Modern Transition-Metal-Catalyzed Carbonâ€"Haloger

Chemical Reviews 116, 8003-8104 DOI: 10.1021/acs.chemrev.6b00089

Citation Report

#	Article	IF	CITATIONS
1	Stereoselective Synthesis of Methylene Oxindoles via Palladium(II)-Catalyzed Intramolecular Cross-Coupling of Carbamoyl Chlorides. Journal of the American Chemical Society, 2016, 138, 14441-14448.	6.6	63
4	<i>meta</i> â^'H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis. Angewandte Chemie, 2017, 129, 1579-1582.	1.6	31
5	Recent advances in radical-mediated fluorination through C–H and C–C bond cleavage. Science China Chemistry, 2017, 60, 214-222.	4.2	68
6	Transition-metal-free direct perfluoroalkylation of quinoline amides at C5 position through radical cross-coupling under mild conditions. Organic Chemistry Frontiers, 2017, 4, 1116-1120.	2.3	52
7	Synthesis of Benzoisoselenazolone Derivatives by Nickel-Catalyzed Dehydrogenative Direct Selenation of C(sp ²)–H Bonds with Elemental Selenium in Air. Organic Letters, 2017, 19, 1092-1095.	2.4	77
8	Selective C(sp ²)–H Halogenation of "Click―4-Aryl-1,2,3-triazoles. Organic Letters, 2017, 19, 962-965.	2.4	34
9	Palladium(II)-Catalyzed Directed <i>anti-</i> Hydrochlorination of Unactivated Alkynes with HCl. Journal of the American Chemical Society, 2017, 139, 5183-5193.	6.6	70
10	Palladium-Catalyzed Hydrohalogenation of 1,6-Enynes: Hydrogen Halide Salts and Alkyl Halides as Convenient HX Surrogates. Journal of the American Chemical Society, 2017, 139, 3546-3557.	6.6	88
11	Ligand-Enabled Pd(II)-Catalyzed Bromination and Iodination of C(sp ³)–H Bonds. Journal of the American Chemical Society, 2017, 139, 5724-5727.	6.6	58
12	Enzymatic Halogenation: A Timely Strategy for Regioselective Câ ^{°°} H Activation. Chemistry - A European Journal, 2017, 23, 12064-12086.	1.7	91
13	Copper-catalysed aromatic-Finkelstein reactions with amine-based ligand systems. Catalysis Science and Technology, 2017, 7, 2110-2117.	2.1	21
14	Synthesis, Structure, and Reductive Elimination of Cationic Monoarylpalladium(IV) Complexes Supported by a Tripodal Oxygen Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 2928-2935.	1.0	4
15	Modified Sonogashira Coupling Strategy For the Functionalization of Substituted Quinoline. ChemistrySelect, 2017, 2, 2677-2680.	0.7	2
16	Copper-Catalyzed Selective <i>ortho</i> -C–H/N–H Annulation of Benzamides with Arynes: Synthesis of Phenanthridinone Alkaloids. Organic Letters, 2017, 19, 1764-1767.	2.4	77
17	Diverse <i>ortho</i> -C(sp ²)–H Functionalization of Benzaldehydes Using Transient Directing Groups. Journal of the American Chemical Society, 2017, 139, 888-896.	6.6	232
18	Differences between the elimination of early and late transition metals: DFT mechanistic insights into the titanium-catalyzed synthesis of pyrroles from alkynes and diazenes. Chemical Science, 2017, 8, 2413-2425.	3.7	27
19	<i>meta</i> â€Câ^'H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis. Angewandte Chemie - International Edition, 2017, 56, 1557-1560.	7.2	128
20	Copper-Mediated C–X Functionalization of Aryl Halides. Organic Process Research and Development, 2017, 21, 1889-1924.	1.3	80

#	Article	IF	CITATIONS
21	Palladium Nanoparticles Supported on Modified Hollow-Fe ₃ O ₄ @TiO ₂ : Catalytic Activity in Heck and Sonogashira Cross Coupling Reactions. Organic Preparations and Procedures International, 2017, 49, 443-458.	0.6	20
22	Regioselective C–H chlorination: towards the sequential difunctionalization of phenol derivatives and late-stage chlorination of bioactive compounds. RSC Advances, 2017, 7, 46636-46643.	1.7	10
23	(2â€Pyridyl)sulfonyl Groups for <i>ortho</i> â€Directing Palladium―Catalyzed Carbon–Halogen Bond Formation at Functionalized Arenes. Advanced Synthesis and Catalysis, 2017, 359, 3792-3804.	2.1	14
24	Metal-Involving Synthesis and Reactions of Oximes. Chemical Reviews, 2017, 117, 13039-13122.	23.0	154
25	Direct Synthesis of Large-Scale <i>Ortho</i> -lodinated Perylene Diimides: Key Precursors for Functional Dyes. Organic Letters, 2017, 19, 5438-5441.	2.4	32
26	High-throughput evaluation of in situ-generated cobalt(<scp>iii</scp>) catalysts for acyl fluoride synthesis. Catalysis Science and Technology, 2017, 7, 4996-5003.	2.1	23
27	Building Diversity in <i>ortho</i> -Substituted <i>s</i> -Aryltetrazines By Tuning N-Directed Palladium C–H Halogenation: Unsymmetrical Polyhalogenated and Biphenyl <i>s</i> -Aryltetrazines. ACS Catalysis, 2017, 7, 8493-8501.	5.5	37
28	Heteromultimetallic catalysis for sustainable organic syntheses. Chemical Society Reviews, 2017, 46, 7399-7420.	18.7	135
29	Ruthenium-Catalyzed Remote C–H Sulfonylation of <i>N</i> -Aryl-2-aminopyridines with Aromatic Sulfonyl Chlorides. Organic Letters, 2017, 19, 6000-6003.	2.4	43
30	Porous Aromatic Frameworks for Size-Selective Halogenation of Aryl Compounds. ACS Applied Materials & Interfaces, 2017, 9, 30958-30963.	4.0	13
31	Asymmetric Hydrogenation of Isoquinolines and Pyridines Using Hydrogen Halide Generated in Situ as Activator. Organic Letters, 2017, 19, 4988-4991.	2.4	59
32	Chloride-Tolerant Gold(I)-Catalyzed Regioselective Hydrochlorination of Alkynes. ACS Catalysis, 2017, 7, 6798-6801.	5.5	47
33	Pd-Catalyzed Decarbonylative Cross-Couplings of Aroyl Chlorides. Organic Letters, 2017, 19, 4142-4145.	2.4	80
34	Pd-Catalyzed/Iodide-Promoted α-Arylation of Ketones for the Regioselective Synthesis of Isocoumarins. Journal of Organic Chemistry, 2017, 82, 8296-8303.	1.7	20
35	Group 9 Transition Metal atalyzed Câ^'H Halogenations. Israel Journal of Chemistry, 2017, 57, 945-952.	1.0	42
36	Transition Metal Catalyzed, Regioselective <i>B</i> (4)â€Halogenation and <i>B</i> (4,5)â€Diiodination of Cage Bâ^'H Bonds in <i>o</i> â€Carboranes. Chemistry - A European Journal, 2017, 23, 14866-14871.	1.7	46
37	Palladium-Catalyzed ortho-Selective C–H Chlorination of Benzamide Derivatives under Anodic Oxidation Conditions. Journal of Organic Chemistry, 2017, 82, 8716-8724.	1.7	87
38	Palladiumâ€Catalyzed <i>ortho</i> â€Halogenation of Tertiary Benzamides. Asian Journal of Organic Chemistry, 2017. 6, 1361-1364.	1.3	16

#	Article	IF	CITATIONS
39	Ruthenium(II)-Catalyzed Redox-Neutral Oxidative Cyclization of Benzimidates with Alkenes with Hydrogen Evolution. Organic Letters, 2017, 19, 6678-6681.	2.4	37
40	Toxicity of Metal Compounds: Knowledge and Myths. Organometallics, 2017, 36, 4071-4090.	1.1	467
41	Synthesis and Reactivity of Model Intermediates Proposed for the Pd-Catalyzed Remote C–H Functionalization of <i>N</i> -(2-Haloaryl)acrylamides. Organometallics, 2017, 36, 4465-4476.	1.1	44
42	Selective Câ^H Functionalizations by Electrochemical Reactions with Palladium Catalysts. Israel Journal of Chemistry, 2017, 57, 953-963.	1.0	20
43	Silver-mediated fluorination of alkyl iodides with TMSCF ₃ as the fluorinating agent. Organic Chemistry Frontiers, 2017, 4, 1958-1961.	2.3	6
44	A Convergent Synthesis of Functionalized Alkenyl Halides through Cobalt(III) atalyzed Three omponent Câ^'H Bond Addition. Angewandte Chemie, 2017, 129, 10108-10112.	1.6	24
45	A Convergent Synthesis of Functionalized Alkenyl Halides through Cobalt(III)â€Catalyzed Three omponent Câ^'H Bond Addition. Angewandte Chemie - International Edition, 2017, 56, 9976-9980.	7.2	78
46	Computational study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes. Organic Chemistry Frontiers, 2017, 4, 1987-1998.	2.3	47
47	Iron(III)-Catalyzed Chlorination of Activated Arenes. Journal of Organic Chemistry, 2017, 82, 7529-7537.	1.7	57
48	Combining Eosin Y with Selectfluor: A Regioselective Brominating System for <i>Para</i> Bromination of Aniline Derivatives. Organic Letters, 2017, 19, 3799-3802.	2.4	47
49	Palladium functionalized phosphinite polyethyleneimine grafted magnetic silica nanoparticles as an efficient catalyst for the synthesis of isoquinolino[1,2- <i>b</i>]quinazolin-8-ones. New Journal of Chemistry, 2018, 42, 5499-5507.	1.4	25
50	Copper(I) Halide for Regioselective Ortho-Halogenation of Directed Arenes. Catalysis Letters, 2018, 148, 1067-1072.	1.4	9
51	Transitionâ€Metalâ€Free Regioselective C–H Bond Fluorination of 8â€Amidoquinolines with Selectfluor. European Journal of Organic Chemistry, 2018, 2018, 2091-2097.	1.2	15
52	Nitrate-promoted Selective C–H Fluorination of Benzamides and Benzeneacetamides. Organic Letters, 2018, 20, 2445-2448.	2.4	37
53	Copper(II)-Promoted Mono-Selective ortho C–H Chlorination of Arenes by Using Trimethyl(trichloromethyl)silane. Synlett, 2018, 29, 1122-1124.	1.0	5
54	Mixing <i>O</i> -Containing and <i>N</i> -Containing Directing Groups for C–H Activation: A Strategy for the Synthesis of Highly Functionalized 2,2′-Biaryls. Journal of Organic Chemistry, 2018, 83, 2582-2591.	1.7	16
55	Stereoselective Construction of Halogenated Quaternary Carbon Centers by BrÃ,nsted Base Catalyzed [4+2] Cycloaddition of αâ€Haloaldehydes. Angewandte Chemie, 2018, 130, 1931-1935.	1.6	13
56	Highly <i>meta</i> -selective halogenation of 2-phenylpyridine with a ruthenium(<scp>i</scp>) catalyst. Organic Chemistry Frontiers, 2018, 5, 1118-1123.	2.3	24

