phenomena. Journal of Chemical Physics, 2022, 156, 054101.	1.2	8
979	Gelucire \hat{A}^{\otimes} -mediated heterometallic AgAu nanohybrid engineering for femtomolar cysteine detection using smartphone-based plasmonics technology. Materials Chemistry and Physics, 2022, 279, 125747.	2.0	22
980	Morphology dependence of nanoparticle-on-mirror geometries: A quasinormal mode analysis. EPJ Applied Metamaterials, 2022, 9, 3.	0.8	4
981	Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities. Nano Letters, 2022, 22, 1786-1794.	4.5	13
982	Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nature Communications, 2022, 13, 656.	5.8	44
983	Slow waves on long helices. Scientific Reports, 2022, 12, 1902.	1.6	0
984	Molecular Polaritonics: Chemical Dynamics Under Strong Light–Matter Coupling. Annual Review of Physical Chemistry, 2022, 73, 43-71.	4.8	77
985	Nanofiber-Induced Losses Inside an Optical Cavity. Physical Review Applied, 2021, 16, .	1.5	2
987	Numerical Simulation of Strong Coupling Between Silver Nanorods and Dielectric Layer by Electron Energy Loss Spectroscopy. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
989	Vortex radiation from a single emitter in a chiral plasmonic nanocavity. Nanophotonics, 2022, .	2.9	1
990	Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. Biosensors, 2022, 12, 148.	2.3	4
991	Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. Nanomaterials, 2022, 12, 698.	1.9	10
992	Photon Correlation Signals in Coupled-Cavity Polaritons Created by Entangled Light. ACS Photonics, 2022, 9, 938-943.	3.2	2
993	Revealing the Photothermal Behavior of Plasmonic Gap Modes: Toward Thermostable Nanocavities. Laser and Photonics Reviews, 0, , 2100564.	4.4	2
994	Catalysis by Dark States in Vibropolaritonic Chemistry. Physical Review Letters, 2022, 128, 096001.	2.9	62

#	ARTICLE	IF	CITATIONS
995	Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. Journal of Chemical Physics, 2022, 156, 124104.	1.2	11
996	Carbon Nanotubes for the Optical Far-Field Readout of Processes That Are Mediated by Plasmonic Near-Fields. Journal of Physical Chemistry C, 2022, 126, 5927-5934.	1.5	0
997	Cavity-Modulated Proton Transfer Reactions. Journal of the American Chemical Society, 2022, 144, 4995-5002.	6.6	32
998	Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities. Nano Letters, 2022, 22, 2365-2373.	4.5	9
999	Gaptronics: multilevel photonics applications spanning zero-nanometer limits. Nanophotonics, 2022, 11, 1231-1260.	2.9	9
1000	Non-Hermitian cavity quantum electrodynamics–configuration interaction singles approach for polaritonic structure with <i>ab initio</i> molecular Hamiltonians. Journal of Chemical Physics, 2022, 156, 154103.	1.2	17
1001	Comparison of dynamic corrections to the quasistatic polarizability and optical properties of small spheroidal particles. Journal of Chemical Physics, 2022, 156, 104110.	1.2	4
1002	Quasinormal Mode Theory of Chiral Power Flow from Linearly Polarized Dipole Emitters Coupled to Index-Modulated Microring Resonators Close to an Exceptional Point. ACS Photonics, 2022, 9, 1315-1326.	3.2	8
1003	Local Plasmon Phase Delay Effect in Plasmon–Exciton Coupling. Advanced Optical Materials, 0, , 2102380.	3.6	0
1004	On the excitation and radiative decay rates of plasmonic nanoantennas. Nanophotonics, 2022, 11, 2271-2281.	2.9	3
1005	Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry, 2022, 6, 259-274.	13.8	56
1006	Cavity quantum materials. Applied Physics Reviews, 2022, 9, .	5.5	65
1007	Directing monolayer tungsten disulfide photoluminescence using a bent-plasmonic nanowire on a mirror cavity. European Physical Journal: Special Topics, 2022, 231, 807-813.	1.2	3
1008	Enhancement of the Modulation Response of Quantum-Dot-Based Down-Converted Light through Surface Plasmon Coupling. Molecules, 2022, 27, 1957.	1.7	0
1009	Photoluminescence Properties of Gold Nanorod and <i>J</i> Scanning Near-Field Optical Microscopy. Journal of Physical Chemistry C, 2022, 126, 5944-5949.	1.5	3
1010	Quantum mechanical solution to spectral lineshape in strongly-coupled atom–nanocavity system. Chinese Physics B, 2022, 31, 043202.	0.7	0
1011	Strong Light–Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way. Nano Letters, 2022, 22, 2177-2186.	4. 5	24
1012	Recent advances on strong light-matter coupling in atomically thin TMDC semiconductor materials. Journal of Optics (United Kingdom), 2022, 24, 053001.	1.0	22

