Pressure-Induced Structural and Optical Properties of O Perovskite-Based Formamidinium Lead Bromide

Journal of Physical Chemistry Letters 7, 2556-2562

DOI: 10.1021/acs.jpclett.6b00999

Citation Report

#	Article	IF	CITATIONS
1	Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. Journal of Physical Chemistry Letters, 2016, 7, 5273-5279.	4.6	120
2	Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2016, 7, 3458-3466.	4.6	176
3	High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH ₃ -(CH ₂) ₄ -NH ₃]CuCl ₄ . Journal of Physical Chemistry Letters, 2017, 8, 500-506.	4.6	65
4	Between the Sheets: Postsynthetic Transformations in Hybrid Perovskites. Chemistry of Materials, 2017, 29, 1868-1884.	6.7	75
5	Piezochromic Topology Switch in a Coordination Polymer. Journal of Physical Chemistry Letters, 2017, 8, 929-935.	4.6	30
6	Photovoltaic Hybrid Perovskites under Pressure. Journal of Physical Chemistry Letters, 2017, 8, 2496-2506.	4.6	104
7	Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 2119-2125.	4.6	115
8	Pressureâ€Induced Bandgap Optimization in Leadâ€Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability. Advanced Functional Materials, 2017, 27, 1604208.	14.9	167
9	Pressure-Induced Effects in Organic–Inorganic Hybrid Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2613-2622.	4.6	88
10	Halide Perovskites under Pressure: Accessing New Properties through Lattice Compression. ACS Energy Letters, 2017, 2, 1549-1555.	17.4	138
11	From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. Chemistry of Materials, 2017, 29, 3490-3498.	6.7	234
12	Pressure-Induced Metallization of the Halide Perovskite (CH ₃ NH ₃)PbI ₃ . Journal of the American Chemical Society, 2017, 139, 4330-4333.	13.7	157
13	Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. Journal of Physical Chemistry Letters, 2017, 8, 137-143.	4.6	39
14	Piezochromic Porous Metal–Organic Framework. Journal of Physical Chemistry Letters, 2017, 8, 279-284.	4.6	53
15	Chemistry at high pressure: Tuning functional materials properties. MRS Bulletin, 2017, 42, 718-723.	3.5	8
16	Reversible pressure pre-amorphization of a piezochromic metal–organic framework. Dalton Transactions, 2017, 46, 14795-14803.	3.3	30
17	Pressure-Induced Emission Enhancement of Carbazole: The Restriction of Intramolecular Vibration. Journal of Physical Chemistry Letters, 2017, 8, 4191-4196.	4.6	95
18	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	7.4	74

#	Article	IF	CITATIONS
19	Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide. ACS Nano, 2017, 11, 8072-8083.	14.6	66
20	Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride. Applied Physics Letters, 2017, 111, .	3.3	28
21	Effects of Nonhydrostatic Stress on Structural and Optoelectronic Properties of Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 3457-3465.	4.6	53
22	Pressure Effects on Structure and Optical Properties in Cesium Lead Bromide Perovskite Nanocrystals. Journal of the American Chemical Society, 2017, 139, 10087-10094.	13.7	214
23	Plastic Deformation of Pressured Metallic Glass. Materials, 2017, 10, 1361.	2.9	7
24	Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr ₃ . Journal of Physical Chemistry Letters, 2017, 8, 3752-3758.	4.6	182
25	Multifunctional luminescent magnetic cryocooler in a Gd ₅ Mn ₂ pyramidal complex. Chemical Communications, 2018, 54, 4104-4107.	4.1	34
26	Compressibility of Cs 2 SnBr 6 by X-ray diffraction and Raman spectroscopy. Solid State Communications, 2018, 275, 68-72.	1.9	24
27	Colloidal synthesis of monolayer-thick formamidinium lead bromide perovskite nanosheets with a lateral size of micrometers. Chemical Communications, 2018, 54, 4021-4024.	4.1	14
28	Highâ€Pressureâ€Induced Comminution and Recrystallization of CH ₃ NH ₃ PbBr ₃ Nanocrystals as Large Thin Nanoplates. Advanced Materials, 2018, 30, 1705017.	21.0	89
29	Pressure-induced phase transformation of CsPbl ₃ by X-ray diffraction and Raman spectroscopy. Phase Transitions, 2018, 91, 38-47.	1.3	61
30	Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite. Applied Physics Letters, 2018, 113, .	3.3	13
31	Phase Transitions of Formamidinium Lead Iodide Perovskite under Pressure. Journal of the American Chemical Society, 2018, 140, 13952-13957.	13.7	78
32	Defect Perovskites under Pressure: Structural Evolution of Cs ₂ SnX ₆ (X = Cl,) Tj ETQq1	1 0.78431 3.1	4 ₄₂ BT /Ove
33	Building bridges between halide perovskite nanocrystals and thin-film solar cells. Sustainable Energy and Fuels, 2018, 2, 2381-2397.	4.9	37
34	Pressure-Induced Locking of Methylammonium Cations versus Amorphization in Hybrid Lead Iodide Perovskites. Journal of Physical Chemistry C, 2018, 122, 22073-22082.	3.1	42
35	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	8.6	36
36	Mixed A-Cation Perovskites for Solar Cells: Atomic-Scale Insights Into Structural Distortion, Hydrogen Bonding, and Electronic Properties. Chemistry of Materials, 2018, 30, 5194-5204.	6.7	127

