Species-specific wiring for direction selectivity in the m

Nature 535, 105-110 DOI: 10.1038/nature18609

Citation Report

#	Article	IF	CITATIONS
1	Konnektomik mit zelluläer Präision. E-Neuroforum, 2016, 22, 69-72.	0.1	0
2	Connectomics at cellular precision. E-Neuroforum, 2016, 22, .	0.1	0
3	Development of synaptic connectivity in the retinal direction selective circuit. Current Opinion in Neurobiology, 2016, 40, 45-52.	4.2	19
4	Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development. Journal of Neuroscience, 2016, 36, 9683-9695.	3.6	16
5	3-dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons. Scientific Data, 2016, 3, 160100.	5.3	36
6	Connectomics at cellular precision. E-Neuroforum, 2016, 7, 45-47.	0.1	2
7	Species-specific motion detectors. Nature, 2016, 535, 45-46.	27.8	13
8	Connectomics of synaptic microcircuits: lessons from the outer retina. Journal of Physiology, 2017, 595, 5517-5524.	2.9	6
9	Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells. Cell Reports, 2017, 18, 1356-1365.	6.4	57
10	Visual Circuits for Direction Selectivity. Annual Review of Neuroscience, 2017, 40, 211-230.	10.7	147
11	Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. Journal of Neurophysiology, 2017, 118, 434-454.	1.8	29
12	Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annual Review of Neuroscience, 2017, 40, 395-424.	10.7	45
13	Inhibitory Interneurons in the Retina: Types, Circuitry, and Function. Annual Review of Vision Science, 2017, 3, 1-24.	4.4	144
14	Neuronal Diversity In The Retina. E-Neuroforum, 2017, 23, 93-101.	0.1	6
15	These retinas are made for walkin'. Nature, 2017, 546, 476-477.	27.8	2
16	A retinal code for motion along the gravitational and body axes. Nature, 2017, 546, 492-497.	27.8	122
17	Artificial Synaptic Rewiring Demonstrates that Distinct Neural Circuit Configurations Underlie Homologous Behaviors. Current Biology, 2017, 27, 1721-1734.e3.	3.9	34
18	Variations on a theme: species differences in synaptic connectivity do not predict central pattern generator activity. Journal of Neurophysiology, 2017, 118, 1123-1132.	1.8	17

ATION REDO

#	Article	IF	CITATIONS
19	Immunocytochemical localization of cholinergic amacrine cells in the bat retina. Acta Histochemica, 2017, 119, 428-437.	1.8	4
20	General features of inhibition in the inner retina. Journal of Physiology, 2017, 595, 5507-5515.	2.9	37
21	Perspective: A New Era of Comparative Connectomics. , 2017, , 509-518.		2
22	Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron, 2017, 95, 914-927.e4.	8.1	41
23	The genetic encoded toolbox for electron microscopy and connectomics. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e288.	5.9	4
24	Local Signals in Mouse Horizontal Cell Dendrites. Current Biology, 2017, 27, 3603-3615.e5.	3.9	20
25	"Silent―NMDA Synapses Enhance Motion Sensitivity in a Mature Retinal Circuit. Neuron, 2017, 96, 1099-1111.e3.	8.1	25
26	Neuronale Vielfalt in der Netzhaut. E-Neuroforum, 2017, 23, 114-123.	0.1	0
27	Local processing in neurites of VGluT3-expressing amacrine cells differentially organizes visual information. ELife, 2017, 6, .	6.0	23
28	Reexamination of Dopaminergic Amacrine Cells in the Rabbit Retina: Confocal Analysis with Doubleand Triple-labeling Immunohistochemistry. Experimental Neurobiology, 2017, 26, 329-338.	1.6	3
29	Neural Representations Observed. Minds and Machines, 2018, 28, 191-235.	4.8	26
30	The Circuit Motif as a Conceptual Tool for Multilevel Neuroscience. Trends in Neurosciences, 2018, 41, 128-136.	8.6	31
31	Diversity of meso-scale architecture in human and non-human connectomes. Nature Communications, 2018, 9, 346.	12.8	124
32	A Dense Starburst Plexus Is Critical for Generating Direction Selectivity. Current Biology, 2018, 28, 1204-1212.e5.	3.9	39
33	Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina. Cell Reports, 2018, 22, 2898-2908.	6.4	57
34	The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell. Neuron, 2018, 97, 150-163.e4.	8.1	74
35	Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context. Frontiers in Neurorobotics, 2018, 12, 75.	2.8	2
36	GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12083-E12090.	7.1	19

