Applications of hierarchically structured porous materical conversion, catalysis, photocatalysis, adsorption, separate

Chemical Society Reviews 45, 3479-3563

DOI: 10.1039/c6cs00135a

Citation Report

#	Article	IF	CITATIONS
1	Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. Journal of Power Sources, 2016, 329, 516-524.	4.0	44
2	Metal–organic framework coated paper substrates for paper spray mass spectrometry. Analytical Methods, 2016, 8, 8004-8014.	1.3	34
3	Preparation, characterization, and properties of graphene-based composite aerogels via in situ polymerization and three-dimensional self-assembly from graphene oxide solution. RSC Advances, 2016, 6, 78538-78547.	1.7	15
4	Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells. Journal of Power Sources, 2016, 333, 72-82.	4.0	34
5	Effect of Chemical Charging/Discharging on Plasmonic Behavior of Silver Metal Nanoparticles Prepared using Citrateâ€Stabilized Cadmium Selenide Quantum Dots. ChemPhysChem, 2016, 17, 3209-3216.	1.0	4
6	Hierarchically porous materials: Synthesis strategies and emerging applications. Frontiers of Chemical Science and Engineering, 2016, 10, 301-347.	2.3	73
8	Tailoring the morphologies of PVDF nanofibers by interfacial diffusion during coaxial electrospinning. Materials and Design, 2016, 109, 264-269.	3.3	27
9	The synthesis and electrical properties of hybrid gel electrolytes derived from Keggin-type heteropoly acids and 3-(pyridin-1-ium-1-yl)propane-1-sulfonate (PyPs). RSC Advances, 2016, 6, 102549-102556.	1.7	9
10	Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials, 2016, 1 , .	23.3	1,383
11	Investigation of the Effect of Alumina Binder Addition to Pd/SO42––ZrO2 Catalysts during Sol–Gel Synthesis. Industrial & Engineering Chemistry Research, 2016, 55, 11445-11457.	1.8	11
12	Grain Boundaries Enriched Hierarchically Mesoporous MnO/Carbon Microspheres for Superior Lithium Ion Battery Anode. Electrochimica Acta, 2016, 222, 561-569.	2.6	30
13	Core–shell rGO/SnO ₂ @CF with wrinkled surface used as structural anode material: high tensile strength and electrochemical stability. Journal of Materials Chemistry A, 2016, 4, 18524-18531.	5.2	24
14	Rational design of MnO ₂ @MnO ₂ hierarchical nanomaterials and their catalytic activities. Dalton Transactions, 2016, 45, 18851-18858.	1.6	24
15	The controllable construction and properties characterization of organic–inorganic hybrid materials based on benzoxazine-bridged polysilsesquioxanes. RSC Advances, 2017, 7, 3136-3144.	1.7	11
16	Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons, 2017, 2, 99-105.	4.1	227
17	Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Research, 2017, 10, 1449-1470.	5.8	144
18	Controlled Encapsulation of Functional Organic Molecules within Metal–Organic Frameworks: In Situ Crystalline Structure Transformation. Advanced Materials, 2017, 29, 1606290.	11.1	65
19	Supramolecular assembly based on "emerging―intermolecular interactions of particular interest to coordination chemists. Coordination Chemistry Reviews, 2017, 345, 209-228.	9.5	175

#	Article	IF	CITATIONS
20	Recent Progress in Metal–Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications. ChemSusChem, 2017, 10, 1645-1663.	3.6	199
21	One-step solvothermal synthesis of interlaced nanoflake-assembled flower-like hierarchical Ag/Cu ₂ O composite microspheres with enhanced visible light photocatalytic properties. RSC Advances, 2017, 7, 6957-6965.	1.7	31
22	40% enhanced photocurrent of dye sensitized solar cells using lotus-shaped H 2 -treated anatase TiO 2 with $\{0\ 0\ 1\}$ dominated facets. Chemical Engineering Journal, 2017, 316, 534-543.	6.6	12
23	Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 206, 336-343.	10.8	102
24	Remarkable electrochemical properties of novel LaNi _{0.5} Co _{0.5} O ₃ /0.333Co ₃ O ₄ hollow spheres with a mesoporous shell. Journal of Materials Chemistry A, 2017, 5, 5838-5845.	5.2	48
25	Facile synthesis of mesoporous magnetic AMP polyhedric composites for rapid and highly efficient separation of Cs + from water. Chemical Engineering Journal, 2017, 317, 533-543.	6.6	27
26	Quasi-reverse-emulsion-templated approach for a facile and sustainable environmental remediation for cadmium. RSC Advances, 2017, 7, 6345-6357.	1.7	10
27	Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH) 6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2017, 209, 543-553.	10.8	151
28	CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries. Green Energy and Environment, 2017, 2, 160-167.	4.7	39
29	Synthesis, structure and characterization of two new organic template-directed gallium phosphate/phosphite-oxalates. Journal of Molecular Structure, 2017, 1138, 1-5.	1.8	12
30	Slow Photons for Photocatalysis and Photovoltaics. Advanced Materials, 2017, 29, 1605349.	11.1	129
31	Tunable Synthesis of Ag Films at the Interface of Ionic Liquids and Water by Changing Cationic Structures of Ionic Liquids. Crystal Growth and Design, 2017, 17, 990-999.	1.4	20
32	Three-dimensional photocatalysts with a network structure. Journal of Materials Chemistry A, 2017, 5, 5661-5679.	5. 2	86
33	Synthesis of bimodal mesoporous carbon nanospheres for methyl orange adsorption. Journal of Porous Materials, 2017, 24, 1605-1612.	1.3	9
34	Hierarchical architecture for flexible energy storage. Nanoscale, 2017, 9, 6686-6694.	2.8	16
35	Enhanced Visible-Light-Driven Photocatalytic H ₂ Evolution from Water on Noble-Metal-Free CdS-Nanoparticle-Dispersed Mo ₂ C@C Nanospheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 5449-5456.	3.2	77
36	Electrospun TiO ₂ â€"SiO ₂ fibres with hierarchical pores from phase separation. CrystEngComm, 2017, 19, 2673-2680.	1.3	23
37	In Situ Multimodal 3D Chemical Imaging of a Hierarchically Structured Core@Shell Catalyst. Journal of the American Chemical Society, 2017, 139, 7855-7863.	6.6	39

#	ARTICLE	IF	Citations
38	Effect of the well-designed functional groups and defects of porous carbon spheres on the catalytic oxidation performance. Microporous and Mesoporous Materials, 2017, 250, 35-42.	2.2	10
39	Dahlia-shaped BiOCl x I 1â^'x structures prepared by a facile solid-state method: Evidence and mechanism of improved photocatalytic degradation of rhodamine B dye. Journal of Colloid and Interface Science, 2017, 503, 115-123.	5.0	56
40	Facile synthesis of 3D foam-like CoNiO 2 for high-performance sodium ion batteries. Materials Research Bulletin, 2017, 96, 379-384.	2.7	10
41	Micro―and Nanoâ€Structured Vanadium Pentoxide (V ₂ O ₅) for Electrodes of Lithiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1602545.	10.2	276
42	Highly Stable Hierarchical Flower-like \hat{I}^2 -In2S3 Assembled from 2D Nanosheets with high Adsorption-Photodecolorization Activities for the Treatment of Wastewater. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	16
43	Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 14096-14106.	1.3	53
44	Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO 3 (La,Cr)-decorated WO 3 nanosheets. Applied Surface Science, 2017, 412, 279-289.	3.1	42
45	Hyperbranched poly(ether amine)@poly(vinylidene fluoride) (hPEA@PVDF) porous membranes for selective adsorption and molecular filtration of hydrophilic dyes. Journal of Materials Chemistry A, 2017, 5, 10470-10479.	5.2	22
46	Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46, 481-558.	18.7	1,030
47	Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochemistry Communications, 2017, 81, 97-101.	2.3	13
48	Facile fabrication of 3D porous hybrid sphere by co-immobilization of multi-enzyme directly from cell lysates as an efficient and recyclable biocatalyst for asymmetric reduction with coenzyme regeneration in situ. International Journal of Biological Macromolecules, 2017, 103, 424-434.	3.6	17
49	A general approach to 3D porous CQDs/MxOy (M = Co, Ni) for remarkable performance hybrid supercapacitors. Chemical Engineering Journal, 2017, 326, 58-67.	6.6	37
50	Carbon quantum dot-induced self-assembly of ultrathin Ni(OH)2 nanosheets: A facile method for fabricating three-dimensional porous hierarchical composite micro-nanostructures with excellent supercapacitor performance. Nano Research, 2017, 10, 3005-3017.	5.8	73
51	Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Research, 2017, 10, 3726-3742.	5.8	85
52	Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydrate Polymers, 2017, 173, 422-430.	5.1	58
53	Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation. Macromolecules, 2017, 50, 4363-4371.	2.2	25
54	Polydopamine nanocoated whole-cell asymmetric biocatalysts. Chemical Communications, 2017, 53, 6617-6620.	2.2	37
55	Morphologyâ€Conserved Transformations of Metalâ€Based Precursors to Hierarchically Porous Microâ€/Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1607015.	11.1	79

#	Article	IF	CITATIONS
56	Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252, 10-16.	2.2	34
57	In Situ Synthesis Strategy for Hierarchically Porous Ni ₂ P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.	4.0	158
58	Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths. Analytical Chemistry, 2017, 89, 4655-4662.	3.2	39
59	Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335, 28-43.	9.5	312
60	3D Reticular Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1516-1523.	4.0	56
61	Tunable Pseudocapacitance in 3D TiO _{2â^Î} Nanomembranes Enabling Superior Lithium Storage Performance. ACS Nano, 2017, 11, 821-830.	7.3	124
62	Potential Applications of Magnetic β-AgVO ₃ /ZnFe ₂ O ₄ Nanocomposites in Dyes, Photocatalytic Degradation, and Catalytic Thermal Decomposition of Ammonium Perchlorate. Industrial & Engineering Chemistry Research, 2017, 56, 623-634.	1.8	49
63	N-Doped porous carbon nanotubes: synthesis and application in catalysis. Chemical Communications, 2017, 53, 929-932.	2.2	43
64	Pd Nanoparticle Assemblies as Efficient Catalysts for the Hydrogen Evolution and Oxygen Reduction Reactions. European Journal of Inorganic Chemistry, 2017, 2017, 535-539.	1.0	39
65	Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Materials Chemistry and Physics, 2017, 202, 340-351.	2.0	60
66	Hierarchical branched \hat{l} ±-MnO ₂ : one-step synthesis and catalytic activity. RSC Advances, 2017, 7, 46529-46535.	1.7	5
67	A novel high-performance electrode architecture for supercapacitors: Fe ₂ O ₃ nanocube and carbon nanotube functionalized carbon. Journal of Materials Chemistry A, 2017, 5, 22648-22653.	5.2	11
68	Surface/Interfacial Structure and Chemistry of Highâ€Energy Nickelâ€Rich Layered Oxide Cathodes: Advances and Perspectives. Small, 2017, 13, 1701802.	5.2	228
69	Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. Journal of Materials Chemistry A, 2017, 5, 22372-22379.	5.2	159
70	Solvent-induced diversity of luminescent metal–organic frameworks based on different secondary building units. RSC Advances, 2017, 7, 46125-46131.	1.7	8
71	Facile fabrication of graphene-encapsulated Mn3O4 octahedra cross-linked with a silver network as a high-capacity anode material for lithium ion batteries. New Journal of Chemistry, 2017, 41, 13454-13461.	1.4	11
72	Hierarchical Porous Magnesium Oxide (Hr-MgO) Microspheres for Adsorption of an Organophosphate Pesticide: Kinetics, Isotherm, Thermodynamics, and DFT Studies. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 38629-38642.	4.0	66
7 3	Modified Cathodes with Carbon-Based Nanomaterials for Electro-Fenton Process. Handbook of Environmental Chemistry, 2017, , 111-143.	0.2	4

#	ARTICLE	IF	Citations
74	Metalâ€Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1703455.	7.8	597
75	Tethering mesoporous Pd nanoparticles to reduced graphene oxide sheets forms highly efficient electrooxidation catalysts. Journal of Materials Chemistry A, 2017, 5, 21249-21256.	5. 2	32
76	A Green and Facile Melt Approach for Hierarchically Porous Polylactide Monoliths Based on Stereocomplex Crystallite Network. ACS Sustainable Chemistry and Engineering, 2017, 5, 8334-8343.	3 . 2	30
77	Tremella derived ultrahigh specific surface area activated carbon for high performance supercapacitor. Materials Chemistry and Physics, 2017, 201, 399-407.	2.0	61
78	Porous two-dimensional materials for energy applications: Innovations and challenges. Materials Today Energy, 2017, 6, 79-95.	2.5	59
79	Cost-Effective Asymmetric Supercapacitors Based on Nickel Cobalt Oxide Nanoarrays and Biowaste-Derived Porous Carbon Electrodes. ACS Sustainable Chemistry and Engineering, 2017, 5, 9903-9913.	3.2	31
80	Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance. Journal of Materials Chemistry A, 2017, 5, 20892-20902.	5 . 2	67
81	Hierarchically porous carbon-coated SnO2@graphene foams as anodes for lithium ion storage. Carbon, 2017, 124, 565-575.	5.4	55
82	Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017, 5, 19521-19540.	5 . 2	323
83	Controlled Fabrication of Interconnected Porous Carbon Nanosheets for Supercapacitors with a Long Cycle Life. ChemElectroChem, 2017, 4, 3196-3203.	1.7	8
84	Free Channel Formation around Graphitic Carbon Nitride Embedded in Porous Polyethylene Terephthalate Nanofibers with Excellent Reusability for Eliminating Antibiotics under Solar Irradiation. Industrial & Description (Chemistry Research, 2017, 56, 11151-11160).	1.8	21
85	Binder-free production of 3D N-doped porous carbon cubes for efficient Pb2+ removal through batch and fixed bed adsorption. Journal of Cleaner Production, 2017, 168, 290-301.	4.6	29
86	Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. Composite Structures, 2017, 178, 483-492.	3.1	69
87	Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: An efficient adsorbent for atrazine removal. Science of the Total Environment, 2017, 607-608, 1391-1399.	3.9	77
88	Urchin-like hierarchical H-Nb ₂ O ₅ microspheres: synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Transactions, 2017, 46, 10935-10940.	1.6	35
89	Fabrication of Co@SiO ₂ @C/Ni submicrorattles as highly efficient catalysts for 4-nitrophenol reduction. Dalton Transactions, 2017, 46, 11598-11607.	1.6	39
90	Hierarchically porous CoO microsphere films with enhanced lithium/sodium storage properties. Journal of Alloys and Compounds, 2017, 725, 824-834.	2.8	25
91	Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 2017, 43, 5169-5186.	1.3	88

#	Article	IF	CITATIONS
92	Syntheses and Crystal Structures of Three Organically Templated Gallium Phosphates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1011-1015.	0.6	2
93	Methanol promoted synthesis of porous hierarchical α-Ni(OH)2 for the removal of Congo red. Powder Technology, 2017, 320, 377-385.	2.1	12
94	Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage. ACS Applied Materials & Storages. 2017, 9, 30679-30685.	4.0	65
95	Synthesis of Hierarchical Porous Metals Using Ionic‣iquidâ€Based Media as Solvent and Template. Angewandte Chemie, 2017, 129, 12857-12860.	1.6	0
96	Synthesis of Hierarchical Porous Metals Using Ionicâ€Liquidâ€Based Media as Solvent and Template. Angewandte Chemie - International Edition, 2017, 56, 12683-12686.	7.2	31
97	Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO ₂ for Highly Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & (2017, 9, 29687-29698.	4.0	51
98	A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. Advanced Functional Materials, 2017, 27, 1702384.	7.8	115
99	Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Applied Materials & Diterfaces, 2017, 9, 29167-29176.	4.0	107
100	Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications. Scientific Reports, 2017, 7, 15394.	1.6	25
101	Preparation of Hierarchical SnO2 Microspheres with Controlled Size from Ion Exchange Resins. ChemistrySelect, 2017, 2, 10186-10190.	0.7	2
102	A mechanistic view into the morphology-reconstruction mediated facile synthesis of bismuth ferrite (BiFeO 3) hierarchical nanostructures. Nano Structures Nano Objects, 2017, 12, 188-193.	1.9	4
103	Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nature Communications, 2017, 8, 1224.	5.8	175
104	Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy. Journal of Power Sources, 2017, 372, 260-269.	4.0	59
105	Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup. ACS Applied Materials & Interfaces, 2017, 9, 40645-40654.	4.0	32
107	Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 13907-13943.	5.2	242
109	Combustion synthesized hierarchically porous Mn ₃ O ₄ for catalytic degradation of methyl orange. Canadian Journal of Chemical Engineering, 2017, 95, 643-647.	0.9	6
110	MnO 2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosensors and Bioelectronics, 2017, 90, 69-74.	5.3	309
111	Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46, 389-414.	18.7	760

#	Article	IF	CITATIONS
112	Synergistic effects of electronic structure of WO3 nanorods with the dominant {001} exposed facets combined with silver size-dependent on the visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2017, 203, 335-342.	10.8	64
113	Layered Structural Coâ€Based MOF with Conductive Network Frames as a New Supercapacitor Electrode. Chemistry - A European Journal, 2017, 23, 631-636.	1.7	257
114	Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structures. ChemPhysChem, 2017, 18, 64-71.	1.0	4
115	Catalytic synthesis of cyclic carbonates from epoxides and carbon dioxide by magnetic UiOâ€66 under mild conditions. Applied Organometallic Chemistry, 2017, 31, e3656.	1.7	13
116	Highly selective isomerization of biomass \hat{l}^2 -pinene over hierarchically acidic MCM-22 catalyst. Microporous and Mesoporous Materials, 2017, 237, 180-188.	2.2	20
117	Cross-linked carbon networks constructed from N-doped nanosheets with enhanced performance for supercapacitors. Applied Surface Science, 2017, 396, 1326-1334.	3.1	11
118	Optimisation of Surface-Initiated Photoiniferter-Mediated Polymerisation under Confinement, and the Formation of Block Copolymers in Mesoporous Films. Polymers, 2017, 9, 539.	2.0	23
119	Porous Organic Cages., 2017,, 139-197.		7
120	Highly Sensitive and Selective Innumerable Electrode Catalysts for Bio-Sensing Molecules: An Overview. International Journal of Electrochemical Science, 2017, , 6990-7003.	0.5	1
121	Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films. Molecular Physics, 2018, 116, 1558-1564.	0.8	4
122	Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2018, 12, 43-49.	2.3	7
123	Functionalized 2D Clay Derivative: Hybrid Nanosheets with Unique Lead Sorption Behaviors and Interface Structure. Advanced Materials Interfaces, 2018, 5, 1700934.	1.9	27
124	Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery. Energy Storage Materials, 2018, 12, 23-29.	9.5	38
125	Hierarchical SnS ₂ /SnO ₂ nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO ₂ detection. Nanoscale, 2018, 10, 7210-7217.	2.8	136
126	A porous triptycene-based covalent polymer stabilized binary metal sulfide for enhanced hydrogen evolution under visible light. Chemical Communications, 2018, 54, 3391-3394.	2.2	30
127	Synthesis of Lamellar Mesostructured ZSM-48 Nanosheets. Chemistry of Materials, 2018, 30, 1839-1843.	3.2	42
128	Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy, 2018, 47, 266-274.	8.2	132
129	Hierarchically porous graphene for batteries and supercapacitors. New Journal of Chemistry, 2018, 42, 5634-5655.	1.4	24

#	Article	IF	CITATIONS
130	Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for high-selectivity photocatalytic benzene hydroxylation to phenol. Applied Catalysis B: Environmental, 2018, 234, 311-317.	10.8	95
131	Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nature Communications, 2018, 9, 1644.	5.8	300
132	Synthesis and Li-storage property of flower-like SbPO4 microspheres. Materials Letters, 2018, 224, 100-104.	1.3	5
133	Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2018, 12, 4824-4834.	7.3	141
134	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018, 47, 4112-4155.	18.7	117
135	A new polyoxovanadate-based metal–organic framework: synthesis, structure and photo-/electro-catalytic properties. New Journal of Chemistry, 2018, 42, 7247-7253.	1.4	26
136	Effects of αâ€Amylase, Amyloglucosidase, and Their Mixture on Hierarchical Porosity of Rice Starch. Starch/Staerke, 2018, 70, 1800008.	1.1	30
137	Novel hydrothermal electrodeposition to fabricate mesoporous film of NiO.8FeO.2 nanosheets for high performance oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 233, 226-233.	10.8	95
138	Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Applied Catalysis B: Environmental, 2018, 233, 213-225.	10.8	297
139	Integration of a metal–organic framework with zeolite: a highly sustainable composite catalyst for the synthesis of γ-valerolactone and coumarins. Sustainable Energy and Fuels, 2018, 2, 1287-1298.	2.5	19
140	Iron(<scp>iii</scp>) oxyhydroxide and oxide monoliths with controlled multiscale porosity: synthesis and their adsorption performance. Journal of Materials Chemistry A, 2018, 6, 9041-9048.	5.2	16
141	Interfacial Engineering of Hierarchical Transition Metal Oxide Heterostructures for Highly Sensitive Sensing of Hydrogen Peroxide. Small, 2018, 14, e1703713.	5.2	40
142	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 3276-3281.	1.6	29
143	Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chemical Engineering Journal, 2018, 339, 162-169.	6.6	67
144	Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Molecular Catalysis, 2018, 448, 100-107.	1.0	49
145	General Synthesis of 3D Ordered Macro-/Mesoporous Materials by Templating Mesoporous Silica Confined in Opals. Chemistry of Materials, 2018, 30, 1617-1624.	3.2	44
146	High-Rota Synthesis of Single-/Double-/Multi-Unit-Cell Ti-HSZ Nanosheets To Catalyze Epoxidation of Large Cycloalkenes Efficiently. ACS Applied Materials & Interfaces, 2018, 10, 6390-6397.	4.0	24
147	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 3222-3227.	7.2	157