		CITATION REPORT	
#	ARTICLE Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid	IF	CITATIONS
37	Perovskite Phase Transition Material. Journal of Physical Chemistry A, 2018, 122, 6416-6423.	2.5	25
38	Pressure-Induced Phase Transformation and Band-Gap Engineering of Formamidinium Lead Iodide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 4199-4205.	4.6	78
39	Pressure-Induced Topological Nontrivial Phase and Tunable Optical Properties in All-Inorganic Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 17718-17725.	3.1	40
40	Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites. Applied Physics Letters, 2018, 112, .	3.3	21
41	Structural effects on optoelectronic properties of halide perovskites. Chemical Society Reviews, 2018, 47, 7045-7077.	38.1	108
42	Kopplung von hoch―und niederfrequenten Schwingungsmoden in organischâ€anorganischen Perowskiten. Angewandte Chemie, 2018, 130, 13845-13849.	2.0	0
43	Vibrational Coupling between Organic and Inorganic Sublattices of Hybrid Perovskites. Angewandte Chemie - International Edition, 2018, 57, 13657-13661.	13.8	34
44	Thermally Stimulated Light Reflection and Photoluminescence of BaTiO ₃ . Langmuir, 2018, 34, 10250-10253.	3.5	1
45	Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion. Advanced Materials, 2019, 31, e1807376.	21.0	91
46	Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Science Advances, 2019, 5, eaav9445.	10.3	130
47	A Review on Energy Bandâ€Gap Engineering for Perovskite Photovoltaics. Solar Rrl, 2019, 3, 1900304.	5.8	87
48	Band Gap Engineering in MASnBr ₃ and CsSnBr ₃ Perovskites: Mechanistic Insights through the Application of Pressure. Journal of Physical Chemistry Letters, 2019, 10, 7398-7405.	4.6	57
49	Internal and external pressure in cubic perovskites: electronic structure effects and systematic accuracy from first principles. Electronic Structure, 2019, 1, 035001.	2.8	6
50	Direct–Indirect Transition of Pressurized Two-Dimensional Halide Perovskite: Role of Benzene Ring Stack Ordering. Journal of Physical Chemistry Letters, 2019, 10, 5687-5693.	4.6	20
51	Pressure-induced effects in the inorganic halide perovskite CsGel ₃ . RSC Advances, 2019, 9, 3279-3284.	3.6	73
52	Large Band Gap Narrowing and Prolonged Carrier Lifetime of (C ₄ H ₉ NH ₃) ₂ PbI ₄ under High Pressure. Advanced Science, 2019, 6, 1900240.	11.2	47
53	Metal halide perovskites under compression. Journal of Materials Chemistry A, 2019, 7, 16089-16108.	10.3	42
54	Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2019, 123, 15204-15208.	3.1	18

