The industrial melanism mutation in British peppered r

Nature 534, 102-105

DOI: 10.1038/nature17951

Citation Report

#	Article	IF	CITATIONS
1	Profuse evolutionary diversification and speciation on volcanic islands: transposon instability and amplification bursts explain the genetic paradox. Biology Direct, 2016, 11, 44.	1.9	15
2	Barbara McClintock on Defining the Unstable Genome. Genetics, 2016, 204, 3-4.	1.2	3
3	Post-glacial habitat release and incipient speciation in the genus Delphinus. Heredity, 2016, 117, 400-407.	1.2	7
4	A harvest of weeds yields insight into a case of contemporary evolution. Molecular Ecology, 2016, 25, 4421-4423.	2.0	2
5	Ecological Genetics: A Key Gene for Mimicry and Melanism. Current Biology, 2016, 26, R802-R804.	1.8	3
7	The gene cortex controls mimicry and crypsis in butterflies and moths. Nature, 2016, 534, 106-110.	13.7	212
8	Genes controlling mimetic colour pattern variation in butterflies. Current Opinion in Insect Science, 2016, 17, 24-31.	2.2	47
9	Back to basics: using colour polymorphisms to study evolutionary processes. Molecular Ecology, 2017, 26, 2204-2211.	2.0	76
10	Proteomic identification of a potential sex biomarker for 2 fruit fly species at pupal stage. Journal of Asia-Pacific Entomology, 2017, 20, 125-131.	0.4	3
11	Can Evolution Supply What Ecology Demands?. Trends in Ecology and Evolution, 2017, 32, 187-197.	4.2	69
12	Complex modular architecture around a simple toolkit of wing pattern genes. Nature Ecology and Evolution, 2017, 1, 52.	3.4	179
13	Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Annals of the New York Academy of Sciences, 2017, 1389, 186-212.	1.8	37
14	Deep-Time Convergence in Rove Beetle Symbionts of Army Ants. Current Biology, 2017, 27, 920-926.	1.8	58
15	Genetic architecture and balancing selection: the life and death of differentiated variants. Molecular Ecology, 2017, 26, 2430-2448.	2.0	131
16	Watching speciation in action. Science, 2017, 355, 910-911.	6.0	18
17	Exploiting Innate Immunity for Biological Pest Control. Advances in Insect Physiology, 2017, 52, 199-230.	1.1	16
18	Transposable Element-Mediated Balancing Selection at <i>Hsp90</i> Underlies Embryo Developmental Variation. Molecular Biology and Evolution, 2017, 34, msx062.	3.5	6
19	Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150485.	1.8	67

#	Article	IF	CITATIONS
20	Evolution of life in urban environments. Science, 2017, 358, .	6.0	609
21	Signatures of positive selection and local adaptation to urbanization in whiteâ€footed mice (<i>Peromyscus leucopus</i>). Molecular Ecology, 2017, 26, 6336-6350.	2.0	61
22	Linkage Map of <i>Lissotriton </i> Newts Provides Insight into the Genetic Basis of Reproductive Isolation. G3: Genes, Genomes, Genetics, 2017, 7, 2115-2124.	0.8	10
23	Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes. Genome Biology and Evolution, 2017, 9, 2862-2878.	1.1	14
24	Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10707-10712.	3.3	150
25	Artificial Selection Response due to Polygenic Adaptation from a Multilocus, Multiallelic Genetic Architecture. Molecular Biology and Evolution, 2017, 34, 2678-2689.	3.5	27
26	Genetic and epigenetic variation in <i>Spartina alterniflora</i> following the <i>Deepwater Horizon</i> oil spill. Evolutionary Applications, 2017, 10, 792-801.	1.5	50
27	Longâ€ŧerm balancing selection on chromosomal variants associated with crypsis in a stick insect. Molecular Ecology, 2017, 26, 6189-6205.	2.0	77
28	Self and Nonself from a Genomic Perspective: Transposable Elements. , 2017, , 111-128.		0
29	Butterfly Genomics: Insights from the Genome of <i>Melitaea cinxia </i> . Annales Zoologici Fennici, 2017, 54, 275-291.	0.2	3
30	Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics, 2017, 18, 71-86.	7.7	1,065
31	Foreign DNA acquisition by invertebrate genomes. Journal of Invertebrate Pathology, 2017, 147, 157-168.	1.5	32
32	Beyond <scp>SNP</scp> s: how to detect selection on transposable element insertions. Methods in Ecology and Evolution, 2017, 8, 728-737.	2.2	23
33	Plant–Insect Interactions in a Changing World. Advances in Botanical Research, 2017, 81, 289-332.	0.5	33
34	Epigenetic variation between urban and rural populations of Darwin's finches. BMC Evolutionary Biology, 2017, 17, 183.	3.2	53
35	Colour polymorphic lures exploit innate preferences for spectral versus luminance cues in dipteran prey. BMC Evolutionary Biology, 2017, 17, 191.	3.2	11
36	Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies. Genome Biology and Evolution, 2017, 9, 2491-2505.	1.1	94
37	Genetic Basis of Body Color and Spotting Pattern in Redheaded Pine Sawfly Larvae (<i>Neodiprion) Tj ETQq1 1 C</i>).784314 r 1.2	gBŢ /Overlock