#	Article	IF	CITATIONS
148	Direct 3D Printing of Reactive Agitating Impellers for the Convenient Treatment of Various Pollutants in Water. Advanced Materials Interfaces, 2018, 5, 1701626.	1.9	18
149	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
150	In situ polymerization of poly(vinylimidazole) into the pores of ‎hierarchical MFI zeolite as an acid–base bifunctional catalyst for one-pot ‎C–C bond cascade reactions. Research on Chemical Intermediates, 2018, 44, 3279-3291.	1.3	10
151	Yolk–Shell Nanostructures: Design, Synthesis, and Biomedical Applications. Advanced Materials, 2018, 30, 1704639.	11.1	153
152	Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316, 214-222.	2.2	36
153	Porous nanofibrous composite membrane for unparalleled proton conduction. Journal of Membrane Science, 2018, 550, 136-144.	4.1	25
154	Selective CO2 capture and versatile dye adsorption using a microporous polymer with triptycene and 1,2,3-triazole motifs. European Polymer Journal, 2018, 99, 259-267.	2.6	47
155	Thermoregulated Phaseâ€Transition Synthesis of Twoâ€Dimensional Carbon Nanoplates Rich in sp ² Carbon and Unimodal Ultramicropores for Kinetic Gas Separation. Angewandte Chemie - International Edition, 2018, 57, 1632-1635.	7.2	42
156	Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors. Energy Storage Materials, 2018, 12, 145-152.	9.5	174
157	Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Applied Energy, 2018, 211, 1203-1215.	5.1	137
158	Multiscale Phase Separations for Hierarchically Ordered Macro/Mesostructured Metal Oxides. Advanced Materials, 2018, 30, 1703829.	11.1	67
159	Embedding MnO@Mn ₃ O ₄ Nanoparticles in an Nâ€Dopedâ€Carbon Framework Derived from Mnâ€Organic Clusters for Efficient Lithium Storage. Advanced Materials, 2018, 30, 1704244.	11.1	374
160	Controllable Syntheses of Hierarchical WO ₃ Films Consisting of Orientation-Ordered Nanorod Bundles and Their Photocatalytic Properties. Crystal Growth and Design, 2018, 18, 794-801.	1.4	19
161	Pomegranateâ€6tructured Silica/Sulfur Composite Cathodes for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2018, 13, 568-576.	1.7	5
162	Thermoregulated Phaseâ€Transition Synthesis of Twoâ€Dimensional Carbon Nanoplates Rich in sp ² Carbon and Unimodal Ultramicropores for Kinetic Gas Separation. Angewandte Chemie, 2018, 130, 1648-1651.	1.6	13
163	Hierarchically porous MgCo ₂ O ₄ nanochain networks: template-free synthesis and catalytic application. Materials Research Express, 2018, 5, 015002.	0.8	10
164	Hierarchically Porous Zirconia Monolith Fabricated from Bacterial Cellulose and Preceramic Polymer. ACS Omega, 2018, 3, 4688-4694.	1.6	9
165	Development of a Model for the Formation of Materials with a Hierarchical Pore Structure Produced under Sol–Gel Processing Conditions. Inorganic Materials, 2018, 54, 478-489.	0.2	8

#	Article	IF	CITATIONS
166	A theoretical model to determine the capacity performance of shape-specific electrodes. Journal of Power Sources, 2018, 390, 242-248.	4.0	6
167	Cyclodextrins and Nanostructured Porous Inorganic Materials. Environmental Chemistry for A Sustainable World, 2018, , 105-153.	0.3	1
168	Hierarchically porous carbon microspheres with fully open and interconnected super-macropores for air cathodes of Zn-Air batteries. Carbon, 2018, 136, 54-62.	5.4	30
169	Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47, 4710-4728.	18.7	478
170	On the structural stability of guanosine-based supramolecular hydrogels. Soft Matter, 2018, 14, 2938-2948.	1.2	29
171	2D/2D FeOCl/graphite oxide heterojunction with enhanced catalytic performance as a photo-Fenton catalyst. New Journal of Chemistry, 2018, 42, 6896-6902.	1.4	28
172	Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor. Chemical Engineering Journal, 2018, 345, 39-47.	6.6	66
173	Sol–Gel Synthesis of Porous Li ₂ TiO ₃ for High-Performance Electrochemical Supercapacitors. Nano, 2018, 13, 1850027.	0.5	13
174	Close-packing of hierarchically structured C@Sn@C nanofibers for high-performance Li-ion battery with large gravimetric and volumetric energy densities. Chemical Engineering Journal, 2018, 344, 625-632.	6.6	20
175	Vertically Aligned Heteroatom Doped Carbon Nanosheets from Unzipped Self-Doped Carbon Tubes for High Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 6042-6051.	3.2	18
176	Slow photons for solar fuels. Chinese Journal of Catalysis, 2018, 39, 379-389.	6.9	20
177	Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Materials, 2018, 15, 98-107.	9.5	102
178	Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water. Carbohydrate Polymers, 2018, 191, 86-94.	5.1	42
179	TiO2-MgO mixed oxide nanomaterials for solar energy conversion. Catalysis Today, 2018, 300, 39-49.	2.2	16
180	Facile synthesis and its high catalytic performance of hierarchical ZSM-5 zeolite from economical bulk silicon oxides. Microporous and Mesoporous Materials, 2018, 260, 116-124.	2.2	21
181	Porous nest-like LiMnPO4 microstructures assembled by nanosheets for lithium ion battery cathodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 1426-1434.	1.1	13
182	Visible light photocatalytic activity of macro-mesoporous TiO 2 -CeO 2 inverse opals. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 25-34.	2.0	60
183	Raspberry—like monodispersity ZnO microspheres for photodegradation of rhodamine B. Materials Research Bulletin, 2018, 99, 37-44.	2.7	10

#	Article	IF	CITATIONS
184	The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. National Science Review, 2018, 5, 542-558.	4.6	158
185	Dodecatungstocobaltate heteropolyanion encapsulation into MILâ€101(Cr) metal–organic framework scaffold provides a highly efficient heterogeneous catalyst for methanolysis of epoxides. Applied Organometallic Chemistry, 2018, 32, e4065.	1.7	15
186	Surfactant templated synthesis of porous VO x -ZrO 2 catalysts for ethanol conversion to acetaldehyde. Catalysis Today, 2018, 304, 64-71.	2.2	18
187	Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chemical Engineering Journal, 2018, 331, 425-434.	6.6	135
188	Synthesis of Large Surfaceâ€Area gâ€C ₃ N ₄ Comodified with MnO <i></i> > and Auâ€TiO ₂ as Efficient Visibleâ€Light Photocatalysts for Fuel Production. Advanced Energy Materials, 2018, 8, 1701580.	10.2	157
189	Temperature-responsive cellulose sponge with switchable pore size: Application as a water flow manipulator. Materials Letters, 2018, 210, 337-340.	1.3	16
190	Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309.	7.8	117
191	A Macroporous Metal–Organic Framework with Enhanced Hydrophobicity for Efficient Oil Adsorption. Chemistry - A European Journal, 2018, 24, 3754-3759.	1.7	38
192	Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance. Journal of Hazardous Materials, 2018, 344, 1090-1100.	6.5	58
193	Three-dimensional macroporous CNTs microspheres highly loaded with NiCo2O4 hollow nanospheres showing excellent lithium-ion storage performances. Carbon, 2018, 128, 191-200.	5.4	38
194	Controllable synthesis 3D hierarchical structured MnO2@NiCo2O4 and its morphology-dependent activity. Inorganic Chemistry Frontiers, 2018, 5, 319-326.	3.0	9
195	Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochimica Acta, 2018, 259, 552-558.	2.6	80
196	Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018, 64, 219-253.	15.8	184
197	Li-rich nanoplates of Li1.2Ni0.13Co0.13Mn0.54O2 layered oxide with exposed {010} planes as a high-performance cathode for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 734, 301-306.	2.8	18
198	Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 2018, 225, 51-75.	10.8	257
199	Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries. Nano Research, 2018, 11, 1301-1312.	5.8	32
200	High performance electrode material for supercapacitors based on α-Co(OH)2 nano-sheets prepared through pulse current cathodic electro-deposition (PC-CED). Electronic Materials Letters, 2018, 14, 37-45.	1.0	13
201	Femto-to nanosecond photodynamics of Nile Red in metal-ion exchanged faujasites. Microporous and Mesoporous Materials, 2018, 256, 214-226.	2.2	12

#	ARTICLE	IF	CITATIONS
202	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
203	Silica Nanostructures, a Heterogeneous Surface for Dendrimer Functionalization. ChemistrySelect, 2018, 3, 7137-7151.	0.7	13
204	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Naâ€"Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	5 . 2	62
205	Optical radiation stability of ZnO hollow particles. Nanoscale, 2018, 10, 22335-22347.	2.8	29
206	Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chemical Science, 2018, 9, 8184-8193.	3.7	38
207	Self-assembled soft nanoparticle membranes with programmed free volume hierarchy. Journal of Materials Chemistry A, 2018, 6, 22925-22930.	5.2	21
208	Fast Dehydrogenation of Formic Acid over Palladium Nanoparticles Immobilized in Nitrogen-Doped Hierarchically Porous Carbon. ACS Catalysis, 2018, 8, 12041-12045.	5.5	158
209	Tailoring Hollow Nanostructures by Catalytic Strategy for Superior Lithium and Sodium Storage. ACS Applied Materials & Diterfaces, 2018, 10, 43953-43961.	4.0	8
210	Salt-mediated synthesis of bimetallic networks with structural defects and their enhanced catalytic performances. Chemical Communications, 2018, 54, 12065-12068.	2.2	5
211	Facile Synthesis of Hypercrosslinked Hollow Microporous Organic Capsules for Electrochemical Sensing of Cu ^{II} Ions. Chemistry - A European Journal, 2019, 25, 548-555.	1.7	22
212	Solventâ€Free Mechanochemical Preparation of Hierarchically Porous Carbon for Supercapacitor and Oxygen Reduction Reaction. Chemistry - A European Journal, 2018, 24, 18097-18105.	1.7	40
213	Shedding New Light on Nanostructured Catalysts with Positron Annihilation Spectroscopy. Small Methods, 2018, 2, 1800268.	4.6	13
214	Fermi level equilibration of Ag and Au plasmonic metal nanoparticles supported on graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 26719-26733.	1.3	22
215	An Emerging Family of Hybrid Nanomaterials: Metal–Organic Framework/Aerogel Composites. ACS Applied Nano Materials, 2018, 1, 5959-5980.	2.4	84
216	Magnetically retrievable one-pot fabrication of mesoporous magnesium ferrite (MgFe2O4) for the remediation of chlorpyrifos and real pesticide wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 6891-6903.	3.3	38
217	Development of Hierarchical Porous MOFâ€Based Catalyst of UiOâ€66(Hf) and Its Application for 5â€Hydroxymethylfurfural Production from Cellulose. ChemistrySelect, 2018, 3, 11476-11485.	0.7	20
218	Trimetallic Sulfide Mesoporous Nanospheres as Superior Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1801839.	10.2	101
219	Synthesis of Co3O4/CoOOH via electrochemical dispersion using a pulse alternating current method for lithium-ion batteries and supercapacitors. Solid State Sciences, 2018, 86, 53-59.	1.5	12

#	Article	IF	CITATIONS
220	Hierarchical MFI Zeolites with a Singleâ€Crystalline Sponge‣ike Mesostructure. Chemistry - A European Journal, 2018, 24, 19300-19308.	1.7	6
221	Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid and Interface Science, 2018, 38, 135-157.	3.4	35
222	Quaternary Phosphonium Modified Hierarchically Macro/Mesoporous Silica for Fast Removal of Perrhenate. Industrial & Engineering Chemistry Research, 2018, 57, 13511-13518.	1.8	25
223	Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO2 capture and catalysis. NPG Asia Materials, 2018, 10, 899-911.	3.8	34
224	Centrifugal Field Guided Dual Templating Synthesis of Functional Macroâ€Microporous Carbon. Particle and Particle Systems Characterization, 2018, 35, 1800262.	1.2	4
225	Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 838-854.	2.3	40
226	Synthesis of Stable Hierarchical MIL-101(Cr) with Enhanced Catalytic Activity in the Oxidation of Indene. Catalysts, 2018, 8, 394.	1.6	24
227	Biocarbon-templated synthesis of porous Ni–Co-O nanocomposites for room-temperature NH3 sensors. New Journal of Chemistry, 2018, 42, 17606-17614.	1.4	11
228	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018, 47, 8611-8638.	18.7	994
229	Focused ion beam milling of self-assembled magnetic superstructures: an approach to fabricate nanoporous materials with tunable porosity. Materials Horizons, 2018, 5, 1211-1218.	6.4	8
230	A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5, 2829-2835.	3.0	18
231	Exploring the dicationic gemini surfactant for the generation of mesopores: a step towards the construction of a hierarchical metal–organic framework. Inorganic Chemistry Frontiers, 2018, 5, 2856-2867.	3.0	18
232	Bioinspired Highly Crumpled Porous Carbons with Multidirectional Porosity for High Rate Performance Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 12716-12726.	3.2	31
233	Mesoporogenâ€Free Synthesis of Hierarchical SAPOâ€34 with Low Template Consumption and Excellent Methanolâ€toâ€Olefin Conversion. ChemSusChem, 2018, 11, 3812-3820.	3. 6	40
234	Ultrasmall Ru Nanoclusters on Nitrogenâ€Enriched Hierarchically Porous Carbon Support as Remarkably Active Catalysts for Hydrolysis of Ammonia Borane. ChemCatChem, 2018, 10, 4910-4916.	1.8	30
235	Anionic Lanthanide Metal–Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorganic Chemistry, 2018, 57, 11463-11473.	1.9	88
236	An Iron Oxychloride/Reduced Graphene Oxide Heterojunction with Enhanced Catalytic Performance as a Photoâ€Fenton Catalyst. European Journal of Inorganic Chemistry, 2018, 2018, 3080-3087.	1.0	17
237	Urchin-like boron nitride hierarchical structure assembled by nanotubes-nanosheets for effective removal of heavy metal ions. Ceramics International, 2018, 44, 12216-12224.	2.3	34

#	Article	IF	CITATIONS
238	Molten salt assisted in-situ synthesis of $TiO2/g$ -C3N4 composites with enhanced visible-light-driven photocatalytic activity and adsorption ability. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 362, 1-13.	2.0	51
239	Sb ₂ WO ₆ nanoparticles coated TiO ₂ nanobelts exhibiting remarkable photo-catalyst response. Materials Technology, 2018, 33, 479-487.	1.5	16
240	Shape†unable Selective Synthesis of Bismuth Fluoride Nanostructures for Versatile Applications. Particle and Particle Systems Characterization, 2018, 35, 1800018.	1.2	8
241	Three dimensional macroporous hydroxyapatite/chitosan foam-supported polymer micelles for enhanced oral delivery of poorly soluble drugs. Colloids and Surfaces B: Biointerfaces, 2018, 170, 497-504.	2.5	20
242	Cyclodextrin-based supramolecular assemblies: a versatile toolbox for the preparation of functional porous materials. Environmental Chemistry Letters, 2018, 16, 1393-1413.	8.3	15
243	Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interiorâ€Structured Mesoporous Carbon Microspheres. Angewandte Chemie, 2018, 130, 11065-11070.	1.6	22
244	Birnessite manganese oxide nanosheets assembled on Ni foam as high-performance pseudocapacitor electrodes: Electrochemical oxidation driven porous honeycomb architecture formation. Applied Surface Science, 2018, 458, 10-17.	3.1	23
245	Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interiorâ€Structured Mesoporous Carbon Microspheres. Angewandte Chemie - International Edition, 2018, 57, 10899-10904.	7.2	65
246	Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nature Communications, 2018, 9, 2452.	5.8	431
247	A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2â~Îf cathode material for Li-ion batteries with improved initial irreversible capacity loss. Journal of Materials Chemistry A, 2018, 6, 13883-13893.	5.2	59
249	1D/1D Hierarchical Nickel Sulfide/Phosphide Nanostructures for Electrocatalytic Water Oxidation. ACS Energy Letters, 2018, 3, 2021-2029.	8.8	93
250	The Effect of Different Porogens on Porous PMMA Microspheres by Seed Swelling Polymerization and Its Application in High-Performance Liquid Chromatography. Materials, 2018, 11, 705.	1.3	16
251	Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28918-28927.	4.0	78
252	MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts. Nanomaterials, 2018, 8, 89.	1.9	66
253	Nitrogenâ€Doped Wrinkled Carbon Foils Derived from MOF Nanosheets for Superior Sodium Storage. Advanced Energy Materials, 2018, 8, 1801515.	10.2	158
254	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
255	Highly crumpled nanocarbons as efficient metal-free electrocatalysts for zinc–air batteries. Nanoscale, 2018, 10, 15706-15713.	2.8	21
256	Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochemical Engineering Journal, 2018, 138, 63-73.	1.8	27

#	Article	IF	Citations
257	Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries. Journal of Alloys and Compounds, 2018, 767, 23-33.	2.8	53
258	Suspension Processing of Microporous Metal-Organic Frameworks: A Scalable Route to High-Quality Adsorbents. IScience, 2018, 5, 30-37.	1.9	18
259	Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor. Journal of Power Sources, 2018, 398, 128-136.	4.0	59
260	Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Materials Research Express, 2018, 5, 095006.	0.8	45
261	Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose. Materials Science and Engineering C, 2018, 90, 576-588.	3.8	19
262	Cyclodextrin Fundamentals, Reactivity and Analysis. Environmental Chemistry for A Sustainable World, 2018, , .	0.3	31
263	Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100(Fe) with superior high-rate lithium storage performance. Journal of Alloys and Compounds, 2018, 755, 154-162.	2.8	29
264	Importance of surface modification of \hat{I}^3 -alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. Journal of Colloid and Interface Science, 2018, 526, 497-504.	5.0	31
265	Amino-modified hierarchically macro-mesoporous cross-linked polystyrene: A novel adsorbent for removal of salicylic acid from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 186-192.	2.7	7
266	Preparation of crystal TiO ₂ foam with micron channels and mesopores by a freeze-casting method without additives and unidirectional freezing. CrystEngComm, 2018, 20, 5782-5789.	1.3	2
267	Therapeutic Potential of Biomineralizationâ€Based Engineering. Advanced Therapeutics, 2018, 1, 1800079.	1.6	18
268	Hierarchy Design in Metal Oxides as Anodes for Advanced Lithiumâ€lon Batteries. Small Methods, 2018, 2, 1800171.	4.6	69
269	Rationally designed hierarchical nickel nanoparticles-based magnetic yolk-like nanospindles for enhanced catalysis and protein adsorption. CrystEngComm, 2018, 20, 5377-5386.	1.3	24
270	Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition. Beilstein Journal of Nanotechnology, 2018, 9, 1868-1880.	1.5	6
271	Dual-Porosity Hollow Carbon Spheres with Tunable Through-Holes for Multi-Guest Delivery. ACS Applied Materials & Delivery. ACS Applied Materia	4.0	28
272	Ultrasmall Plasmonic Nanoparticles Decorated Hierarchical Mesoporous TiO ₂ as an Efficient Photocatalyst for Photocatalytic Degradation of Textile Dyes. ACS Omega, 2018, 3, 9834-9845.	1.6	40
273	Preferential and Enhanced Adsorption of Dyes on Alum Doped Nanopolyaniline. Journal of Chemical & Engineering Data, 2018, 63, 3427-3437.	1.0	21
274	Nitrogen and sulfur co-doped carbon nanospheres for highly efficient oxidation of ethylbenzene. New Journal of Chemistry, 2018, 42, 15962-15967.	1.4	15