#	Article	IF	CITATIONS
57	Palladiumâ€Catalyzed Atomâ€Transfer Radical Cyclization at Remote Unactivated C(sp ³)â^'H Sites: Hydrogenâ€Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angewandte Chemie - International Edition, 2018, 57, 2712-2715.	7.2	85
58	Palladiumâ€Catalyzed Atomâ€Transfer Radical Cyclization at Remote Unactivated C(sp 3)â^'H Sites: Hydrogenâ€Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angewandte Chemie, 2018, 130, 2742-2745.	1.6	15
59	In situ acyl triflates ace it. Nature Chemistry, 2018, 10, 116-117.	6.6	5
60	Construction of C(sp ²)–X (X = Br, Cl) Bonds through a Copper-Catalyzed Atom-Transfer Radical Process: Application for the 1,4-Difunctionalization of Isoquinolinium Salts. Organic Letters, 2018, 20, 987-990.	2.4	31
61	Stereoselective Construction of Halogenated Quaternary Carbon Centers by BrÃ,nsted Base Catalyzed [4+2] Cycloaddition of αâ€Haloaldehydes. Angewandte Chemie - International Edition, 2018, 57, 1913-1917.	7.2	78
62	Synthesis of α-Fluoroimines by Copper-catalyzed Reaction of Diarylacetylenes and <i>N</i> -Fluorobenzenesulfonimide. Chemistry Letters, 2018, 47, 329-331.	0.7	3
63	Metal-Free Sulfonylation of 3,4-Dihalo-2(5H)-furanones (X = Cl, Br) with Sodium Sulfinates under Air Atmosphere in Aqueous Media via a Radical Pathway. ACS Sustainable Chemistry and Engineering, 2018, 6, 4147-4153.	3.2	24
64	Imidazolium-based ionic liquid functionalized reduced graphene oxide supported palladium as a reusable catalyst for Suzuki–Miyaura reactions. New Journal of Chemistry, 2018, 42, 2364-2367.	1.4	16
65	A copper-mediated reverse aromatic Finkelstein reaction in ionic liquid. Journal of Advanced Research, 2018, 10, 9-13.	4.4	4
66	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	5.8	123
67	Cobalt(<scp>ii</scp>)-catalyzed chelation-assisted C–H iodination of aromatic amides with I ₂ . Chemical Communications, 2018, 54, 1359-1362.	2.2	37
68	Aromatization modulates the activity of small organic molecules as promoters for carbon–halogen bond activation. Chemical Science, 2018, 9, 1534-1539.	3.7	23
69	Palladium-Catalyzed Carbonylation of Aryl Chlorides to Electrophilic Aroyl-DMAP Salts. ACS Catalysis, 2018, 8, 5350-5354.	5.5	44
70	Palladium atalyzed Câ^'H Iodination of <i>N</i> â€{8â€Quinolinyl)benzamide Derivatives Under Electrochemical and Nonâ€Electrochemical Conditions. Asian Journal of Organic Chemistry, 2018, 7, 1311-1314.	1.3	12
71	β C–H di-halogenation <i>via</i> iterative hydrogen atom transfer. Chemical Science, 2018, 9, 4500-4504.	3.7	41
72	Development of Halogenase Enzymes for Use in Synthesis. Chemical Reviews, 2018, 118, 232-269.	23.0	230
73	Ligand―and Solvent ontrolled Regio―and Chemodivergent Carbonylative Reactions. Angewandte Chemie - International Edition, 2018, 57, 1152-1160.	7.2	99
74	Hybrid inorganic-organic complexes: Synthesis, spectroscopic characterization, single crystal X-ray structure determination and antimicrobial activities of three copper(II)-diethylenetriamine-p-nitrobenzoate complexes. Inorganica Chimica Acta, <u>2018, 469, 288-297.</u>	1.2	17

#	Article	IF	CITATIONS
75	Nickelâ€Catalyzed Denitrogenative Annulation of 1,2,3â€Benzotriazinâ€4â€(3 <i>H</i>)â€ones with Benzynes for Construction of Phenanthridinone Scaffolds. Advanced Synthesis and Catalysis, 2018, 360, 284-289.	2.1	39
76	Three-Dimensional Printing in Catalysis: Combining 3D Heterogeneous Copper and Palladium Catalysts for Multicatalytic Multicomponent Reactions. ACS Catalysis, 2018, 8, 392-404.	5.5	88
77	Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. Chemical Reviews, 2018, 118, 4592-4630.	23.0	139
78	Copper-Mediated Cascade C–H/N–H Annulation of Indolocarboxamides with Arynes: Construction of Tetracyclic Indoloquinoline Alkaloids. Organic Letters, 2018, 20, 220-223.	2.4	66
79	Ligand-enabled <i>ortho</i> -C–H olefination of phenylacetic amides with unactivated alkenes. Chemical Science, 2018, 9, 1311-1316.	3.7	75
80	Liganden―und lösungsmittelkontrollierte regio―und chemodivergente Carbonylierungen. Angewandte Chemie, 2018, 130, 1166-1174.	1.6	21
81	Nickel-catalyzed intermolecular carboiodination of alkynes with aryl iodides. Chemical Communications, 2018, 54, 12750-12753.	2.2	38
82	Cu-catalyzed decarboxylative iodination of aryl carboxylic acids with Nal: A practical entry to aryl iodides under aerobic conditions. Tetrahedron Letters, 2018, 59, 4458-4461.	0.7	12
83	Mechanochemical synthesis of platinum(IV) complexes with N-heterocyclic carbenes. Russian Chemical Bulletin, 2018, 67, 2003-2009.	0.4	6
85	Silverâ€Catalyzed Carbocyclization of Azideâ€Tethered Alkynes: Expeditious Synthesis of Polysubstituted Quinolines. Advanced Synthesis and Catalysis, 2018, 361, 826.	2.1	26
86	Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using <i>N</i> -Bromosuccinimide. ACS Omega, 2018, 3, 12868-12877.	1.6	50
87	The interaction of carbon-centered radicals with copper(I) and copper(II) complexes*. Journal of Coordination Chemistry, 2018, 71, 1641-1668.	0.8	14
88	7-(2-Ethoxyphenyl)dihydroazolopyrimidines in oxidation reactions with bromine. Chemistry of Heterocyclic Compounds, 2018, 54, 892-901.	0.6	2
89	Palladium-Catalyzed Hydride Addition/C–H Bond Activation Cascade: Cycloisomerization of 1,6-Diynes. Organic Letters, 2018, 20, 6915-6919.	2.4	15
90	Environmentally benign indole-catalyzed position-selective halogenation of thioarenes and other aromatics. Green Chemistry, 2018, 20, 4448-4452.	4.6	27
91	Cobalt-catalyzed cyclization of benzamides with alkynes: a facile route to isoquinolones with hydrogen evolution. Organic and Biomolecular Chemistry, 2018, 16, 8384-8389.	1.5	33
92	Palladium-Mediated Site-Selective C–H Radio-iodination. Organic Letters, 2018, 20, 6302-6305.	2.4	21
93	Sigmatropic Dearomatization/Defluorination Strategy for Câ^'F Transformation: Synthesis of Fluorinated Benzofurans from Polyfluorophenols. Angewandte Chemie, 2018, 130, 14426-14430.	1.6	14

#	Article	IF	CITATIONS
94	Sigmatropic Dearomatization/Defluorination Strategy for Câ^'F Transformation: Synthesis of Fluorinated Benzofurans from Polyfluorophenols. Angewandte Chemie - International Edition, 2018, 57, 14230-14234.	7.2	42
95	Rhodium(III)-Catalyzed C–H Activation of α-Iminonitriles or α-Imino Esters and Cyclization with Acrylates to 2 <i>H</i> -Isoindoles. Journal of Organic Chemistry, 2018, 83, 11736-11746.	1.7	17
96	Carbon Dioxide-Mediated C(sp ³)–H Arylation of Amine Substrates. Journal of the American Chemical Society, 2018, 140, 6818-6822.	6.6	97
97	Pd ^{II} â€Catalyzed Cascade Synthesis of Chromane Derivatives Initiated by <i>cis</i> â€Chloropalladation or <i>trans</i> â€Acetoxypalladation. Chemistry - an Asian Journal, 2018, 13, 2435-2439.	1.7	13
98	Designs and Strategies for the Haloâ€Functionalization of Diazo Compounds. Advanced Synthesis and Catalysis, 2018, 360, 3185-3212.	2.1	25
99	A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes. Science, 2018, 360, 1010-1014.	6.0	319
100	Cu ^I atalyzed Pentafluoroethylation of Aryl Iodides in the Presence of Tetrafluoroethylene and Cesium Fluoride: Determining the Route to the Key Pentafluoroethyl Cu ^I Intermediate. Chemistry - A European Journal, 2018, 24, 9794-9798.	1.7	36
101	Ligand-promoted ruthenium-catalyzed <i>meta</i> C–H chlorination of arenes using <i>N</i> -chloro-2,10-camphorsultam. Chemical Communications, 2018, 54, 6008-6011.	2.2	29
102	Palladium-Catalyzed Synthesis of Dihydrobenzoindolones via C–H Bond Activation and Alkyne Insertion. Organic Letters, 2018, 20, 4367-4370.	2.4	51
103	Stereoselective Alkyne Hydrohalogenation by Trapping of Transfer Hydrogenation Intermediates. Organic Letters, 2018, 20, 4926-4929.	2.4	36
104	Site‣elective Remote Radical Câ^'H Functionalization of Unactivated Câ^'H Bonds in Amides Using Sulfone Reagents. Angewandte Chemie - International Edition, 2018, 57, 12940-12944.	7.2	135
105	Functional Group Transposition: A Palladium-Catalyzed Metathesis of Ar–X σ-Bonds and Acid Chloride Synthesis. Journal of the American Chemical Society, 2018, 140, 10140-10144.	6.6	81
106	Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides. Nature Chemistry, 2018, 10, 1016-1022.	6.6	88
107	Investigation of active sites for C H functionalization on carbon-based catalyst: Effect of nitrogen-containing functional groups and radicals. Journal of Catalysis, 2018, 365, 344-350.	3.1	15
108	General and Practical Potassium Methoxide/Disilane-Mediated Dehalogenative Deuteration of (Hetero)Arylhalides. Journal of the American Chemical Society, 2018, 140, 10970-10974.	6.6	106
109	Enhancing Reactivity and Selectivity of Aryl Bromides: A Complementary Approach to Dibenzo[b,f]azepine Derivatives. ChemCatChem, 2018, 10, 4346-4352.	1.8	19
110	Copper-mediated intramolecular aminofluorination of 1,3-dienes by using nucleophilic fluorine reagents. Chemical Communications, 2018, 54, 8709-8712.	2.2	4
111	Transitionâ€Metalâ€Catalyzed Siteâ€Selective Câ^H Halogenation Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1524-1541.	1.3	68