#	ARTICLE	IF	CITATIONS
1013	Molecular orbital theory in cavity QED environments. Nature Communications, 2022, 13, 1368.	5.8	27
1014	Generation and modulation of non-classical light in a strongly coupled photon–emitter system. Photonics Research, 2022, 10, 989.	3.4	4
1015	Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study. ACS Photonics, 2022, 9, 1065-1077.	3.2	18
1016	Responsive photonic nanopixels with hybrid scatterers. Nanophotonics, 2022, 11, 1863-1886.	2.9	9
1017	Semi-empirical quantum optics for mid-infrared molecular nanophotonics. Journal of Chemical Physics, 2022, 156, 124110.	1.2	8
1018	Ultrasensitive and ultrafast nonlinear optical characterization of surface plasmons. APL Materials, 2022, 10, 030701.	2.2	2
1019	Gires–Tournois Immunoassay Platform for Labelâ€Free Brightâ€Field Imaging and Facile Quantification of Bioparticles. Advanced Materials, 2022, 34, e2110003.	11.1	12
1020	Condensation of 2D exciton-polaritons in an open-access microcavity. Journal of Applied Physics, 2022, 131, 093101.	1.1	3
1021	Investigation of electronic excited states in single-molecule junctions. Nano Research, 2022, 15, 5726-5745.	5.8	7
1022	Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials. Journal of Chemical Physics, 2022, 156, 114702.	1.2	8
1023	Demonstration of multiple quantum interference and Fano resonance realization in far-field from plasmonic nanostructure in Er3+-doped tellurite glass. Scientific Reports, 2022, 12, 5015.	1.6	2
1024	Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation. Nanomaterials, 2022, 12, 1180.	1.9	7
1025	Near-Field Generation and Control of Ultrafast, Multipartite Entanglement for Quantum Nanoplasmonic Networks. Nano Letters, 2022, 22, 2801-2808.	4.5	7
1026	Not dark yet for strong light-matter coupling to accelerate singlet fission dynamics. Cell Reports Physical Science, 2022, 3, 100841.	2.8	16
1027	Plasmonic nanocavity enhanced luminescence for in-plane and out-of-plane excitons in $F(BA)_{2} $ {ext Pbi_{4} Ruddlesden Popper perovskite thin film. MRS Advances, 0, , 1.	0.5	0
1028	Fluorescence of single Rhodamine molecules near the surface of gold. Physica Status Solidi (B): Basic Research, O, , .	0.7	0
1029	Molding Photon Emission with Hybrid Plasmonâ€Emitter Coupled Metasurfaces. Advanced Optical Materials, 2022, 10, .	3.6	9
1030	Generalization of the Tavis–Cummings model for multi-level anharmonic systems: Insights on the second excitation manifold. Journal of Chemical Physics, 2022, 156, .	1.2	16

#	Article	IF	CITATIONS
1031	Progress and perspectives in single-molecule optical spectroscopy. Journal of Chemical Physics, 2022, 156, 160903.	1.2	16
1032	Permutational symmetry for identical multilevel systems: A second-quantized approach. Physical Review A, 2022, 105, .	1.0	7
1033	Quantum theory of nonradiative decay dependent on the coupling strength in a plexcitonic system. Optics Express, 2021, 29, 43292.	1.7	3
1034	Bistability of cavity magnon polaritons beyond the Holstein–Primakoff transformation. Journal of Applied Physics, 2021, 130, 243902.	1.1	2
1035	Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics, 2022, 11, 169-202.	2.9	6
1036	Plasmonic Nanoarchitectures for Singleâ€Molecule Explorations: An Overview. Advanced Photonics Research, 2022, 3, .	1.7	9
1037	DNA origami enabled assembly of nanophotonic structures and their applications [Invited]. Optical Materials Express, 2022, 12, 284.	1.6	2
1038	Single Molecule Surface Enhanced Raman Scattering in a Single Gold Nanoparticle-Driven Thermoplasmonic Tweezer. Journal of Physical Chemistry Letters, 2021, 12, 11910-11918.	2.1	15
1039	Theoretical Challenges in Polaritonic Chemistry. ACS Photonics, 2022, 9, 1096-1107.	3.2	61
1040	<i>In silico</i> design of graphene plasmonic hot-spots. Nanoscale Advances, 2022, 4, 2294-2302.	2.2	6
1041	Environment-assisted strong coupling regime. Quantum - the Open Journal for Quantum Science, 0, 6, 684.	0.0	3
1042	Local spectroscopic imaging of a single quantum dot in photoinduced force microscopy. Applied Physics Letters, 2022, 120, .	1.5	6
1043	Shortcut to Self-Consistent Light-Matter Interaction and Realistic Spectra from First Principles. Physical Review Letters, 2022, 128, 156402.	2.9	22