3

#	ARTICLE	IF	Citations
38	Neutral Theory, Transposable Elements, and Eukaryotic Genome Evolution. Molecular Biology and Evolution, 2018, 35, 1332-1337.	3. 5	76
39	Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172732.	1.2	32
40	Recent Activity in Expanding Populations and Purifying Selection Have Shaped Transposable Element Landscapes across Natural Accessions of the Mediterranean Grass Brachypodium distachyon. Genome Biology and Evolution, 2018, 10, 304-318.	1,1	54
41	Pigmentation pattern and developmental constraints: flight muscle attachment sites delimit the thoracic trident of Drosophila melanogaster. Scientific Reports, 2018, 8, 5328.	1.6	6
42	Robustness and Radiation Resistance of the Pale Grass Blue Butterfly from Radioactively Contaminated Areas: A Possible Case of Adaptive Evolution. Journal of Heredity, 2018, 109, 188-198.	1.0	19
43	Using the resurrection approach to understand contemporary evolution in changing environments. Evolutionary Applications, 2018, 11, 17-28.	1.5	91
44	Assembly and <scp>RNA</scp> â€free annotation of highly heterozygous genomes: The case of the thickâ€billed murre (<i>Uria lomvia</i>). Molecular Ecology Resources, 2018, 18, 79-90.	2,2	13
45	Mate choice, sexual selection, and endocrine-disrupting chemicals. Hormones and Behavior, 2018, 101, 3-12.	1.0	33
46	Mimicry in butterflies: coâ€option and a bag of magnificent developmental genetic tricks. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e291.	5.9	20
47	Abundant recent activity of retrovirusâ€like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Molecular Ecology, 2018, 27, 99-111.	2.0	59
48	The "Polyploid Hop― Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	136
49	Introductory Chapter: Moths. , 2018, , .		3
50	OBSOLETE: Genotypic responses to rapid change. , 2018, , .		0
51	FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	40
52	Rapid Expansion of a Highly Germline-Expressed (i) Mariner (i) Element Acquired by Horizontal Transfer in the Fire Ant Genome. Genome Biology and Evolution, 2018, 10, 3262-3278.	1.1	6
53	A DNA methylation reader complex that enhances gene transcription. Science, 2018, 362, 1182-1186.	6.0	181
54	Records of industrial melanism in British moths. Biological Journal of the Linnean Society, 2018, , .	0.7	0
55	QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. PLoS Biology, 2018, 16, e2006040.	2.6	20