	CITATION RE	PORT	
#	Article	IF	CITATIONS
112	Halogenation through Deoxygenation of Alcohols and Aldehydes. Organic Letters, 2018, 20, 3061-3064.	2.4	73
113	Siteâ€Selective Remote Radical Câ^'H Functionalization of Unactivated Câ^'H Bonds in Amides Using Sulfone Reagents. Angewandte Chemie, 2018, 130, 13122-13126.	1.6	42
114	The Coming of Age in Iodaneâ€Guided ortho â€Câ^'H Propargylation: From Insight to Synthetic Potential. Chemistry - A European Journal, 2018, 24, 15517-15521.	1.7	30
115	Carboiodination Catalyzed by Nickel. Journal of the American Chemical Society, 2018, 140, 10950-10954.	6.6	101
116	Formal group insertion into aryl C‒N bonds through an aromaticity destruction-reconstruction process. Nature Communications, 2018, 9, 3423.	5.8	13
117	Total Synthesis of Putative Chagosensine. Angewandte Chemie, 2018, 130, 13763-13769.	1.6	4
118	Total Synthesis of Putative Chagosensine. Angewandte Chemie - International Edition, 2018, 57, 13575-13581.	7.2	23
119	Catalyst-free geminal aminofluorination of <i>ortho</i> -sulfonamide-tethered alkylidenecyclopropanes <i>via</i> a Wagner–Meerwein rearrangement. Chemical Communications, 2018, 54, 10503-10506.	2.2	18
120	Ecoâ€Friendly C–I and C–O Bond Formation of Simple Alkenes: Direct Access to <i>β</i> â€lodo Oxyamines. ChemistrySelect, 2018, 3, 5766-5768.	0.7	2
121	Silyliumâ€Catalyzed Carbon–Carbon Coupling of Alkynylsilanes with (2â€Bromoâ€1â€methoxyethyl)arenes: Alternative Approaches. European Journal of Organic Chemistry, 2018, 2018, 6194-6198.	1.2	11
122	Modular <i>ipso</i> / <i>ortho</i> Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis. Journal of the American Chemical Society, 2018, 140, 8551-8562.	6.6	91
123	Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. Advanced Materials, 2018, 30, e1707073.	11.1	73
124	An overview of late-stage functionalization in today's drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1137-1149.	2.5	140
125	Nickelâ€Catalyzed Conversion of Enol Triflates into Alkenyl Halides. Angewandte Chemie - International Edition, 2019, 58, 14901-14905.	7.2	49
126	Acid-promoted palladium(II)-catalyzed ortho-halogenation of primary benzamides: En route to halo-arenes. Catalysis Communications, 2019, 131, 105784.	1.6	10
127	Directed Câ^'H Halogenation Reactions Catalysed by Pd ^{II} Supported on Polymers under Batch and Continuous Flow Conditions. Chemistry - A European Journal, 2019, 25, 13591-13597.	1.7	14
128	Copper-catalyzed selective difunctionalization of N-heteroarenes through a halogen atom transfer radical process. New Journal of Chemistry, 2019, 43, 13832-13836.	1.4	5
129	Visible-light photocatalytic activation of N-chlorosuccinimide by organic dyes for the chlorination of arenes and heteroarenes. Tetrahedron, 2019, 75, 130498.	1.0	22

#	Article	IF	CITATIONS
130	Diastereoselective Nickel-Catalyzed Carboiodination Generating Six-Membered Nitrogen-Based Heterocycles. Organic Letters, 2019, 21, 7163-7168.	2.4	25
131	Efficient Synthesis of Spirooxindole Pyrrolones by a Rhodium(III)â€Catalyzed Câ^'H Activation/Carbene Insertion/Lossen Rearrangement Sequence. Angewandte Chemie, 2019, 131, 13469-13473.	1.6	7
132	Modular Continuous Flow Synthesis of Imatinib and Analogues. Organic Letters, 2019, 21, 6112-6116.	2.4	36
133	An organocatalytic method for constructing pyrroles <i>via</i> the cycloisomerisation of <i>Z</i> -1-iodo-4- <i>N</i> -methylbenzenesulfonyl-1,6-enynes. Organic and Biomolecular Chemistry, 2019, 17, 7669-7673.	1.5	7
134	Ruthenium(II)-catalyzed Alkylation of C-H Bonds in Aromatic Amides with Vinylsilanes. Chemistry Letters, 2019, 48, 1185-1187.	0.7	6
135	Cobalt-Catalyzed C–H Iodination of Aromatic Amides with Molecular Iodine through the Use of a 2-Aminophenyloxazoline-Based Bidentate-Chelation System. Organic Letters, 2019, 21, 5971-5976.	2.4	21
136	Efficient Synthesis of Spirooxindole Pyrrolones by a Rhodium(III) atalyzed Câ^'H Activation/Carbene Insertion/Lossen Rearrangement Sequence. Angewandte Chemie - International Edition, 2019, 58, 13335-13339.	7.2	51
137	Copper-catalyzed iminohalogenation of γ, δ-unsaturated oxime esters with halide salts: Synthesis of 2-halomethyl pyrrolines. Tetrahedron Letters, 2019, 60, 151000.	0.7	9
138	Clusterâ^'ï€ Interactions Cause Size-Selective Reactivity of Cationic Silver Clusters with Acetylene: The Distinctive Ag ₇ ⁺ [C ₂ H ₂]. Journal of Physical Chemistry A, 2019, 123, 6921-6926.	1.1	17
140	Hot Electron-Induced Carbon–Halogen Bond Cleavage Monitored by in Situ Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 16741-16746.	1.5	27
141	Nickel atalyzed Conversion of Enol Triflates into Alkenyl Halides. Angewandte Chemie, 2019, 131, 15043-15047.	1.6	14
142	Ni-Catalyzed Reductive Cyanation of Aryl Halides and Phenol Derivatives via Transnitrilation. Journal of the American Chemical Society, 2019, 141, 19257-19262.	6.6	74
143	Palladium-Catalyzed Nitrile-Assisted C(sp ³)–Cl Bond Formation for Synthesis of Dichlorides. Organic Letters, 2019, 21, 8308-8311.	2.4	14
144	A family of radical halogenases for the engineering of amino-acid-based products. Nature Chemical Biology, 2019, 15, 1009-1016.	3.9	85
145	Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups. Beilstein Journal of Organic Chemistry, 2019, 15, 2213-2270.	1.3	47
146	Computational and experimental studies on copper-mediated selective cascade C–H/N–H annulation of electron-deficient acrylamide with arynes. Chemical Communications, 2019, 55, 755-758.	2.2	33
147	Roomâ€Temperature Câ€H Bromination and Iodination with Sodium Bromide and Sodium Iodide Using N â€Fluorobenzenesulfonimide as an Oxidant. ChemistrySelect, 2019, 4, 6043-6047.	0.7	18
148	The palladium(<scp>ii</scp>)-catalyzed regioselective <i>ortho</i> -C–H bromination/iodination of arylacetamides with <i>in situ</i> generated imidic acid as the directing group: mechanistic exploration. Organic and Biomolecular Chemistry, 2019, 17, 6809-6820.	1.5	13

#	Article	IF	CITATIONS
149	Dual Photoredox/Nickelâ€Catalyzed Threeâ€Component Carbofunctionalization of Alkenes. Angewandte Chemie - International Edition, 2019, 58, 12286-12290.	7.2	131
150	Dual Photoredox/Nickelâ€Catalyzed Threeâ€Component Carbofunctionalization of Alkenes. Angewandte Chemie, 2019, 131, 12414-12418.	1.6	34
151	Gold(I)-Catalyzed Chloroalkynylation of 1,1-Disubstituted Alkenes via 1,3-Chlorine Shift: A Combined Experimental and Theoretical Study. Journal of Organic Chemistry, 2019, 84, 8210-8224.	1.7	23
152	Metal–free Efficient Method for the Synthesis of Nâ€(2â€haloethyl)benzamides through the Ringâ€opening of2â€oxazolines. ChemistrySelect, 2019, 4, 6668-6671.	0.7	3
153	Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation. Organic Letters, 2019, 21, 4229-4233.	2.4	33
154	Metal-free POCl ₃ promoted stereoselective hydrochlorination of ethynylated azaheterocycles. Organic and Biomolecular Chemistry, 2019, 17, 5990-5996.	1.5	3
155	Pd(OAc)2-catalyzed orthogonal synthesis of 2-hydroxybenzoates and substituted cyclohexanones from acyclic unsaturated 1,3-carbonyl compounds. Tetrahedron Letters, 2019, 60, 1653-1657.	0.7	6
156	Palladium/XuPhos-Catalyzed Enantioselective Carboiodination of Olefin-Tethered Aryl Iodides. Journal of the American Chemical Society, 2019, 141, 8110-8115.	6.6	135
157	Visible light-mediated organophotocatalyzed C–H bond functionalization reactions. Organic and Biomolecular Chemistry, 2019, 17, 5475-5489.	1.5	61
158	Palladium-Catalyzed Regioselective C–H Iodination of Unactivated Alkenes. Journal of the American Chemical Society, 2019, 141, 8758-8763.	6.6	70
159	Cu-mediated selective bromination of aniline derivatives and preliminary mechanism study. Synthetic Communications, 2019, 49, 1406-1415.	1.1	10
160	Synthesis of Alkyl Halides from Aldehydes via Deformylative Halogenation. Organic Letters, 2019, 21, 3848-3854.	2.4	26
161	Ligandâ€Promoted Iron(III) atalyzed Hydrofluorination of Alkenes. Angewandte Chemie, 2019, 131, 7171-7175.	1.6	6
162	Ligandâ€Promoted Iron(III) atalyzed Hydrofluorination of Alkenes. Angewandte Chemie - International Edition, 2019, 58, 7097-7101.	7.2	29
163	Synthesis and study of Au(<scp>iii</scp>)–indolizine derivatives: turn-on luminescence by photo-induced controlled release. Chemical Communications, 2019, 55, 4471-4474.	2.2	4
164	Mild and regioselective azol-halogenation of alkenes. Organic and Biomolecular Chemistry, 2019, 17, 4208-4211.	1.5	16
165	Palladium-Catalyzed Electrochemical C–H Bromination Using NH ₄ Br as the Brominating Reagent. Organic Letters, 2019, 21, 2645-2649.	2.4	58
166	Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution. IScience, 2019, 12, 293-303.	1.9	120