1044	Observation of Domainâ€Selective Defect Effects from a CVDâ€grown Graphene Monolayer Sandwiched at Individual Nanoparticleâ€onâ€Mirror Plasmonic Junctions. Journal of Raman Spectroscopy, 0, , .	1.2	O
1045	Coupling, lifetimes, and "strong coupling―maps for single molecules at plasmonic interfaces. Journal of Chemical Physics, 2022, 156, 154303.	1.2	4
1046	Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. Journal of Physical Chemistry C, 2022, 126, 7117-7126.	1.5	8
1047	Optical Cavity Manipulation and Nonlinear UV Molecular Spectroscopy of Conical Intersections in Pyrazine. Journal of the American Chemical Society, 2022, 144, 7758-7767.	6.6	8
1050	Salt-mediated, plasmonic field-field/field-lattice coupling-enhanced NIR-II photodynamic therapy using core-gap-shell gold nanopeanuts. Nanoscale Horizons, 2022, 7, 589-606.	4.1	8

#	Article	IF	CITATIONS
1051	Quantum surface effects in the electromagnetic coupling between a quantum emitter and a plasmonic nanoantenna: time-dependent density functional theory vs. semiclassical Feibelman approach. Optics Express, 2022, 30, 21159.	1.7	7
1052	Enhanced Plasmonic Hot-Carrier Transfer in Au/WS ₂ Heterojunctions under Nonequilibrium Condition. ACS Photonics, 2022, 9, 1522-1528.	3.2	9
1053	Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling. Physical Review Letters, 2022, 128, 167402.	2.9	22
1054	Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors. Molecules, 2022, 27, 2807.	1.7	4
1055	Polaritonic critical coupling in a hybrid quasibound states in the continuum cavity– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WS</mml:mi><mml:mn>2<td>mnъ.t/mm</td><td>:msub></td></mml:mn></mml:msub></mml:math>	mn ъ. t/mm	:msub>
1056	Numerical Optimization of a Nanophotonic Cavity by Machine Learning for Near-Unity Photon Indistinguishability at Room Temperature. ACS Photonics, 2022, 9, 1926-1935.	3.2	9
1057	<scp>Vibrationâ€induced</scp> symmetry breaking in hybrid <scp>lightâ€matter</scp> dimer states. Journal of the Chinese Chemical Society, 0, , .	0.8	1
1058	Advanced hybrid plasmonic nano-emitters using smart photopolymer. Photonics Research, 0, , .	3.4	7
1059	Duality, decay rates, and local-field models in macroscopic QED. Physical Review A, 2022, 105, .	1.0	1
1060	Nanometer-Scale Spatial and Spectral Mapping of Exciton Polaritons in Structured Plasmonic Cavities. Physical Review Letters, 2022, 128, .	2.9	4
1061	Universal model of strong coupling at the nonlinear resonance in open cavity-QED systems. Physical Review A, 2022, 105, .	1.0	2
1062	An ultrastrongly coupled single terahertz meta-atom. Nature Communications, 2022, 13, 2528.	5.8	20
1063	Manipulating the upconversion luminescence of Yb3+/Er3+ doped nanoparticles by the sheet-shaped nanocavity. Journal of Luminescence, 2022, 248, 118944.	1.5	2
1064	Observation of in-plane exciton–polaritons in monolayer WSe ₂ driven by plasmonic nanofingers. Nanophotonics, 2022, 11, 3149-3157.	2.9	4
1065	Mode-dependent energy exchange between near- and far-field through silicon-supported single silver nanorods. Nanoscale, 2022, 14, 8362-8373.	2.8	3
1066	Effect of Photonic Cavity Interactions on Femtosecond Multiphoton Optical Nonlinear Absorptions from Bi ₂ O ₃ -Based One-Dimensional Photonic Crystal. ACS Photonics, 2022, 9, 2092-2100.	3.2	14
1067	Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime. Journal of Chemical Physics, 2022, 156, .	1.2	5
1068	Ultra-Dense Plasmonic Nanogap Arrays for Reorientable Molecular Fluorescence Enhancement and Spectrum Reshaping. Nanoscale, 0, , .	2.8	1

#	Article	IF	CITATIONS
1069	Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle. Nano Letters, 2022, 22, 4686-4693.	4.5	25
1070	Direct Imaging of Weakâ€toâ€Strongâ€Coupling Dynamics in Biological Plasmon–Exciton Systems. Laser and Photonics Reviews, 2022, 16, .	4.4	3
1071	A Theoretical Perspective on Molecular Polaritonics. ACS Photonics, 2022, 9, 1830-1841.	3.2	22
1072	Nanoscale Al ₂ O ₃ Core with Ag Shell-Based Ultranarrow and Symmetric Cavity Plasmons for a Sub-nm Spectral Shift and Radius Differential Resolution Measurements. ACS Applied Nano Materials, 2022, 5, 8196-8204.	2.4	O
1073	Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit. Accounts of Chemical Research, 2022, 55, 1659-1668.	7.6	13
1074	Ultrafast Multidimensional Spectroscopy to Probe Molecular Vibrational Polariton Dynamics. ACS Symposium Series, 0, , 89-107.	0.5	3