#	Article	IF	CITATIONS
56	Holobionts and their hologenomes: Evolution with mixed modes of inheritance. Genetics and Molecular Biology, 2018, 41, 189-197.	0.6	17
57	Origin and Evolution of Biodiversity. , 2018, , .		10
58	Can zinc pollution promote adaptive evolution in plants? Insights from a one-generation selection experiment. Journal of Experimental Botany, 2018, 69, 5561-5572.	2.4	9
59	Natura Fecit Saltum: Punctuationalism Pervades the Natural Sciences., 2018,, 341-361.		0
60	Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion. Current Biology, 2018, 28, 1839-1845.e3.	1.8	130
61	CRISPR/Cas9 as the Key to Unlocking the Secrets of Butterfly Wing Pattern Development and Its Evolution. Advances in Insect Physiology, 2018, 54, 85-115.	1.1	24
62	Genetic Responses to Rapid Change in the Environment During the Anthropocene., 2018,, 281-286.		0
63	Contrasting the effects of natural selection, genetic drift and gene flow on urban evolution in white clover (<i>Trifolium repens</i>). Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181019.	1.2	72
64	Will human influences on evolutionary dynamics in the wild pervade the Anthropocene?. BMC Biology, 2018, 16, 7.	1.7	73
65	Transposable elements: all mobile, all different, some stress responsive, some adaptive?. Current Opinion in Genetics and Development, 2018, 49, 106-114.	1.5	81
66	Transposable Elements Contribute to the Adaptation of Arabidopsis thaliana. Genome Biology and Evolution, 2018, 10, 2140-2150.	1.1	56
67	The Genomic Basis of Color Pattern Polymorphism in the Harlequin Ladybird. Current Biology, 2018, 28, 3296-3302.e7.	1.8	92
68	A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biology, 2018, 19, 119.	3.8	71
69	Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings. PLoS ONE, 2018, 13, e0189898.	1.1	4
70	The impact of transposable elements in adaptive evolution. Molecular Ecology, 2019, 28, 1537-1549.	2.0	210
71	Urbanization Shapes the Ecology and Evolution of Plant-Arthropod Herbivore Interactions. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	70
72	Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata. EvoDevo, 2019, 10, 16.	1.3	23
7 3	Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science, 2019, 365, 487-490.	6.0	123

#	Article	IF	Citations
74	Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Communications Biology, 2019, 2, 286.	2.0	26
75	On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes, 2019, 10, 419.	1.0	94
76	The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Communications Biology, 2019, 2, 257.	2.0	23
77	Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mobile DNA, 2019, 10, 30.	1.3	26
78	Repetitive DNA: The Dark Matter of Avian Genomics. , 2019, , 93-150.		14
79	Genetic convergence of industrial melanism in three geometrid moths. Biology Letters, 2019, 15, 20190582.	1.0	22
80	Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Molecular Biology and Evolution, 2019, 36, 2842-2853.	3.5	30
81	The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity, 2019, 123, 138-152.	1.2	28
82	Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. Bmc Ecology and Evolution, 2019, 19, 11.	0.7	129
83	Standing genetic variation as the predominant source for adaptation of a songbird. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2152-2157.	3.3	128
84	Diversification of Transposable Elements in Arthropods and Its Impact on Genome Evolution. Genes, 2019, 10, 338.	1.0	26
85	Genetics and evidence for balancing selection of a sex-linked colour polymorphism in a songbird. Nature Communications, 2019, 10, 1852.	5.8	47
86	Transposable Elements Are Important Contributors to Standing Variation in Gene Expression in Capsella Grandiflora. Molecular Biology and Evolution, 2019, 36, 1734-1745.	3.5	34
87	Transposable elements drive rapid phenotypic variation in <i>Capsella rubella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6908-6913.	3.3	97
88	A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 2019, 10, 1494.	5.8	254
89	Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biology, 2019, 17, e3000128.	2.6	212
90	Standing geographic variation in eclosion time and the genomics of host race formation in <i>Rhagoletis pomonella </i> fruit flies. Ecology and Evolution, 2019, 9, 393-409.	0.8	35
91	Evolution of Immune Systems From Viruses and Transposable Elements. Frontiers in Microbiology, 2019, 10, 51.	1.5	53