#	Article	IF	CITATIONS
167	Palladium atalyzed Intermolecular Aryliodination of Internal Alkynes. Angewandte Chemie - International Edition, 2019, 58, 6444-6448.	7.2	60
168	Palladiumâ€katalysierte intermolekulare Aryliodierung von internen Alkinen. Angewandte Chemie, 2019, 131, 6510-6515.	1.6	21
169	Forming Benzylic lodides via a Nickel Catalyzed Diastereoselective Dearomative Carboiodination Reaction of Indoles. Angewandte Chemie, 2019, 131, 5149-5153.	1.6	19
170	Electrochemical Umpolung of Bromide: Transition-Metal-Free Bromination of Indole C–H Bond. Molecules, 2019, 24, 696.	1.7	23
171	Forming Benzylic lodides via a Nickel Catalyzed Diastereoselective Dearomative Carboiodination Reaction of Indoles. Angewandte Chemie - International Edition, 2019, 58, 5095-5099.	7.2	84
172	Transition metal-mediated metathesis between P–C and M–C bonds: Beyond a side reaction. Coordination Chemistry Reviews, 2019, 386, 96-118.	9.5	42
173	Palladium-catalyzed highly diastereoselective cascade dihalogenation of alkyne-tethered cyclohexadienones <i>via</i> Umpolung of palladium enolate. Chemical Communications, 2019, 55, 13442-13445.	2.2	22
174	Anion ligand promoted selective C–F bond reductive elimination enables C(sp ²)–H fluorination. Chemical Communications, 2019, 55, 14458-14461.	2.2	20
175	C–H Halogenation of Pyridyl Sulfides Avoiding the Sulfur Oxidation: A Direct Catalytic Access to Sulfanyl Polyhalides and Polyaromatics. ACS Omega, 2019, 4, 20459-20469.	1.6	5
176	Nickel(II/IV) Manifold Enables Room-Temperature C(sp ³)–H Functionalization. Journal of the American Chemical Society, 2019, 141, 19513-19520.	6.6	25
177	Selective synthesis of spirobiindanes, alkenyl chlorides, and monofluoroalkenes from unactivated gem-difluoroalkanes controlled by aluminum-based Lewis acids. Scientific Reports, 2019, 9, 19113.	1.6	10
178	The emergence of Pd-mediated reversible oxidative addition in cross coupling, carbohalogenation and carbonylation reactions. Nature Catalysis, 2019, 2, 843-851.	16.1	67
179	Relative stabilities of M/NHC complexes (M = Ni, Pd, Pt) against R–NHC, X–NHC and X–X couplings in M(0)/M(<scp>ii</scp>) and M(<scp>ii</scp>)/M(<scp>iv</scp>) catalytic cycles: a theoretical study. Dalton Transactions, 2019, 48, 17052-17062.	1.6	12
180	Co-catalyzed <i>ortho</i> -C–H functionalization/annulation of arenes and alkenes with alkynylsilanes: access to isoquinolone and pyridone motifs. RSC Advances, 2019, 9, 30650-30654.	1.7	23
181	Visibleâ€Lightâ€Mediated Liberation and In Situ Conversion of Fluorophosgene. Chemistry - A European Journal, 2019, 25, 361-366.	1.7	26
182	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
183	Synthesis of Polysubstituted Iodoarenes Enabled by Iterative Iodineâ€Directed <i>para</i> and <i>ortho</i> Câ^'H Functionalization. Angewandte Chemie - International Edition, 2019, 58, 2617-2621.	7.2	33

#	Article	IF	CITATIONS
185	Ni-Catalyzed Reductive Liebeskind–Srogl Alkylation of Heterocycles. Journal of the American Chemical Society, 2019, 141, 1918-1922.	6.6	43
186	Synthesis of Polysubstituted Iodoarenes Enabled by Iterative Iodineâ€Directed <i>para</i> and <i>ortho</i> Câ^'H Functionalization. Angewandte Chemie, 2019, 131, 2643-2647.	1.6	21
187	Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds. Journal of Flow Chemistry, 2019, 9, 9-12.	1.2	11
188	Convenient Carbonylative Synthesis of Seleniumâ€Substituted Vinyl Iodides: (<i>E</i>)â€5â€{Iodomethylene)â€1,3â€selenazolidinâ€2â€ones. European Journal of Organic Chemistry, 2019, 2 1553-1556.	20129,	11
189	Palladium atalyzed Electrophilic C–Hâ€Bond Fluorination: Mechanistic Overview and Supporting Evidence. European Journal of Organic Chemistry, 2019, 2019, 233-253.	1.2	17
190	The Power of Iodaneâ€Guided Câ^'H Coupling: A Groupâ€Transfer Strategy in Which a Halogen Works for Its Money. Angewandte Chemie, 2020, 132, 16434.	1.6	6
191	The Power of Iodaneâ€Guided Câ^'H Coupling: A Groupâ€Transfer Strategy in Which a Halogen Works for Its Money. Angewandte Chemie - International Edition, 2020, 59, 16294-16309.	7.2	29
192	Structure and Activity of the Thermophilic Tryptophanâ€6 Halogenase BorH. ChemBioChem, 2020, 21, 1121-1128.	1.3	17
193	When Sadness Comes Alive, Will It Be Less Painful? The Effects of Anthropomorphic Thinking on Sadness Regulation and Consumption. Journal of Consumer Psychology, 2020, 30, 277-295.	3.2	15
194	Development and Elucidation of a Pdâ€Based Cyclization–Oxygenation Sequence for Natural Product Synthesis. Angewandte Chemie, 2020, 132, 2696-2700.	1.6	7
195	Reaction mechanism, norbornene and ligand effects, and origins of meta-selectivity of Pd/norbornene-catalyzed C–H activation. Chemical Science, 2020, 11, 113-125.	3.7	11
196	Copper-catalysed three-component carboiodination of arynes: expeditious synthesis of <i>o</i> -alkynyl aryl iodides. Chemical Communications, 2020, 56, 972-975.	2.2	21
197	DMSO-catalysed late-stage chlorination of (hetero)arenes. Nature Catalysis, 2020, 3, 107-115.	16.1	122
198	Directed Evolution of an Fe ^{II} -Dependent Halogenase for Asymmetric C(sp ³)–H Chlorination. ACS Catalysis, 2020, 10, 1272-1277.	5.5	38
199	Palladium-catalyzed meta-C H bond iodination of arenes with I2. Chinese Chemical Letters, 2020, 31, 1301-1304.	4.8	15
200	Development and Elucidation of a Pdâ€Based Cyclization–Oxygenation Sequence for Natural Product Synthesis. Angewandte Chemie - International Edition, 2020, 59, 2674-2678.	7.2	15
201	Transition metal-free electrocatalytic halodeborylation of arylboronic acids with metal halides MX (X = I, Br) to synthesize aryl halides. Organic Chemistry Frontiers, 2020, 7, 590-595.	2.3	29
202	Regioselective Hydroiodination of Alkynes by inâ€situâ€Generated HI. Asian Journal of Organic Chemistry, 2020, 9, 73-76.	1.3	5

#	Article	IF	CITATIONS
203	Recent Development on Cp*Ir(III) atalyzed Câ^'H Bond Functionalization. ChemCatChem, 2020, 12, 2358-2384.	1.8	47
204	Iridiumâ€Catalyzed Hydrochlorination and Hydrobromination of Alkynes by Shuttle Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2904-2910.	7.2	42
205	Iridiumâ€katalysierte Hydrochlorierung und Hydrobromierung von Alkinen durch Shuttlekatalyse. Angewandte Chemie, 2020, 132, 2926-2932.	1.6	13
206	Catalytic Asymmetric Chlorination of β-Ketoesters Using N-PFB-PyBidine-Zn(OAc)2. Catalysts, 2020, 10, 1177.	1.6	1
207	Ruthenium-Catalyzed <i>trans</i> -Hydroalkynylation and <i>trans</i> -Chloroalkynylation of Internal Alkynes. Journal of the American Chemical Society, 2020, 142, 18746-18752.	6.6	24
208	Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synthesis and Catalysis, 2020, 1, 121-133.	3.7	70
209	Formal Bromine Atom Transfer Radical Addition of Nonactivated Bromoalkanes Using Photoredox Gold Catalysis. Organic Letters, 2020, 22, 8401-8406.	2.4	20
210	Synthesis of 1,6-Dihydropyridine-3-carbonitrile Derivatives <i>via</i> Lewis Acid-Catalyzed Annulation of Propargylic Alcohols with (<i>E</i>)-3-Amino-3-phenylacrylonitriles. Journal of Organic Chemistry, 2020, 85, 9863-9875.	1.7	8
211	Palladium atalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide. Angewandte Chemie, 2020, 132, 18043-18052.	1.6	8
212	Iodination of Isoquinoline by Trifluoromethanesulfonic Acid. ChemistrySelect, 2020, 5, 13678-13680.	0.7	1
213	Aryl C(sp ²)–X Coupling (X = C, N, O, Cl) and Facile Control of N-Mono- and N,N-Diarylation of Primary Alkylamines at a Pt(IV) Center. Journal of the American Chemical Society, 2020, 142, 20725-20734.	6.6	6
214	Photoinduced Site-Selective C(sp ³)–H Chlorination of Aliphatic Amides. Organic Letters, 2020, 22, 8899-8903.	2.4	11
215	Recent Advances in Radical Câ^'H Bond Functionalization of Imidazoheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 4226-4255.	2.1	44
216	Visibleâ€Lightâ€Driven Remote Câ^'H Chlorination of Aliphatic Sulfonamides with Sodium Hypochlorite. Asian Journal of Organic Chemistry, 2020, 9, 1650-1654.	1.3	17
217	Transitionâ€Metalâ€Catalyzed Carbohalogenative 1,2â€Difunctionalization of Câ^'C Multiple Bonds. Advanced Synthesis and Catalysis, 2020, 362, 3948-3970.	2.1	41
218	Diazanorbornene: A Valuable Synthon towards Carbocycles and Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 6588-6613.	1.2	6
219	Nickel-Catalyzed Hydrofluorination of Unactivated Alkenes through a HAT Pathway. ACS Catalysis, 2020, 10, 13165-13170.	5.5	18
220	Recent Advancements on Transitionâ€Metalâ€Catalyzed, Chelationâ€Induced <i>ortho</i> â€Hydroxylation of Arenes. Advanced Synthesis and Catalysis, 2020, 362, 5301-5351.	2.1	27