1075	Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas. Nanophotonics, 2022, 11, 3281-3298.	2.9	5
1076	Insight into the Heterogeneity of Longitudinal Plasmonic Field in a Nanocavity Using an Intercalated Two-Dimensional Atomic Crystal Probe with a â^1/47 Ã Resolution. Journal of the American Chemical Society, 2022, 144, 13174-13183.	6.6	4
1077	Tailoring the Band Structure of Plexcitonic Crystals by Strong Coupling. ACS Photonics, 2022, 9, 2473-2482.	3.2	7
1078	Bose enhancement of excitation-energy transfer with molecular-exciton-polariton condensates. Journal of Chemical Physics, 2022, 156, 234301.	1.2	4
1079	Strong Coupling of Ag@Au Hollow Nanocube/J-Aggregate Heterostructures by Absorption Spectra. Journal of Physical Chemistry C, 2022, 126, 10566-10573.	1.5	7
1080	On the characteristic features of ionization in QED environments. Journal of Chemical Physics, 2022, 156, .	1.2	15
1081	High-Q collective Mie resonances in monocrystalline silicon nanoantenna arrays for the visible light. Fundamental Research, 2023, 3, 822-830.	1.6	11
1082	Empowering magnetic strong coupling and its application for nonlinear refractive index sensing. Nano Research, 2022, 15, 7604-7613.	5.8	3
1083	Giant excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity. Light: Science and Applications, 2022, 11, .	7.7	14
1084	Light-Induced Ultrafast Molecular Dynamics: From Photochemistry to Optochemistry. Journal of Physical Chemistry Letters, 2022, 13, 5881-5893.	2.1	8
1085	Effect of Molecular Position and Orientation on Adsorbate-Induced Shifts of Plasmon Resonances. Journal of Physical Chemistry C, 2022, 126, 10129-10138.	1.5	4
1086	Control of Plexcitonic Strong Coupling via Substrateâ€Mediated Hotspot Nanoengineering. Advanced Optical Materials, 2022, 10, .	3.6	6

#	Article	IF	CITATIONS
1087	Wavelike electronic energy transfer in donor–acceptor molecular systems through quantum coherence. Nature Nanotechnology, 2022, 17, 729-736.	15.6	19
1088	Influence of spherical anisotropy on optical mass sensing in plasmonic-molecular optomechanics. Physical Review A, 2022, 105, .	1.0	0
1089	Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light–Matter Systems. Journal of Chemical Theory and Computation, 2022, 18, 4354-4365.	2.3	9
1090	Quantum Biotechnology. Advanced Quantum Technologies, 2022, 5, .	1.8	5
1091	Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature. Nature Communications, 2022, 13, .	5.8	7
1092	Strong coupling with directional scattering features of metal nanoshells with monolayer WS2 heterostructures. Applied Physics Letters, 2022, 121, .	1.5	3
1093	Competition between collective and individual conical intersection dynamics in an optical cavity. New Journal of Physics, 2022, 24, 073022.	1.2	11
1095	An ultrastrongly coupled single THz meta-atom. , 2022, , .		0
1096	Strong light-matter interactions in hybrid nanostructures with transition metal dichalcogenides. Journal of Optics (United Kingdom), 2022, 24, 093001.	1.0	5
1097	Fingerprinting the Hidden Facets of Plasmonic Nanocavities. ACS Photonics, 2022, 9, 2643-2651.	3.2	24
1098	Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. Journal of Physical Chemistry Letters, 2022, 13, 6905-6911.	2.1	23
1099	Controlling dynamic multipartite entanglement with near-field-excited quantum dots., 2022,,.		0
1100	Atomic-Void van der Waals Channel Waveguides. Nano Letters, 2022, 22, 6254-6261.	4. 5	8
1101	Spontaneous emission of a quantum emitter near a graphene nanodisk under strong light-matter coupling. Physical Review A, 2022, 106, .	1.0	7
1102	Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution. Light: Science and Applications, 2022, 11, .	7.7	23
1103	Cavity spectral-hole-burning to boost coherence in plasmon-emitter strong coupling systems. Nanotechnology, 2022, 33, 475001.	1.3	2
1104	Emerging Methods for Controlling Hot Carrier Excitation and Emission Distributions in Nanoplasmonic Systems. Journal of Physical Chemistry C, 2022, 126, 14767-14780.	1.5	9
1105	Effect of Plasmonic Au and Ag/Au Nanoparticles and Sodium Citrate on the Optical Properties of Chitin-Based Photonic Nanoarchitectures in Butterfly Wing Scales. Photonics, 2022, 9, 553.	0.9	3

#	Article	IF	CITATIONS
1106	Something from nothing: linking molecules with virtual light. Contemporary Physics, 2021, 62, 217-232.	0.8	17
1107	Robust Tipless Positioning Device for Near-Field Investigations: Press and Roll Scan (PROscan). ACS Nano, 2022, 16, 12831-12839.	7.3	1