#	Article	IF	CITATIONS
92	Insect Population Ecology and Molecular Genetics. , 2019, , 515-561.		3
93	Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation. Genes and Genetic Systems, 2019, 94, 269-281.	0.2	34
94	Has gene expression neofunctionalization in the fire ant antennae contributed to queen discrimination behavior?. Ecology and Evolution, 2019, 9, 12754-12766.	0.8	6
95	Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nature Communications, 2019, 10, 24.	5.8	102
96	Patterns of transposable element variation and clinality in Drosophila. Molecular Ecology, 2019, 28, 1523-1536.	2.0	13
97	A roadmap for urban evolutionary ecology. Evolutionary Applications, 2019, 12, 384-398.	1.5	161
98	On the importance of time scales when studying adaptive evolution. Evolution Letters, 2019, 3, 240-247.	1.6	13
99	Inheritance, distribution and genetic differentiation of a color polymorphism in Panamanian populations of the tortoise beetle, Chelymorpha alternans (Coleoptera: Chrysomelidae). Heredity, 2019, 122, 558-569.	1.2	7
100	Genomeâ€wide patterns of transposon proliferation in an evolutionary young hybrid fish. Molecular Ecology, 2019, 28, 1491-1505.	2.0	18
101	Mapping Mutations in Legislation: A Bioinformatics Approach. Parliamentary Affairs, 2019, 72, 21-41.	1.1	5
102	Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass <i>Brachypodium distachyon</i> . New Phytologist, 2020, 227, 1736-1748.	3.5	33
103	Intronic heterochromatin prevents cryptic transcription initiation in Arabidopsis. Plant Journal, 2020, 101, 1185-1197.	2.8	6
104	Fifty per cent and all that: what Haldane actually said. Biological Journal of the Linnean Society, 2020, 129, 765-771.	0.7	1
105	Reuse of voucher specimens provides insights into the genomic associations and taxonomic value of wing colour and genitalic differences in a pest group (Lepidoptera: Tortricidae: Choristoneura). Systematic Entomology, 2020, 45, 583-593.	1.7	2
106	Genome Assembly of the Dogface Butterfly Zerene cesonia. Genome Biology and Evolution, 2020, 12, 3580-3585.	1.1	9
107	Genomic evidence of population genetic differentiation in deep-sea squat lobster Shinkaia crosnieri (crustacea: Decapoda: Anomura) from Northwestern Pacific hydrothermal vent and cold seep. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 156, 103188.	0.6	15
108	Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Functional Ecology, 2020, 34, 428-441.	1.7	30
109	Amongâ€family variation in survival and gene expression uncovers adaptive genetic variation in a threatened fish. Molecular Ecology, 2020, 29, 1035-1049.	2.0	21

#	Article	IF	CITATIONS
110	A population genomics approach to uncover the CNVs, and their evolutionary significance, hidden in reducedâ€representation sequencing data sets. Molecular Ecology, 2020, 29, 4749-4753.	2.0	0
111	Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations. PLoS Genetics, 2020, 16, e1009082.	1.5	15
112	The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis, 2020, 58, e23399.	0.8	18
113	Large-scale mutation in the evolution of a gene complex for cryptic coloration. Science, 2020, 369, 460-466.	6.0	43
114	From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	22
115	Genomics of Evolutionary Novelty in Hybrids and Polyploids. Frontiers in Genetics, 2020, 11, 792.	1.1	103
116	Unveiling Human Non-Random Genome Editing Mechanisms Activated in Response to Chronic Environmental Changes: I. Where Might These Mechanisms Come from and What Might They Have Led To?. Cells, 2020, 9, 2362.	1.8	7
117	How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & Erythrostemon hughesii Gagnon hughesii Gagnon & Erythrostemon hughesi	1.6	13
118	Does color matter? Molecular and ecological divergence in four sympatric color morphs of a coral reef fish. Ecology and Evolution, 2020, 10, 9663-9681.	0.8	6
119	Impact of Transposable Elements on Methylation and Gene Expression across Natural Accessions of <i>Brachypodium distachyon</i> . Genome Biology and Evolution, 2020, 12, 1994-2001.	1.1	20
120	Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Molecular Ecology, 2020, 29, 4765-4782.	2.0	67
121	Genomic architecture of a genetically assimilated seasonal color pattern. Science, 2020, 370, 721-725.	6.0	48
122	Degradation of the Repetitive Genomic Landscape in a Close Relative of Caenorhabditis elegans. Molecular Biology and Evolution, 2020, 37, 2549-2567.	3.5	15
123	The genomics of coloration provides insights into adaptive evolution. Nature Reviews Genetics, 2020, 21, 461-475.	7.7	88
124	Evolution of wing pigmentation in <i>Drosophila</i> : Diversity, physiological regulation, and <i>cis</i> i>a€regulatory evolution. Development Growth and Differentiation, 2020, 62, 269-278.	0.6	18
125	How human behavior can impact the evolution of genetically-mediated behavior in wild non-human species. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 337-342.	0.7	2
126	Transposable elements contribute to the genomic response to insecticides in <i>Drosophila melanogaster</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190341.	1.8	27
127	Discovery and population genomics of structural variation in a songbird genus. Nature Communications, 2020, 11 , 3403.	5.8	83