#	Article	IF	CITATIONS
37	Bistratified starburst amacrine cells in <i>Sox2</i> conditional knockout mouse retina display ON and OFF responses. Journal of Neurophysiology, 2018, 120, 2121-2129.	1.8	7
38	Blood platelet and serum bilirubin in the diagnosis of central serous chorioretinopathy. Experimental and Therapeutic Medicine, 2018, 16, 874-878.	1.8	0
39	Sodium and potassium conductances in principal neurons of the mouse piriform cortex: a quantitative description. Journal of Physiology, 2018, 596, 5397-5414.	2.9	4
40	Cholinergic excitation complements glutamate in coding visual information in retinal ganglion cells. Journal of Physiology, 2018, 596, 3709-3724.	2.9	12
41	Of what use is connectomics? A personal perspective on the Drosophila connectome. Journal of Experimental Biology, 2018, 221, .	1.7	49
42	Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact. ELife, 2018, 7, .	6.0	44
43	Elementary Motion Detection in <i>Drosophila</i> : Algorithms and Mechanisms. Annual Review of Vision Science, 2018, 4, 143-163.	4.4	49
44	Orientation-Selective Retinal Circuits in Vertebrates. Frontiers in Neural Circuits, 2018, 12, 11.	2.8	22
45	A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell, 2018, 174, 730-743.e22.	28.9	731
46	Neural Mechanisms of Motion Processing in the Mammalian Retina. Annual Review of Vision Science, 2018, 4, 165-192.	4.4	76
47	Synaptic Transfer between Rod and Cone Pathways Mediated by All Amacrine Cells in the Mouse Retina. Current Biology, 2018, 28, 2739-2751.e3.	3.9	41
48	Dendrite morphogenesis from birth to adulthood. Current Opinion in Neurobiology, 2018, 53, 139-145.	4.2	32
49	Stimulus-dependent engagement of neural mechanisms for reliable motion detection in the mouse retina. Journal of Neurophysiology, 2018, 120, 1153-1161.	1.8	13
50	Relating network connectivity to dynamics: opportunities and challenges for theoretical neuroscience. Current Opinion in Neurobiology, 2019, 58, 11-20.	4.2	16
51	AMIGO2 Scales Dendrite Arbors in the Retina. Cell Reports, 2019, 29, 1568-1578.e4.	6.4	16
52	Motion Vision: A New Mechanism in the Mammalian Retina. Current Biology, 2019, 29, R933-R935.	3.9	4
53	Muscarinic acetylcholine receptor signaling generates OFF selectivity in a simple visual circuit. Nature Communications, 2019, 10, 4093.	12.8	5
54	Spatiotemporally Asymmetric Excitation Supports Mammalian Retinal Motion Sensitivity. Current Biology, 2019, 29, 3277-3288.e5.	3.9	53

#	Article	IF	CITATIONS
55	Neural mechanisms of contextual modulation in the retinal direction selective circuit. Nature Communications, 2019, 10, 2431.	12.8	32
56	Bipolar Cell Type-Specific Expression and Conductance of Alpha-7 Nicotinic Acetylcholine Receptors in the Mouse Retina. , 2019, 60, 1353.		13
57	Revealing the Synaptic Hodology of Mammalian Neural Circuits With Multiscale Neurocartography. Frontiers in Neuroinformatics, 2019, 13, 52.	2.5	2
58	Circuit interrogation in freely moving animals. Nature Methods, 2019, 16, 9-11.	19.0	14
59	Function first: classifying cell types and circuits of the retina. Current Opinion in Neurobiology, 2019, 56, 8-15.	4.2	39
60	Molecular Fingerprinting of On–Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. Journal of Neuroscience, 2019, 39, 78-95.	3.6	44
61	Directional excitatory input to directionâ€selective ganglion cells in the rabbit retina. Journal of Comparative Neurology, 2019, 527, 270-281.	1.6	18
62	OBSOLETE: The Senses: Retinal Connectomics. , 2020, , .		2
63	Understanding the retinal basis of vision across species. Nature Reviews Neuroscience, 2020, 21, 5-20.	10.2	191
64	Visual Experience Influences Dendritic Orientation but Is Not Required for Asymmetric Wiring of the Retinal Direction Selective Circuit. Cell Reports, 2020, 31, 107844.	6.4	11
65	New Optical Tools to Study Neural Circuit Assembly in the Retina. Frontiers in Neural Circuits, 2020, 14, 44.	2.8	3
66	Antagonistic Center-Surround Mechanisms for Direction Selectivity in the Retina. Cell Reports, 2020, 31, 107608.	6.4	21
67	Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Reports, 2021, 34, 108858.	6.4	9
68	Rapid multi-directed cholinergic transmission in the central nervous system. Nature Communications, 2021, 12, 1374.	12.8	23
69	Smart Contact Lenses with a Transparent Silver Nanowire Strain Sensor for Continuous Intraocular Pressure Monitoring. ACS Applied Bio Materials, 2021, 4, 4532-4541.	4.6	24
73	A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. Journal of Neuroscience, 2021, 41, 6018-6037.	3.6	11
74	Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit. ELife, 2021, 10, .	6.0	3
76	Dense Circuit Reconstruction to Understand Neuronal Computation: Focus on Zebrafish. Annual Review of Neuroscience, 2021, 44, 275-293.	10.7	14