1108	Quantum Interference in Spontaneous Decay of a Quantum Emitter Placed in a Dimer of Bismuth-Chalcogenide Microparticles. Photonics, 2022, 9, 596.	0.9	4
1109	Epsilon-near-zero substrate-enabled strong coupling between molecular vibrations and mid-infrared plasmons. Optics Letters, 2022, 47, 4524.	1.7	2
1110	Madelung Formalism for Electron Spill-Out in Nonlocal Nanoplasmonics. Journal of Physical Chemistry C, 0, , .	1.5	1
1111	Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. Journal of Chemical Physics, 2022, 157, .	1.2	10
1112	Optical manipulation with metamaterial structures. Applied Physics Reviews, 2022, 9, .	5.5	57
1113	Enhancing Raman spectra by coupling plasmons and excitons for large area MoS2 monolayers. Applied Surface Science, 2022, 605, 154767.	3.1	5
1114	Unveiling facet effects in metallic nanoparticles to design an efficient plasmonic nanostructure. Current Applied Physics, 2022, 44, 22-28.	1.1	4
1115	Probing strongly coupled light-matter interactions using quantum free electrons. , 2022, , .		2
1116	Molecular Cavity QED. , 2022, , 399-446.		0
1117	A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale. Nanoscale, 2022, 14, 12257-12264.	2.8	2
1118	Fundamentals of Quantum Optics. , 2022, , 347-397.		0
1120	Transverseâ€Electricâ€Polarized Polaritons Propagating in a WS _{2< sub> Si_{3< sub>N_{4< sub> Ag Heterostructure. Laser and Photonics Reviews, 2022, 16, .}}}	4.4	2
1121	Polaritons in Van der Waals Heterostructures. Advanced Materials, 2023, 35, .	11.1	15
1122	Overcoming the Diffraction Limit on the Size of Dielectric Resonators Using an Amplifying Medium. Physical Review Letters, 2022, 129, .	2.9	1
1123	Theoretical quantum model of two-dimensional propagating plexcitons. Journal of Chemical Physics, 2022, 157, .	1.2	3
1124	Role of Rabi oscillations in radiative states due to the fully absorbing smaller plasmonic nanoparticles. Journal of Applied Physics, 2022, 132, 113103.	1.1	1

#	Article	IF	CITATIONS
1125	Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition. Nature Communications, $2022,13,$.	5.8	11
1126	Optimization of a leaky plasmonic metal–insulator–metal nanopillar array for low concentration biosensing applications. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2705.	0.9	1
1127	Plasmonic phenomena in molecular junctions: principles and applications. Nature Reviews Chemistry, 2022, 6, 681-704.	13.8	34
1128	Assembly of Centimeter-Scale Plasmonic Nanocavities for Bright and Ultrafast Emission of Red Carbon Dots. ACS Applied Nano Materials, 2022, 5, 14902-14911.	2.4	1
1129	Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nature Communications, 2022, 13, .	5.8	21
1130	Gap Plasmonics of Single Gold Nanoparticle Above a Gold Substrate Covered with Thin Gain Film. Plasmonics, 2022, 17, 2255-2261.	1.8	1
1131	Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics. Frontiers in Physics, 0, 10 , .	1.0	4
1132	Strong Coupling in a Hybrid System of Silver Nanoparticles and J-Aggregates at Room Temperature. Journal of Physical Chemistry C, 2022, 126, 17141-17151.	1.5	3
1133	Molecular Plasmonics with Metamaterials. Chemical Reviews, 2022, 122, 15031-15081.	23.0	23
1134	Low-symmetry nanophotonics. , 2022, , .		0
1135	Radiative emission of polaritons controlled by light-induced geometric phase. Chemical Communications, 2022, 58, 12612-12615.	2.2	4
1136	Non-locality and single meta-atom spectroscopy in THz Landau polaritons. EPJ Web of Conferences, 2022, 266, 08013.	0.1	0
1137	Luminescence from Cuprous Oxide in a Scanning Tunneling Microscope: Competition between Plasmonic and Excitonic Response. ACS Photonics, 2022, 9, 3625-3632.	3.2	1
1138	Plasmon–exciton coupling in a dimer cavity revisited: effect of excitonic dipole orientation. Applied Physics Express, 2022, 15, 112005.	1.1	0
1139	Dynamical stabilization by vacuum fluctuations in a cavity: Resonant electron scattering in the ultrastrong light-matter coupling regime. Physical Review A, 2022, 106, .	1.0	3
1140	Nanoparticle contact printing with interfacial engineering for deterministic integration into functional structures. Science Advances, 2022, 8, .	4.7	2
1141	Thermal-annealing-regulated plasmonic enhanced fluorescence platform enables accurate detection of antigen/antibody against infectious diseases. Nano Research, 0, , .	5.8	2