#	ARTICLE	IF	CITATIONS
128	Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biology, 2020, 18, e3000597.	2.6	60
129	SINE Retrotransposon variation drives Ecotypic disparity in natural populations of Coilia nasus. Mobile DNA, 2020, 11, 4.	1.3	8
130	Transposable DNA Elements in Amazonian Fish: From Genome Enlargement to Genetic Adaptation to Stressful Environments. Cytogenetic and Genome Research, 2020, 160, 148-155.	0.6	6
131	A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends in Ecology and Evolution, 2020, 35, 561-572.	4.2	190
132	Socioâ€ecoâ€evolutionary dynamics in cities. Evolutionary Applications, 2021, 14, 248-267.	1.5	86
133	Urban colonies are more resistant to a trace metal than their forest counterparts in the ant Temnothorax nylanderi. Urban Ecosystems, 2021, 24, 561-570.	1.1	8
134	Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of <i>Drosophila melanogaster</i> . Molecular Ecology, 2021, 30, 938-954.	2.0	15
135	Adaptive Evolution in Cities: Progress and Misconceptions. Trends in Ecology and Evolution, 2021, 36, 239-257.	4.2	85
136	The influence of spatially heterogeneous anthropogenic change on bill size evolution in a coastal songbird. Evolutionary Applications, 2021, 14, 607-624.	1.5	8
137	Transposable Elements and the Evolution of Insects. Annual Review of Entomology, 2021, 66, 355-372.	5.7	64
139	Evo-Devo of Butterfly Wing Patterns. , 2021, , 735-748.		0
140	Transposable Elements in Fungi: Coevolution With the Host Genome Shapes, Genome Architecture, Plasticity and Adaptation., 2021,, 142-155.		5
141	Identification of Active Transposable Elements in Plants: The Mobilome-Seq Approach. Methods in Molecular Biology, 2021, 2250, 95-102.	0.4	1
142	The draft genome sequence of the grove snail <i>Cepaea nemoralis</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	15
143	Mechanism of Color Pattern Formation in Insects. , 2021, , 367-384.		4
144	Unraveling the features of somatic transposition in the <i>Drosophila</i> intestine. EMBO Journal, 2021, 40, e106388.	3 . 5	31
145	Evolution of genome structure in the <i>Drosophila simulans </i> species complex. Genome Research, 2021, 31, 380-396.	2.4	55
146	Transposable Element Mobilization in Interspecific Yeast Hybrids. Genome Biology and Evolution, 2021, 13, .	1.1	26

#	Article	IF	CITATIONS
147	A potential role for overdominance in the maintenance of colour variation in the Neotropical tortoise beetle, <i>Chelymorpha alternans</i> . Journal of Evolutionary Biology, 2021, 34, 779-791.	0.8	2
148	Insertion of a transposable element in Less Shattering1 (SvLes1) gene is not always involved in foxtail millet (Setaria italica) domestication. Genetic Resources and Crop Evolution, 2021, 68, 2923-2930.	0.8	2
149	Detecting genetic signals of selection in heavily bottlenecked reindeer populations by comparing parallel founder events. Molecular Ecology, 2021, 30, 1642-1658.	2.0	4
150	Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Reports, 2021, 34, 108754.	2.9	88
151	Thermal adaptation rather than demographic history drives genetic structure inferred by copy number variants in a marine fish. Molecular Ecology, 2021, 30, 1624-1641.	2.0	19
152	Anopheles coluzzii, a new system to study how transposable elements may foster Anopheles coluzzii, a new system to study how transposable elements may foster adaptation to urban environments. Peer Community in Genomics, 0, , .	0.0	0
153	Chromosomeâ€level genome reference and genome editing of the tea geometrid. Molecular Ecology Resources, 2021, 21, 2034-2049.	2.2	8
155	Mobilizing molluscan models and genomes in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200163.	1.8	24
157	Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution. Molecular Biology and Evolution, 2021, 38, 3724-3736.	3.5	19
158	Chromosome-Level Assembly of the Atlantic Silverside Genome Reveals Extreme Levels of Sequence Diversity and Structural Genetic Variation. Genome Biology and Evolution, 2021, 13, .	1.1	20
160	Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biology, 2021, 22, 138.	3.8	76
161	The Worldwide Invasion of <i>Drosophila suzukii </i> Is Accompanied by a Large Increase of Transposable Element Load and a Small Number of Putatively Adaptive Insertions. Molecular Biology and Evolution, 2021, 38, 4252-4267.	3.5	19
164	Allelic polymorphism at <i>foxo</i> contributes to local adaptation in <i>Drosophila melanogaster</i> . Molecular Ecology, 2021, 30, 2817-2830.	2.0	7
165	The ecology of the genome and the dynamics of the biological dark matter. Journal of Theoretical Biology, 2021, 518, 110641.	0.8	0
166	Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen <i>Verticillium dahliae</i> Cenome Biology and Evolution, 2021, 13, .	1.1	26
167	The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes, 2021, 12, 918.	1.0	31
169	Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. ELife, 2021, 10, .	2.8	40
170	How Important Are Structural Variants for Speciation?. Genes, 2021, 12, 1084.	1.0	35