#	Article	IF	CITATIONS
221	Visible-Light-Triggered Iodinations Facilitated by Weak Electrostatic Interaction of N-Heterocyclic Carbenes. Organic Letters, 2020, 22, 7187-7192.	2.4	26
222	Photo-induced 1,2-carbohalofunctionalization of C–C multiple bonds <i>via</i> ATRA pathway. Organic and Biomolecular Chemistry, 2020, 18, 8278-8293.	1.5	34
223	Thiourea-Mediated Halogenation of Alcohols. Journal of Organic Chemistry, 2020, 85, 12901-12911.	1.7	17
224	Pd-Catalyzed Selective Chlorination of Acrylamides at Room Temperature. Organic Letters, 2020, 22, 7556-7561.	2.4	10
225	Chemoselective Homologation–Deoxygenation Strategy Enabling the Direct Conversion of Carbonyls into (<i>n+1</i>)-Halomethyl-Alkanes. Organic Letters, 2020, 22, 7629-7634.	2.4	23
226	Cycloneophylpalladium(IV) Complexes: Formation by Oxidative Addition and Selectivity of Their Reductive Elimination Reactions. Organometallics, 2020, 39, 4037-4050.	1.1	10
227	Efficient <scp>Pd atalyzed</scp> C—H Oxidative Bromination of Arenes with Dimethyl Sulfoxide and Hydrobromic Acid ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1245-1251.	2.6	14
228	Dehydroxyalkylative halogenation of C(aryl)–C bonds of aryl alcohols. Chemical Communications, 2020, 56, 7120-7123.	2.2	7
229	Ni-Catalyzed desilylative annulation of benzamides and acrylamides with alkynylsilanes: Access to 3-Methyleneisoindolin-1-one and 5-Methylene-1 <i>H</i> -pyrrol-2(<i>5H</i>)-one derivatives. Synthetic Communications, 2020, 50, 1946-1959.	1.1	1
230	Divergent Synthesis of α-Aroyloxy Ketones and Indenones: A Controlled Domino Radical Reaction for Di- and Trifunctionalization of Alkynes. Journal of Organic Chemistry, 2020, 85, 8287-8294.	1.7	12
231	Sulfonate Versus Sulfonate: Nickel and Palladium Multimetallic Cross-Electrophile Coupling of Aryl Triflates with Aryl Tosylates. Journal of the American Chemical Society, 2020, 142, 10634-10640.	6.6	75
232	Bromination of <i>α</i> â€Diazo Phenylacetate Derivatives Using Cobalt(II) Bromide. Advanced Synthesis and Catalysis, 2020, 362, 3347-3351.	2.1	4
233	Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Chlorides with Primary Alkyl Chlorides. Journal of the American Chemical Society, 2020, 142, 9902-9907.	6.6	129
234	A selective and sensitive sequential ratio/"turn-off―dual mode fluorescent chemosensor for detection of copper ions in aqueous solution and serum. Inorganica Chimica Acta, 2020, 511, 119825.	1.2	25
235	Palladium atalyzed Câ^'H Iodination of Arenes by Means of Sulfinyl Directing Groups. Chemistry - an Asian Journal, 2020, 15, 2442-2446.	1.7	12
236	Halogen modified two-dimensional covalent triazine frameworks as visible-light driven photocatalysts for overall water splitting. Science China Chemistry, 2020, 63, 1134-1141.	4.2	31
237	C(sp ²)–H Iodination by a Rhodium(III) Complex Supported by a Redox-active Ligand Bearing Amidophenolato Moieties. Chemistry Letters, 2020, 49, 666-669.	0.7	1
238	Highly stereoselective organocatalytic synthesis of pyrrolidinyl spirooxindoles containing halogenated contiguous quaternary carbon stereocenters. Tetrahedron Letters, 2020, 61, 151806.	0.7	14

#	Article	IF	CITATIONS
239	<i>Para</i> ‣elective Cyanation of Arenes by Hâ€Bonded Template. Chemistry - A European Journal, 2020, 26, 11558-11564.	1.7	36
240	Complementary Siteâ€Selective Halogenation of Nitrogenâ€Containing (Hetero)Aromatics with Superacids. Chemistry - A European Journal, 2020, 26, 10411-10416.	1.7	16
241	Nickel-Catalyzed Enantioselective Carbamoyl Iodination: A Surrogate for Carbamoyl Iodides. ACS Catalysis, 2020, 10, 4780-4785.	5.5	58
242	U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics. ACS Omega, 2020, 5, 7693-7704.	1.6	18
243	Differential formation of nitrogen-centered radicals leading to unprecedented, regioselective bromination of N,N′-(1,2-phenylene)bisamides and 2-amidophenols. Organic Chemistry Frontiers, 2020, 7, 1095-1106.	2.3	8
244	Câ°'F Arylation of Polyfluorophenols by Means of Sigmatropic Dearomatization/Defluorination Sequence. Chemistry - A European Journal, 2020, 26, 5615-5618.	1.7	13
245	Palladium-catalyzed remote C–H functionalization of 2-aminopyrimidines. Chemical Communications, 2020, 56, 4284-4287.	2.2	6
246	Regio- and Stereoselective Synthesis of 1,2-Dihaloalkenes Using In-Situ-Generated ICl, IBr, BrCl, I2, and Br2. CheM, 2020, 6, 1018-1031.	5.8	34
247	Regioselective Difunctionalization of 2,6-Difluorophenols Triggered by Sigmatropic Dearomatization. Organic Letters, 2020, 22, 5540-5544.	2.4	9
248	Transition-Metal-Free Site-Selective γ-C(sp ²)–H Monoiodination of Arenes Directed by an Aliphatic Keto Group. Organic Letters, 2020, 22, 5314-5319.	2.4	13
250	Palladium atalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide. Angewandte Chemie - International Edition, 2020, 59, 17887-17896.	7.2	20
251	Mainâ€Group Metal Complexes in Selective Bond Formations Through Radical Pathways. Chemistry - A European Journal, 2020, 26, 9674-9687.	1.7	37
252	Nickel atalyzed <i>ortho</i> â€Acyloxylation of Benzamides and Acrylamides with Carboxylic Acids. ChemistrySelect, 2020, 5, 1925-1928.	0.7	3
253	Based on MFe ₂ O ₄ (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. Synthetic Communications, 2020, 50, 1899-1935.	1.1	32
254	Gold(I) atalyzed Haloalkynylation of Aryl Alkynes: Two Pathways, One Goal. Angewandte Chemie - International Edition, 2020, 59, 9433-9437.	7.2	25
255	Gold(I)â€katalysierte Haloalkinylierung von Arylalkinen: Zwei Wege, ein Ziel. Angewandte Chemie, 2020, 132, 9519-9524.	1.6	10
256	Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Research, 2020, 13, 1908-1911.	5.8	84
257	Correlation between the C–C Cross-Coupling Activity and C-to-Ni Charge Transfer Transition of High-Valent Ni Complexes. Journal of the American Chemical Society, 2020, 142, 4173-4183.	6.6	10

#	Article	IF	CITATIONS
258	Rhodiumâ€Catalyzed <i>ortho</i> â€Bromination of Oâ€Phenyl Carbamates Accelerated by a Secondary Amideâ€Pendant Cyclopentadienyl Ligand. Chemistry - A European Journal, 2020, 26, 5774-5779.	1.7	11
259	Nanozymology. Nanostructure Science and Technology, 2020, , .	0.1	30
260	Palladium-Catalyzed Direct Mono- or Polyhalogenation of Benzothiadiazole Derivatives. Journal of Organic Chemistry, 2020, 85, 3788-3798.	1.7	6
261	Synthesis of Indolizine Derivatives Triggered by the Oxidative Addition of Aroyl Chloride to Pd(0) Complex. Journal of Organic Chemistry, 2020, 85, 6392-6399.	1.7	12
262	Lâ€lysineâ€Pd Complex Supported on Fe 3 O 4 MNPs: a novel recoverable magnetic nanocatalyst for Suzuki Câ€C Crossâ€Coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5668.	1.7	7
263	Tungstate-Catalyzed Biomimetic Oxidative Halogenation of (Hetero)Arene under Mild Condition. IScience, 2020, 23, 101072.	1.9	9
264	Diverse <i>meta</i> -C–H Functionalization of Amides. ACS Catalysis, 2020, 10, 5347-5352.	5.5	28
265	Selectfluor-triggered fluorination/cyclization of <i>o</i> -hydroxyarylenaminones: A facile access to 3-fluoro-chromones. Journal of Chemical Research, 2021, 45, 95-101.	0.6	5
266	Ecoâ€Friendly Methodology for the Formation of Aromatic Carbon–Heteroatom Bonds by Using Green Ionic Liquids. Chemistry - A European Journal, 2021, 27, 809-814.	1.7	3
267	Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step. Inorganic Chemistry Frontiers, 2021, 8, 620-635.	3.0	25
268	DFT study on synergetic Ir/Cu-metallaphotoredox catalyzed trifluoromethylation of aryl bromides. Molecular Catalysis, 2021, 499, 111294.	1.0	2
269	Construction of isoxazolone-fused phenanthridines via Rh-catalyzed cascade C–H activation/cyclization of 3-arylisoxazolones with cyclic 2-diazo-1,3-diketones. Organic and Biomolecular Chemistry, 2021, 19, 552-556.	1.5	9
270	Cobalt(<scp>iii</scp>)-catalyzed redox-neutral [4+2]-annulation of <i>N</i> -chlorobenzamides/acrylamides with alkylidenecyclopropanes at room temperature. Chemical Communications, 2021, 57, 3692-3695.	2.2	28
272	A practical route to 2-iodoanilines <i>via</i> the transition-metal-free and base-free decarboxylative iodination of anthranilic acids under oxygen. Organic Chemistry Frontiers, 2021, 8, 4479-4484.	2.3	1
273	Dissociative Photoionization of Chloro-, Bromo-, and Iodocyclohexane: Thermochemistry and the Weak C–Br Bond in the Cation. Journal of Physical Chemistry A, 2021, 125, 646-656.	1.1	5
274	Copper-catalyzed redox-neutral regioselective chlorosulfonylation of vinylarenes. Reaction Chemistry and Engineering, 2021, 6, 1376-1380.	1.9	8
275	Synthesis of Carbocyclic Compounds via a Nickel-Catalyzed Carboiodination Reaction. ACS Catalysis, 2021, 11, 925-931.	5.5	28
276	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	4.6	64