1142	Nanoparticle-on-mirror pairs: building blocks for remote spectroscopies. Nanophotonics, 2022, 11, 5153-5163.	2.9	8

#	Article	IF	CITATIONS
1143	Strong Coupling in Infrared Plasmonic Cavities. Journal of Physical Chemistry Letters, 2022, 13, 9673-9678.	2.1	8
1144	Origin of an Anticrossing between a Leaky Photonic Mode and an Epsilon-Near-Zero Point of Silver. Journal of Physical Chemistry C, 0, , .	1.5	1
1145	Maximum electromagnetic local density of states via material structuring. Nanophotonics, 2023, 12, 549-557.	2.9	5
1146	DNA as grabbers and steerers of quantum emitters. Nanophotonics, 2022, .	2.9	1
1147	Advances in modeling plasmonic systems. Journal of Chemical Physics, 2022, 157, 190401.	1.2	3
1148	Reduced-density-matrix-based <i>ab initio</i> cavity quantum electrodynamics. Physical Review A, 2022, 106, .	1.0	9
1149	Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. Nanophotonics, 2023, 12, 413-439.	2.9	7
1150	Cavity-induced chiral edge currents and spontaneous magnetization in two-dimensional electron systems. Physical Review B, 2022, 106, .	1.1	1
1151	Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion. Fundamental Research, 2023, 3, 537-543.	1.6	4
1152	OpenSANS: A Semi-Analytical solver for Nonlocal plasmonicS. Computer Physics Communications, 2023, 284, 108609.	3.0	0
1153	Metasurface-coupled near-field sensor implemented in 180nm CMOS., 2022,,.		0
1154	Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter. Nano Letters, 2022, 22, 9283-9289.	4.5	1
1155	DNA Computation-Modulated Self-Assembly of Stimuli-Responsive Plasmonic Nanogap Antennas for Correlated Multiplexed Molecular Imaging. Analytical Chemistry, 2022, 94, 16887-16893.	3.2	3
1156	Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. Journal of the American Chemical Society, 2022, 144, 22337-22351.	6.6	26
1157	Tracking water dimers in ambient nanocapsules by vibrational spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0
1158	Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. Nano Letters, 0, , .	4. 5	2
1159	Effect of Mirror Quality on Optical Response of Nanoparticleâ€onâ€Mirror Plasmonic Nanocavities. Advanced Optical Materials, 2023, 11, .	3.6	5
1160	Nanoscale Engineering of Optical Strong Coupling inside Metals. Advanced Optical Materials, 2023, 11,	3.6	1

#	Article	IF	CITATIONS
1161	Enhanced Diastereocontrol via Strong Light–Matter Interactions in an Optical Cavity. Journal of Physical Chemistry A, 2022, 126, 9303-9312.	1.1	20
1162	Strong coupling of excitons in monolayer WS2 with guided-mode resonance. Results in Physics, 2023, 44, 106191.	2.0	3
1163	Dimers of Plasmonic Nanocubes to Reach Single-Molecule Strong Coupling with High Emission Yields. Journal of Physical Chemistry Letters, 2022, 13, 11996-12003.	2.1	1
1164	Tuning and Enhancing Quantum Coherence Time Scales in Molecules via Light-Matter Hybridization. Journal of Physical Chemistry Letters, 2022, 13, 11503-11511.	2.1	4
1165	Accurate Transfer of Individual Nanoparticles onto Single Photonic Nanostructures. ACS Applied Materials & Samp; Interfaces, 2023, 15, 3558-3565.	4.0	3
1166	Substrate engineering of plasmonic nanocavity antenna modes. Optics Express, 0, , .	1.7	2
1167	Optical properties of plasmonic tunneling junctions. Journal of Chemical Physics, 2023, 158, .	1.2	6
1168	Direct Observation of Lateral Field Confinement in Symmetryâ€Protected THz Bound States in the Continuum. Advanced Optical Materials, 2023, 11, .	3.6	1
1169	How to Obtain the Correct Rabi Splitting in a Subwavelength Interacting System. Nano Letters, 2023, 23, 444-450.	4.5	7
1170	Ultrafast hot electron dynamics in plasmonic nanostructures: experiments, modelling, design. Nanophotonics, 2023, 12, 1-28.	2.9	13
1171	Quantum sensing of strongly coupled light-matter systems using free electrons. Science Advances, 2023, 9, .	4.7	4
1172	Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates. Journal of the American Chemical Society, 2023, 145, 1557-1563.	6.6	2
1173	Effective Modes for a Strongly Coupled Quantum Emitter-MoS\$_{2}\$ Nanodisk System. IEEE Photonics Journal, 2023, 15, 1-7.	1.0	2
1174	Complementary Surfaceâ€Enhanced Raman Scattering (SERS) and IR Absorption Spectroscopy (SEIRAS) with Nanorodsâ€onâ€aâ€Mirror. Advanced Functional Materials, 2023, 33, .	7.8	4