#	ARTICLE	IF	CITATIONS
171	The integrative biology of genetic dominance. Biological Reviews, 2021, 96, 2925-2942.	4.7	27
172	The potential pigmentationâ€related genes in spider mites revealed by comparative transcriptomes of the red form of Tetranychus urticae. Insect Molecular Biology, 2021, 30, 580-593.	1.0	3
173	Heliconius butterflies: a window into the evolution and development of diversity. Current Opinion in Genetics and Development, 2021, 69, 72-81.	1.5	8
174	Ecological basis and genetic architecture of crypsis polymorphism in the desert clicker grasshopper (<i>Ligurotettix coquilletti</i>). Evolution; International Journal of Organic Evolution, 2021, 75, 2441-2459.	1.1	0
176	Air pollutionâ€induced tanning of human skin*. British Journal of Dermatology, 2021, 185, 1026-1034.	1.4	20
177	Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly—The Ithomiini <i>Melinaea marsaeus</i> . Journal of Evolutionary Biology, 2021, 34, 1704-1721.	0.8	2
179	Overexpression of PsoRPM3, an NBS-LRR gene isolated from myrobalan plum, confers resistance to Meloidogyne incognita in tobacco. Plant Molecular Biology, 2021, 107, 129-146.	2.0	2
180	Evolutionary developmental biology and sustainability: A biology of resilience. Evolution & Development, 2021, 23, 273-291.	1.1	9
181	Pigments in Insects., 2021,, 3-43.		17
182	Evo-Devo of Butterfly Wing Patterns. , 2019, , 1-14.		4
183	Camouflage Variations on a Theme of the Nymphalid Ground Plan. , 2017, , 39-58.		3
184	Self-Similarity, Distortion Waves, and the Essence of Morphogenesis: A Generalized View of Color Pattern Formation in Butterfly Wings. , 2017, , 119-152.		13
185	A Two-Locus System with Strong Epistasis Underlies Rapid Parasite-Mediated Evolution of Host Resistance. Molecular Biology and Evolution, 2021, 38, 1512-1528.	3.5	21
205	Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees. PLoS Genetics, 2017, 13, e1006792.	1.5	70
206	Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. ELife, 2017, 6, .	2.8	102
207	The effect of hybridization on transposable element accumulation in an undomesticated fungal species. ELife, 2020, 9, .	2.8	29
208	Symmetry systems on the wings of Dichromodes Guenée (Lepidoptera: Geometridae) are unconstrained by venation. PeerJ, 2020, 8, e8263.	0.9	1
210	Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells International, 2021, 2021, 1-17.	1.2	3