#	Article	IF	CITATIONS
55	Mechanical properties of hybrid organic-inorganic perovskites. Coordination Chemistry Reviews, 2019, 391, 15-29.	18.8	80
56	Pressure-induced fluorescence enhancement of FA _α PbBr _{2+α} composite perovskites. Nanoscale, 2019, 11, 5868-5873.	5.6	16
57	Pressure engineering of photovoltaic perovskites. Materials Today, 2019, 27, 91-106.	14.2	79
58	Dynamic Resolution of Piezosensitivity in Single Crystals of π onjugated Molecules. Chemistry - A European Journal, 2019, 25, 6092-6097.	3.3	6
59	Excitonic states and structural stability in two-dimensional hybrid organic-inorganic perovskites. Journal of Science: Advanced Materials and Devices, 2019, 4, 189-200.	3.1	32
60	Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. Journal of Materials Chemistry A, 2019, 7, 6357-6362.	10.3	30
61	Lab in a DAC – high-pressure crystal chemistry in a diamond-anvil cell. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 918-926.	1.1	24
62	A Review on Energy Bandâ€Gap Engineering for Perovskite Photovoltaics. Solar Rrl, 2019, 3, 1970116.	5.8	36
63	Pressure-Induced Band Structure Evolution of Halide Perovskites: A First-Principles Atomic and Electronic Structure Study. Journal of Physical Chemistry C, 2019, 123, 739-745.	3.1	53
64	Revealing Photoluminescence Modulation from Layered Halide Perovskite Microcrystals upon Cyclic Compression. Advanced Materials, 2019, 31, e1805608.	21.0	16
65	UV Resin Enhanced Stability of Metal Halide Perovskite Nanocrystals for White Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 35-40.	4.3	18
66	Exploring electronic and optical properties of Ge-based perovskites under strain: Insights from the first-principles calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 118013.	3.9	12
67	Pressure-Induced Ultra-Broad-Band Emission of a Cs ₂ AgBiBr ₆ Perovskite Thin Film. Journal of Physical Chemistry C, 2020, 124, 1732-1738.	3.1	25
68	Microtuning of the Wide-Bandgap Perovskite Lattice Plane for Efficient and Robust High-Voltage Planar Solar Cells Exceeding 1.5 V. ACS Applied Energy Materials, 2020, 3, 2331-2341.	5.1	12
69	Influence of Temperature, Pressure, and Humidity on the Stabilities and Transition Kinetics of the Various Polymorphs of FAPbI ₃ . Journal of Physical Chemistry C, 2020, 124, 22972-22980.	3.1	18
70	Origin of pressure-induced band gap tuning in tin halide perovskites. Materials Advances, 2020, 1, 2840-2845.	5.4	20
71	NMR and Raman Scattering Studies of Temperature- and Pressure-Driven Phase Transitions in CH ₃ NH ₂ NH ₂ PbCl ₃ Perovskite. Journal of Physical Chemistry C, 2020, 124, 26999-27008.	3.1	30
72	Thinking about the Development of High-Pressure Experimental Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 7297-7306.	4.6	35

#	Article	IF	CITATIONS
73	A Review on Lead-Free Hybrid Halide Perovskites as Light Absorbers for Photovoltaic Applications Based on Their Structural, Optical, and Morphological Properties. Molecules, 2020, 25, 5039.	3.8	26
74	Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure. Scientific Reports, 2020, 10, 14391.	3.3	78
75	Structural regulation and optical behavior of three-dimensional metal halide perovskites under pressure. Journal of Materials Chemistry C, 2020, 8, 12755-12767.	5.5	20
76	Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr ₃ Nanocrystals Encapsulated by Siliceous Nanosphere. Journal of Physical Chemistry C, 2020, 124, 14390-14399.	3.1	9
77	A General Wet Transferring Approach for Diffusion-Facilitated Space-Confined Grown Perovskite Single-Crystalline Optoelectronic Thin Films. Nano Letters, 2020, 20, 2747-2755.	9.1	34
78	Temperature-Dependent Optical Band Gap in CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2490-2496.	4.6	173
79	Halogen–NH ₂ ⁺ Interaction, Temperature-Induced Phase Transition, and Ordering in (NH ₂ CHNH ₂)PbX ₃ (X = Cl, Br, I) Hybrid Perovskites. Journal of Physical Chemistry C, 2020, 124, 8479-8487.	3.1	32
80	Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 5604-5614.	2.8	61
81	Unusual Pressureâ€Ðriven Phase Transformation and Band Renormalization in 2D vdW Hybrid Lead Halide Perovskites. Advanced Materials, 2020, 32, e1907364.	21.0	23
82	Pressureâ€Induced Structural Evolution and Bandgap Optimization of Leadâ€Free Halide Double Perovskite (NH ₄) ₂ SeBr ₆ . Advanced Science, 2020, 7, 1902900.	11.2	44
83	Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter and Radiation at Extremes, 2020, 5, .	3.9	58
84	Effect of chemical nature of atoms on the electronic, dielectric, and dynamical properties of ABX 3 halide perovskite. International Journal of Quantum Chemistry, 2020, 120, e26172.	2.0	11
85	Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews, 2020, 49, 2869-2885.	38.1	282
86	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie - International Edition, 2021, 60, 9772-9788.	13.8	11
87	Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 2021, 31, 2006243.	14.9	71
88	Suppressed Lattice Disorder for Large Emission Enhancement and Structural Robustness in Hybrid Lead lodide Perovskite Discovered by Highâ€Pressure Isotope Effect. Advanced Functional Materials, 2021, 31, 2009131.	14.9	20
89	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie, 2021, 133, 9856-9872.	2.0	0
90	A pressure induced reversal to the 9R perovskite in Ba ₃ MoNbO _{8.5} . Journal of Materials Chemistry A, 2021, 9, 6567-6574.	10.3	2