#	Article	IF	CITATIONS
275	Three Co(II) metal-organic frameworks based on a substituted thiophene carboxylic acid ligand with semiconductive properties. Journal of Solid State Chemistry, 2018, 267, 68-75.	1.4	5
276	New sucker-type precise capturer of tobacco specific nitrosamines derived from the SBA-15 in situ modified with polyaniline. Chemical Engineering Journal, 2018, 354, 1174-1184.	6.6	15
277	A flexible three-dimensional MoS2/carbon architecture derived from melamine foam as free-standing anode for high performance lithium-ion batteries. Applied Surface Science, 2018, 462, 337-343.	3.1	27
278	One-Pot Fabrication of Perforated Graphitic Carbon Nitride Nanosheets Decorated with Copper Oxide by Controlled Ammonia and Sulfur Trioxide Release for Enhanced Catalytic Activity. ACS Omega, 2018, 3, 9318-9332.	1.6	29
279	Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. Chemistry of Materials, 2018, 30, 4102-4111.	3.2	78
280	Toxic Metal Sequestration Exploiting a Unprecedented Low-Molecular-Weight Hydrogel-to-Metallogel Transformation. ACS Omega, 2018, 3, 6022-6030.	1.6	14
281	Synthesis of titanium-aluminum binary oxides stabilized by polyvinylpyrrolidone and their application for catalytic nitration of arenes. Microporous and Mesoporous Materials, 2018, 271, 219-233.	2.2	3
282	Tailoring Porosity in Copper-Based Multinary Sulfide Nanostructures for Energy, Biomedical, Catalytic, and Sensing Applications. ACS Applied Nano Materials, 2018, 1, 3042-3062.	2.4	40
283	Cu ₂ O templating strategy for the synthesis of octahedral Cu ₂ O@Mn(OH) ₂ coreâ€"shell hierarchical structures with a superior performance supercapacitor. Journal of Materials Chemistry A, 2018, 6, 13668-13675.	5.2	56
284	Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy, 2018, 51, 366-372.	8.2	289
285	Synthesis of solution processed f-CNT@Bi2S3 hybrid film coated linen fabric as a free-standing textile structured photo catalyst. Applied Catalysis A: General, 2018, 566, 87-95.	2.2	16
286	Earth-abundant nanotubes with layered assembly for battery-type supercapacitors. Chemical Engineering Journal, 2018, 350, 835-843.	6.6	24
287	Mesoporous imine-based organic polymer: catalyst-free synthesis in water and application in CO ₂ conversion. Chemical Communications, 2018, 54, 7633-7636.	2.2	28
288	Solventâ€free Strategy of Photocarriers Accumulated Site and Separated Path for Porous Hollow Spindleâ€Shaped BiPO ₄ . ChemCatChem, 2018, 10, 3777-3785.	1.8	12
289	Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chemistry, 2018, 20, 3542-3556.	4.6	47
290	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous and Mesoporous Materials, 2019, 274, 251-256.	2.2	47
291	High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries. Journal of Energy Chemistry, 2019, 31, 159-166.	7.1	40
292	Multiscale Porous Carbon Nanomaterials for Applications in Advanced Rechargeable Batteries. Batteries and Supercaps, 2019, 2, 9-36.	2.4	56

#	Article	IF	CITATIONS
293	Designing hybrid materials with multifunctional interfaces for wound dressing, electrocatalysis, and chemical separation. Journal of Colloid and Interface Science, 2019, 533, 106-125.	5.0	16
294	Direct synthesis of core–shell MFI zeolites with spatially tapered trimodal mesopores <i>via</i> controlled orthogonal self-assembly. Nanoscale, 2019, 11, 16667-16676.	2.8	7
295	Experimental and density functional theory investigations of catechol sensing properties of ZnO/RGO nanocomposites. Applied Surface Science, 2019, 495, 143588.	3.1	20
296	Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores. Langmuir, 2019, 35, 11291-11298.	1.6	42
297	Cleaving Carboxyls: Understanding Thermally Triggered Hierarchical Pores in the Metal–Organic Framework MIL-121. Journal of the American Chemical Society, 2019, 141, 14257-14271.	6.6	53
298	Solvent-free vacuum growth of oriented HKUST-1 thin films. Journal of Materials Chemistry A, 2019, 7, 19396-19406.	5.2	54
299	Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. RSC Advances, 2019, 9, 24344-24356.	1.7	24
300	Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40, 1324-1338.	6.9	49
301	State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40, 1233-1254.	6.9	151
302	Synthesis of a Magnetic Core/Shell Nanocomposite Containing Layered Double Hydroxide. Petroleum Chemistry, 2019, 59, 875-879.	0.4	0
303	Iron-Salt Thermally Emitted Strategy to Prepare Graphene-like Carbon Nanosheets with Trapped Fe Species for an Efficient Electrocatalytic Oxygen Reduction Reaction in the All-pH Range. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27823-27832.	4.0	23
304	A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sensors and Actuators B: Chemical, 2019, 297, 126816.	4.0	77
305	Porous Carbon and Carbon/Metal Oxide Composites by Ice Templating and Subsequent Pyrolysis. Industrial & Engineering Chemistry Research, 2019, 58, 14312-14322.	1.8	9
306	Facile post-synthesis and gas sensing properties of highly porous NiO microspheres. Sensors and Actuators A: Physical, 2019, 296, 110-120.	2.0	40
307	Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries. Journal of Central South University, 2019, 26, 1481-1492.	1.2	29
308	Porous carbon encapsulated Mn3O4 for stable lithium storage and its ex-situ XPS study. Electrochimica Acta, 2019, 319, 518-526.	2.6	49
309	General Synthesis Approach for Hierarchically Porous Materials via Reverse Microemulsion System. ACS Sustainable Chemistry and Engineering, 2019, 7, 13845-13855.	3.2	11
310	Hierarchically Porous In2O3/In2S3 Heterostructures as Micronano Photocatalytic Reactors Prepared by a Novel Polymer-Assisted Sol–Gel Freeze-Drying Method. Industrial & Digineering Chemistry Research, 2019, 58, 14106-14114.	1.8	25

#	ARTICLE	IF	CITATIONS
311	Micropattern-controlled wicking enhancement in hierarchical micro/nanostructures. Soft Matter, 2019, 15, 6518-6529.	1.2	18
312	Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 2019, 1, 601-611.	4.4	145
313	Double-Shell and Flower-Like ZnS–C ₃ N ₄ Derived from in Situ Supramolecular Self-Assembly for Selective Aerobic Oxidation of Amines to Imines. ACS Sustainable Chemistry and Engineering, 2019, 7, 14203-14209.	3.2	50
314	Sustainable Low-Temperature Activation to Customize Pore Structure and Heteroatoms of Biomass-Derived Carbon Enabling Unprecedented Durable Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 14629-14638.	3.2	47
315	Constructing Sn(<scp>ii</scp>)-doped SrNb ₂ O ₆ for visible light response driven H ₂ and O ₂ evolution from water. Catalysis Science and Technology, 2019, 9, 3619-3622.	2.1	4
316	Modulation versus Templating: Fineâ€Tuning of Hierarchally Porous PCNâ€250 Using Fatty Acids To Engineer Guest Adsorption. Angewandte Chemie - International Edition, 2019, 58, 12425-12430.	7.2	48
317	Microâ€Blooming: Hierarchically Porous Nitrogenâ€Doped Carbon Flowers Derived from Metalâ€Organic Mesocrystals. Small, 2019, 15, e1901986.	5.2	40
318	Freeâ€Standing 3D Electrodes for Electrochemical Detection of Hydrogen Peroxide. ChemCatChem, 2019, 11, 4222-4237.	1.8	29
319	A high-performance Ce and Sn co-doped cathode material with enhanced cycle performance and suppressed voltage decay for lithium ion batteries. Ceramics International, 2019, 45, 20780-20787.	2.3	7
320	Modulation versus Templating: Fine†Tuning of Hierarchally Porous PCNâ€250 Using Fatty Acids To Engineer Guest Adsorption. Angewandte Chemie, 2019, 131, 12555-12560.	1.6	2
321	Hierarchically Porous Copolymer Film as Immobilization Matrix for Phenol Biosensor with High Sensitivity. ACS Applied Polymer Materials, 2019, 1, 3148-3156.	2.0	9
322	Selfâ€Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angewandte Chemie, 2019, 131, 19223-19229.	1.6	11
323	Flower-like hierarchical Ni-Zn MOF microspheres: Efficient adsorbents for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123795.	2.3	71
324	Simulation of passenger motion in metro stations during rush hours based on video analysis. Automation in Construction, 2019, 107, 102938.	4.8	14
325	Creating Directionality in Nanoporous Carbon Materials: Adjustable Combinations of Structural and Chemical Gradients. Advanced Functional Materials, 2019, 29, 1904058.	7.8	10
326	Zn nanosheets coated with a ZnS subnanometer layer for effective and durable CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 1418-1423.	5.2	63
327	Diagnosability of Vector Discrete-Event Systems Using Predicates. IEEE Access, 2019, 7, 147143-147155.	2.6	26
328	Coordination between Electron Transfer and Molecule Diffusion through a Bioinspired Amorphous Titania Nanoshell for Photocatalytic Nicotinamide Cofactor Regeneration. ACS Catalysis, 2019, 9, 11492-11501.	5.5	49

#	Article	IF	CITATIONS
329	Selfâ€Supportive Mesoporous Ni/Co/Fe Phosphosulfide Nanorods Derived from Novel Hydrothermal Electrodeposition as a Highly Efficient Electrocatalyst for Overall Water Splitting. Small, 2019, 15, e1905201.	5.2	80
330	Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics, 2019, 11, 575.	2.0	74
331	Selfâ€Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angewandte Chemie - International Edition, 2019, 58, 19047-19053.	7.2	37
332	Enhanced Oxygen Reduction and Methanol Oxidation Electrocatalysis over Bifunctional PtPdIr Mesoporous Hollow Nanospheres. Chemistry - an Asian Journal, 2019, 14, 3868-3874.	1.7	15
333	Sustainability based perspective on the utilization efficiency of urban infrastructure — A China study. Habitat International, 2019, 93, 102050.	2.3	34
334	Study on straightness measurement technology of slender rod based on time-domain three-point method. Journal of Physics: Conference Series, 2019, 1303, 012140.	0.3	1
335	Influence of Chain Architecture on Nanopore Accessibility in Polyelectrolyte Blockâ€Coâ€Oligomer Functionalized Mesopores. Small, 2019, 15, e1902710.	5.2	18
336	Reduced graphene oxide/CoS ₂ porous nanoparticle hybrid electrode material for supercapacitor application. RSC Advances, 2019, 9, 26637-26645.	1.7	23
337	Kinetics-controlled synthesis of hierarchically porous materials with tunable properties from diverse building blocks. Carbon, 2019, 155, 611-617.	5.4	16
338	Defect Engineering of Palladium–Tin Nanowires Enables Efficient Electrocatalysts for Fuel Cell Reactions. Nano Letters, 2019, 19, 6894-6903.	4.5	79
339	The Synthesis of NiCo2O4–MnO2 Core–Shell Nanowires by Electrodeposition and Its Supercapacitive Properties. Nanomaterials, 2019, 9, 1398.	1.9	35
340	Making Porous Materials Respond to Visible Light. ACS Energy Letters, 2019, 4, 2656-2667.	8.8	18
341	Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2019, 10, 464-474.	3.7	238
342	Benzoic acid as a selector–modulator in the synthesis of MIL-88B(Cr) and nano-MIL-101(Cr). Dalton Transactions, 2019, 48, 989-996.	1.6	49
343	Trifunctional metal–organic platform for environmental remediation: structural features with peripheral hydroxyl groups facilitate adsorption, degradation and reduction processes. Dalton Transactions, 2019, 48, 915-927.	1.6	99
344	Selective synthesis of Cu–Cu ₂ O/C and CuO–Cu ₂ O/C catalysts for Pd-free C–C, C–N coupling and oxidation reactions. Inorganic Chemistry Frontiers, 2019, 6, 576-589.	3.0	45
345	One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 1196-1205.	5.2	42
346	Organic Anions Facilitate in Situ Synthesis of Mesoporous LTA Zeolites. Chemistry of Materials, 2019, 31, 1528-1536.	3.2	15

#	Article	IF	CITATIONS
347	Surfactant-assisted fabrication of ultra-permeable cellulose gels with macro channels and insights on regeneration of cellulose from ionic liquids. Journal of Molecular Liquids, 2019, 280, 64-70.	2.3	4
348	Hierarchically Porous Silica Prepared with Anionic Polyelectrolyte–Nonionic Surfactant Mesomorphous Complex as Dynamic Template. ACS Omega, 2019, 4, 1443-1448.	1.6	3
349	Hierarchically porous CuO nano-labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries. Nano Energy, 2019, 59, 229-236.	8.2	67
350	Self-assembly of triptycene-based polymer on cadmium sulfide nanorod to construct core-shell nanostructure for efficient visible-light-driven photocatalytic H2 evolution. Chemical Engineering Journal, 2019, 364, 102-110.	6.6	57
351	Hollow hydrangea-like and hollow spherical CoMoO4 micro/nano-structures: pH-dependent synthesis, formation mechanism, and enhanced lithium storage performance. Journal of Alloys and Compounds, 2019, 785, 563-572.	2.8	25
352	Electrode Materials with Highest Surface Area and Specific Capacitance Cannot Be the Only Deciding Factor for Applicability in Energy Storage Devices: Inference of Combined Life Cycle Assessment and Electrochemical Studies. ACS Sustainable Chemistry and Engineering, 2019, 7, 5385-5392.	3.2	23
353	Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Composites Communications, 2019, 13, 1-11.	3.3	59
354	One-pot aqueous synthesis of two-dimensional porous bimetallic PtPd alloyed nanosheets as highly active and durable electrocatalyst for boosting oxygen reduction and hydrogen evolution. Journal of Colloid and Interface Science, 2019, 543, 1-8.	5.0	115
355	Preparation of epoxy-functionalized hierarchically porous hybrid monoliths via free radical polymerization and application in HILIC enrichment of glycopeptides. Analytica Chimica Acta, 2019, 1058, 97-106.	2.6	23
356	Concise fabrication of 3D rose-like BiOBrxl1â^'x with exceptional wide spectrum visible-light photocatalytic activity. Inorganic Chemistry Communication, 2019, 101, 150-159.	1.8	12
357	A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy and Environmental Science, 2019, 12, 648-655.	15.6	318
358	Impact of the position of the imine linker on the optoelectronic performance of π-conjugated organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 325-331.	1.7	18
359	A facile coordination precipitation route to prepare porous CuO microspheres with excellent photo-Fenton catalytic activity and electrochemical performance. CrystEngComm, 2019, 21, 648-655.	1.3	14
360	Multiscale Simulation of Diffusion in Porous Media: From Interfacial Dynamics to Hierarchical Porosity. Journal of Physical Chemistry C, 2019, 123, 15099-15112.	1.5	43
361	Preparation of MoS2/WS2 nanosheets by liquid phase exfoliation with assistance of epigallocatechin gallate and study as an additive for high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 552, 554-562.	5.0	45
362	Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. Chinese Journal of Catalysis, 2019, 40, 980-1002.	6.9	68
363	Facile fabrication of perovskite-incorporated hierarchically mesoporous/macroporous silica for efficient photoassisted-Fenton degradation of dye. Applied Surface Science, 2019, 491, 488-496.	3.1	25
364	Increased charge and mass transfer derived-sheet-like Fe0.67Ni0.33OOH-Fe2O3@NF array for robust oxygen evolution reaction. Applied Surface Science, 2019, 493, 351-358.	3.1	19

#	Article	IF	CITATIONS
365	Hierarchically structured AgO films with nano-porosity for photocatalyst and all solid-state thin film battery. Journal of Alloys and Compounds, 2019, 802, 210-216.	2.8	6
366	High-level nitrogen-doped, micro/mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction: optimizing the reaction surface area by a solvent-free mechanochemical method. New Journal of Chemistry, 2019, 43, 10878-10886.	1.4	26
367	Zn doped ZIF67-derived porous carbon framework as efficient bifunctional electrocatalyst for water splitting. International Journal of Hydrogen Energy, 2019, 44, 19782-19791.	3.8	45
368	3D ordered macro-/mesoporous carbon supported Ag nanoparticles for efficient electrocatalytic oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 554, 177-182.	5.0	19
369	Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO2 Fixation. IScience, 2019, 15, 514-523.	1.9	56
370	N-doped carbon quantum dots @ hexagonal porous copper oxide decorated multiwall carbon nanotubes: A hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Composites Part B: Engineering, 2019, 174, 106973.	5.9	39
371	Reaction–Transport Coupling in a Nanostructured Porous Electrode. Journal of Physical Chemistry C, 2019, 123, 14459-14467.	1.5	6
372	Microbial Targeted Degradation Pretreatment: A Novel Approach to Preparation of Activated Carbon with Specific Hierarchical Porous Structures, High Surface Areas, and Satisfactory Toluene Adsorption Performance. Environmental Science & Environmen	4.6	113
373	Efficient Separation of Ethanol–Methanol and Ethanol–Water Mixtures Using ZIF-8 Supported on a Hierarchical Porous Mixed-Oxide Substrate. ACS Applied Materials & 1, 21126-21136.	4.0	26
374	A free-standing 3D nano-composite photo-electrodeâ€"Ag/ZnO nanorods arrays on Ni foam effectively degrade berberine. Chemical Engineering Journal, 2019, 373, 179-191.	6.6	57
375	Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chinese Chemical Letters, 2019, 30, 2032-2038.	4.8	33
376	Steering charge kinetics in W2C@C/TiO2 heterojunction architecture: Efficient solar-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2019, 255, 117760.	10.8	25
377	Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating. Advanced Materials, 2019, 31, e1901124.	11.1	15
378	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie - International Edition, 2019, 58, 9512-9516.	7.2	79
379	Functionalization of inorganic nanomaterials with pillar[<i>n</i>)]arenes. Chemical Communications, 2019, 55, 6817-6826.	2.2	60
380	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie, 2019, 131, 9612-9616.	1.6	36
381	Improved visible-light photoactivities of porous LaFeO ₃ by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catalysis Science and Technology, 2019, 9, 3149-3157.	2.1	40
382	Comparative study of the tribological behaviour of 3D-printed and moulded ABS under lubricated condition. Materials Research Express, 2019, 6, 085328.	0.8	16

#	Article	IF	Citations
383	Soft-confinement conversion of Co-Salen-organic-frameworks to uniform cobalt nanoparticles embedded within porous carbons as robust trifunctional electrocatalysts. Carbon, 2019, 149, 471-482.	5.4	24
384	Multiscale homogenization and localization of materials with hierarchical porous microstructures. Composite Structures, 2019, 222, 110905.	3.1	17
385	Multidimensionâ€Controllable Synthesis of Ant Nestâ€Structural Electrode Materials with Unique 3D Hierarchical Porous Features toward Electrochemical Applications. Advanced Functional Materials, 2019, 29, 1808994.	7.8	46
386	Theoretical and experimental investigation of visible light responsive AgBiS2-TiO2 heterojunctions for enhanced photocatalytic applications. Applied Catalysis B: Environmental, 2019, 253, 401-418.	10.8	94
387	Reduced graphene oxide@nitrogen doped carbon with enhanced electrochemical performance in lithium ion batteries. Electrochimica Acta, 2019, 309, 228-233.	2.6	21
388	Adamantane-Based Micro- and Ultra-Microporous Frameworks for Efficient Small Gas and Toxic Organic Vapor Adsorption. Polymers, 2019, 11, 486.	2.0	7
389	Experimental verification of Poiseuille flow in nanochannels. Japanese Journal of Applied Physics, 2019, 58, 065001.	0.8	5
390	Recyclable Nanoporous Materials with Ordered Tunnels Selfâ€Assembled from α―and γ yclodextrins. ChemNanoMat, 2019, 5, 838-846.	1.5	9
391	High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon, 2019, 149, 273-280.	5.4	91
392	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. Journal of Materials Chemistry A, 2019, 7, 15575-15579.	5.2	34
393	Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. Nano Energy, 2019, 61, 626-636.	8.2	46
394	Multicolor properties and applications of Ln ³⁺ doped hierarchical NaY(WO ₄) ₂ <i>via</i> a facile solvothermal process. CrystEngComm, 2019, 21, 3056-3063.	1.3	3
395	3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy and Environmental Science, 2019, 12, 1979-1988.	15.6	208
396	Simple fabrication of zirconium and nitrogen co-doped ordered mesoporous carbon for enhanced adsorption performance towards polar pollutants. Analytica Chimica Acta, 2019, 1070, 43-50.	2.6	15
397	Formation of hierarchical porosity in oxidation of Ag films by reactive sputtering deposition of metal oxides <i>via</i> the Kirkendall effect. Nanoscale, 2019, 11, 10034-10044.	2.8	7
398	Hierarchically structured composites and porous materials from soft templates: fabrication and applications. Journal of Materials Chemistry A, 2019, 7, 8030-8049.	5.2	68
399	Molten-NaNH2 activated carbon cloth with high areal capacitance and exceptional rate stability for flexible asymmetric supercapacitors. Journal of Materials Science, 2019, 54, 9111-9123.	1.7	17
400	Synthesis of three-dimensionally ordered macro/mesoporous C-doped WO3 materials: Effect of template sizes on gas sensing properties. Sensors and Actuators B: Chemical, 2019, 288, 656-666.	4.0	30