#	Article	IF	CITATIONS
211	What Is Life?. Astronomers' Universe, 2017, , 1-33.	0.0	0
217	More than Fitness. A Robustness-based Proposal of a Logical Space to Classify Processes Behind Evolutionary Phenomena. Kairos: Journal of Philosophy & Science, 2018, 20, 89-112.	0.2	1
233	Impact of transposable elements on the evolution of complex living systems and their epigenetic control. BioSystems, 2021, 210, 104566.	0.9	6
234	Engines of change: Transposable element mutation rates are high and variable within Daphnia magna. PLoS Genetics, 2021, 17, e1009827.	1.5	15
236	Formalgenetik. , 2020, , 569-642.		0
237	Roles and regulation of endogenous retroviruses in pluripotency and early development. , 2020, , 155-186.		2
238	Grundlegende Prinzipien der Natur – Überleben im offenen "Kochtopf". , 2020, , 53-137.		0
239	Bacterial adaptation by a transposition burst of an invading IS element. Genome Biology and Evolution, 2021, 13, .	1.1	6
242	Segregating Complete Tf2 Elements Are Largely Neutral in Fission Yeast. Genome Biology and Evolution, 2021, 13, .	1.1	1
243	Methylation patterns of Tf2 retrotransposons linked to rapid adaptive stress response in the brown planthopper (Nilaparvata lugens). Genomics, 2021, 113, 4214-4226.	1.3	3
244	Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum. BMC Genomics, 2022, 23, 18.	1.2	19
248	Variation in the colour pattern of the narrow-headed ant Formica exsecta (Hymenoptera: Formicidae) in European Russia. European Journal of Entomology, 0, 119, 58-68.	1.2	0
249	A large deletion at the cortex locus eliminates butterfly wing patterning. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	6
250	An intronic transposon insertion associates with a trans-species color polymorphism in Midas cichlid fishes. Nature Communications, 2022, 13, 296.	5.8	18
253	Semiogenesis. Biosemiotics Bookseries, 2021, , 225-262.	0.3	1
254	Urban Ecology: Retrospective and Research Prospects. Biology Bulletin Reviews, 2022, 12, 94-105.	0.3	1
255	Genome size evolution in the diverse insect order Trichoptera. GigaScience, 2022, 11, .	3.3	24
256	Comparison of structural variants in the whole genome sequences of two Medicago truncatula ecotypes: Jemalong A17 and R108. BMC Plant Biology, 2022, 22, 77.	1.6	8

#	Article	IF	Citations
257	Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus. Mobile DNA, 2022, 13, 5.	1.3	17
259	After <i>carbonaria</i> : melanic moth frequencies in the Rothamsted Insect Survey. Biological Journal of the Linnean Society, 0, , .	0.7	0
260	Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells, 2022, 11, 1048.	1.8	16
261	The genome sequence of the peppered moth, Biston betularia Linnaeus, 1758. Wellcome Open Research, 0, 7, 97.	0.9	2
264	Adaptation to urban environments. Current Opinion in Insect Science, 2022, 51, 100893.	2.2	10
265	Analysis of the PEBP gene family and identification of a novel <i>FLOWERING LOCUS T</i> orthologue in sugarcane. Journal of Experimental Botany, 2022, 73, 2035-2049.	2.4	10
266	Transposable Elements in the Genome of the Lichen-Forming Fungus Umbilicaria pustulata and Their Distribution in Different Climate Zones along Elevation. Biology, 2022, 11, 24.	1.3	2
267	Reactivation of transposable elements following hybridization in fission yeast. Genome Research, 2022, 32, 324-336.	2.4	13
268	Synergistic epistasis of the deleterious effects of transposable elements. Genetics, 2022, 220, .	1.2	7
269	Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells, 2021, 10, 3590.	1.8	13
272	TE Density: a tool to investigate the biology of transposable elements. Mobile DNA, 2022, 13, 11.	1.3	4
273	Population genomic evidence of selection on structural variants in a natural hybrid zone. Molecular Ecology, 2023, 32, 1497-1514.	2.0	9
277	The peppered moth Biston betularia. Current Biology, 2022, 32, R447-R448.	1.8	1
278	The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. International Journal of Molecular Sciences, 2022, 23, 5847.	1.8	11
280	Urban forest invertebrates: how they shape and respond to the urban environment. Urban Ecosystems, 2022, 25, 1589-1609.	1.1	16
281	Polyphenisms and polymorphisms: Genetic variation in plasticity and color variation within and among bluefin killifish populations. Evolution; International Journal of Organic Evolution, 2022, 76, 1590-1606.	1.1	1
282	Experimentally heatâ€induced transposition increases drought tolerance in <i>Arabidopsis thaliana</i> New Phytologist, 2022, 236, 182-194.	3.5	12
286	Genetics of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	37