#	Article	IF	CITATIONS
91	Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6. Physical Chemistry Chemical Physics, 2021, 23, 19308-19312.	2.8	5
92	High-Pressure Structural Phase Transformation of Ferroelectric Bis-benzylammonium Lead Tetrachloride Studied by Raman Spectroscopy and X-ray Diffraction. Inorganic Chemistry, 2021, 60, 3657-3666.	4.0	5
93	Pressure-assisted fabrication of perovskite light emitting devices. AIP Advances, 2021, 11, 025112.	1.3	2
94	Ferromagnetic and Antiferromagnetic Properties of Perovskite Solar Cell Materials. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 434-443.	0.5	3
95	Bismuth Doping Alters Structural Phase Transitions in Methylammonium Lead Tribromide Single Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2749-2755.	4.6	14
96	Stability and band gap engineering of silica-confined lead halide perovskite nanocrystals under high pressure. Geoscience Frontiers, 2021, 12, 957-963.	8.4	6
	Mechanically stable with highly absorptive formamidinium lead halide perovskites		

97

#	Article	IF	CITATIONS
109	Manipulating the Photoluminescence and Carrier Characteristics of Excited FAPbBr ₃ Nanocrystals with Pressure. Journal of Physical Chemistry C, 2021, 125, 1041-1047.	3.1	8
110	Vibrational spectra of methylammonium iodide and formamidinium iodide in a wide temperature range. Macedonian Journal of Chemistry and Chemical Engineering, 2019, 38, 237.	0.6	12
111	High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 030701.	0.5	7
112	Characterization of Lead Halide Perovskites Using Synchrotron X-ray Techniques. Springer Series in Materials Science, 2020, , 157-179.	0.6	1
113	Evolutions of structural and optical properties of lead-free double perovskite Cs ₂ TeCl ₆ under high pressure. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 218801.	0.5	1
114	Optical Property of Inorganic Halide Perovskite Hexagonal Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 25044-25054.	3.1	5
115	The effect of organic cation dynamics on the optical properties in (PEA)2(MA)[Pb2I7] perovskite dimorphs. Journal of Materials Chemistry C, 2021, 9, 17050-17060.	5.5	2
116	Density Functional Theory Estimate of Halide Perovskite Band Gap: When Spin Orbit Coupling Helps. Journal of Physical Chemistry C, 2022, 126, 2184-2198.	3.1	40
117	Optical Properties of Inorganic Halide Perovskite Nanorods: Role of Anisotropy, Temperature, Pressure, and Nonlinearity. Journal of Physical Chemistry C, 2022, 126, 2003-2012.	3.1	9
118	Optical emission from focused ion beam milled halide perovskite device crossâ€sections. Microscopy Research and Technique, 2022, 85, 2351-2355.	2.2	7
119	Polycrystalline Formamidinium Lead Bromide X-ray Detectors. Applied Sciences (Switzerland), 2022, 12, 2013.	2.5	7
120	Pressure-Induced Structural and Optical Transitions in Luminescent Bulk Cs ₄ PbBr ₆ . Journal of Physical Chemistry C, 2022, 126, 541-550.	3.1	6
121	An overview of the pressure- and strain-induced changes in the structural and optoelectronic properties of organometal halide perovskites. Solar Energy, 2022, 239, 198-220.	6.1	4
122	Room-Temperature Doping of CsPbBr ₃ Nanocrystals with Aluminum. Journal of Physical Chemistry Letters, 2022, 13, 4495-4500.	4.6	1
123	Electronic structure of oxide and halide perovskites. , 2022, , .		0
124	Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	16
125	Tuning band gap and enhancing optical functions of AGeF3 (A = K, Rb) under pressure for improved optoelectronic applications. Scientific Reports, 2022, 12, .	3.3	33
126	Formamidinium Halide Perovskite and Carbon Nitride Thin Films Enhance Photoreactivity under Visible Light Excitation. Journal of Physical Chemistry A, 0, , .	2.5	0