#	Article	IF	CITATIONS
277	Arene C—H lodination Using 2-Nitrophenyl lodides as the lodinating Reagents. Chinese Journal of Organic Chemistry, 2021, 41, 4103.	0.6	6
278	Advances of Haloperoxidases-Catalyzed Green Halogenation Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 959.	0.6	5
279	Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation. Chemical Society Reviews, 2021, 50, 9443-9481.	18.7	57
280	Ag/Cu-Mediated Decarboxylative Cyanation of Arene Carboxylic Acids Using NH4 +/N,N-Dimethylformamide as Combined Cyanide Source. Chinese Journal of Organic Chemistry, 2021, 41, 333.	0.6	2
282	Pd(0)-Catalyzed Asymmetric Carbohalogenation: H-Bonding-Driven C(sp ³)–Halogen Reductive Elimination under Mild Conditions. Journal of the American Chemical Society, 2021, 143, 1924-1931.	6.6	35
283	How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Organic Letters, 2021, 23, 1489-1494.	2.4	10
284	Haloalkenyl Imidoyl Halides as Multifacial Substrates in the Stereoselective Synthesis of <i>N</i> â€Alkenyl Compounds. Advanced Synthesis and Catalysis, 2021, 363, 3258-3266.	2.1	16
285	Diaryliodonium Salts in Transitionâ€Metalâ€Catalyzed Chelationâ€Induced C(sp 2 /sp 3)â^H Arylations. European Journal of Organic Chemistry, 2021, 2021, 1837-1858.	1.2	9
286	Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickelâ€Catalyzed Asymmetric Reductive Crossâ€Coupling Fluoroalkylation. Angewandte Chemie - International Edition, 2021, 60, 9947-9952.	7.2	39
287	The Influence of Copper on Halogenation/Dehalogenation Reactions of Aromatic Compounds and Its Role in the Destruction of Polyhalogenated Aromatic Contaminants. Catalysts, 2021, 11, 378.	1.6	11
288	CO ₂ -Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catalysis, 2021, 11, 3414-3442.	5.5	73
289	Rh(III)-Catalyzed Redox-Neutral C–H Activation/[3 + 2] Annulation of <i>N</i> -Phenoxy Amides with Propargylic Monofluoroalkynes. Organic Letters, 2021, 23, 2285-2291.	2.4	10
290	From Energetics to Intracluster Chemistry: Valence Photoionization of Trifluoromethylsulfur Pentafluoride (CF3SF5) by Double Velocity Map Imaging. Journal of Physical Chemistry A, 2021, 125, 2601-2611.	1.1	3
291	Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel atalyzed Asymmetric Reductive Cross oupling Fluoroalkylation. Angewandte Chemie, 2021, 133, 10035-10040.	1.6	7
292	A mild method for the replacement of a hydroxyl group by halogen: 3. the dichotomous behavior of α-haloenamines towards allylic and propargylic alcohols. Tetrahedron, 2021, 89, 132148.	1.0	2
293	Recent Strategies for Carbonâ^'Halogen Bond Formation Using Nickel. Angewandte Chemie, 2021, 133, 16888-16900.	1.6	5
295	An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. Sakarya University Journal of Science, 0, , .	0.3	0
296	Palladiumâ€Catalyzed Câ^'H Functionalization of Diaryl 1,3,5â€Triazines. European Journal of Organic Chemistry, 2021, 2021, 2006-2012.	1.2	0

#	Article	IF	CITATIONS
297	<i>N</i> â€Nitroso As A Novel Directing Group in Transitionâ€Metalâ€Catalyzed C(<i>sp</i> ^{<i>2</i>})â"H Bond Functionalizations of <i>N</i> â€Nitrosoanilines. Asian Journal of Organic Chemistry, 2021, 10, 980-1011.	1.3	6
298	Recent Strategies for Carbonâ^'Halogen Bond Formation Using Nickel. Angewandte Chemie - International Edition, 2021, 60, 16750-16762.	7.2	38
299	Dehydrative/Decarboxylative Coupling of Carboxylic Acids with Allylic Alcohols. Chemistry Letters, 2021, 50, 1030-1033.	0.7	1
300	Palladiumâ€Catalyzed Threeâ€Component Coupling Reaction via Benzylpalladium Intermediate. Chemical Record, 2021, , .	2.9	4
301	Cu-Catalyzed Hydrodehalogenation of Brominated Aromatic Pollutants in Aqueous Solution. Catalysts, 2021, 11, 699.	1.6	2
302	Utilization of C(<i>sp</i> ³)â€Carboxylic Acids and Their Redoxâ€Active Esters in Decarboxylative Carbonâ^'Carbon Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 3693-3736.	2.1	64
303	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews, 2021, 435, 213807.	9.5	35
304	AoiQ Catalyzes Geminal Dichlorination of 1,3-Diketone Natural Products. Journal of the American Chemical Society, 2021, 143, 7267-7271.	6.6	16
305	Diversityâ€Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp 3)â^'C(sp 3) Cross oupling Fluoroalkylation. Angewandte Chemie, 2021, 133, 15147-15154.	1.6	10
306	Catalytic asymmetric nucleophilic fluorination using BF3·Et2O as fluorine source and activating reagent. Nature Communications, 2021, 12, 3957.	5.8	27
307	Palladiumâ€Catalyzed Decarbonylative Iodination of Aryl Carboxylic Acids Enabled by Ligandâ€Assisted Halide Exchange. Angewandte Chemie - International Edition, 2021, 60, 17211-17217.	7.2	19
308	Palladiumâ€katalysierte decarbonylierende Iodierung von Carbonsären, ermöglicht durch Ligandâ€unterstützten Halogenaustausch. Angewandte Chemie, 2021, 133, 17348-17355.	1.6	2
309	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
310	Diversityâ€Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp ³)â^C(sp ³) Crossâ€Coupling Fluoroalkylation. Angewandte Chemie - International Edition, 2021, 60, 15020-15027.	7.2	36
311	Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nature Communications, 2021, 12, 3873.	5.8	41
312	Reusable Manganese Catalyst for Siteâ€Selective Pyridine Câ^'H Arylations and Alkylations. Chemistry - A European Journal, 2021, 27, 12737-12741.	1.7	13
313	Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angewandte Chemie, 2021, 133, 18626-18631.	1.6	4
314	Copper(I)-catalysed site-selective C(sp3)–H bond chlorination of ketones, (E)-enones and alkylbenzenes by dichloramine-T. Nature Communications, 2021, 12, 4065.	5.8	10

#	Article	IF	CITATIONS
315	Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angewandte Chemie - International Edition, 2021, 60, 18478-18483.	7.2	20
316	<i>N</i> -bromosuccinimide promoted synthesis of <i>\hat{l}^2</i> -amino bromides under Appel reaction condition. Synthetic Communications, 2021, 51, 2975-2983.	1.1	0
317	Regioselective Carbonâ€Halogen Bond Formation in the Reaction of Ag(III) N â€Confused Porphyrin Complex with HCl or HBr. European Journal of Organic Chemistry, 2021, 2021, 4440-4443.	1.2	5
318	A simple and facile iodination method of didechlorotiacumicin B and aromatic compounds. Science China Chemistry, 2021, 64, 1736.	4.2	2
319	Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics, 2021, 22, 633.	1.2	5
320	Recent Advances and Need of Green Synthesis in Two-Dimensional Materials for Energy Conversion and Storage Applications. Current Nanoscience, 2021, 17, 554-571.	0.7	8
321	Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coordination Chemistry Reviews, 2021, 442, 214012.	9.5	16
322	Amineâ€Directed Palladium atalyzed Câ^'H Halogenation of Phenylalanine Derivatives. Chemistry - A European Journal, 2021, 27, 13961-13965.	1.7	2
323	Palladium-Catalyzed Intramolecular Cross-Coupling of Unactivated C(sp ³)–H and C(sp ²)–H Bonds. Organic Letters, 2021, 23, 7161-7165.	2.4	7
324	Catalytic Carbochlorocarbonylation of Unsaturated Hydrocarbons via Câ^'COCl Bond Cleavage**. Angewandte Chemie - International Edition, 2021, 60, 23435-23443.	7.2	17
325	Katalytische Carbochlorocarbonylierung von ungesÃætigten Kohlenwasserstoffen durch Câ€COClâ€Bindungsspaltung**. Angewandte Chemie, 2021, 133, 23625.	1.6	0
326	Synthesis and characterization of new benzyl-protected 2-iodo-4-tert-octylphenol and its application in preparation of 1-benzyloxy-2-(3,6-di-tert-butyl-9H-carbazolyl)-4-tert-octylbenzene. Chemical Papers, 0, , 1.	1.0	0
327	Synthesis of 9-Fluorenylidenes via Pd-Catalyzed C–H Vinylation with Vinyl Bromides. Organic Letters, 2021, 23, 7746-7750.	2.4	11
328	Bromination and C–C Cross-Coupling Reactions for the C–H Functionalization of Iridium(III) Emitters. Organometallics, 2021, 40, 3211-3222.	1.1	6
329	Recent Advances in Hydrochlorination of Alkenes. Chinese Journal of Organic Chemistry, 2021, 41, 3808.	0.6	4
330	Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nature Communications, 2021, 12, 303.	5.8	97
331	Radical 1,2-addition of bromoarenes to alkynes <i>via</i> dual photoredox and nickel catalysis. Organic Chemistry Frontiers, 2021, 8, 2924-2931.	2.3	15
333	Arylcyclopropane yet in its infancy: the challenges and recent advances in its functionalization. Organic and Biomolecular Chemistry, 2021, 19, 8627-8645.	1.5	17