	Сітл	CITATION REPORT	
#	Article	IF	CITATIONS
78	Computational and Molecular Properties of Starburst Amacrine Cell Synapses Differ With Postsynaptic Cell Type. Frontiers in Cellular Neuroscience, 2021, 15, 660773.	3.7	9
79	Dendrite Morphology Minimally Influences the Synaptic Distribution of Excitation and Inhibition in Retinal Direction-Selective Ganglion Cells. ENeuro, 2021, 8, ENEURO.0261-21.2021.	1.9	2
81	Direction selectivity in retinal bipolar cell axon terminals. Neuron, 2021, 109, 2928-2942.e8.	8.1	26
82	Direction selectivity. , 2021, , 200-229.		4
88	RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila. PLoS ONE, 2016, 1 e0163986.	11, 2.5	23
89	A Cre Mouse Line for Probing Irradiance- and Direction-Encoding Retinal Networks. ENeuro, 2017, 4, ENEURO.0065-17.2017.	1.9	27
90	Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Frontiers in Cellular Neuroscience, 2020, 14, 604163.	3.7	8
91	Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity. ELife, 2016, 5, .	6.0	58
92	Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. ELife, 2019, 8, .	6.0	30
93	The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. ELife, 2020, 9, .	6.0	22
94	Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. ELife, 2020, 9, .	6.0	18
95	Preserving inhibition with a disinhibitory microcircuit in the retina. ELife, 2020, 9, .	6.0	11
96	ParallelÂComputations in an ActiveÂDendritic Arbor During Natural Patterns of Activity. SSRN Electronic Journal, 0, , .	0.4	0
98	Retinal Connectomics. , 2017, , 41-62.		0
105	Precise Subcellular Coordination of Excitation and Inhibition Supports Micron-Scale Dendritic Computations. SSRN Electronic Journal, 0, , .	0.4	0
111	Retinal Connectomics. , 2020, , 320-343.		0
113	Mammalian Retina Development. , 2020, , 234-251.		2
114	Direction Selectivity in the Retina and Beyond. , 2020, , 423-446.		1

#	Article	IF	CITATIONS
118	Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina. Current Biology, 2022, 32, 315-328.e4.	3.9	8
119	Direction Selectivity in TmY Neurites in Drosophila. SSRN Electronic Journal, 0, , .	0.4	0
120	Spiking Characteristics of Network-Mediated Responses Arising in Direction-Selective Ganglion Cells of Rabbit and Mouse Retinas to Electric Stimulation for Retinal Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2445-2455.	4.9	4
121	Asymmetric Distributions of Achromatic Bipolar Cells in the Mouse Retina. Frontiers in Neuroanatomy, 2021, 15, 786142.	1.7	1
122	The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Cell Reports, 2022, 38, 110225.	6.4	22
124	Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Reports, 2021, 37, 110106.	6.4	22
125	Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility. ELife, 2021, 10, .	6.0	7
126	Parallel processing in active dendrites during periods of intense spiking activity. Cell Reports, 2022, 38, 110412.	6.4	6
127	Gain control by sparse, ultra-slow glycinergic synapses. Cell Reports, 2022, 38, 110410.	6.4	10
128	Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. Cell, 2022, 185, 1082-1100.e24.	28.9	84
129	Structural brain network topological alterations in stuttering adults. Brain Communications, 2022, 4, fcac058.	3.3	0
130	Distinct inhibitory pathways control velocity and directional tuning in the mouse retina. Current Biology, 2022, 32, 2130-2143.e3.	3.9	7
131	Feature Detection by Retinal Ganglion Cells. Annual Review of Vision Science, 2022, 8, 135-169.	4.4	32
132	Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity. PLoS Computational Biology, 2021, 17, e1009754.	3.2	6
139	Roles of visually evoked and spontaneous activity in the development of retinal direction selectivity maps. Trends in Neurosciences, 2022, 45, 529-538.	8.6	5
140	Conserved circuits for direction selectivity in the primate retina. Current Biology, 2022, 32, 2529-2538.e4.	3.9	14
141	Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nature Communications, 2022, 13, .	12.8	17
142	Origins of direction selectivity in the primate retina. Nature Communications, 2022, 13, .	12.8	19