#	Article	IF	Citations
401	Mesoporogen-free synthesis of nanosized hierarchical ITQ-21 zeolites. Inorganic Chemistry Frontiers, 2019, 6, 1184-1188.	3.0	5
402	One-step preparation of phosphate-rich carbonaceous spheres <i>via</i> a hydrothermal approach for phosphopeptide analysis. Green Chemistry, 2019, 21, 2052-2060.	4.6	33
403	Unconventional Pathways for Designing Silica-Supported Pt and Pd Catalysts With Hierarchical Porosity. Studies in Surface Science and Catalysis, 2019, , 377-397.	1.5	7
404	Highly efficient architectured Pr6O11 oxygen electrode for solid oxide fuel cell. Journal of Power Sources, 2019, 419, 171-180.	4.0	19
405	A Coreâ€Shell Assembly of Hierarchical Porous Ni@C Nanospheres Synthesized from Metalâ€Organic Framework for Electrochemical Energy Application. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800921.	0.8	7
406	Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 2019, 388, 63-78.	9.5	235
407	Metal–Organic Framework Nanoparticles with Near-Infrared Dye for Multimodal Imaging and Guided Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 11209-11219.	4.0	54
408	One-step fabrication of Ni-embedded hierarchically-porous carbon microspheres for levulinic acid hydrogenation. Chemical Engineering Journal, 2019, 369, 386-393.	6.6	53
409	Systematic study on FRET-pair functionalization of mesoporous thin films for correlation of pH-sensing and ionic mesopore accessibility. Microporous and Mesoporous Materials, 2019, 282, 29-37.	2.2	9
410	Confinement Effects in Zeoliteâ€Confined Noble Metals. Angewandte Chemie, 2019, 131, 12468-12482.	1.6	57
411	Controllable synthesis of hierarchical polysilsesquioxane surfaces: from spheres-on-sphere to bowls-on-sphere structure. Applied Surface Science, 2019, 481, 75-82.	3.1	8
412	Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. Journal of Chemistry, 2019, 2019, 1-11.	0.9	46
413	Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 93-103.	2.7	34
414	Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation. Chemical Engineering Journal, 2019, 369, 18-25.	6.6	74
415	MOFâ€Based Hierarchical Structures for Solarâ€Thermal Clean Water Production. Advanced Materials, 2019, 31, e1808249.	11.1	233
416	Engineering of Silica Thin-Film Nanoporosity via Alkali-Ion-Assisted Reconstruction. Chemistry of Materials, 2019, 31, 2390-2400.	3.2	5
417	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	5.8	168
418	The Titanium–Aluminum Binary Oxide Immobilized over Long-Axis SBA-15 as Efficient and Benign Catalyst for Conversion of Sucrose into 5-Hydroxymethylfurfural. Catalysis Surveys From Asia, 2019, 23, 181-198.	1.0	4

#	Article	IF	CITATIONS
419	Visible-light-driven photoreduction of CO ₂ to CO over porous nitrogen-deficient carbon nitride nanotubes. Catalysis Science and Technology, 2019, 9, 2485-2492.	2.1	26
420	Enzyme immobilisation on poly- <scp>l</scp> -lysine-containing calcium phosphate particles for highly sensitive glucose detection. RSC Advances, 2019, 9, 10832-10841.	1.7	13
421	Monitoring the Electrochemical Energy Storage Processes of an Organic Full Rechargeable Battery via Operando Raman Spectroscopy: A Mechanistic Study. Chemistry of Materials, 2019, 31, 3239-3247.	3.2	39
422	Molten-salt strategy for fabrication of hierarchical porous N-doped carbon nanosheets towards high-performance supercapacitors. Materials Chemistry and Physics, 2019, 230, 178-186.	2.0	25
423	3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage. Renewable Energy, 2019, 140, 862-873.	4.3	87
424	Enhanced adsorption mechanism of carbonyl-containing volatile organic compounds on Al-decorated porous graphene monolayer: A density functional theory calculation study. Sustainable Materials and Technologies, 2019, 21, e00103.	1.7	7
425	Hierarchical Porous Carbon Materials Derived from Kelp for Superior Capacitive Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 8735-8743.	3.2	71
426	Lipase Immobilized Metalâ€Organic Frameworks as Remarkably Biocatalyst for Ester Hydrolysis: A One Step Approach for Lipase Immobilization. ChemistrySelect, 2019, 4, 3745-3751.	0.7	6
427	Preparation of Hierarchical Porous Sâ€1/silica Monoliths by Steaming Crystallization. ChemistrySelect, 2019, 4, 3741-3744.	0.7	4
428	Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. Chemical Record, 2019, 19, 1952-1994.	2.9	10
429	Salting-out and salting-in of protein: A novel approach toward fabrication of hierarchical porous carbon for energy storage application. Journal of Alloys and Compounds, 2019, 788, 397-406.	2.8	17
430	Green synthesis of nano-titania (TiO2 NPs) utilizing aqueous Eucalyptus globulus leaf extract: applications in the synthesis of 4H-pyran derivatives. Research on Chemical Intermediates, 2021, 47, 3919-3931.	1.3	17
431	Hierarchically structured TiO2-based composites for Fenton-type oxidation processes. Journal of Environmental Management, 2019, 236, 591-602.	3.8	7
432	Well-defined monodisperse mesoporous TiNb6O17 microspheres for use in high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2019, 787, 344-351.	2.8	16
433	Construction of polyporous polymer microspheres with a tailored mesoporous wall. Polymer Chemistry, 2019, 10, 1508-1518.	1.9	5
434	Highly Carboxylated, Cellular Structured, and Underwater Superelastic Nanofibrous Aerogels for Efficient Protein Separation. Advanced Functional Materials, 2019, 29, 1808234.	7.8	89
435	Towards Solar Methanol: Past, Present, and Future. Advanced Science, 2019, 6, 1801903.	5.6	63
436	Confinement Effects in Zeoliteâ€Confined Noble Metals. Angewandte Chemie - International Edition, 2019, 58, 12340-12354.	7.2	143

#	Article	IF	CITATIONS
437	Large-Scale Synthesis of Hierarchically Porous ZnO Hollow Tubule for Fast Response to ppb-Level H ₂ S Gas. ACS Applied Materials & Interfaces, 2019, 11, 11627-11635.	4.0	110
438	Superior-capacity binder-free anode electrode for lithium-ion batteries: Co _x Mn _y Ni _z O nanosheets with metal/oxygen vacancies directly formed on Cu foil. Nanoscale, 2019, 11, 5080-5093.	2.8	13
439	Elucidating the reaction kinetics of lithium–sulfur batteries by <i>operando</i> XRD based on an open-hollow S@MnO ₂ cathode. Journal of Materials Chemistry A, 2019, 7, 6651-6658.	5.2	41
440	Gas sensors using ordered macroporous oxide nanostructures. Nanoscale Advances, 2019, 1, 1626-1639.	2.2	73
441	Surface Effect on Static Bending of Functionally Graded Porous Nanobeams Based on Reddy's Beam Theory. International Journal of Structural Stability and Dynamics, 2019, 19, 1950062.	1.5	15
442	TiO2 Nanoparticles Supported on Hierarchical Meso/Macroporous SiO2 Spheres for Photocatalytic Applications., 2019,,.		4
443	In Situ Creation of Oxygen Vacancies in Porous Bimetallic La/Zr Sorbent for Aqueous Phosphate: Hierarchical Pores Control Mass Transport and Vacancy Sites Determine Interaction. Environmental Science & Environmental Scienc	4.6	34
444	A Simple Route for the Synthesis of Fe/C composite derived from the metal-organic framework MIL-53 (Fe). Materials Today: Proceedings, 2019, 18, 2422-2429.	0.9	5
445	Synthesis and Applications of Porous Glass. Journal of Shanghai Jiaotong University (Science), 2019, 24, 681-698.	0.5	9
446	Fabrication and <i>in situ</i> functionalisation of mesoporous silica films by the physical entrapment of functional and responsive block copolymer structuring agents. Soft Matter, 2019, 15, 8077-8083.	1.2	14
447	Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48, 488-516.	18.7	564
448	Synthesis, Characterization and Photocatalytic Activity of Nanocrystalline First Transition-Metal (Ti,) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo
449	Polymer-Assisted Hierarchically Bulky Imprinted Microparticles for Enhancing the Selective Enrichment of Proteins. ACS Applied Bio Materials, 2019, 2, 388-396.	2.3	4
450	Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2019, 782, 1103-1113.	2.8	78
451	Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. Journal of Power Sources, 2019, 413, 376-383.	4.0	52
452	Cascade electronic band structured zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis. Journal of Colloid and Interface Science, 2019, 539, 585-597.	5.0	20
453	Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Chemical Engineering Journal, 2019, 361, 703-712.	6.6	57
454	Hierarchically Porous Organic Materials Derived From Copolymers: Preparation and Electrochemical Applications. Polymer Reviews, 2019, 59, 149-186.	5.3	8

#	Article	IF	CITATIONS
455	Semiconductor Photocatalysis for Water Purification. , 2019, , 689-705.		12
456	Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. Chemosphere, 2019, 218, 259-265.	4.2	55
457	Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43-87.	3.1	170
458	Gated Materials: Installing Macrocyclic Arenesâ€Based Supramolecular Nanovalves on Porous Nanomaterials for Controlled Cargo Release. Biotechnology Journal, 2019, 14, e1800354.	1.8	41
459	One-pot synthesis of microporous Fe2O3/g-C3N4 and its application for efficient removal of phosphate from sewage and polluted seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 7-15.	2.3	35
460	Enhanced photocatalytic activity of hierarchical titanium dioxide microspheres with combining carbon nanotubes as "e-bridge― Journal of Hazardous Materials, 2019, 367, 550-558.	6.5	38
461	Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks. Nano-Micro Letters, 2019, 11, 1.	14.4	364
462	Recent Progress in Application of Molybdenum-Based Catalysts for Epoxidation of Alkenes. Catalysts, 2019, 9, 31.	1.6	78
463	Porous Fe–N–C Catalysts for Rechargeable Zinc–Air Batteries from an Iron-Imidazolate Coordination Polymer. ACS Sustainable Chemistry and Engineering, 2019, 7, 4030-4036.	3.2	20
464	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Materials Today Chemistry, 2019, 12, 34-60.	1.7	105
465	Synthesis and Zn(II) modification of hierarchical porous carbon materials from petroleum pitch for effective adsorption of organic dyes. Chemosphere, 2019, 216, 379-386.	4.2	32
466	Ultrafast removal of arsenic using solid solution of aero-gel based Ce1-XTixO2-Y oxide nanoparticles. Chemosphere, 2019, 217, 483-495.	4.2	19
467	A CO2-expanded gelation approach to prepare bimodal porous silica materials and their catalytic applications. Journal of Supercritical Fluids, 2019, 144, 91-97.	1.6	2
468	MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Materials Today, 2019, 25, 88-111.	8.3	180
469	Facile synthesis of graphitic carbon-nitride supported antimony-doped tin oxide nanocomposite and its application for the adsorption of volatile organic compounds. Journal of Environmental Sciences, 2019, 79, 35-42.	3.2	23
470	Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. Journal of Solid State Chemistry, 2019, 269, 566-574.	1.4	55
471	Organic Crossâ€Linker Enabling a 3D Porous Skeleton–Supported Na ₃ V ₂ (PO ₄) ₃ /Carbon Composite for High Power Sodiumâ€Ion Battery Cathode. Small Methods, 2019, 3, 1800169.	4.6	87
472	Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors. Nano Letters, 2019, 19, 369-374.	4.5	37

#	Article	IF	CITATIONS
473	Engineering hierarchical porous oxygen-deficient TiO2 fibers decorated with BiOCl nanosheets for efficient photocatalysis. Applied Surface Science, 2019, 471, 96-107.	3.1	39
474	Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 2019, 31, e1803966.	11.1	260
475	All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 241, 528-538.	10.8	350
476	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	9.5	82
477	Cobalt hybrid catalysts in Fischer-Tropsch synthesis. Reviews in Chemical Engineering, 2020, 36, 437-457.	2.3	32
478	Highly efficient catalytic soot combustion performance of hierarchically meso-macroporous Co3O4/CeO2 nanosheet monolithic catalysts. Catalysis Today, 2020, 351, 83-93.	2.2	33
479	Nano-Porous Materials for Energy Conversion Using Green Technologies. , 2020, , 540-548.		0
480	Synthesis Strategies and Structural Design of Porous Carbonâ€Incorporated Anodes for Sodiumâ€Ion Batteries. Small Methods, 2020, 4, 1900163.	4.6	49
481	π–π Interactions Between Aromatic Groups in Amphiphilic Molecules: Directing Hierarchical Growth of Porous Zeolites. Angewandte Chemie - International Edition, 2020, 59, 50-60.	7.2	20
482	Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous and Mesoporous Materials, 2020, 291, 109700.	2.2	39
483	Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceramics International, 2020, 46, 768-774.	2.3	17
484	Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants. Chemical Engineering Journal, 2020, 382, 123015.	6.6	62
485	Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chemical Engineering Journal, 2020, 382, 122997.	6.6	118
486	An integrated and robust yolk–shell nanoreactor based on wrinkly silica microspheres loaded with Au nanoparticles and nested in a silica inverse opal. Journal of Materials Science, 2020, 55, 2006-2017.	1.7	4
487	Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization. Microporous and Mesoporous Materials, 2020, 293, 109788.	2.2	33
488	Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 626-634.	4.8	104
489	π–π Interactions Between Aromatic Groups in Amphiphilic Molecules: Directing Hierarchical Growth of Porous Zeolites. Angewandte Chemie, 2020, 132, 50-60.	1.6	4
490	Highly ordered hierarchically macroporous- mesoporous TiO2 for thiol-ene polymer design by photoclick chemistry. Microporous and Mesoporous Materials, 2020, 291, 109696.	2.2	8

#	Article	IF	CITATIONS
491	Phytic acid assisted preparation of high-performance supercapacitor electrodes from noncarbonizable polyvinylpyrrolidone. Journal of Power Sources, 2020, 448, 227402.	4.0	14
492	Highly enhanced adsorption of methyl blue on weakly cross-linked ammonium-functionalized hollow polymer particles. Applied Surface Science, 2020, 505, 144607.	3.1	29
493	Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction. Applied Surface Science, 2020, 504, 144379.	3.1	38
494	Development of mesoporous SiO2/CeO2 core/shell nanoparticles with tunable structures for non-damage and efficient polishing. Ceramics International, 2020, 46, 4670-4678.	2.3	18
495	Polyacrylic acid as mesoscale template for synthesis of MFI zeolite with plentiful intracrystalline mesopores. Microporous and Mesoporous Materials, 2020, 293, 109821.	2.2	15
496	Structuring Metal–Organic Framework Materials into Hierarchically Porous Composites through Oneâ€Pot Fabrication Strategy. Chemistry - A European Journal, 2020, 26, 3358-3363.	1.7	5
497	Synthesis of interconnected hierarchically porous carbon networks with excellent diffusion ability based on NaNO3 crystal-assisted strategy for high performance supercapacitors. Journal of Power Sources, 2020, 450, 227612.	4.0	30
498	Template free one pot synthesis of heteroatom doped porous Carbon Electrodes for High performance symmetric supercapacitor. Electrochimica Acta, 2020, 337, 135698.	2.6	11
499	Extraction of phenylurea herbicides from rice and environmental water utilizing MIL-100(Fe)-functionalized magnetic adsorbents. New Journal of Chemistry, 2020, 44, 1548-1555.	1.4	15
500	Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Materials Horizons, 2020, 7, 541-550.	6.4	13
501	Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Applied Catalysis B: Environmental, 2020, 265, 118559.	10.8	252
502	Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors. Applied Surface Science, 2020, 507, 145190.	3.1	50
503	Ternary Metal Chalcogenide Heterostructure (AgInS ₂ –TiO ₂) Nanocomposites for Visible Light Photocatalytic Applications. ACS Omega, 2020, 5, 406-421.	1.6	36
504	Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. Applied Materials Today, 2020, 18, 100517.	2.3	25
505	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
506	The role of ferrite-cementite interface in formation of hierarchical film on carbon steel in CO2-saturated brine. Applied Surface Science, 2020, 509, 145107.	3.1	7
507	Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation. Talanta, 2020, 210, 120586.	2.9	32
508	Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai Synchrotron Radiation Facility. Chinese Physics B, 2020, 29, 016101.	0.7	23

#	Article	IF	CITATIONS
509	Effects of ordered hierarchically porous structure on methane reforming performance in solar foam reactor. Journal of CO2 Utilization, 2020, 37, 147-157.	3.3	30
510	Red phosphorus as self-template to hierarchical nanoporous nickel phosphides toward enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta, 2020, 332, 135500.	2.6	20
511	Hollow structured cathode materials for rechargeable batteries. Science Bulletin, 2020, 65, 496-512.	4.3	30
512	Highly Ordered Hierarchically Macroporous MIL-125 with High Specific Surface Area for Photocatalytic CO ₂ Fixation. ACS Sustainable Chemistry and Engineering, 2020, 8, 148-153.	3.2	49
513	Water-alcohol adsorptive separations using metal-organic frameworks and their composites as adsorbents. Microporous and Mesoporous Materials, 2020, 295, 109946.	2.2	21
514	Honeycomb-like 3D N-, P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery. Carbon, 2020, 158, 885-892.	5.4	41
515	Synthesis of mesoporous silica nanoparticles with a lychee-like morphology and dual pore arrangement and its application towards biomimetic activity via functionalization with copper(II) complex. Microporous and Mesoporous Materials, 2020, 294, 109910.	2.2	12
516	A Triazineâ€Based Analogue of Graphyne: Scalable Synthesis and Applications in Photocatalytic Dye Degradation and Bacterial Inactivation. Chemistry - A European Journal, 2020, 26, 2269-2275.	1.7	16
517	Lipase immobilized on magnetic hierarchically porous carbon materials as a versatile tool for the synthesis of bioactive quercetin derivatives. Bioresource Technology Reports, 2020, 9, 100372.	1.5	9
518	Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12639-12647.	4.0	19
519	Diatom-inspired multiscale mineralization of patterned protein–polysaccharide complex structures. National Science Review, 2021, 8, nwaa191.	4.6	7
520	Hierarchy: enhancing performances beyond limits. National Science Review, 2020, 7, 1624-1625.	4.6	5
521	Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors. Journal of Power Sources, 2020, 479, 228835.	4.0	41
522	The Interplay of Nanoconfinement and pH from the Perspective of a Dyeâ€Reporter Molecule. ChemNanoMat, 2020, 6, 1843-1853.	1.5	2
523	Synthesis Methods and Crystallization of MOFs., 0,,.		12
524	Fluid transport through heterogeneous pore matrices: Multiscale simulation approaches. Physics of Fluids, 2020, 32, .	1.6	25
525	Approaching Highâ€Performance Lithium Storage Materials by Constructing Hierarchical CoNiO ₂ @CeO ₂ Nanosheets. Energy and Environmental Materials, 2021, 4, 586-595.	7.3	128
526	Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon, 2020, 6, e04953.	1.4	39

#	ARTICLE	IF	CITATIONS
527	Hierarchical BiOX (X=Cl, Br, I) microrods derived from Bismuth-MOFs: In situ synthesis, photocatalytic activity and mechanism. Journal of Cleaner Production, 2020, 272, 122892.	4.6	52
528	Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Progress in Materials Science, 2020, 111, 100654.	16.0	250
529	Magnetic and electronic properties of 2D TiX3 ($X = F$, Cl, Br and I). Physical Chemistry Chemical Physics, 2020, 22, 17632-17638.	1.3	12
530	Deep eutectic solvent-induced high-entropy structures in boron nitride for boosted initiation of aerobic oxidative desulfurization of diesel. Applied Surface Science, 2020, 529, 146980.	3.1	16
531	Spatially Nanoconfined Architectures: A Promising Design for Selective Catalytic Reduction of NO _x . ChemCatChem, 2020, 12, 5599-5610.	1.8	15
532	Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation. RSC Advances, 2020, 10, 26319-26325.	1.7	13
533	A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device. Journal of Chromatography A, 2020, 1618, 460892.	1.8	19
534	N-doped porous carbon-stabilized Pt in hollow nano-TiO2 with enhanced photocatalytic activity. International Journal of Hydrogen Energy, 2020, 45, 24779-24791.	3.8	16
535	Micronâ€Sized Zeolite Beta Single Crystals Featuring Intracrystal Interconnected Ordered Macroâ€Mesoâ€Microporosity Displaying Superior Catalytic Performance. Angewandte Chemie, 2020, 132, 19750-19759.	1.6	13
536	Carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 24393-24400.	5.2	11
537	Preparation of Hierarchical ZSMâ€5 Zeolites by inâ€situ Crystallization of Mesoporous Carbonâ€Silica Composite. ChemistrySelect, 2020, 5, 14130-14135.	0.7	3
538	Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: Recent advances. Green Energy and Environment, 2021, 6, 620-643.	4.7	57
539	Charge-Enhanced Separation of Organic Pollutants in Water by Anionic Covalent Organic Frameworks. ACS Omega, 2020, 5, 32002-32010.	1.6	26
540	Design of Hierarchical Architectures in Metal–Oganic Frameworks for Catalysis and Adsorption. Chemistry of Materials, 2020, 32, 10268-10295.	3.2	68
541	The triple structure design of 2D amorphous Fe-doped indium phosphate nanosheets as a highly efficient electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2020, 8, 18232-18243.	5.2	18
542	Sub-nanoscaled Metal Oxide Cluster-Integrated Polymer Network for Quasi-Homogeneous Catalysis. ACS Applied Materials & Diterfaces, 2020, 12, 38655-38661.	4.0	11
543	Platinum Nanoparticles Supported on Hierarchically Porous Aluminosilicate Nanospheres for Low-Temperature Catalytic Combustion of Volatile Organic Compounds. ACS Applied Nano Materials, 2020, 3, 8472-8482.	2.4	12
544	Porous Materials Applied in Nonaqueous Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2020, 32, e2002559.	11.1	115