ARTICLE IF CITATIONS # Palladium-catalysed carboformylation of alkynes using acid chlorides as a dual carbon monoxide and 334 6.6 21 carbon source. Nature Chemistry, 2021, 13, 123-130. Palladium-catalyzed 1,1-alkynylbromination of alkenes with alkynyl bromides. Chemical Science, 2021, 3.7 12, 12326-12332. Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. 336 0.1 7 Nanostructure Science and Technology, 2020, , 195-278. Advances in Nucleophilic Allylic Fluorination. ACS Catalysis, 2020, 10, 11980-12010. 5.5 Predictable site-selective functionalization: Promoter group assisted <i>para</i>-halogenation of 338 <i>N</i>-substituted (hetero)aromatics under metal-free condition. Organic and 1.5 5 Biomolecular Chemistry, 2021, 19, 9675-9687. Site-Selective Câ€"H Iodination of Phenol Derivatives Using Aryl Iodide as Iodinating Reagent. Chinese 0.6 Journal of Organic Chemistry, 2021, 41, 3511. Electrophilic and Oxidative Fluorination of Heterocyclic Compounds: Contribution to Green 340 0.3 8 Chemistry. Russian Journal of Organic Chemistry, 2021, 57, 1369-1397. Metalâ€Catalyzed Haloalkynylation Reactions. Chemistry - A European Journal, 2021, , . 341 1.7 10 Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. Nature 342 5.8 18 Communications, 2021, 12, 5956. Diastereoselective Synthesis of Heterocycles via Intramolecular Pd-Catalyzed Alkene Aryliodination. 343 Springer Theses, 2018, , 1-147. Electrochemical chlorination and bromination of electron-deficient C H bonds in quinones, 344 0.7 7 coumarins, quinoxalines and 1,3-diketones. Tetrahedron Letters, 2021, 86, 153514. Halogenations of 3-aryl-1H-pyrazol-5-amines. Synthesis, 0, , . 1.2 Hypervalent lodine(III)-Promoted C3â€"H Regioselective Halogenation of 4-Quinolones under Mild 346 1.6 9 Conditions. ACS Omega, 2021, 6, 34044-34055. Photo-induced catalytic halopyridylation of alkenes. Nature Communications, 2021, 12, 6538. 347 5.8 23 Catalytic remote hydrohalogenation of internal alkenes. Nature Chemistry, 2022, 14, 425-432. 348 22 6.6 Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage 349 5.8 38 functionalization of soraphens. Nature Communications, 2022, 13, 371. 350 Ring-opening fluorination of bicyclic azaarenes. Chemical Science, 2022, 13, 665-670. 9 3.7 Metal-free transfer hydrochlorination of internal Câ€"C triple bonds with a bicyclo[3.1.0]hexane-based 2.2 surrogate releasing two molecules of hydrogen chloride. Chemical Communications, 2022, 58, 973-976.

#	Article	IF	CITATIONS
352	Three-component 1,2-dicarbofunctionalization of alkenes involving alkyl radicals. Chemical Communications, 2022, 58, 730-746.	2.2	45
353	Fe ₃ O ₄ @C@PrS-SO ₃ H: A Novel Efficient Magnetically Recoverable Heterogeneous Catalyst in the Ultrasound-Assisted Synthesis of Coumarin Derivatives. Polycyclic Aromatic Compounds, 2023, 43, 1628-1643.	1.4	3
354	Cobalt(II)-Catalyzed Activation of C(sp ³)–H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catalysis, 2022, 12, 1650-1656.	5.5	15
355	Palladium atalyzed <i>N</i> ³ â€Directed Câ^'H Halogenation of <i>N</i> ⁹ â€Arylpurines and Azapurines. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
356	Electrophilic amidomethylation of arenes with DMSO/MeCN reagents. Organic Chemistry Frontiers, 2022, 9, 2430-2437.	2.3	6
357	Ligand exchange among iodine(<scp>i</scp>) complexes. Dalton Transactions, 2022, 51, 4668-4674.	1.6	13
358	Electrochemically activated carbon–halogen bond cleavage and C–C coupling monitored by <i>in situ</i> shell-isolated nanoparticle-enhanced Raman spectroscopy. Analyst, The, 2022, 147, 1341-1347.	1.7	6
359	Visible light-induced functionalization of indazole and pyrazole: a recent update. Chemical Communications, 2022, 58, 4435-4455.	2.2	26
360	Recent Advances in Firstâ€Row Transitionâ€Metalâ€Mediated Câ^'H Halogenation of (Hetero)arenes and Alkanes. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	13
362	Distal Ruthenaelectro atalyzed <i>meta</i> â€Câ^'H Bromination with Aqueous HBr. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
363	Distale Ruthenaelektroâ€katalysierte <i>meta</i> â^'Hâ€Bromierung mit wÃ\$sriger HBr. Angewandte Chemie, 0, , .	1.6	2
364	Chlorodefluorination of Fluoromethanes and Fluoroolefins at a Lewis Acidic Aluminum Fluoride. ChemCatChem, 2022, 14, .	1.8	3
365	Metallaphotoredoxâ€Enabled Intermolecular Carbobromination of Alkynes with Alkenyl Bromides. Advanced Synthesis and Catalysis, 2022, 364, 1239-1244.	2.1	6
366	Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catalysis, 2022, 12, 3452-3506.	5.5	72
367	Palladiumâ€Catalyzed Carbamoylâ€Carbamoylation/ Carboxylation/Thioesterification of Alkeneâ€Tethered Carbamoyl Chlorides Using Mo(CO) ₆ as the Carbonyl Source. Advanced Synthesis and Catalysis, 2022, 364, 794-801.	2.1	6
368	Palladium atalyzed Selective <i>o</i> â€Bromination of Mesoionic 1,3â€Diphenyltetrazoliumâ€5â€olate: Switching the Directing Group from Nitrogen to Oxygen. ChemistrySelect, 2021, 6, 13414-13418.	0.7	0
369	A two-phase bromination process using tetraalkylammonium hydroxide for the practical synthesis of α-bromolactones from lactones. Beilstein Journal of Organic Chemistry, 2021, 17, 2906-2914.	1.3	0
370	Total Synthesis of (+)-Hinckdentine A: Harnessing Noncovalent Interactions for Organocatalytic Bromination. Jacs Au, 2022, 2, 793-800.	3.6	14

#	Article	IF	CITATIONS
371	Iron(III)â€Mediated Nucleophilic Halogenation of Phenols Using an Amido Directing Group. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
372	Palladium-Catalyzed Cross Haloalkynylation of Haloalkynes. Organic Letters, 2022, 24, 3384-3388.	2.4	4
373	Formal C–H/C–I Metathesis: Site-Selective C–H Iodination of Anilines Using Aryl Iodides. Organic Letters, 2022, 24, 3657-3662.	2.4	10
374	A Shuttle Catalysis: Elucidating a True Reaction Mechanism Involved in the Palladium Xantphos-Assisted Transposition of Aroyl Chloride and Aryl Iodide Functional Groups. Journal of Organic Chemistry, 2022, 87, 12547-12557.	1.7	2
375	Chlorination of arenes via the degradation of toxic chlorophenols. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122425119.	3.3	2
376	Formal C–H/C–I Metathesis: Site-Selective C–H Iodination of 2-Aryl Benzoic Acid Derivatives Using Aryl Iodide. Organic Letters, 2022, 24, 3926-3931.	2.4	6
377	Photoâ€Induced Halogenâ€Atom Transfer: Generation of Halide Radicals for Selective Hydrohalogenation Reactions. Chemistry - A European Journal, 2022, 28, .	1.7	6
378	Mechanistic Study of the Mechanochemical Pd ^{II} -Catalyzed Bromination of Aromatic C–H Bonds by Experimental and Computational Methods. Organometallics, 2022, 41, 1284-1294.	1.1	8
379	Regioselective difunctionalization of alkene: A simple access to haloether, haloesters and halohydrins. Tetrahedron Letters, 2022, 101, 153923.	0.7	3
380	Catalytic Synthesis of 5-Fluoro-2-oxazolines: Using BF ₃ ·Et ₂ O as the Fluorine Source and Activating Reagent. ACS Omega, 2022, 7, 19988-19996.	1.6	5
381	Asymmetric difluorocarbonylation reactions of non-active imines catalyzed by Bi(OAc) ₃ /chiral phosphoric acid. Organic Chemistry Frontiers, 2022, 9, 3990-3997.	2.3	7
382	Nickel-catalyzed hydromonofluoromethylation of unactivated alkenes for expedient construction of primary alkyl fluorides. Chinese Chemical Letters, 2023, 34, 107614.	4.8	8
383	Mechanochemical halogenation of unsymmetrically substituted azobenzenes. Beilstein Journal of Organic Chemistry, 0, 18, 680-687.	1.3	6
384	Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. Chinese Journal of Organic Chemistry, 2022, 42, 1346.	0.6	0
385	Pd(<scp>ii</scp>)-catalyzed <i>meta</i> -C–H bromination and chlorination of aniline and benzoic acid derivatives. Chemical Science, 2022, 13, 8686-8692.	3.7	11
386	Cyclization/hydrolysis of 1,5-enenitriles initiated by sulfonyl radicals in the aqueous phase in the presence of the I ₂ /TBHP system. Organic and Biomolecular Chemistry, 2022, 20, 6418-6422.	1.5	1
387	Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. Journal of the American Chemical Society, 2022, 144, 13415-13425.	6.6	40
388	Pd-Catalyzed Atroposelective C–H Acyloxylation Enabling Access to an Axially Chiral Biaryl Phenol Organocatalyst. Organic Letters, 2022, 24, 5143-5148.	2.4	10