#	Article	IF	CITATIONS
287	A novel transposable element-mediated mechanism causes antiviral resistance in <i>Drosophila</i> through truncating the Veneno protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
289	Ongoing endeavors to detect mobilization of transposable elements. BMB Reports, 2022, 55, 305-315.	1.1	0
290	Genetic co-option into plant–filamentous pathogen interactions. Trends in Plant Science, 2022, 27, 1144-1158.	4.3	4
292	Chromosomalâ€level assembly of <i>Bactericera cockerelli</i> reveals rampant gene family expansions impacting genome structure, function and insectâ€microbeâ€plantâ€interactions. Molecular Ecology Resources, 2023, 23, 233-252.	2.2	5
295	The evolution and diversification of oakleaf butterflies. Cell, 2022, 185, 3138-3152.e20.	13.5	22
297	Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2. ISME Journal, 2022, 16, 2587-2598.	4.4	7
298	The country toad and the city toad: comparing morphology of invasive cane toads (<i>Rhinella) Tj ETQq0 0 0 rgBT 450-464.</i>	Overlock 0.7	10 Tf 50 50 1
299	A butterfly pan-genome reveals that a large amount of structural variation underlies the evolution of chromatin accessibility. Genome Research, 2022, 32, 1862-1875.	2.4	10
300	L'évolution à petite échelle. Biologie Aujourd'hui, 2022, 216, 41-47.	0.1	0
301	Additive genetic effects in interacting species jointly determine the outcome of caterpillar herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
302	Transposable elements. Current Biology, 2022, 32, R904-R909.	1.8	13
303	Changing patterns of genetic differentiation in the slender wild oat, <i>Avena barbata < li>. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .</i>	3.3	O
304	Basic Principles of Nature: Survival in an Open "Cooking Pot―, 2022, , 49-122.		0
305	The genomic basis of reproductive and migratory behaviour in a polymorphic salmonid. Molecular Ecology, 2022, 31, 6588-6604.	2.0	6
306	How butterfly wings got their pattern. Science, 2022, 378, 249-250.	6.0	0
307	Environmental response in gene expression and DNA methylation reveals factors influencing the adaptive potential of Arabidopsis lyrata. ELife, $0,11,.$	2.8	4
308	Site-Directed DNA Sequence Modification Using CRISPR/Cas 9., 2022, , 149-173.		0
310	Rapid adaptation in a fastâ€changing world: Emerging insights from insect genomics. Global Change Biology, 2023, 29, 943-954.	4.2	14

#	Article	IF	Citations
313	The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annual Review of Genetics, 2022, 56, 63-87.	3.2	19
315	Rates and spectra of de novo structural mutations in <i>Chlamydomonas reinhardtii</i> . Genome Research, 2023, 33, 45-60.	2.4	5
316	Experimental Validation of Transposable Element Insertions Using the Polymerase Chain Reaction (PCR). Methods in Molecular Biology, 2023, , 95-114.	0.4	1
321	Polygenic adaptation from standing genetic variation allows rapid ecotype formation. ELife, 0, 12 , .	2.8	4
322	The Interplay Between Developmental Stage and Environment Underlies the Adaptive Effect of a Natural Transposable Element Insertion. Molecular Biology and Evolution, 2023, 40, .	3.5	4
323	<i>Starships</i> are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
324	Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biology, 2023, 21, .	1.7	3
326	Transposable element and host silencing activity in gigantic genomes. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
327	Effects of <i>Wolbachia</i> on Transposable Element Expression Vary Between <i>Drosophila melanogaster</i> Host Genotypes. Genome Biology and Evolution, 2023, 15, .	1.1	2
328	Analysis of genetic dominance in the UK Biobank. Science, 2023, 379, 1341-1348.	6.0	7
329	Urban evolutionary ecology brings exaptation back into focus. Trends in Ecology and Evolution, 2023, 38, 719-726.	4.2	2
331	Development and Validation of the Questionnaire for Adaptive Hyperactivity and Goal Achievement (AHGA). Clinical Practice and Epidemiology in Mental Health, 2023, 19, .	0.6	6
371	Unknown tipping-points: a method for anticipating future forest disturbance risk., 2024,, 279-293.		0
377	The Curious Case of the Mutations of Dr. Jekyll and Mr. Hyde. , 2024, , 113-124.		O