1175	Oblique-Incidence-Excited Localized Hot Spots in Plasmonic Particle-on-Film Nanocavities. Journal of Physical Chemistry C, 2023, 127, 461-467.	1.5	0
1176	Spectroscopy and carrier dynamics of one-dimensional nanostructures. Journal of Semiconductors, 2022, 43, 121201.	2.0	0
1177	Fate of Molecular Photon Emitters in Plasmonic Hot Spots in Air and a Vacuum. Journal of Physical Chemistry C, 2023, 127, 300-307.	1.5	1
1178	Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS ₂ Monolayer and Multilayer. ACS Nano, 2023, 17, 2356-2367.	7.3	6

#	Article	IF	CITATIONS
1179	Creation of Assembled Plasmonic Network Architectures with Selective Capture of Guest Molecules in Hotspots Region. Advanced Optical Materials, 0, , 2201911.	3.6	1
1180	Quantum Coherent Control of a Single Molecular-Polariton Rotation. Physical Review Letters, 2023, 130, .	2.9	19
1181	Strong coupling of multiple plasmon modes and excitons with excitation light controlled active tuning. Nanophotonics, 2023, 12, 735-742.	2.9	8
1182	Fano asymmetry in zero–detuned exciton–plasmon systems. Optics Express, 2023, 31, 10297.	1.7	3
1183	Dissipation-driven formation of entangled dark states in strongly coupled inhomogeneous many-qubit systems in solid-state nanocavities. Physical Review A, 2023, 107, .	1.0	5
1184	Tailoring the directional dependent emitter interaction based plasmonic antenna character of Ag–Au heterodimer. Optics and Laser Technology, 2023, 162, 109254.	2.2	0
1185	Vibropolaritonic Reaction Rates in the Collective Strong Coupling Regime: Pollak–Grabert–HÃ ¤ ggi Theory. Journal of Physical Chemistry C, 2023, 127, 5230-5237.	1.5	9
1186	Self-assembled colloidal gold nanoparticles as substrates for plasmon enhanced fluorescence. European Journal of Materials, 2023, 3, .	0.8	2
1187	Highly Efficient Single-Exciton Strong Coupling with Plasmons by Lowering Critical Interaction Strength at an Exceptional Point. Physical Review Letters, 2023, 130, .	2.9	4
1188	Microfiber quantum sensors for protein measurement with quantum N00N state. Sensors and Actuators B: Chemical, 2023, 383, 133616.	4.0	1
1189	Dissociation slowdown by collective optical response under strong coupling conditions. Journal of Chemical Physics, 2023, 158 , .	1.2	2
1190	Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chemical Reviews, 2023, 123, 1552-1634.	23.0	82
1191	Purcell and Collection Efficiency Enhancement of Single NVâ€ÂCenter Emission Coupled to an Asymmetric Tamm Structure. Advanced Quantum Technologies, 2023, 6, .	1.8	2
1192	Quantification of the Real Plasmonic Field Transverse Distribution in a Nanocavity Using the Vibrational Stark Effect. Journal of Physical Chemistry Letters, 2023, 14, 1708-1713.	2.1	1
1193	Interaction of plasmonic bound states in the continuum. Photonics Research, 2023, 11, 724.	3.4	7
1194	Plasmon-mediated chemical reactions. Nature Reviews Methods Primers, 2023, 3, .	11.8	18
1195	Optomechanical effects in nanocavity-enhanced resonant Raman scattering of a single molecule. Physical Review B, 2023, 107, .	1.1	2
1196	Excitation of Chiral Cavity Plasmon Resonances in Film oupled Chiral Au Nanoparticles. Advanced Optical Materials, 2023, 11, .	3.6	7

#	Article	IF	CITATIONS
1197	Strong coupling of second harmonic generation scattering spectrum in a diexcitionic nanosystem. Optics Express, 2023, 31, 10249.	1.7	1
1198	Polaritonic Huang–Rhys Factor: Basic Concepts and Quantifying Light–Matter Interactions in Media. Journal of Physical Chemistry Letters, 2023, 14, 2395-2401.	2.1	5
1199	Quinine-Fabricated Surface-Enhanced Raman Spectroscopy Chiral Sensing Platform Enables Simultaneous Enantioselective Discrimination and Identification of Aliphatic Amino Acids. Analytical Chemistry, 2023, 95, 4923-4931.	3.2	2
1200	Non-Hermitian Hamiltonians for linear and nonlinear optical response: A model for plexcitons. Journal of Chemical Physics, 2023, 158, .	1.2	4
1201	Advances in Metaphotonics Empowered Single Photon Emission. Advanced Optical Materials, 2023, 11, .	3.6	10
1202	Strong coupling between a plasmon mode and multiple different exciton states. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
1203	Understanding the Energy Gap Law under Vibrational Strong Coupling. Journal of Physical Chemistry C, 2023, 127, 5491-5501.	1.5	2
1204	Finite element analysis on the near field properties of metallic cavities with atomic sharpness. Results in Physics, 2023, 47, 106360.	2.0	0