#	Article	IF	CITATIONS
545	Three-dimensional hierarchical nanostructured porous TiO2 aerogel/Cobalt based metal-organic framework (MOF) composite as an electrode material for supercapattery. Journal of Energy Storage, 2020, 32, 101750.	3.9	35
546	Hierarchical Zeolite Single-Crystal Reactor for Excellent Catalytic Efficiency. Matter, 2020, 3, 1226-1245.	5.0	66
547	Self-standing zeolite foam monoliths with hierarchical micro–meso–macroporous structures. Royal Society Open Science, 2020, 7, 200981.	1.1	4
548	Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La(OH)3 nanocomposite. Chemosphere, 2020, 261, 128118.	4.2	43
549	Air-mediated construction of O, N-rich carbon: An efficient support of palladium nanoparticles toward catalytic formic acid dehydrogenation and 4-nitrophenol reduction. International Journal of Hydrogen Energy, 2020, 45, 29034-29045.	3.8	19
550	Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8, 23699-23723.	5.2	86
551	Green fabrication of hierarchical zeolites from natural minerals. National Science Review, 2020, 7, 1632-1634.	4.6	11
552	Ultrahigh and economical uranium extraction from seawater <i>via</i> i>interconnected open-pore architecture poly(amidoxime) fiber. Journal of Materials Chemistry A, 2020, 8, 22032-22044.	5.2	77
553	Synthesis and Characterization of Aero-Eutectic Graphite Obtained by Solidification and Its Application in Energy Storage: Cathodes for Lithium Oxygen Batteries. Electronic Materials, 2020, 1, 17-27.	0.9	1
554	Enhanced electrocatalytic and supercapacitive performance using the synergistic effect of defect-rich N/S co-doped hierarchical porous carbon. Sustainable Energy and Fuels, 2020, 4, 5697-5708.	2.5	23
555	Monitoring the spin crossover phenomenon of [Fe(2â€mpz) ₂ Ni(CN) ₄] 2D Hofmannâ€type polymer nanoparticles via temperatureâ€dependent Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2171-2181.	1.2	13
556	Cucurbit[6]urilâ€Derived Subâ€4Ânm Poresâ€Dominated Hierarchical Porous Carbon for Supercapacitors: Operating Voltage Expansion and Pore Size Matching. Small, 2020, 16, e2002718.	5.2	34
557	Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7, 1667-1701.	4.6	164
558	Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores. Advanced Materials, 2020, 32, e2003270.	11.1	52
559	Porous cage-derived nanomaterial inks for direct and internal three-dimensional printing. Nature Communications, 2020, 11 , 4695.	5.8	18
560	Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angewandte Chemie, 2020, 132, 19852-19858.	1.6	0
561	Hierarchically Structured Zeolites: From Design to Application. Chemical Reviews, 2020, 120, 11194-11294.	23.0	328
562	Luminescent triphenylamine-based metal–organic frameworks: recent advances in nitroaromatics detection. Dalton Transactions, 2020, 49, 12929-12939.	1.6	18

#	Article	IF	CITATIONS
563	2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. ACS Symposium Series, 2020, , 93-116.	0.5	5
564	One-pot green mass production of hierarchically porous carbon via a recyclable salt-templating strategy. Green Energy and Environment, 2022, 7, 818-828.	4.7	23
565	Silica Mesoporous Structures: Effective Nanocarriers in Drug Delivery and Nanocatalysts. Applied Sciences (Switzerland), 2020, 10, 7533.	1.3	25
566	Comparative Study on the Adsorption Capacities of the Three Black Phosphorus-Based Materials for Methylene Blue in Water. Sustainability, 2020, 12, 8335.	1.6	10
567	3D structured materials and devices for artificial photosynthesis. Nanotechnology, 2020, 31, 282001.	1.3	10
568	Kinetics of the functionalization of mesoporous silica nanoparticles: Implications on surface group distributions, adsorption and catalysis. Microporous and Mesoporous Materials, 2020, 305, 110276.	2.2	12
569	Cerium Surface-Engineered Iridium Oxides for Enhanced Oxygen Evolution Reaction Activity and Stability. ACS Applied Energy Materials, 2020, 3, 4432-4440.	2.5	17
570	Preparation of porous monoliths via CO ₂ â€inâ€water HIPEs template and the in situ growth of metal organic frameworks on it for multiple applications. Polymers for Advanced Technologies, 2020, 31, 1591-1601.	1.6	2
571	A non-enzymatic electrochemical approach for <scp>l</scp> -lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix. New Journal of Chemistry, 2020, 44, 9775-9787.	1.4	24
572	Rational Assembly of Hierarchically Porous Co _{<i>x</i>} Fe _{1–<i>x</i>} S ₂ @Carbon Superparticles for Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 4139-4143.	2.5	4
573	ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26161-26169.	4.0	54
574	A heterostructure BiOCl nanosheets/TiO2 hollow-tubes composite for visible light-driven efficient photodegradation antibiotic. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112590.	2.0	41
575	Simultaneous detection of <scp>l</scp> -aspartic acid and glycine using wet-chemically prepared Fe ₃ O ₄ @ZnO nanoparticles: real sample analysis. RSC Advances, 2020, 10, 19276-19289.	1.7	18
576	Phosphate Ionâ€Functionalized CoS with Hexagonal Bipyramid Structures from a Metal–Organic Framework: Bifunctionality towards Supercapacitors and Oxygen Evolution Reaction. Chemistry - A European Journal, 2020, 26, 14903-14911.	1.7	21
577	Hierarchically Structured Porous Piezoelectric Polymer Nanofibers for Energy Harvesting. Advanced Science, 2020, 7, 2000517.	5.6	55
578	A Humidityâ€Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis. Small, 2020, 16, e2001743.	5.2	36
579	Spontaneous Ordering of Oxide-Oxide Epitaxial Vertically Aligned Nanocomposite Thin Films. Annual Review of Materials Research, 2020, 50, 229-253.	4.3	22
580	Protein-mediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage. Journal of Power Sources, 2020, 464, 228246.	4.0	32

#	ARTICLE	IF	CITATIONS
581	Solid Nanoporosity Governs Catalytic CO ₂ and N ₂ Reduction. ACS Nano, 2020, 14, 7734-7759.	7.3	59
582	Controlled Crystallization of Hierarchical Monoliths Composed of Nanozeolites. Crystal Growth and Design, 2020, 20, 5413-5423.	1.4	5
583	Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors. Journal of Colloid and Interface Science, 2020, 579, 347-356.	5.0	113
584	Porosity properties of porous ceramic substrates added with zinc and magnesium material. Ceramics International, 2020, 46, 20838-20846.	2.3	7
585	Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter, 2020, 2, 1377-1413.	5.0	254
586	One-pot preparation of hierarchical Cu ₂ O hollow spheres for improved visible-light photocatalytic properties. RSC Advances, 2020, 10, 22387-22396.	1.7	12
587	Fabrication, mechanical property and i> in vitro ii> bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys. Journal of Materials Research, 2020, 35, 2597-2609.	1.2	2
588	Microfluidic synthesis of monodisperse porous polystyrene microspheres for sorption of bovine serum albumin. Journal of Microencapsulation, 2020, 37, 457-465.	1.2	8
589	Highly Efficient and Selective Adsorption of Cationic Dyes in Aqueous Media on Microporous Hyper Crosslinked Polymer with Abundant and Evenly Dispersed Sulfonic Groups. ChemistrySelect, 2020, 5, 6541-6548.	0.7	9
590	Surface activity correlations of mesoporous 3-D hierarchical ZnS nanostructures for enhanced photo and electro catalytic performance. Applied Surface Science, 2020, 528, 146988.	3.1	24
591	A new synthesis methodology for SiO2 gel-based nanostructures and their application for elimination of dye pollutants. New Journal of Chemistry, 2020, 44, 5386-5395.	1.4	6
592	Melamineâ€Induced N,Sâ€Codoped Hierarchically Porous Carbon Nanosheets for Enhanced Electrocatalytic Oxygen Reduction. ChemistrySelect, 2020, 5, 3477-3484.	0.7	13
593	A Convenient and Versatile Strategy for the Functionalization of Silica Foams Using High Internal Phase Emulsion Templates as Microreactors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14607-14619.	4.0	15
594	NiF ₂ Nanorod Arrays for Supercapattery Applications. ACS Omega, 2020, 5, 9768-9774.	1.6	19
595	Facile solvent deficient synthesis of mesoporous Co3O4 nanoparticles for electrochemical energy storage. Journal of Materials Science: Materials in Electronics, 2020, 31, 6174-6184.	1.1	1
596	3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. Journal of Colloid and Interface Science, 2020, 570, 286-299.	5.0	36
597	Polystyrene-Based Hierarchically Macro–Mesoporous Solid Acid: A Robust and Highly Efficient Catalyst for Indirect Hydration of Cyclohexene to Cyclohexanol by a One-Pot Method under Mild Conditions. Industrial & Description (2000) among the Conditions	1.8	10
598	Structural Changes of Hierarchically Nanoporous Organosilica/Silica Hybrid Materials by Pseudomorphic Transformation. Chemistry - A European Journal, 2020, 26, 11220-11230.	1.7	5

#	Article	IF	CITATIONS
599	Transition Metal Phosphideâ€Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem, 2020, 13, 3357-3375.	3.6	218
600	Designed Assembly of Porous Cobalt Oxide/Carbon Nanotentacles on Electrospun Hollow Carbon Nanofibers Network for Supercapacitor. ACS Applied Energy Materials, 2020, 3, 3435-3444.	2.5	65
601	Ionic Liquid-Assisted Synthesis of Hierarchical One-Dimensional MoP/NPC for High-Performance Supercapacitor and Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 6343-6351.	3.2	53
602	The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Advanced Functional Materials, 2020, 30, 1909035.	7.8	181
603	Methanol Oxidation Catalyzed by Copper Nanoclusters Incorporated in Vacuum-Deposited HKUST-1 Thin Films. ACS Catalysis, 2020, 10, 4997-5007.	5.5	25
604	Control of ZIF-7-III aspect ratio using water-in-oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125157.	2.3	6
605	Self-organization of silicates on different length scales exemplified by amorphous mesoporous silica and mesoporous zeolite beta using multiammonium surfactants. RSC Advances, 2020, 10, 20928-20938.	1.7	4
606	Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1185-1191.	2.0	7
607	Improved electrocatalytic performance with enlarged surface area and reduced bandgap of caterpillar and cabbage-like nickel sulphide nanostructures. Applied Nanoscience (Switzerland), 2020, 10, 3757-3772.	1.6	11
608	Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angewandte Chemie - International Edition, 2020, 59, 19684-19690.	7.2	6
609	Micronâ€Sized Zeolite Beta Single Crystals Featuring Intracrystal Interconnected Ordered Macroâ€Mesoâ€Microporosity Displaying Superior Catalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 19582-19591.	7.2	61
610	Carbon Dots Integrated NiCo ₂ O ₄ Hierarchical Nanoneedle Arrays Supported on Ni Foam as Efficient and Stable Electrode for Hydrogen and Oxygen Evolution Reactions. Electroanalysis, 2020, 32, 2090-2100.	1.5	10
611	New age monolithic design-based visible light responsive and reusable photocatalyst material using iron oxide-modified mesoporous titania framework. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
612	Molten NaCl-induced MOF-derived carbon-polyhedron decorated carbon-nanosheet with high defects and high N-doping for boosting the removal of carbamazepine from water. Environmental Science: Nano, 2020, 7, 1205-1213.	2.2	29
613	Influence of Nanoconfinement on the pKa of Polyelectrolyte Functionalized Silica Mesopores. Advanced Materials Interfaces, 2020, 7, 1901914.	1.9	28
614	Hierarchical porous carbon fabricated from cellulose-degrading fungus modified rice husks: Ultrahigh surface area and impressive improvement in toluene adsorption. Journal of Hazardous Materials, 2020, 392, 122298.	6.5	54
615	A self-template strategy to prepare hollow NiMoS4 nanospheres supported on Ni foam as advanced supercapacitor electrodes. Electrochimica Acta, 2020, 338, 135897.	2.6	24
616	Structure and electrochemical properties of hierarchically porous carbon nanomaterials derived from hybrid ZIF-8/ZIF-67 bi-MOF coated cyclomatrix poly(organophosphazene) nanospheres. New Journal of Chemistry, 2020, 44, 4353-4362.	1.4	3

#	Article	IF	Citations
617	Silica-based microspheres with interconnected macroporosity by phase separation. Journal of Sol-Gel Science and Technology, 2020, 95, 746-759.	1.1	9
618	Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. Nature Communications, 2020, 11, 1022.	5.8	23
619	Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. Journal of Hazardous Materials, 2020, 393, 122325.	6.5	86
620	Polyelectrolyte–Surfactant Mesomorphous Complex Templating: A Versatile Approach for Hierarchically Porous Materials. Langmuir, 2020, 36, 1851-1863.	1.6	26
621	Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horizons, 2020, 5, 765-786.	4.1	152
622	Contributions of morphological and structural parameters at different hierarchical morphology levels to photocatalytic activity of mesoporous nanostructured ZnO. Applied Surface Science, 2020, 513, 145773.	3.1	14
623	Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Applied Catalysis B: Environmental, 2020, 266, 118633.	10.8	103
624	Hierarchically structured Co3O4/SiO2 composites by Co nanocrystals transformation. Chemical Physics Letters, 2020, 740, 137068.	1.2	2
625	Synthesis of bio-based cyclic carbonate from vegetable oil methyl ester by CO2 fixation with acid-base pair MOFs. Industrial Crops and Products, 2020, 145, 112155.	2.5	13
626	From metal–organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives. Nanoscale, 2020, 12, 4238-4268.	2.8	107
627	Biomass-derived porous graphitic carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 5773-5811.	5.2	234
628	Electrochemical, Surface Morphological and Spectral Studies of A Polyoxometalateâ€lonic Liquid Hybrid. ChemistrySelect, 2020, 5, 637-644.	0.7	0
629	Nickel–Nitrogen-Doped Three-Dimensional Ordered Macro-/Mesoporous Carbon as an Efficient Electrocatalyst for CO ₂ Reduction to CO. ACS Applied Energy Materials, 2020, 3, 1875-1882.	2.5	29
630	Surface Metallization of Porous Polymer Materials for Multifunctional Applications. Langmuir, 2020, 36, 1454-1461.	1.6	9
631	Microwave-assisted unprotected Sonogashira reaction in water for the synthesis of polysubstituted aromatic acetylene compounds. Green Chemistry, 2020, 22, 1338-1344.	4.6	10
632	Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery. Nano-Micro Letters, 2020, 12, 31.	14.4	19
633	PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 4836-4843.	5.2	21
634	Designed Fabrication of Polymer-Mediated MOF-Derived Magnetic Hollow Carbon Nanocages for Specific Isolation of Bovine Hemoglobin. ACS Biomaterials Science and Engineering, 2020, 6, 1387-1396.	2.6	17

#	Article	IF	CITATIONS
635	Circumventing Wear and Tear of Adaptive Porous Materials. Advanced Functional Materials, 2020, 30, 1908547.	7.8	16
636	Comparative study of the electrochemical properties of mesoporous 1-D and 3-D nano- structured rhombohedral nickel sulfide in alkaline electrolytes. Journal of Physics and Chemistry of Solids, 2020, 144, 109503.	1.9	20
637	Catalytic reduction of organic and hexavalent chromium pollutants with highly active bimetal CuBiOS oxysulfide catalyst under dark. Separation and Purification Technology, 2020, 242, 116769.	3.9	42
638	Hierarchical porous LaFeO3 nanostructure for efficient trace detection of formaldehyde. Sensors and Actuators B: Chemical, 2020, 313, 128022.	4.0	38
639	Hierarchical zeolites: synthesis, structural control, and catalytic applications. Emergent Materials, 2020, 3, 225-245.	3.2	22
640	Hierarchical porous photocatalysts. Interface Science and Technology, 2020, , 63-102.	1.6	4
641	A strategy for fast and facile embedding platinum nanoparticles in silicalite‴1 crystallites with a stable and catalytic active structure. Chemical Engineering Journal, 2020, 394, 124990.	6.6	11
642	Construction of Sn–Mo bimetallic oxide nanoparticle-encapsulated P-doped 3D hierarchical porous carbon through an in-situ reduction and competitive cross-linking strategy for efficient pseudocapacitive energy storage. Electrochimica Acta, 2020, 343, 136106.	2.6	14
643	One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Progress in Materials Science, 2020, 113, 100671.	16.0	64
644	Functional Metalloblock Copolymers for the Preparation and In Situ Functionalization of Porous Silica Films. Langmuir, 2020, 36, 4015-4024.	1.6	11
645	Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn–WO ₃ films for ultraviolet photodetector application. New Journal of Chemistry, 2020, 44, 7708-7718.	1.4	46
646	Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores: A novel solution for trade-off effect in separation. Journal of Membrane Science, 2020, 604, 118040.	4.1	25
647	Effect of molten salts on the structure, morphology and electrical conductivity of PET-derived carbon nanostructures. Polymer Degradation and Stability, 2020, 177, 109184.	2.7	38
648	Enhanced electrochemical properties and thermal stability of Zr4+ doped Li1.20Mn0.54Ni0.13Co0.13O2 cathode material by a Li ion conductor of Li3PO4 surface coating. Applied Surface Science, 2020, 521, 146338.	3.1	18
649	Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. Journal of Hazardous Materials, 2020, 395, 122692.	6.5	104
650	Hierarchically Nanoporous Pyropolymers Derived from Waste Pinecone as a Pseudocapacitive Electrode for Lithium Ion Hybrid Capacitors. Scientific Reports, 2020, 10, 5817.	1.6	4
651	Nanoscaled Fractal Superstructures via Laser Patterningâ€"A Versatile Route to Metallic Hierarchical Porous Materials. Advanced Materials Interfaces, 2021, 8, 2000253.	1.9	8
652	Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste and Biomass Valorization, 2021, 12, 1699-1724.	1.8	87

#	Article	IF	CITATIONS
653	Superhydrophobic self-floating TiO2-silicone composite aerogels and their air–liquid-solid triphase photocatalytic system. Applied Surface Science, 2021, 536, 147726.	3.1	29
654	Regulation of hierarchically porous structures based on multi-scale nanosheets derived from kaolinite for enhanced adsorption. Applied Clay Science, 2021, 200, 105895.	2.6	12
655	A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Applied Surface Science, 2021, 537, 147827.	3.1	35
656	Microwave-assisted acid-induced formation of linker vacancies within Zr-based metal organic frameworks with enhanced heterogeneous catalysis. Chinese Chemical Letters, 2021, 32, 787-790.	4.8	10
657	Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021, 57, 451-468.	7.1	245
658	In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity. Journal of Hazardous Materials, 2021, 402, 124066.	6.5	62
659	Lanthanide doped TiO2: Coexistence of discrete and continuous dopant distribution in anatase phase. Journal of Alloys and Compounds, 2021, 851, 156849.	2.8	14
660	rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. Journal of Alloys and Compounds, 2021, 857, 157534.	2.8	33
661	Nickel sulfide nanoparticle anchored reduced graphene oxide with improved lithium storage properties. Materials Research Bulletin, 2021, 133, 111047.	2.7	13
662	Hydrophobicity-induced electrostatic interfacial self-assembly for porous silica nanospheres with tunable pore sizes and pore hierarchies. Chemical Engineering Journal, 2021, 405, 126936.	6.6	13
663	Template-free synthesis to micro-meso-macroporous hierarchy in nanostructured MIL-101(Cr) with enhanced catalytic activity. Science China Materials, 2021, 64, 252-258.	3.5	23
664	Functionalized Mesoporous Photonic Crystal Film for Ultrasensitive Visual Detection and Effective Removal of Mercury (II) Ions in Water. Advanced Functional Materials, 2021, 31, 2007032.	7.8	49
665	De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment. Nano Research, 2021, 14, 788-796.	5.8	20
666	Pore size characterization of micro-mesoporous carbons using CO2 adsorption. Carbon, 2021, 173, 842-848.	5.4	25
667	Tailoring Multiple Porosities of Hierarchical ZSMâ€5 Zeolites by Carbon Dots for Highâ€Performance Catalytic Transformation. Advanced Materials Interfaces, 2021, 8, 2001846.	1.9	5
668	Influence of ZSM-5 porosity and binder introduction on the coke formation in the cracking of 1,3,5-triisopropylbenzene. Catalysis Today, 2021, 368, 211-216.	2.2	13
669	Structural design of carbon dots/porous materials composites and their applications. Chemical Engineering Journal, 2021, 421, 127743.	6.6	55
670	Hierarchical zeolite based on multiporous zeolite A and bacterial cellulose: An efficient adsorbent of Pb2+. Microporous and Mesoporous Materials, 2021, 312, 110752.	2.2	10

