LC–MS based global metabolite profiling: the necessit

Metabolomics 12, 1 DOI: 10.1007/s11306-016-1058-x

Citation Report

#	Article	IF	CITATIONS
1	The co-feature ratio, a novel method for the measurement of chromatographic and signal selectivity in LC-MS-based metabolomics. Analytica Chimica Acta, 2017, 956, 40-47.	2.6	4
2	β-N-Methylamino-l-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling. Amino Acids, 2017, 49, 905-919.	1.2	35
3	metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics, 2017, 18, 183.	1.2	489
4	Endocrinology Meets Metabolomics: Achievements, Pitfalls, and Challenges. Trends in Endocrinology and Metabolism, 2017, 28, 705-721.	3.1	29
5	Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig. Frontiers in Cellular Neuroscience, 2017, 11, 280.	1.8	30
6	Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nature Protocols, 2018, 13, 633-651.	5.5	207
7	Model selection for within-batch effect correction in UPLC-MS metabolomics using quality control - Support vector regression. Analytica Chimica Acta, 2018, 1026, 62-68.	2.6	32
8	Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Analytical and Bioanalytical Chemistry, 2018, 410, 801-825.	1.9	113
9	Evaluation of batch effect elimination using quality control replicates in LC-MS metabolite profiling. Analytica Chimica Acta, 2018, 1019, 38-48.	2.6	42
10	Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 149-173.	1.4	244
11	Data Analysis for Metabolomics: Pathway Reconstruction and Functional Annotation. , 2018, , .		0
12	Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE, 2018, 13, e0204249.	1.1	62
13	Method selectivity evaluation using the co-feature ratio in LC/MS metabolomics: Comparison of HILIC stationary phase performance for the analysis of plasma, urine and cell extracts. Journal of Chromatography A, 2018, 1568, 49-56.	1.8	16
14	Mass Spectrometry-Based Metabolomic Analysis. , 2019, , 410-425.		1
15	Comprehensive Improvement of Sample Preparation Methodologies Facilitates Dynamic Metabolomics of Aspergillus niger. Biotechnology Journal, 2019, 14, 1800315.	1.8	18
16	Monitoring of system conditioning after blank injections in untargeted UPLC-MS metabolomic analysis. Scientific Reports, 2019, 9, 9822.	1.6	26
17	Exploring Radiation Response in Two Head and Neck Squamous Carcinoma Cell Lines Through Metabolic Profiling. Frontiers in Oncology, 2019, 9, 825.	1.3	19
18	Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microbial Cell Factories, 2019, 18, 28.	1.9	71

#	Article	IF	CITATIONS
19	Adduct formation in electrospray ionisation-mass spectrometry with hydrophilic interaction liquid chromatography is strongly affected by the inorganic ion concentration of the samples. Journal of Chromatography A, 2019, 1600, 174-182.	1.8	21
20	Introducing Metabolomics. , 2019, , 1-56.		2
21	Biomarkers Detection for Toxicity Testing Using Metabolomics. , 2019, , 1111-1124.		1
22	Determination of metabolites of <i>Geotrichum citri-aurantii</i> treated with peppermint oil using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Journal of Food Biochemistry, 2019, 43, e12745.	1.2	5
23	Evaluation of Sample Preparation Methods for Inter-Laboratory Metabolomics Investigation of Streptomyces lividans TK24. Metabolites, 2020, 10, 379.	1.3	3
24	Polycystic ovary syndrome in adolescents: Q-TOF LC/MS analysis of human plasma metabolome. Journal of Pharmaceutical and Biomedical Analysis, 2020, 191, 113543.	1.4	6
25	Can we trust biomarkers identified using different non-targeted metabolomics platforms? Multi-platform, inter-laboratory comparative metabolomics profiling of lettuce cultivars via UPLC-QTOF-MS. Metabolomics, 2020, 16, 85.	1.4	13
26	Five Easy Metrics of Data Quality for LC–MS-Based Global Metabolomics. Analytical Chemistry, 2020, 92, 12925-12933.	3.2	31
27	Fundamentals of environmental metabolomics. , 2020, , 1-33.		4
28	The power of genomics, metabolomics, and other omics for target identification and validation. , 2021, , 33-48.		0
29	Representing the Metabolome with High Fidelity: Range and Response as Quality Control Factors in LC-MS-Based Global Profiling. Analytical Chemistry, 2021, 93, 1924-1933.	3.2	26
30	Analytical Techniques/Technologies for Studying Ecological Microbial Samples. Environmental and Microbial Biotechnology, 2021, , 481-517.	0.4	0
31	A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma. Cell Death and Disease, 2021, 12, 167.	2.7	12
32	Improved Sensitivity in Hydrophilic Interaction Liquid Chromatography-Electrospray-Mass Spectrometry after Removal of Sodium and Potassium Ions from Biological Samples. Metabolites, 2021, 11, 170.	1.3	5
33	Automated Sequential Analysis of Hydrophilic and Lipophilic Fractions of Biological Samples: Increasing Single-Injection Chemical Coverage in Untargeted Metabolomics. Metabolites, 2021, 11, 295.	1.3	3
34	The Effects of Sampling and Storage Conditions on the Metabolite Profile of the Marine Sponge Geodia barretti. Frontiers in Chemistry, 2021, 9, 662659.	1.8	4
35	Review on in vivo profiling of drug metabolites with LC-MS/MS in the past decade. Bioanalysis, 2021, 13, 1697-1722.	0.6	6
36	The Contribution of Metabolomics to Systems Biology: Current Applications Bridging Genotype and Phenotype in Plant Science. Advances in Experimental Medicine and Biology, 2021, 1346, 91-105.	0.8	0

CITATION REPORT

#	Article	IF	CITATIONS
	Non-Invasive Identification of Sex in Cultured Bovine Embryos by UHPLC-MS/MS Metabolomics. Metabolomics, 2022, 18, .	1.4	1