1205	Excitation and emission distinguished photoluminescence enhancement in a plasmon–exciton intermediate coupling system. Nanoscale, 2023, 15, 7812-7819.	2.8	1
1206	Perturbation theoretical approaches to strong light–matter coupling in ground and excited electronic states for the description of molecular polaritons. Journal of Chemical Physics, 2023, 158, 124128.	1.2	5
1207	Current-induced forces in nanosystems: A hierarchical equationsÂof motion approach. Physical Review B, 2023, 107, .	1.1	2
1208	Nanophotonics of microcavity exciton–polaritons. Applied Physics Reviews, 2023, 10, .	5.5	5
1209	Effect of ultrathin layer of MoS ₂ on resonance mode coupling and hybridization of AlGaAs nanoscale Mie-resonator: a simulation study. Physica Scripta, 2023, 98, 045514.	1.2	1
1210	Polaritons. , 2024, , 497-506.		0
1211	High-Speed Spectral Characterization of Single-Molecule SERS Fluctuations. ACS Nano, 2023, 17, 6675-6686.	7.3	9
1212	Quantized Fields for Optimal Control in the Strong Coupling Regime. Physical Review Letters, 2023, 130, .	2.9	1
1213	Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride. Nano Letters, 2023, 23, 5445-5452.	4.5	4
1214	Fluorescence engineering in metamaterial-assisted super-resolution localization microscope. Nanophotonics, 2023, 12, 2491-2498.	2.9	2

#	Article	IF	CITATIONS
1216	Zero-dimensional molecular exciton-polaritons in cavity-free solutions. Cell Reports Physical Science, 2023, 4, 101342.	2.8	0
1217	Bullseye dielectric cavities for photon collection from a surface-mounted quantum-light-emitter. Scientific Reports, 2023, 13, .	1.6	1
1218	Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. Journal of Chemical Theory and Computation, 2023, 19, 2353-2368.	2.3	7
1219	Exceptional points treatment of cavity spectroscopies. Journal of Chemical Physics, 2023, 158, .	1.2	2
1220	Control, Modulation, and Analytical Descriptions of Vibrational Strong Coupling. Chemical Reviews, 2023, 123, 5020-5048.	23.0	20
1221	Control and Enhancement of Single-Molecule Electroluminescence through Strong Light–Matter Coupling. Nano Letters, 2023, 23, 3231-3238.	4.5	2
1222	Chiral Polaritonics: Analytical Solutions, Intuition, and Use. Journal of Physical Chemistry Letters, 2023, 14, 3777-3784.	2.1	12
1223	Light-Triggered Reversible Tuning of Second-Harmonic Generation in a Photoactive Plasmonic Molecular Nanocavity. Nano Letters, 2023, 23, 5851-5858.	4.5	1
1224	Sheathed Molecular Junctions for Unambiguous Determination of Chargeâ€Transport Properties. Advanced Materials Interfaces, 2023, 10, .	1.9	2
1225	Gain-compensated cavities for the dynamic control of light-matter interactions. Physical Review A, 2023, 107, .	1.0	1
1233	Effective Single-Mode Methodology for Strongly Coupled Multimode Molecular-Plasmon Nanosystems. Nano Letters, 2023, 23, 4938-4946.	4.5	5
1235	Molecular Energy Transfer under the Strong Light–Matter Interaction Regime. Chemical Reviews, 2023, 123, 8044-8068.	23.0	5
1250	Polaritonic chemistry., 2023, , 191-211.		0
1251	Giant Out-of-Plane Exciton Emission Enhancement in Two-Dimensional Indium Selenide via a Plasmonic Nanocavity. Nano Letters, 2023, 23, 3716-3723.	4.5	8
1252	Plasmonic Catalysis: New Opportunity for Selective Chemical Bond Evolution. ACS Catalysis, 2023, 13, 6730-6743.	5.5	8
1257	Nanostructured noble metals as chemical and biological sensors. AIP Conference Proceedings, 2023, , .	0.3	0
1273	Mirror-Enabled Tuning of Mid-Infrared Light Scattering by Dielectric Optical Resonators., 2023,,.		0
1274	Surface-plasmon-assisted lasing and strong exciton-photon coupling in perovskite crystals. , 2023, , 431-461.		O

#	Article	IF	CITATIONS
1277	Nanoplasmonics as Enabler of Room-Temperature Quantum Nanophotonic Networks., 2023,,.		0
1288	Fundamentals of plasmonic materials. , 2024, , 3-33.		O
1332	Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nature Reviews Materials, 2024, 9, 9-28.	23.3	1
1334	Advances in polaritonic photochemistry. , 2023, , 331-360.		O
1335	Exploring Polaritons in Optically-Anisotropic Media. , 2023, , .		0
1348	Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light: Science and Applications, 2024, 13, .	7.7	0
1350	Light–matter interactions in quantum nanophotonic devices. Nature Reviews Physics, 2024, 6, 166-179.	11.9	1
1354	Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Chemical Science, 2024, 15, 2697-2711.	3.7	0