#	Article	IF	CITATIONS
671	Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Applied Catalysis B: Environmental, 2021, 285, 119785.	10.8	124
672	Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics. Chemical Engineering Journal, 2021, 417, 128034.	6.6	26
673	Recent Tactics and Advances in the Application of Metal Sulfides as Highâ€Performance Anode Materials for Rechargeable Sodiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2006761.	7.8	89
674	Interconnected \hat{l}_{\pm} -Fe2O3 nanoparticles prepared from leaching liquor of tin ore tailings as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 855, 157288.	2.8	40
675	Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. Chemosphere, 2021, 269, 129325.	4.2	63
676	Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM. Journal of Energy Chemistry, 2021, 59, 405-418.	7.1	12
677	Long-term cycling stability of NiCo ₂ S ₄ hollow nanowires supported on biomass-derived ultrathin N-doped carbon 3D networks as an anode for lithium-ion batteries. Chemical Communications, 2021, 57, 1002-1005.	2.2	7
678	Mechanical design of brush coating technology for the alignment of one-dimension nanomaterials. Journal of Colloid and Interface Science, 2021, 583, 188-195.	5.0	15
679	Coaxial spinning fabricated high nitrogen-doped porous carbon walnut anchored on carbon fibers as anodic material with boosted lithium storage performance. Journal of Colloid and Interface Science, 2021, 586, 371-380.	5.0	13
680	High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3. Journal of Materials Science and Technology, 2021, 74, 128-135.	5.6	62
681	Study on catalytic efficiency of platinum and silver nanoparticles confined in nanosized channels of a 3-D mesostructured silica. Journal of Porous Materials, 2021, 28, 65-79.	1.3	6
682	Hierarchical flower-like NiFe2O4 with core–shell structure for excellent toluene detection. Rare Metals, 2021, 40, 1578-1587.	3.6	27
683	Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries. Small, 2021, 17, e1902767.	5.2	55
684	Metalâ€Based Electrocatalysts for Methanol Electroâ€Oxidation: Progress, Opportunities, and Challenges. Small, 2021, 17, e1904126.	5.2	119
685	Synthesis of dendritic mesoporous organosilica nanoparticles under a mild acidic condition with homogeneous wall structure and near-neutral surface. Chemical Communications, 2021, 57, 4416-4419.	2.2	4
686	Boosted interfacial charge transfer in SnO ₂ /SnSe ₂ heterostructures: toward ultrasensitive room-temperature H ₂ S detection. Inorganic Chemistry Frontiers, 2021, 8, 2068-2077.	3.0	23
687	Electrospun Nanostructured Iron Oxide Carbon Composites for High-Performance Lithium Ion Batteries. Materials Horizons, 2021, , 235-276.	0.3	0
688	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	4.6	32

#	Article	IF	CITATIONS
689	Effect of high temperature on the mechanical properties of hierarchical porous cenosphere/geopolymer composite foams. International Journal of Applied Ceramic Technology, 2021, 18, 817-829.	1.1	12
690	A class of novel luminescent layered double hydroxide nanotubes. RSC Advances, 2021, 11, 24747-24751.	1.7	3
691	Using nuclear magnetic resonance proton relaxation to probe the surface chemistry of carbon 2D materials. Nanoscale, 2021, 13, 6389-6393.	2.8	8
692	Hydrothermally prepared nickel disulphide nanoparticles with enhanced areal capacitance. Journal of Materials Science: Materials in Electronics, 2021, 32, 2409-2421.	1.1	1
693	Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics, 2021, 23, 22835-22853.	1.3	2
694	Pd/SAPO-35: Synthesis, characterization and its catalytic application studies on Suzuki-Miyaura Cross Coupling reaction. Materials Today: Proceedings, 2021, 45, 3778-3783.	0.9	2
695	Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090.	3.9	97
696	N, O self-doped hierarchical porous carbon materials for high-performance super-capacitors. Results in Chemistry, 2021, 3, 100109.	0.9	10
697	2D alignment of zinc oxide@ZIF8 nanocrystals for photoelectrochemical water splitting. New Journal of Chemistry, 2021, 45, 3498-3507.	1.4	12
698	Nickel-Nitrogen-Doped Ordered Macro-/Mesoporous Carbon Supported Ag Nanoparticles for Efficient Electrocatalytic CO ₂ Reduction. Acta Chimica Sinica, 2021, 79, 925.	0.5	5
699	High-performance Pt _{0.01} Fe _{0.05} -g-C ₃ N ₄ Catalyst for Photothermal Catalytic CO ₂ Reduction. Acta Chimica Sinica, 2021, 79, 932.	0.5	6
700	Three-dimensional ordered macroporous materials for photocatalysis: design and applications. Journal of Materials Chemistry A, 2021, 9, 18129-18147.	5.2	34
701	Synthesis methods and recent advances in hierarchical zeolites: a brief review. Journal of the Iranian Chemical Society, 2021, 18, 2215-2229.	1.2	13
702	Efficient and Ultrafast Adsorption of Rhenium by Functionalized Hierarchically Mesoporous Silica: A Combined Strategy of Topological Construction and Chemical Modification. ACS Applied Materials & Amp; Interfaces, 2021, 13, 8249-8262.	4.0	17
703	Hierarchical WS ₂ –WO ₃ Nanohybrids with P–N Heterojunctions for NO ₂ Detection. ACS Applied Nano Materials, 2021, 4, 1626-1634.	2.4	56
704	Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 2021, 4, 473-507.	13.1	224
705	Anisotropic Magnetism in Gradient Porous Carbon Composite Aerogels. Journal of Carbon Research, 2021, 7, 22.	1.4	2
706	Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 7848-7865.	3.8	30

#	Article	IF	Citations
707	An anion exchange strategy to synthesize BiPO4/BiOCl heterojunction at room temperature with efficient photocatalytic performance. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
708	A Facile Reaction Strategy for the Synthesis of MOF-Based Pine-Needle-Like Nanocluster Hierarchical Structure for Efficient Overall Water Splitting. Inorganic Chemistry, 2021, 60, 4047-4057.	1.9	23
709	Macroporous-mesoporous C-, S-, N-doped titania microspheres via the polyHIPE microspheres templates. Chinese Chemical Letters, 2021, 32, 1135-1138.	4.8	8
710	Photocatalytic degradation performance of gaseous formaldehyde by Ce-Eu/TiO2 hollow microspheres: from experimental evaluation to simulation. Environmental Science and Pollution Research, 2021, 28, 34762-34775.	2.7	6
711	Synergistically enhance confined diffusion by continuum intersecting channels in zeolites. Science Advances, $2021, 7, \ldots$	4.7	17
712	Endorsing Organic Porous Polymers in Regioselective and Unusual Oxidative Câ•€ Bond Cleavage of Styrenes into Aldehydes and Anaerobic Benzyl Alcohol Oxidation via Hydride Elimination. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15353-15365.	4.0	3
713	Preparation of Temperature-Sensitive Inverse Macroporous Membranes Using Silica Spheres as a Template. Integrated Ferroelectrics, 2021, 215, 267-277.	0.3	0
714	Enhanced catalytic ozonation of ibuprofen using a 3D structured catalyst with MnO2 nanosheets on carbon microfibers. Scientific Reports, 2021, 11, 6342.	1.6	10
715	Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Materials and Design, 2021, 201, 109518.	3.3	85
716	A Brief Overview of Recent Progress in Porous Silica as Catalyst Supports. Journal of Composites Science, 2021, 5, 75.	1.4	68
717	Influence of Wettability on the Impedance of Ion Transport Through Mesoporous Silica Films. Advanced Materials Interfaces, 2021, 8, 2002095.	1.9	4
718	A green and economical approach to derive biomass porous carbon from freely available feather finger grass flower for advanced symmetric supercapacitors. Journal of Energy Storage, 2021, 35, 102287.	3.9	93
719	A review on the preparation of anode materials and anode films for solid oxide fuel cell applications. International Journal of Energy Research, 2021, 45, 14357-14388.	2.2	9
720	Switching the solubility of electroactive ionic liquids for designing high energy supercapacitor and low potential biosensor. Journal of Colloid and Interface Science, 2021, 588, 221-231.	5.0	11
721	A Universal Standard Archive File for Adsorption Data. Langmuir, 2021, 37, 4222-4226.	1.6	39
722	Developments in the Field of Biocompatible Composite Materials Based on Biopolymers and Calcium Phosphates Adapted to Prototyping Technology. Polymer Science - Series D, 2021, 14, 265-268.	0.2	0
723	In situ encapsulated ultrafine Pd nanoparticles in nitrogen-doped porous carbon derived from hyper-crosslinked polymers effectively catalyse hydrogenation. Journal of Catalysis, 2021, 396, 342-350.	3.1	29
724	Electrocatalysts by Electrodeposition: Recent Advances, Synthesis Methods, and Applications in Energy Conversion. Advanced Functional Materials, 2021, 31, 2101313.	7.8	86

#	Article	IF	CITATIONS
726	Single molecule characterization of anomalous transport in a thin, anisotropic film. Analytica Chimica Acta, 2021, 1154, 338331.	2.6	4
727	Fast Capillary Wicking on Hierarchical Copper Nanowired Surfaces with Interconnected V-Grooves: Implications for Thermal Management. ACS Applied Nano Materials, 2021, 4, 5360-5371.	2.4	19
728	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. Journal of the American Chemical Society, 2021, 143, 6922-6932.	6.6	61
729	Ternary ZnO/CuO/Zeolite composite obtained from volcanic ash for photocatalytic CO2 reduction and H2O decomposition. Journal of Physics and Chemistry of Solids, 2021, 151, 109917.	1.9	16
730	Design and application of photocatalysts using porous materials. Catalysis Reviews - Science and Engineering, 2021, 63, 165-233.	5.7	21
731	A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromolecular Materials and Engineering, 2021, 306, 2100115.	1.7	78
732	Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorganic Chemistry, 2021, 60, 6633-6640.	1.9	5
733	Green strategy for embedding SnO2/Sn within carbon plates to achieve improved cyclic stability of lithium storage. Journal of Alloys and Compounds, 2021, 863, 158743.	2.8	10
734	Fabrication of <i>h</i> â€BN/SiO ₂ Nanofibers Showing High Olefins Productivity in Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3312-3318.	1.8	7
735	A mini review on zeolite. Materials Today: Proceedings, 2021, , .	0.9	2
736	Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 16203-16214.	1.1	15
737	Low-Frequency Dielectric Relaxation in Structures Based on Macroporous Silicon with Meso-Macroporous Skin-Layer. Materials, 2021, 14, 2471.	1.3	7
738	Surfaceâ€Mediated Construction of an Ultrathin Freeâ€Standing Covalent Organic Framework Membrane for Efficient Proton Conduction. Angewandte Chemie - International Edition, 2021, 60, 14875-14880.	7.2	115
739	A Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials for Supercapacitors. Electrochem, 2021, 2, 236-250.	1.7	21
740	Radiation Syntheses and Performance of Novel Hierarchically Macro-/Mesoporous Silica Adsorbents with Quaternary Phosphonium for the High Selective Removal of Perrhenate. ACS Sustainable Chemistry and Engineering, 2021, 9, 7379-7389.	3.2	9
741	Surfaceâ€Mediated Construction of an Ultrathin Freeâ€6tanding Covalent Organic Framework Membrane for Efficient Proton Conduction. Angewandte Chemie, 2021, 133, 15001-15006.	1.6	20
742	Supercapacitor and room temperature H, CO2Âand CH4 gas storage characteristics of commercial nanoporous activated carbon. Journal of Physics and Chemistry of Solids, 2021, 152, 109969.	1.9	17
743	Enhancement of gas storage and separation properties of microporous polymers by simple chemical modifications. Multifunctional Materials, 2021, 4, 025002.	2.4	5

#	Article	IF	Citations
744	A novel biodegradable porous graphitic carbon nitride/poly(lactic acid) fiber photocatalyst for efficient elimination of carbamazepine under solar irradiation. Chemical Engineering Journal, 2021, 414, 128845.	6.6	30
745	Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Research, 2022, 15, 310-316.	5.8	65
746	Hierarchically porous silica supported ceria and platinum nanoparticles for catalytic combustion of toluene. Journal of Alloys and Compounds, 2021, 867, 159030.	2.8	10
747	Facile synthesis of tailored mesopore-enriched hierarchical porous carbon from food waste for rapid removal of aromatic VOCs. Science of the Total Environment, 2021, 773, 145453.	3.9	31
748	Highly porous, hierarchically structured nickel nanomaterials consolidated by powder metallurgy methods. Journal of Physics: Conference Series, 2021, 1942, 012019.	0.3	3
749	Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. Journal of the Electrochemical Society, 2021, 168, 067502.	1.3	21
750	Catalytic activation preparation of nitrogen-doped hierarchical porous bio-char for efficient adsorption of dichloromethane and toluene. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105150.	2.6	28
751	Alginate@TiO2 hybrid microcapsules with high in vivo biocompatibility and stability for cell therapy. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111770.	2.5	6
752	A liquid marble method for synthesizing large-sized carbon microspheres with controlled interior structures. Carbon, 2021, 179, 541-553.	5.4	3
753	Porous structures prepared by a novel route: Combination of digital light processing 3D printing and leaching method. Journal of Manufacturing Processes, 2021, 67, 46-51.	2.8	9
754	Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 594, 531-539.	5.0	11
755	Ultrafine self-N-doped porous carbon nanofibers with hierarchical pore structure utilizing a biobased chitosan precursor. International Journal of Biological Macromolecules, 2021, 182, 445-454.	3.6	12
756	Synthesis of ZnO/g-C3N4 Nanocomposite and Its Electrochemical Application in Hydrogen Peroxide Detection. Russian Journal of Electrochemistry, 2021, 57, 808-815.	0.3	4
757	Aqueous Al-N2 battery assembled by hollow molybdenum phosphate microspheres for simultaneous NH3 production and power generation. Chemical Engineering Journal, 2021, 418, 129447.	6.6	27
758	Optimizing inner voids in yolk-shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chemical Engineering Journal, 2021, 417, 129241.	6.6	42
759	Biomimetic hierarchical structure for enhancing concentrated solar energy converting and utilizing efficiency. Optics Express, 2021, 29, 26669.	1.7	8
760	Thermal Performance Analysis of PCM Capsules Packed-Bed System with Biomimetic Leaf Hierarchical Porous Structure. Journal of Thermal Science, 2021, 30, 1559-1571.	0.9	21
761	Adsorption studies and effect of heat treatment on porous glass microspheres. International Journal of Applied Glass Science, 0, , .	1.0	6

#	Article	IF	CITATIONS
762	Hierarchical Zeolitesâ€confined Metal Catalysts and Their Enhanced Catalytic Performances. Chemistry - an Asian Journal, 2021, 16, 2795-2805.	1.7	5
763	Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 2021, 121, 100812.	16.0	52
764	Comparative study of electrocatalytic activity of single phase rhombohedral \hat{l}^2 -NiS nanoparticles in alkaline electrolytes. Materials Science in Semiconductor Processing, 2021, 130, 105827.	1.9	17
765	Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. Journal of Materials Science and Technology, 2021, 83, 179-187.	5.6	52
766	Synergistic roles of B/L acids and hierarchical micro-mesoporous structures for the unexpected isomerization of \hat{l}^2 -pinene over dual-modified MOR zeolite by inorganic/organic bases. Microporous and Mesoporous Materials, 2021, 323, 111195.	2.2	2
767	One-step preparation of carbonaceous spheres rich in phosphate groups via hydrothermal carbonization for effective phosphopeptides enrichment. Journal of Chromatography A, 2021, 1651, 462285.	1.8	7
768	Porous SnO2 microsphere and its carbon nanotube hybrids: Controllable preparation, structures and electrochemical performances as anode materials. Electrochimica Acta, 2021, 388, 138582.	2.6	14
769	Recent advances in lignin-based porous materials for pollutants removal from wastewater. International Journal of Biological Macromolecules, 2021, 187, 880-891.	3.6	40
770	A novel in-situ micro-aeration functional membrane with excellent decoloration efficiency and antifouling performance. Journal of Membrane Science, 2022, 641, 119925.	4.1	101
771	Three-dimensional hierarchical urchin-like Nb2O5 microspheres wrapped with N-doped carbon: An advanced anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 876, 160145.	2.8	16
772	Collaborative fabrication of poly(L-proline)s with well-defined mesopores and hydrophobicity: Synergistic effect of mesoporous confinement and hydrophobic micro-environment on organic transformations. Journal of Industrial and Engineering Chemistry, 2021, 104, 592-604.	2.9	2
773	Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structureâ€Dependent Catalytic Performance. Advanced Materials, 2021, 33, e2103130.	11.1	13
774	Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review. Materials, 2021, 14, 5094.	1.3	31
775	Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy, 2021, 21, 100816.	2.5	45
776	Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchemical Journal, 2021, 168, 106387.	2.3	29
777	Nanospace Decoration with Uranyl-Specific "Hooks―for Selective Uranium Extraction from Seawater with Ultrahigh Enrichment Index. ACS Central Science, 2021, 7, 1650-1656.	5.3	49
778	In-situ construction and catalytic property of highly exposed Lewis acidity on hierarchical Zr-zeolite assisted by K+ cation. Microporous and Mesoporous Materials, 2021, 324, 110898.	2.2	9
779	The synthesis of a DMpillar[5]arene-based porous polymer with ultrafast adsorption rate and high adsorption capacity for organic micropollutants from water. Chemical Engineering Journal, 2022, 435, 132418.	6.6	16

#	Article	IF	CITATIONS
780	Synchronous removal of tetracycline and water hardness ions by capacitive deionization. Journal of Cleaner Production, 2021, 316, 128251.	4.6	17
781	Effects of the zeolite concentration on the microstructure of high internal phase emulsions stabilized by surfactant-coated zeolite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126853.	2.3	7
782	Highly stable Co3O4 nanoparticles/carbon nanosheets array derived from flake-like ZIF-67 as an advanced electrode for supercapacacitor. Chemical Engineering Journal, 2021, 419, 129631.	6.6	52
783	Heterogeneous NiFeCoP/NF Nanorods as a Bifunctional Electrocatalyst for Efficient Water Electrolysis. ChemCatChem, 2021, 13, 4602-4609.	1.8	13
784	One-step synthesis of mercapto modified hierarchical porous polymer capillary monolithic column for chip based array microextraction of mercury species in cells. Chemical Engineering Journal, 2021, 420, 130414.	6.6	8
785	N,S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor. Applied Surface Science, 2021, 562, 150128.	3.1	64
786	Facile synthesis of multifunctional Ag-nanocomposite poly(HIPE) foam via emulsion template method. Reactive and Functional Polymers, 2021, 167, 105004.	2.0	3
787	Fast energy storage performance of CoFe2O4/CNTs hybrid aerogels for potassium ion battery. Journal of Colloid and Interface Science, 2021, 600, 820-827.	5.0	15
788	Shapeable and underwater super-elastic cellulose nanofiber/alginate cryogels by freezing-induced oxa-Michael reaction for efficient protein purification. Carbohydrate Polymers, 2021, 272, 118498.	5.1	17
789	Effective utilization of Fe(III)-based metal organic framework-coated cellulose paper for highly efficient elimination from the liquid phase of paracetamol as a pharmaceutical pollutant. Environmental Technology and Innovation, 2021, 24, 101799.	3.0	11
790	A multi-functional Cd(II)-based coordination polymer for the highly sensitive detection of nitrofurazone and photocatalytic efficiency of Rhodamine B. Inorganica Chimica Acta, 2021, 527, 120566.	1.2	5
791	Design and construction of 2D/2D sheet-on-sheet transition metal sulfide/phosphide heterostructure for efficient oxygen evolution reaction. Applied Surface Science, 2021, 565, 150510.	3.1	30
792	Structurally advanced hybrid support composite phase change materials: Architectural synergy. Energy Storage Materials, 2021, 42, 164-184.	9.5	63
793	Layered SnO2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing. Sensors and Actuators B: Chemical, 2021, 346, 130452.	4.0	19
794	From the outside to the inside: Elucidation of the mechanism of pseudomorphic transformation of SBA-15 into MCM-41 by following its time-resolved conversion. Microporous and Mesoporous Materials, 2021, 328, 111442.	2.2	1
795	Solvothermal growth of the bimetal organic framework (NiFe-MOF) on sugarcane bagasse hydrochar for the removal of dye and antibiotic. Journal of Environmental Chemical Engineering, 2021, 9, 106367.	3.3	22
796	Recent progress in magnetic nanoparticles and mesoporous materials for enzyme immobilization: an update. Brazilian Journal of Biology, 2021, 82, e244496.	0.4	3
797	lonic covalent organic frameworks for Non-Steroidal Anti-Inflammatory drugs (NSAIDs) removal from aqueous Solution: Adsorption performance and mechanism. Separation and Purification Technology, 2021, 278, 119238.	3.9	19