#	Article	IF	CITATIONS
127	Colloidal FAPbBr ₃ perovskite nanocrystals for light emission: what's going on?. Journal of Materials Chemistry C, 2022, 10, 13437-13461.	5.5	10
128	Ferroelasticity Mediated Energy Conversion in Strained Perovskite Films. Advanced Electronic Materials, 2022, 8, .	5.1	6
129	Application of impedance spectroscopy in exploring electrical properties of dielectric materials under high pressure. Journal of Physics Condensed Matter, 2022, 34, 434001.	1.8	4
130	Pressureâ€Induced Metallization of Leadâ€Free Halide Double Perovskite (NH ₄) ₂ PtI ₆ . Advanced Science, 2022, 9, .	11.2	14
131	Do Lead Halide Hybrid Perovskites Have Hydrogen Bonds?. Journal of Physical Chemistry C, 2022, 126, 16215-16226.	3.1	7
132	Recent Development of Lead-Free Perovskite Solar Cells. , 0, , .		0
133	Degenerate Lattice-Instability-Driven Amorphization under Compression in Metal Halide Perovskite CsPbI ₃ . Journal of Physical Chemistry Letters, 2022, 13, 9449-9455.	4.6	1
134	Tuning paradigm of external stimuli driven electronic, optical and magnetic properties in hybrid perovskites and metal organic complexes. Materials Today, 2022, 60, 183-200.	14.2	1
135	Pressure-Induced Tunable Charge Carrier Dynamics in Mn-Doped CsPbBr3 Perovskite. Materials, 2022, 15, 6984.	2.9	2
136	Phase stability and electronic structure of CsPbCl ₃ under hydrostatic stress and anion substitution. Physical Chemistry Chemical Physics, 2023, 25, 1279-1289.	2.8	3
137	Hybrid perovskites under pressure: Present and future directions. Journal of Applied Physics, 2022, 132,	2.5	4
138	Selfâ€Healing Ability of Perovskites Observed via Photoluminescence Response on Nanoscale Local Forces and Mechanical Damage. Advanced Science, 2023, 10, .	11.2	3
139	Healing aged metal halide perovskite toward robust optoelectronic devices: Mechanisms, strategies, and perspectives. Nano Energy, 2023, 108, 108219.	16.0	4
140	Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. ELight, 2023, 3, .	23.9	74
141	Band gap tuning of non-toxic Sr-based perovskites CsSrX3 (XÂ=ÂCl, Br) under pressure for improved optoelectronic applications. Materials Today Communications, 2023, 34, 105188.	1.9	10
142	Biaxial Hard Compression, Anisotropic Elastic Property, and Pressure-Induced Isosymmetric Phase Transition in Ammonium Bicarbonate. Journal of Physical Chemistry C, 2023, 127, 831-841.	3.1	1
143	Tailoring the high-brightness "warm―white light emission of two-dimensional perovskite crystals <i>via</i> a pressure-inhibited nonradiative transition. Chemical Science, 2023, 14, 2652-2658.	7.4	7
144	Synthesis of Edge-Shared Octahedral MAPbBr ₃ via Pressure- and Temperature-Induced Multiple-Stage Processes. Chemistry of Materials, 2023, 35, 1177-1185.	6.7	0