#	Article	IF	CITATIONS
389	Palladium-Catalyzed Regio- and Stereoselective Coupling of Alkynylsulfones with Alkenes: Access to Dichlorinated Vinyl Sulfones. Organic Letters, 2022, 24, 5802-5806.	2.4	3
390	Light-Promoted Nickel-Catalyzed Aromatic Halogen Exchange. ACS Catalysis, 2022, 12, 11089-11096.	5.5	19
391	Palladiumâ€Catalyzed Enantioselective Cyclization of 1,6â€Enynes through Intramolecular Chlorine Transfer as a Novel Strategy for Asymmetric Halopalladation. Chemistry - A European Journal, 2022, 28,	1.7	6
392	Pd(II)â^'Catalyzed Nonâ€Directed Benzylic C(sp ³)â^'H Activation: Cascade C(sp ³)â^'S Bond Cleavage to Access Benzaldehydes from Benzylphenyl Sulfides and Sulfoxides. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	1
394	Heteroatom-Assisted Regio- and Stereoselective Palladium-Catalyzed Carboxylation of 9-Allyl Adenine. Journal of Organic Chemistry, 2022, 87, 12574-12585.	1.7	0
398	Alkali halides as nucleophilic reagent sources for N-directed palladium-catalysed <i>ortho</i> -C–H halogenation of <i>s</i> -tetrazines and other heteroaromatics. RSC Advances, 2022, 12, 30691-30695.	1.7	1
399	DeoxygenativeÂChlorination of Aldehydes and Alcohols with Dichloromethyl Methyl Ether and TiCl4. European Journal of Organic Chemistry, 0, , .	1.2	2
400	Pd(0)/Blue Light Promoted Carboiodination Reaction – Evidence for Reversible C–I Bond Formation via a Radical Pathway. Journal of the American Chemical Society, 2022, 144, 20554-20560.	6.6	27
401	SO ₂ F ₂ Promoted Deoxygenhalogenation from Alcohols: A Practical Method for Preparing Halides ChemistrySelect, 2022, 7, .	0.7	1
402	2,3â€Diodocarbazoles by a Domino Iodocyclization/Iodoâ€Translocation of (3â€Iodoindolyl)butynols. Advanced Synthesis and Catalysis, 0, , .	2.1	1
403	Ruthenium-Catalyzed Regioselective Hydrohalogenation of Alkynes Mediated by Trimethylsilyl Triflate. Organic Letters, 2022, 24, 7988-7992.	2.4	6
404	Ultrasound-promoted three-component halogenation-azaheteroarylation of alkenes involving carbon-halogen and carbon-carbon bond formation. Tetrahedron Letters, 2022, 110, 154198.	0.7	2
405	Niâ€Catalyzed Regioselective Câ€5 Halogenation of 8â€Aminoquinoline and Coâ€Catalyzed Chelation Assisted Câ^'H Iodination of Aromatic Sulfonamides with Molecular Iodine. Chemistry - an Asian Journal, 0, , .	1.7	2
406	Chemoenzymatic Synthesis of Sterically Hindered Biaryls by Suzuki Coupling and Vanadium Chloroperoxidase Catalyzed Halogenations. ChemBioChem, 2023, 24, .	1.3	2
407	Synthesis of aryl/heteroaryl selenides using transition metals catalyzed cross coupling and C─H activation. Current Organic Chemistry, 2022, 27, .	0.9	0
408	Rhodium atalyzed Antiâ€Markovnikov Transfer Hydroiodination of Terminal Alkynes. Angewandte Chemie, 0, , .	1.6	0
409	Halogenation of Unsaturated Amides: Synthesis of Halogenated (Spiro)Oxazolines. ChemistrySelect, 2022, 7, .	0.7	0
410	Rhodium atalyzed Antiâ€Markovnikov Transfer Hydroiodination of Terminal Alkynes**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8

#	Article	IF	CITATIONS
411	Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions. Accounts of Chemical Research, 2022, 55, 3430-3444.	7.6	9
412	Stereoselective Synthesis of (<i>E</i>)- and (<i>Z</i>)-Isocyanoalkenes. Organic Letters, 2022, 24, 8657-8661.	2.4	1
413	Access to Polysubstituted Halophosphorylated Dihydrofurans via Halotrimethylsilane-Promoted Cascade Cyclization of γ-Hydroxyl Ynones with Diphenylphosphine Oxides. Organic Letters, 2022, 24, 8609-8614.	2.4	4
415	Highly efficient synthesis of indoline via palladium catalyzed C–H amination of C(sp2)–H bond using tert-butyl peroxybenzoate as an oxidant. Tetrahedron, 2022, , 133206.	1.0	1
416	Transitionâ€metalâ€free Synthesis of <i>tetra</i> â€substituted Vinyl Iodides by Cascade Sequential Reaction of αâ€Keto Acids, 1â€Iodoalkynes, and Alkyl Halides. Chemistry - an Asian Journal, 2023, 18, .	1.7	0
417	Paired electrochemical C–H bromination of (hetero)arenes with 2-bromoethan-1-ol. Organic Chemistry Frontiers, 2023, 10, 990-995.	2.3	27
418	Microwave assisted regioselective halogenation of benzo[<i>b</i>][1,4]oxazin-2-ones <i>via</i> sp ² C–H functionalization. RSC Advances, 2023, 13, 2365-2371.	1.7	1
419	Theoretical Investigation on the Elusive Structure-Activity Relationship of the Bioinspired High-Valent Nickel-Halogen Complexes in the Oxidative Fluorination Reactions. Dalton Transactions, 0, , .	1.6	1
420	Ringâ€Opening Fluorination of Carbo/Heterocycles and Aromatics: Construction of Complex and Diverse Fluorineâ€Containing Molecules. Chemical Record, 2023, 23, .	2.9	4
421	A Unified, Microwaveâ€Assisted, Palladiumâ€Catalyzed Regioselective Orthoâ€monohalogenation of 1â€Alkyl/benzylâ€3â€Phenylquinoxalinâ€2(1 <i>H</i>)â€ones. ChemistrySelect, 2023, 8, .	0.7	2
422	Thioureaâ€Promoted Cascade Dihalogenation yclization of Cyclohexadienone ontaining 1,6â€Enynes. Advanced Synthesis and Catalysis, 0, , .	2.1	1
423	Ruthenium(II) Complexâ€based Highly Specific Luminescence Lightâ€up Probe for Detecting HOCl via C(sp) Tj E	TQ _{8.7} 10.3	784314 rgBT
424	Palladium atalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
425	Câ~'H Functionalized Molecules: Synthesis, Reaction Mechanism, and Biological Activity. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1
426	Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein Journal of Organic Chemistry, 0, 19, 448-473.	1.3	3
427	A simple fluorescent sensor for the meticulous recognition of Cu2+ ion and its functioning in logic gate and keypad lock. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114750.	2.0	1
428	Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. Molecular Catalysis, 2023, 537, 112950.	1.0	2
429	Enantioselective <i>anti</i> -Dihalogenation of Electron-Deficient Olefin: A Triplet Halo-Radical Pylon Intermediate. Journal of the American Chemical Society, 2023, 145, 4808-4818.	6.6	9

#	Article	IF	CITATIONS
430	Mechanism and Selectivity of Copper-Catalyzed Bromination of Distal C(sp ³)–H Bonds. Organometallics, 2023, 42, 2467-2476.	1.1	1
431	Evidence for a High-Valent Iron-Fluoride That Mediates Oxidative C(sp ³)-H Fluorination. Jacs Au, 2023, 3, 919-928.	3.6	5
432	Closing the Cycle as It Begins: Synthesis of <i>ortho</i> â€lodobiaryls via Catellani Reaction. Angewandte Chemie, 2023, 135, .	1.6	0
433	Closing the Cycle as It Begins: Synthesis of <i>ortho</i> ″odobiaryls via Catellani Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
435	Palladium atalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie, 2023, 135, .	1.6	1
436	Engineering <i>Saccharomyces cerevisiae</i> for the <i>de novo</i> Production of Halogenated Tryptophan and Tryptamine Derivatives. ChemistryOpen, 2023, 12, .	0.9	3
437	Different Performances of BF ₃ , BCl ₃ , and BBr ₃ in Hypervalent Iodine-Catalyzed Halogenations. Journal of Organic Chemistry, 2023, 88, 4359-4371.	1.7	0
438	The C-3 Functionalization of 1H-Indazole through Suzuki–Miyaura Cross-Coupling Catalyzed by a Ferrocene-Based Divalent Palladium Complex Immobilized over Ionic Liquid, as Well as Theoretical Insights into the Reaction Mechanism. Applied Sciences (Switzerland), 2023, 13, 4095.	1.3	2
439	Sterically controlled isodesmic late-stage C–H iodination of arenes. Chemical Science, 2023, 14, 4357-4362.	3.7	2
440	Asymmetric Palladium-Catalyzed Aminochlorination of Unactivated Alkenes. Organic Letters, 2023, 25, 2685-2690.	2.4	1
441	Site- and Stereoselective Synthesis of Alkenyl Chlorides by Dual Functionalization of Internal Alkynes via Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2023, 145, 9876-9885.	6.6	7
445	Übergangsmetallkatalysierte Kupplungsreaktionen. , 2023, , 615-751.		0
448	Flipping the Switch on Palladium-Catalyzed Carboiodination: Accessing Kinetic and Thermodynamic Products. ACS Catalysis, 2023, 13, 6562-6567.	5.5	2
451	Nickel Meets Aryl Thianthrenium Salts: Ni(I)-Catalyzed Halogenation of Arenes. Journal of the American Chemical Society, 2023, 145, 9988-9993.	6.6	12
457	C–H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Topics in Current Chemistry, 2023, 381, .	3.0	1
458	Functional Group Transformation Via Carbonyl Derivatives. , 2023, , .		0
467	Carbohalogenation. , 2023, , .		1
480	Recent advances in oxidative chlorination. Organic and Biomolecular Chemistry, 2024, 22, 1580-1601.	1.5	0

#	Article	IF	CITATIONS
483	Recent trends in the synthesis and applications of β-iodovinyl sulfones: a decade of progress. Organic and Biomolecular Chemistry, 2024, 22, 2492-2509.	1.5	0