#	Article	IF	Citations
798	Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. Chemosphere, 2022, 287, 131995.	4.2	52
799	Advanced development of metal oxide nanomaterials for H ₂ gas sensing applications. Materials Advances, 2021, 2, 1530-1569.	2.6	28
800	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
801	One-step self-assembly of lamellar MWW crystals through intergrowth driven by centrifugal force to form hollownest structure Zeolite. Microporous and Mesoporous Materials, 2021, 312, 110788.	2.2	2
802	Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Scientific Reports, 2021, 11, 372.	1.6	45
803	Design of hierarchical SnSe ₂ for efficient detection of trace NO ₂ at room temperature. CrystEngComm, 2021, 23, 6045-6052.	1.3	13
804	Three-dimensional porous carbon derived from different organic acid salts for application in electrochemical sensing. RSC Advances, 2021, 11, 31834-31844.	1.7	5
805	Construction of hierarchical-porous metal–organic frameworks through esterification reaction for efficient catalysis. Chemical Communications, 2021, 57, 10795-10798.	2.2	3
806	Improved thermal stability of melamine resin spheres and electrochemical properties of their carbon derivatives induced by F127. Journal of Materials Science, 2020, 55, 12114-12126.	1.7	9
807	Mesoporous nanoplate multi-directional assembled Bi2WO6 for high efficient photocatalytic oxidation of NO. Chemosphere, 2018, 193, 737-744.	4.2	62
808	One-step synthesis of ZIF-8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis. Journal of Alloys and Compounds, 2020, 838, 155219.	2.8	57
809	3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 16576-16585.	1.3	86
810	Polyaniline and sodium alginate nanocomposite: a pH-responsive adsorbent for the removal of organic dyes from water. RSC Advances, 2020, 10, 43904-43914.	1.7	41
811	Reviewâ€"Recent Trend on Two-Dimensional Metal-Organic Frameworks for Electrochemical Biosensor Application. Journal of the Electrochemical Society, 2020, 167, 136509.	1.3	42
812	Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Research, 2020, 2020, 8685436.	2.8	47
813	Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal. Chemosphere, 2022, 291, 132702.	4.2	27
814	Fe doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb(II) with high adsorption capacity. Chemical Engineering Journal, 2022, 430, 133088.	6.6	82
815	Engineering biaxial stretching polyethylene membrane with poly(amidoxime)-nanoparticle and mesopores architecture for uranium extraction from seawater. Chemical Engineering Journal, 2022, 430, 133159.	6.6	29

#	Article	IF	Citations
816	Encapsulating Mn ₃ O ₄ Nanorods in a Shell of SiO ₂ Nanobubbles for Confined Fenton-Type Catalysis. Inorganic Chemistry, 2021, 60, 16658-16665.	1.9	6
817	Amphiphilic and Biocompatible DNA Origamiâ€Based Emulsion Formation and Nanopore Release for Antiâ€Melanogenesis Therapy. Small, 2021, 17, e2104831.	5.2	8
818	LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 28223-28233.	1.1	6
819	3D Printing and Chemical Dealloying of a Hierarchically Micro- and Nanoporous Catalyst for Wastewater Purification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48709-48719.	4.0	40
820	Practicality of hierarchically macro/mesoporous \hat{I}^3 -Al2O3 as a promising sorbent in the preparation of low specific activity 99Mo/99mTc generator. Applied Radiation and Isotopes, 2021, 178, 109986.	0.7	4
821	Recent advances in ink-based additive manufacturing for porous structures. Additive Manufacturing, 2021, 48, 102405.	1.7	14
822	Controllable synthesis of CdSe QDs@NPC composite improving electron–hole separation and enhancing visibleâ€light photocatalytic activities toward RhB degradation. Micro and Nano Letters, 2019, 14, 761-764.	0.6	0
823	Fabrication of nitrogen-doped porous carbon nanofibers for heavy metal ions removal. Carbon Letters, 2021, 31, 1339-1347.	3.3	17
824	Impact of Annealing Temperature on the Morphological, Optical and Photoelectrochemical Properties of Cauliflower-like CdSe0.6Te0.4 Photoelectrodes; Enhanced Solar Cell Performance. International Journal of Molecular Sciences, 2021, 22, 11610.	1.8	3
825	High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from <i>Artocarpus heterophyllus</i> Seed. ACS Applied Energy Materials, 2021, 4, 12257-12266.	2.5	21
826	Tailored Design of Hierarchically Porous UiO-66 with a Controlled Pore Structure and Metal Sites. Crystal Growth and Design, 2021, 21, 6092-6100.	1.4	7
827	Controlled Synthesis of Ultrafine \hat{l}^2 -Mo ₂ C Nanoparticles Encapsulated in N-Doped Porous Carbon for Boosting Lithium Storage Kinetics. ACS Omega, 2021, 6, 29609-29617.	1.6	6
828	Effects of Crystallinity on the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over CsPbBr3 Inverse Opals. Catalysts, 2021, 11, 1331.	1.6	4
829	Effect of some physical perturbations and their interplay on Raman spectral line shapes in silicon: A brief review. Journal of Raman Spectroscopy, 2021, 52, 2100-2118.	1.2	17
830	Hierarchical 13X zeolite/reduced graphene oxide porous material for trace Pb (II) capturing from drinking water. Microporous and Mesoporous Materials, 2022, 329, 111540.	2,2	16
831	Morphology control synthesis of Cr-benzenedicarboxylate MOFs for the removal of methylene blue. Journal of Solid State Chemistry, 2022, 305, 122651.	1.4	5
832	Electrodeposition-derived defect-rich heterogeneous trimetallic sulfide/hydroxide nanotubes/nanobelts for efficient electrocatalytic oxygen production. Chemical Engineering Journal, 2022, 430, 133073.	6.6	14
834	A CFD Porous Materials Model to Test Soil Enriched with Nanostructured Zeolite Using ANSYS-Fluent (â, φ). , 0, , .		0

#	ARTICLE	IF	Citations
835	Constructing Crystalline gâ€C ₃ N _{4â^'x} S _x Isotype Heterostructure for Efficient Photocatalytic and Piezocatalytic Performances. Energy and Environmental Materials, 2023, 6, .	7.3	17
836	Architectured hierarchical porous metals enabled by additive manufacturing. Australian Journal of Mechanical Engineering, 2021, 19, 669-679.	1.5	3
837	Hierarchically porous membranes with multiple channels: Fabrications in PVDF/PMMA/PLLA blend and enhanced separation performance. Journal of Membrane Science, 2022, 643, 120065.	4.1	12
838	Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanomaterials during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Chemistry, 2022, 23, 100605.	1.7	13
839	Lithium-Storage Performance and Mechanism of a (Ni0.5Co0.5)9S8@NC Hollow Nanocube Composite as an Advanced Anode. Journal of Physical Chemistry C, 0, , .	1.5	5
840	Synthesis of Mg-Al Hydrotalcite Clay with High Adsorption Capacity. Materials, 2021, 14, 7231.	1.3	14
841	Rapid Adsorption of 2,4,6-trinitrotoluene by hierarchically porous indole-based aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 127964.	2.3	3
842	Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming. Chemical Engineering Science, 2022, 252, 117286.	1.9	6
843	Hierarchical architectures of ZSM-5 with controllable mesoporous and their particular adsorption/desorption performance for VOCs. Journal of Environmental Chemical Engineering, 2022, 10, 106868.	3.3	11
844	Methods to Generate Structurally Hierarchical Architectures in Nanoporous Coinage Metals. Coatings, 2021, 11, 1440.	1.2	6
845	Metal Nanostructures Derived Composites for Catalytic Conversion of Organic Contaminants in Wastewater. Environmental Chemistry for A Sustainable World, 2022, , 187-213.	0.3	0
846	Fabrication of high density and nitrogen-doped porous carbon for high volumetric performance supercapacitors. Journal of Energy Storage, 2022, 47, 103657.	3.9	15
847	Synthesis of porous Ag–Ag2S@Ag–Au hybrid nanostructures with broadband absorption properties and their photothermal conversion application. Journal of Alloys and Compounds, 2022, 896, 163062.	2.8	10
848	Thionine functionalized hollow N-doped carbon nanoboxes: As a high-performance substrate for fabrication of label-free electrochemical aptasensor toward ultrasensitive detection of carcinoembryonic antigen. Journal of Electroanalytical Chemistry, 2021, 903, 115858.	1.9	8
849	Synthesis of More Representative 1D Mesoporous Inorganic Nanomaterials. Springer Series in Materials Science, 2022, , 75-85.	0.4	0
850	Interface Engineering of MIL-88 Derived MnFe-LDH and MnFe ₂ O ₃ on Three-Dimensional Carbon Nanofibers for the Efficient Adsorption of Cr(VI), Pb(II), and As(III) Ions. SSRN Electronic Journal, O, , .	0.4	0
851	A novel covalent organic polymer with hierarchical pore structure for rapid and selective trace Hg(II) removal from drinking water. Separation and Purification Technology, 2022, 285, 120306.	3.9	11
852	Development of Ultramicropore-Mesopore Interconnected Pore Architectures for Boosting Carbon Dioxide Capture at Low Partial Pressure. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
853	Synthesis of Ag–decorated vertical graphene nanosheets and their electrocatalytic efficiencies. Plasma Science and Technology, 0, , .	0.7	0
854	Magnetic adsorbent developed with alkali-thermal pretreated biogas slurry solids for the removal of heavy metals: optimization, kinetic, and equilibrium study. Environmental Science and Pollution Research, 2022, 29, 30217-30232.	2.7	9
855	Efficient lithium-ion storage using a heterostructured porous carbon framework and its <i>in situ</i> transmission electron microscopy study. Chemical Communications, 2022, 58, 863-866.	2.2	42
856	Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction. Carbon, 2022, 191, 227-235.	5.4	45
857	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	5.2	33
858	High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. Journal of Materials Science, 2022, 57, 3613-3628.	1.7	20
859	Synthesis of Ni@SiO2 and Co@SiO2 nanomagnets after formation of NiO and Co2O3 nanoparticles at low temperatures using CaH2. Journal of Materials Research and Technology, 2022, 16, 988-992.	2.6	2
860	Measuring absolute adsorption in porous rocks using oscillatory motions of a spring-mass system. Chinese Journal of Chemical Engineering, 2022, 44, 131-139.	1.7	2
861	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
862	Ti-40Al-10Nb-10Cr Porous Microfiltration Membrane with Hierarchical Pore Structure for Particulate Matter Capturing from High-Temperature Flue Gas. Membranes, 2022, 12, 104.	1.4	0
863	Cadmium Sulfide 3D Photonic Crystal with Hierarchically Ordered Macropores for Highly Efficient Photocatalytic Hydrogen Generation. Inorganic Chemistry, 2022, 61, 2920-2928.	1.9	22
864	Enhanced Photocatalytic Activity by Pt Confined within N-Doped Carbon on TiO ₂ Inner Surface. Industrial & Engineering Chemistry Research, 2022, 61, 2494-2501.	1.8	3
865	Efficient CO2 reduction MOFs derivatives transformation mechanism revealed by in-situ liquid phase TEM. Applied Catalysis B: Environmental, 2022, 307, 121164.	10.8	9
866	Hierarchically interconnected porous Mn Co3-O4 spinels for Low-temperature catalytic reduction of NO by CO. Journal of Catalysis, 2022, 406, 72-86.	3.1	16
867	Interface engineering of MIL-88 derived MnFe-LDH and MnFe2O3 on three-dimensional carbon nanofibers for the efficient adsorption of Cr(VI), Pb(II), and As(III) ions. Separation and Purification Technology, 2022, 287, 120463.	3.9	38
868	Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: a comprehensive review. Journal of Materials Chemistry A, 2022, 10, 5147-5173.	5.2	83
869	Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. Advanced Fiber Materials, 2022, 4, 604-630.	7.9	78
870	Preparation of SnO2-Nb-C composite by hydrothermal and ball milling processes for high-performance lithium-ion batteries. Chemical Physics Letters, 2021, , 139292.	1.2	1

#	Article	IF	Citations
871	$\label{lem:mesoporous} Mesoporous\ Nitrogen-Doped\ Carbon\ MnO\ \< sub\> 2\< /sub\>\ Multichannel\ Nanotubes\ With\ High\ Performance\ for\ Li-lon\ Batteries.\ SSRN\ Electronic\ Journal,\ 0,\ ,\ .$	0.4	0
872	Direct synthesis of nanorod stacked "nest-like―hierarchical ZSM-48 hollow spheres using a triazine-based bolaform organic structure-directing agent. Inorganic Chemistry Frontiers, 2022, 9, 2016-2022.	3.0	5
873	Honeycomb-structured copper indium sulfide thin films obtained <i>via </i> a nanosphere colloidal lithography method. Materials Advances, 2022, 3, 2884-2895.	2.6	6
874	A novel nano-palladium embedded on the mesoporous silica nanoparticles for mercury vapor removal from air by the gas field separation consolidation process. Applied Nanoscience (Switzerland), 0, , 1.	1.6	0
875	Controlling Metal Clusters in Breathing Metal–Organic Framework Nanostructures for Boosting Visible-Light-Induced ·OH Radical Formation. ACS Applied Nano Materials, 2022, 5, 2510-2521.	2.4	7
876	Bifunctional catalysts with versatile zeolites enable unprecedented para-xylene productivity for syngas conversion under mild conditions. Chem Catalysis, 2022, 2, 779-796.	2.9	16
877	Mainstream Optimization Strategies for Cathode Materials of Sodiumâ€lon Batteries. Small Structures, 2022, 3, .	6.9	84
878	Ag Nanoparticle-Enabled Electroless Deposition of Ni on Mine-Formaldehyde Sponges for Oil–Water Separation, Piezoresistive Sensing, and Electromagnetic Shielding. ACS Applied Nano Materials, 2022, 5, 4204-4213.	2.4	7
879	Controlled Porosity in Ferroelectric BaTiO ₃ Photoanodes. ACS Applied Materials & Amp; Interfaces, 2022, 14, 13147-13157.	4.0	9
880	Porous Organic Polymers via Diels–Alder Reaction for the Removal of Cr(VI) from Aqueous Solutions. ACS Macro Letters, 2022, 11, 447-451.	2.3	8
881	Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. Catalysis Reviews - Science and Engineering, 2024, 66, 119-173.	5.7	27
882	3D printed hierarchical re-entrant honeycombs: Enhanced mechanical properties and the underlying deformation mechanisms. Composite Structures, 2022, 290, 115550.	3.1	26
883	Evolution of photocatalytic activity of CeO2–Bi2O3 composite material for wastewater degradation under visible-light irradiation. Optical Materials, 2022, 126, 112201.	1.7	17
884	Electrochemical Synthesis Methods of Metalâ€Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem, 2022, 9, .	1.7	16
885	A novel self-floating cyclodextrin-modified polymer for cationic dye removal: Preparation, adsorption behavior and mechanism. Separation and Purification Technology, 2022, 290, 120838.	3.9	16
886	Surface engineering of poly(methyl methacrylate)–reduced graphene oxide composite films by Au7+ ion irradiation for biomedical application. Radiation Physics and Chemistry, 2022, 195, 110051.	1.4	1
887	Combination of deep eutectic solvent and organic–inorganic hybrid monomer to prepare monolith for improvement of hydrophilic protein extraction. Microchemical Journal, 2022, 177, 107310.	2.3	3
888	Mesoporous nitrogen-doped carbon MnO2 multichannel nanotubes with high performance for Li-ion batteries. Nano Energy, 2022, 97, 107235.	8.2	24

#	Article	IF	CITATIONS
889	Development of ultramicropore-mesopore interconnected pore architectures for boosting carbon dioxide capture at low partial pressure. Carbon, 2022, 192, 41-49.	5.4	12
890	Ultrathin aluminum wick with dual-scale microgrooves for enhanced capillary performance. International Journal of Heat and Mass Transfer, 2022, 190, 122762.	2.5	18
891	Highly Enhanced Catalytic Stability of Copper by the Synergistic Effect of Porous Hierarchy and Alloying for Selective Hydrogenation Reaction. Catalysts, 2022, 12, 12.	1.6	5
892	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	5.2	29
893	Mechanical and thermal characterizations of nanoporous two-dimensional boron nitride membranes. Scientific Reports, 2022, 12, 6306.	1.6	3
894	Self-propelled nanomotors based on hierarchical metal-organic framework composites for the removal of heavy metal ions. Journal of Hazardous Materials, 2022, 435, 128967.	6.5	19
895	Co/Co–N/Co-O Rooted on rGO Hybrid BCN Nanotube Arrays as Efficient Oxygen Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17249-17258.	4.0	21
896	Efficient purification of bioethanol by an ethanol-trapping coordination network. Separation and Purification Technology, 2022, 293, 121097.	3.9	14
897	A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation. Journal of Materials Chemistry A, 2022, 10, 11712-11720.	5.2	19
898	Research progress and applications of silica-based aerogels – a bibliometric analysis. RSC Advances, 2022, 12, 14137-14153.	1.7	3
899	A Stable Porous Vessel for Photocatalytic Degradation of Azocarmine G Dye. SSRN Electronic Journal, 0, , .	0.4	0
900	A Template Approach to Designing and Synthesizing Hierarchical Porous Carbon with Tri-Modal Pore Structure and its Application for High Performance Oxygen Reduction Electrocatalyst Support. SSRN Electronic Journal, 0, , .	0.4	0
901	Polyvinyl pyrrolidone regulated Co, N co-doped porous carbon for oxygen reduction reaction. lonics, 2022, 28, 3435-3443.	1.2	4
902	Status and perspectives of hierarchical porous carbon materials in terms of highâ€performance lithium–sulfur batteries. , 2022, 4, 346-398.		65
903	Novel Bismaleimide Porous Polymer Microsphere by Self-Stabilized Precipitation Polymerization and Its Application for Catalytic Microreactors. Macromolecules, 2022, 55, 3723-3733.	2.2	11
904	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	3.0	10
905	Manufacturing of Porous Glass by Femtosecond Laser Welding. Micromachines, 2022, 13, 765.	1.4	2
906	High specific surface area N-doped activated carbon from hydrothermal carbonization of shaddock peel for the removal of norfloxacin from aqueous solution. Water Science and Technology, 2022, 85, 2964-2979.	1.2	4

#	Article	IF	CITATIONS
907	Amino-functionalized porous chitosan as a solid base catalyst for solvent-free synthesis of chalcones. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104354.	2.7	4
908	Self-Promoted Electrocatalysts Derived from Surface Reconstruction for Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 6456-6465.	3.2	9
909	Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525, 112343.	1.0	4
910	Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy and Environment, 2023, 8, 1596-1618.	4.7	22
911	Anisotropic Hemiwicking Behavior on Laser Structured Prismatic Microgrooves. Langmuir, 2022, 38, 6665-6675.	1.6	8
912	Biochar electrocatalysts for clean energy applications. , 2022, , 333-343.		0
913	Natural kaolinite-based hierarchical porous microspheres as effective and highly recyclable adsorbent for removal of cationic dyes. Environmental Science and Pollution Research, 2022, 29, 72001-72016.	2.7	4
914	A Topâ€Down Templating Strategy toward Functional Porous Carbons. Small, 2022, 18, .	5.2	2
915	A stable porous vessel for photocatalytic degradation of Azocarmine G dye. Microporous and Mesoporous Materials, 2022, 341, 111994.	2.2	9
916	Honeycomb Boron Carbon Nitride as Highâ€Performance Anode Material for Liâ€lon Batteries. ChemNanoMat, 2022, 8, .	1.5	6
917	Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism. Green Energy and Environment, 2023, 8, 115-140.	4.7	10
918	High-performance photocatalytic degradation of NiO nanoparticles embedded on α-Fe2O3 nanoporous layers under visible light irradiation. Journal of Materials Research and Technology, 2022, 19, 1944-1960.	2.6	13
919	Different Fuel-Adopted Combustion Syntheses of Nano-Structured NiCrFeO ₄ : A Highly Recyclable and Versatile Catalyst for Reduction of Nitroarenes at Room Temperature and Photocatalytic Degradation of Various Organic Dyes in Unitary and Ternary Solutions. ACS Omega, 2022, 7, 19853-19871.	1.6	22
920	The synthesis of porous graphitic carbon nitride with N _{3C} nitrogen vacancies by a CaCO ₃ template for improved photocatalytic H ₂ evolution. New Journal of Chemistry, 2022, 46, 13783-13790.	1.4	4
921	Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors. RSC Advances, 2022, 12, 17228-17236.	1.7	12
922	Biorenewable Nanocomposites as Robust Materials for Energy Storage Applications. ACS Symposium Series, 0, , 197-224.	0.5	0
923	A template approach to designing and synthesizing hierarchical porous carbon with tri-modal pore structure and its application for high performance oxygen reduction electrocatalyst support. Microporous and Mesoporous Materials, 2022, 341, 112073.	2.2	2
924	Sustainable green functional nano aluminium fumarate-MOF decorated on 3D low-cost natural diatoms for the removal of Congo red dye and fabric whitening agent from wastewater: Batch & Decoration and Superior Continuous adsorption process. Materials Today Communications, 2022, 32, 103887.	0.9	7