#	Article	IF	CITATIONS
147	Hierarchical partner selection shapes rod-cone pathway specificity in the inner retina. IScience, 2022, 25, 105032.	4.1	7
148	Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nature Communications, 2022, 13, .	12.8	18
149	Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells. Nature Communications, 2022, 13, .	12.8	15
152	Evolution of central neural circuits: state of the art and perspectives. Nature Reviews Neuroscience, 2022, 23, 725-743.	10.2	27
153	Regulatory effect of long-stranded non-coding RNA-CRNDE on neurodegeneration during retinal ischemia-reperfusion. Heliyon, 2022, 8, e10994.	3.2	2
155	Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. ELife, 0, 11, .	6.0	11
156	Direction Selectivity of TmY Neurites in Drosophila. Neuroscience Bulletin, 0, , .	2.9	0
157	An Artificial Visual System for Three Dimensional Motion Direction Detection. Electronics (Switzerland), 2022, 11, 4161.	3.1	1
158	Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. Cell Reports, 2023, 42, 112006.	6.4	2
159	Hierarchical retinal computations rely on hybrid chemical-electrical signaling. Cell Reports, 2023, 42, 112030.	6.4	10
160	SynapseCLR: Uncovering features of synapses in primary visual cortex through contrastive representation learning. Patterns, 2023, 4, 100693.	5.9	1
161	Asymmetric retinal direction tuning predicts optokinetic eye movements across stimulus conditions. ELife, 0, 12, .	6.0	2
162	New insights into retinal circuits through EM connectomics: what we have learnt and what remains to be learned. Frontiers in Ophthalmology, 0, 3, .	0.5	2
163	Large-scale interrogation of retinal cell functions by 1-photon light-sheet microscopy. Cell Reports Methods, 2023, 3, 100453.	2.9	1
164	Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
165	Emerging computational motifs: Lessons from the retina. Neuroscience Research, 2023, 196, 11-22.	1.9	0
166	Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. Visual Neuroscience, 2023, 40, .	1.0	3
167	Starburst amacrine cells form gap junctions in the early postnatal stage of the mouse retina. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0

ARTICLE IF CITATIONS # TARPÎ³2 is required for normal AMPA receptor expression and function in direction-selective circuits 168 1.9 0 of the mammalian retina. ENeuro, 0, , ENEURO.0158-23.2023. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in 12.8 Drosophila. Nature Communications, 2023, 14, . Asymmetric connections with starburst amacrine cells underlie the upward motion selectivity of 170 5.6 0 J-type retinal ganglion cells. PLoS Biology, 2023, 21, e3002301. A circuit suppressing retinal drive to the optokinetic system during fast image motion. Nature 171 Communications, 2023, 14, . Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. IScience, 174 4.1 0 2023, 26, 107928. Neural Circuits Underlying Multifeature Extraction in the Retina. Journal of Neuroscience, 2024, 44, 3.6 e0910232023. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine 177 6.0 0 cells. ELife, 0, 12, . GABAergic Inhibition Controls Receptive Field Size, Sensitivity, and Contrast Preference of Direction Selective Retinal Ganglion Cells Near the Threshold of Vision. Journal of Neuroscience, 2024, 44, 179 3.6 e1979232023. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion 181 12.8 1 cell types. Nature Communications, 2024, 15, . Quantitative evaluation of embedding resins for volume electron microscopy. Frontiers in 2.8 Neuroscience, 0, 18, . Defining morphologically and genetically distinct GABAergic/cholinergic amacrine cell subtypes in 184 0 5.6 the vertebrate retina. PLoS Biology, 2024, 22, e3002506. Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst 12.8 amacrine cells. Nature Communications, 2024, 15, .

CITATION REPORT