#	Article	IF	CITATIONS
145	High-Pressure Behavior of δ-Phase of Formamidinium Lead Iodide by Optical Spectroscopies. Journal of Physical Chemistry C, 2023, 127, 2440-2447.	3.1	10
146	Re-emerging photo responsiveness enhancement under compression in (NH4)2SeBr6. Applied Physics Letters, 2023, 122, .	3.3	3
147	Enhanced optoelectronic activity of lead-free halide perovskites KMBr ₃ (M = Ge, Sn) under hydrostatic pressure. Physica Scripta, 2023, 98, 075915.	2.5	1
148	Stabilizing Polar Domains in MAPbBr ₃ via the Hydrostatic Pressure-Induced Liquid Crystal-like Transition. Journal of Physical Chemistry Letters, 2023, 14, 5497-5504.	4.6	0
149	Using pressure to unravel the structure–dynamic-disorder relationship in metal halide perovskites. Scientific Reports, 2023, 13, .	3.3	4
150	Perovskite Smart Windows: The Light Manipulator in Energyâ€Efficient Buildings. Advanced Materials, 0, , .	21.0	6
151	Lattice dynamics and phase transitions in FAPbBr ₃ single crystals: Temperature―and pressureâ€dependent Raman spectroscopy. Journal of Raman Spectroscopy, 2023, 54, 1138-1149.	2.5	0
152	Unraveling the strain-induced and spin–orbit coupling effect of novel inorganic halide perovskites of Ca3AsI3 using DFT. AIP Advances, 2023, 13, .	1.3	14
153	Pressure-Driven Band Gap Narrowing in Rb ₂ AgPdCl ₅ : Toward the Shockley–Queisser Limit of Lead-free Double Perovskites. Journal of Physical Chemistry C, 2023, 127, 19728-19734.	3.1	0
154	Thermochromism in Bismuth Halide Perovskites with Cation and Anion Transmutation. Advanced Optical Materials, 2024, 12, .	7.3	0
155	Effect of thermocompression on properties of transparent glass-ceramics containing quantum dots. APL Materials, 2023, 11, .	5.1	0
156	First-principles simulations to investigate effect of hydrostatic pressure on structural, mechanical, electronic, and optical properties of the AgCdCl3 perovskite. Emergent Materials, 0, , .	5.7	0
157	Pressure-Modulated Anomalous Organic–Inorganic Interactions Enhance Structural Distortion and Second-Harmonic Generation in MHyPbBr ₃ Perovskite. Journal of the American Chemical Society, 2023, 145, 23842-23848.	13.7	3
158	A Review: Principles and Applications of High-Pressure InÂSitu Time-Resolved Transient Absorption Spectroscopy. Ultrafast Science, 2024, 4, .	11.2	0
159	Semiconducting-metallic phase transition with tunable optoelectronics and mechanical properties of halide perovskites TIGeX3 (X = F, Cl) under pressure. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	2
160	Structural and Optical Properties of Methylhydrazinium Lead Bromide Perovskites Under Pressure. Journal of Materials Chemistry A, 0, , .	10.3	0
161	Promising Perovskite Solar Cell Candidates: Enhanced Optoelectronic Properties of XSrI ₃ Perovskite Materials under Hydrostatic Pressure. Small Structures, 2024, 5, .	12.0	0
163	Vapor Phase Growth of Air-Stable Hybrid Perovskite FAPbBr ₃ Single-Crystalline Nanosheets. Nano Letters, 2024, 24, 2299-2307.	9.1	0

#	Article	IF	CITATIONS
164	Efficient perovskite light-emitting diodes achieved by suppressing the acidic surface of PEDOT:PSS films. Chemical Engineering Journal, 2024, 485, 149668.	12.7	0
165	A review of two-dimensional inorganic materials: Types, properties, and their optoelectronic applications. Progress in Solid State Chemistry, 2024, , 100443.	7.2	0
166	Pressure Engineering on Perovskite Structures, Properties, and Devices. Advanced Functional Materials, 0, , .	14.9	0
167	Exploring the influence of pressure-induced semiconductor-to-metal transition on the physical properties of cubic perovskites FrXCl3 (X = Ge and Sn). Heliyon, 2024, 10, e27581.	3.2	0
168	A review: Comprehensive investigation on bandgap engineering under high pressure utilizing microscopic UV–Vis absorption spectroscopy. APL Materials, 2024, 12, .	5.1	0