#	Article	IF	CITATIONS
925	Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	19
926	Facile Fabrication of Hierarchically Porous Boronic Acid Group-Functionalized Monoliths With Optical Activity for Recognizing Glucose With Different Conformation. Frontiers in Chemistry, 0, 10, .	1.8	1
927	Realizing high thermoelectric performance in eco-friendly Bi2S3 with nanopores and Cl-doping through shape-controlled nano precursors. Nano Energy, 2022, 100, 107478.	8.2	19
928	Cross-linked copolymer derived nitrogen-doped hierarchical porous carbon with high-performance lithium storage capability. Materials Advances, 0, , .	2.6	0
929	Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation. Journal of the American Chemical Society, 2022, 144, 13794-13805.	6.6	22
930	High-Purity, High-Yield Synthesis of Covalent Organic Framework Nanosheets for Fast and Selective Molecular Separation. Chemistry of Materials, 2022, 34, 6345-6354.	3.2	5
931	Three-dimensionally ordered macroporous materials for photo/electrocatalytic sustainable energy conversion, solar cell and energy storage. EnergyChem, 2022, 4, 100081.	10.1	12
932	Effect of cobalt substitution in Zn1-xCoxFeCrO4 ferri-chromate: emerging light absorber for degradation of model textile dye. Surfaces and Interfaces, 2022, 33, 102189.	1.5	6
933	Gel network amplifies Nano-Scale adsorption at Solid/Liquid interface to Sub-Millimeter-Scale. Journal of Colloid and Interface Science, 2022, 626, 276-282.	5.0	2
934	3D Printing of Multiscale Ti64â€Based Lattice Electrocatalysts for Robust Oxygen Evolution Reaction. Advanced Science, 2022, 9, .	5.6	11
935	Efficacy of hierarchical pore structure in enhancing the tribological and recyclable smart lubrication performance of porous polyimide. Friction, 2023, 11, 1014-1026.	3.4	7
936	Hierarchical Design in Nanoporous Metals. Advanced Science, 2022, 9, .	5.6	19
937	Facile fabrication of high performance zwitterionic P(<scp> NVP <i> o</i> PE </scp>)/polyvinyl alcohol hydrogel polyelectrolyte for capacitor. Journal of Applied Polymer Science, 0, , .	1.3	0
938	Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance. Polymers, 2022, 14, 3230.	2.0	5
939	Synthesis of One-Dimensional Titanium Oxide Nanowires for Polyvinylidene Fluoride Membrane Optimization. Crystals, 2022, 12, 1164.	1.0	1
940	Recent Advances in the Heterogeneous Photocatalytic Hydroxylation of Benzene to Phenol. Molecules, 2022, 27, 5457.	1.7	9
941	A Review on Recent Advancements of Ni-NiO Nanocomposite as an Anode for High-Performance Lithium-lon Battery. Nanomaterials, 2022, 12, 2930.	1.9	12
942	Altered mesopore distribution in exfoliated WS2 nanosheets with radiation exposure. Materials Today: Proceedings, 2022, 66, 3405-3411.	0.9	0

#	Article	IF	CITATIONS
943	Manipulating and Optimizing the Hierarchically Porous Electrode Structures for Rapid Mass Transport in Solid Oxide Cells. Advanced Functional Materials, 2022, 32, .	7.8	12
944	Improvement of stability for cellulose polymer by calcium oxide for application to porous materials. Cellulose, 2022, 29, 8319-8327.	2.4	2
945	Removal of micropollutants through bio-based materials as a transition to circular bioeconomy: Treatment processes involved, perspectives and bottlenecks. Environmental Research, 2022, 214, 114150.	3.7	6
946	Porous gold with three-level structural hierarchy. IScience, 2022, 25, 105113.	1.9	1
947	Tailored architectures of mesoporous carbon nanostructures: From synthesis to applications. Nano Today, 2022, 46, 101607.	6.2	16
948	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coordination Chemistry Reviews, 2022, 473, 214817.	9.5	22
949	Co single atoms and Co nanoparticle relay electrocatalyst for rechargeable zinc air batteries. Applied Catalysis B: Environmental, 2022, 319, 121905.	10.8	47
950	The order–disorder conundrum: a trade-off between crystalline and amorphous porous organic polymers for task-specific applications. Journal of Materials Chemistry A, 2022, 10, 17077-17121.	5.2	32
951	Recent Strategies and Developments of ZnS Nanomaterials as Photocatalysts and Electrocatalysts. Advances in Material Research and Technology, 2022, , 311-345.	0.3	0
952	Synthesis of Novel Tetranuclear Ni Complex Incorporated Mesoporous Silica for Improved Photocatalytic Degradation of Methylene Blue in Presence of Visible Light. SSRN Electronic Journal, 0,	0.4	0
953	In Situ Synthesis of Cocesx Quantum Dots Based on Bifunctional Conducting Molecules Modified Porous Graphene for High Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
954	Recent advances in oxidative dehydrogenation of propane to propylene on boron-based catalysts. Catalysis Reviews - Science and Engineering, 0, , 1-80.	5 . 7	4
955	Perspective on the heavy metal pollution and recent remediation strategies. Current Research in Microbial Sciences, 2022, 3, 100166.	1.4	12
956	Unusual Role of the Surfactant in the Self-Assembly of Pt Alloy in Ordered Mesoporous Carbon: Tuning the Nanocluster Size. ACS Applied Materials & Interfaces, 2022, 14, 42347-42355.	4.0	3
957	Sculpting Electrochemically Growing or Grown Microarchitectures. Small, 0, , 2203628.	5.2	1
958	Hydrothermally fabricated NdTe hollow shells thermally vaporized on Ni foam for water-splitting in alkaline media. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	12
959	Recent development and application of membrane chromatography. Analytical and Bioanalytical Chemistry, 2023, 415, 45-65.	1.9	15
960	MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols, 2022, 17, 2990-3027.	5.5	128

#	Article	IF	Citations
961	A Review on Zeolite: Application, Synthesis and Effect of Synthesis Parameters on Product Properties. Chemistry Africa, 2022, 5, 1889-1906.	1.2	6
962	Intrinsic Elasticity of a Three-Dimensional Macroporous Scaffold Governs the Kinetics of <i>In Situ</i> Is Biomimetic Reactions. Chemistry of Materials, 2022, 34, 9892-9902.	3.2	3
963	Synthesis of novel tetranuclear Ni complex incorporated mesoporous silica for improved photocatalytic degradation of methylene blue in presence of visible light. Polyhedron, 2022, 228, 116161.	1.0	9
964	Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction. Journal of CO2 Utilization, 2022, 65, 102256.	3.3	2
965	Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation. Journal of Membrane Science, 2022, 663, 121036.	4.1	21
966	Impact of mesoporous SiO ₂ support for Ni/polypyrrole nanocomposite particles on their capacitive performance. New Journal of Chemistry, 2022, 46, 21798-21811.	1.4	2
967	High photocatalytic capacity of porous ceramic-based powder doped with MgO. Journal of the Korean Ceramic Society, 2023, 60, 155-168.	1.1	12
968	Effects of HY addition on NiMoS active phase of NiMo(NH3) impregnated NiMo/Al2O3-HY and its role in 4,6-dimethyl-dibenzothiophene hydrodesulfurization. Journal of Industrial and Engineering Chemistry, 2023, 117, 172-187.	2.9	4
969	Iminium-Bridged Resorcinol-Silane Networks and Their Pyrolyzed Derivatives as Electrode Materials for the Electrocatalytic Oxygen Reduction Reaction and Supercapacitors. Langmuir, 2022, 38, 12581-12593.	1.6	1
970	A Novel PolyHIPEâ€like Catalyst for Esterification Reactions: on the Synthesis of Sulfonated Poly(styreneâ€ <i>co</i> â€nâ€acylglycerol) and its Use for Efficient Conversion of Oleic Acid to Methyl Oleate. Macromolecular Reaction Engineering, 2023, 17, .	0.9	1
971	Boosting molecular diffusion following the generalized Murray's Law by constructing hierarchical zeolites for maximized catalytic activity. National Science Review, 2022, 9, .	4.6	11
972	Synthesis of crystalline g-C3N4 with rock/molten salts for efficient photocatalysis and piezocatalysis. Green Energy and Environment, 2022, , .	4.7	4
973	Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS Nano, 2022, 16, 15586-15626.	7.3	53
974	Open-channel metal particle superlattices. Nature, 2022, 611, 695-701.	13.7	26
975	Hierarchically Assembled Counter Electrode for Fiber Solar Cell Showing Record Power Conversion Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	17
976	Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conversion Reactions. Electrochemical Energy Reviews, 2022, 5, .	13.1	20
977	Efficient and selective adsorption of uranium by diamide-pyridine-functionalized hierarchically porous boron nitride. Separation and Purification Technology, 2023, 305, 122538.	3.9	7
978	3D Printing of Hierarchical Porous Steel and Ironâ€Based Materials. Advanced Materials Technologies, 2023, 8, .	3.0	2

#	Article	IF	CITATIONS
979	Synthesis of hierarchical silica zeolites for heterogenous catalysis and adsorption. Microporous and Mesoporous Materials, 2022, 345, 112274.	2.2	10
980	Preparation of three-dimensional ordered macro-/mesoporous SnO2 nanomaterials for electrocatalytic CO2 reduction. Materials Today Communications, 2022, 33, 104775.	0.9	O
981	Solvothermal synthesis of CoCeSx quantum dots based on Bi-pyrene-terminated molecular wires modified porous graphene for high performance supercapacitors. Journal of Alloys and Compounds, 2023, 932, 167614.	2.8	3
982	Porous C2H3O2-substituted cellulose with thermal stability based on sodium chloride. Journal of Industrial and Engineering Chemistry, 2022, , .	2.9	1
983	Drastically enhanced tetracycline degradation performance of a porous 2D g-C3N4 nanosheet photocatalyst in real water matrix: Influencing factors and mechanism insight. Journal of Water Process Engineering, 2022, 50, 103315.	2.6	5
984	Surface Electron Localization in Cu-MOF-Bonded Double-Heterojunction Cu ₂ O Induces Highly Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Amp; Interfaces, 2022, 14, 54328-54337.	4.0	8
985	Co-MOF nanosheet supported on ZSM-5 with an improved catalytic activity for air epoxidation of olefins. Materials Chemistry and Physics, 2023, 294, 127001.	2.0	4
986	Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935, 168076.	2.8	3
987	Pore formation mechanism and intermetallic phase transformation in Ti–Al alloy during reactive sintering. Journal of Materials Research and Technology, 2023, 22, 1878-1887.	2.6	1
988	Capillary spreading of ethanol-water on hierarchical nanowire surfaces with interconnected V-groove. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130786.	2.3	1
989	Electrosprayed hierarchically porous microparticles with tunable morphology for selective dye adsorption. Materials Chemistry and Physics, 2023, 295, 127154.	2.0	2
990	Improved U(VI) electrosorption performance of hierarchical porous heteroatom-doped electrode based on double-template method. Separation and Purification Technology, 2023, 308, 122866.	3.9	12
991	Heterojunction effect of three-dimensional porous CuFe2O4/CuO for thermal-light excited carriers separation in promoting peroxymonosulfate activation and inhibiting metal ion spillover. Chemical Engineering Journal, 2023, 455, 140774.	6.6	10
992	Bloodâ€Coagulationâ€Inspired Dynamic Bridging Strategy for the Fabrication of Multiscaleâ€Assembled Hierarchical Porous Material. Advanced Science, 2023, 10, .	5.6	4
993	Bimetallic Catalysts for Sustainable Chemistry: Surface Redox Reactions For Tuning The Catalytic Surface Composition. ChemCatChem, 2023, 15, .	1.8	3
994	Synthetic strategies to obtain MOFs and related solids with multimodal pores. Microporous and Mesoporous Materials, 2023, 349, 112410.	2.2	6
995	Prediction of bipolar <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>VSi</mml:mi><mml:and <mml:math="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>VGe</mml:mi><mml< td=""><td>1.1</td><td>4</td></mml<></mml:msub></mml:mrow></mml:and></mml:msub></mml:mrow></mml:math>	1.1	4
996	monolayers with high Curie temperature and strong magnetocrystalline. Physical Review B, 2022, 106, . Ultrathin porous MnO2@C nanosheets for high-performance lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2023, 930, 117173.	1.9	5

#	Article	IF	CITATIONS
997	Research Progress on Modifications of Zeolite Y for Improved Catalytic Properties. Inorganics, 2023, 11, 22.	1.2	3
998	Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. Journal of Materials Chemistry A, 2023, 11, 3888-3903.	5.2	40
999	Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitationsâ€"Part 2: Porous 2D Nanomaterials. Nanomaterials, 2023, 13, 237.	1.9	8
1000	Functionalized hierarchically porous carbon doped boron nitride for multipurpose and efficient treatment of radioactive sewage. Science of the Total Environment, 2023, 866, 161378.	3.9	3
1001	Zincophilic polyurethane-based porous film enables dendrite-free zinc anode for reversible aqueous zinc-based batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130960.	2.3	5
1002	Adsorptive removal of Uranium (VI) using zeolitic imidazole framework (ZIF)-67 from alkaline leach liquor. Separation and Purification Technology, 2023, 310, 123137.	3.9	16
1003	Activation of metal-free porous basal plane of biphenylene through defects engineering for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 10545-10554.	3.8	8
1004	Novel nanowire self-assembled hierarchical CeO2 microspheres loaded with nickel-based catalysts for hydrogen production from steam reforming of glycerol. Fuel Processing Technology, 2023, 243, 107677.	3.7	10
1005	Porous titania beads for remediation of arsenic contamination from acid mine drainage. Journal of Environmental Management, 2023, 332, 117384.	3.8	1
1006	Preparation and mechanism analysis of nano-Mg(OH) ₂ by electroconversion of MgCl ₂ . Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-8.	1.0	0
1007	Facile synthesis of urchin-like MoNb12O33 microspheres with a superior performance as an anode material for lithium-ion half/full batteries. Journal of Alloys and Compounds, 2023, 941, 168982.	2.8	1
1008	Hierarchical ZSM-5 zeolite using amino acid as template: Avoiding phase separation and fabricating an ultra-small mesoporous structure. Microporous and Mesoporous Materials, 2023, 355, 112578.	2.2	5
1009	Pore size variation of nano-porous material fixer on the engine bowl and its combined effects on hybrid nano-fuelled CI engine characteristics. Fuel, 2023, 345, 128149.	3.4	5
1010	Directionally tailoring micro-nano hierarchical tower structured Mn0.6Ni1.4Co2O toward solar interfacial evaporation. Journal of Materials Science and Technology, 2023, 158, 21-30.	5.6	13
1011	Bamboo-derived flake-layer hierarchically porous carbon coupling nano-Si@porous carbon for advanced high-performance Li-ion capacitor. Journal of Energy Storage, 2023, 63, 107044.	3.9	5
1012	Bimodal mesoporous \hat{l} ±-Fe2O3/SiO2 composite: A highly efficient heterogeneous solar-driven photo-Fenton catalyst. Journal of Molecular Structure, 2023, 1284, 135373.	1.8	3
1013	Orientedâ€Etched Graphite for Lowâ€Temperature Lithiumâ€Ion Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
1014	A detailed study of the mesoporous structure formation in the silica monolith with interconnected macropores. Journal of Sol-Gel Science and Technology, 0, , .	1.1	O

#	Article	IF	CITATIONS
1015	"Partition Method―Inspired Fabrication of Hierarchically Porous Polyetherimide via Supercritical CO ₂ Foaming: Achieving Efficient Adsorption of Carbon Dioxide. Industrial & Engineering Chemistry Research, 2023, 62, 3844-3852.	1.8	1
1016	Catalytic Soot Combustion─General Concepts and Alkali Promotion. ACS Catalysis, 2023, 13, 3395-3418.	5.5	15
1017	Tailored preparation of porous aromatic frameworks in a confined environment. Chemical Science, 2023, 14, 3782-3788.	3.7	4
1018	Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. Journal of Materials Chemistry A, 2023, 11, 9216-9238.	5. 2	15
1019	Hydrothermal Synthesis of Nickel Oxide and Its Application in the Additive Manufacturing of Planar Nanostructures. Molecules, 2023, 28, 2515.	1.7	3
1020	Study on the Fabrication of Ag Doped ZnO-TiO2 Hybrid Photocatalyst with Excellent Photocatalytic Activity and Its Photocatalytic Decarboxylation Performance. Journal of Ocean University of China, 2023, 22, 469-478.	0.6	1
1021	Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, 2023, 123, 6953-7024.	23.0	79
1022	Zinc and zinc oxide nanoparticles for theranostic applications. , 2023, , 167-199.		0
1023	Hyperloop-like diffusion of long-chain molecules under confinement. Nature Communications, 2023, 14, .	5.8	5
1024	Hierarchically engineered nanochannel systems with pore-in/on-pore structures. NPG Asia Materials, 2023, 15, .	3.8	5
1025	Regioselective Surface Assembly of Mesoporous Carbon on Zeolites Creating Anisotropic Wettability for Biphasic Interface Catalysis. Journal of the American Chemical Society, 2023, 145, 9021-9028.	6.6	17
1026	Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Materials, 2023, 59, 102768.	9.5	6
1027	Strain-induced multiscale structural evolutions of crystallized polymers: From fundamental studies to recent progresses. Progress in Polymer Science, 2023, 140, 101676.	11.8	17
1028	Vesicular mesoporous copper oxide as anode for high lithium storage. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1029	Defect-rich porous two-dimensional copper-cobalt oxide nanozyme with photothermal performance and enhanced catalytic activity for antibacterial therapy and wound healing. Journal of Materials Science, 2023, 58, 7429-7440.	1.7	1
1034	2D nanomaterial aerogels integrated with phase change materials: a comprehensive review. Materials Advances, 2023, 4, 2698-2729.	2.6	4
1041	Recent progress in porous catalysts for dehydrogenation of ammonia borane. Materials Chemistry Frontiers, 2023, 7, 4339-4371.	3.2	2
1055	Construction of a micro–nano reactor assembled by TiO ₂ /N–C ultrathin sheets for photocatalytic H ₂ evolution. Chemical Communications, 2023, 59, 8131-8134.	2.2	O

#	Article	IF	CITATIONS
1074	Potential of nonporous adaptive crystals for hydrocarbon separation. Chemical Society Reviews, 2023, 52, 6075-6119.	18.7	13
1084	Plasma nanotechnology: novel tool for high-performance electrode materials for energy storage and conversion. Reviews of Modern Plasma Physics, 2023, 7, .	2.2	0
1085	Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004.	18.7	8
1086	3D Graphene for Capacitive De-ionization of Water. Carbon Nanostructures, 2023, , 389-407.	0.1	1
1087	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3
1101	Recent advances of emerging tin disulfide for room temperature gas sensing. Rare Metals, 2023, 42, 3897-3913.	3.6	2
1108	Photocatalysis on Selective Hydroxylation of Benzene to Phenol. , 2024, , 235-292.		0
1110	Recent advances in porous materials for photocatalytic NADH regeneration. Journal of Materials Chemistry A, 2024, 12, 3209-3229.	5.2	2
1117	Ultrasound-assisted selective removal of organic herbicides from aqueous media using a magnetic molecularly imprinted polymer nanocomposite., 2024, , 483-503.		0
1123	Nanocellulose-based Membranes for Water Purification: Multifunctional Nanocellulose Extraction, Characterization, Modification Strategies, and Current Release in Water Treatment and Environmental Remediation., 2024, , 101-125.		0