Type 1 Interferons Induce Changes in Core Metabolism Function

Immunity 44, 1325-1336 DOI: 10.1016/j.immuni.2016.06.006

Citation Report

#	Article	IF	CITATIONS
1	Effects of Interferons and Viruses on Metabolism. Frontiers in Immunology, 2016, 7, 630.	4.8	96
2	Integrating immunometabolism and macrophage diversity. Seminars in Immunology, 2016, 28, 417-424.	5.6	137
3	Metabolism and acetylation in innate immune cell function and fate. Seminars in Immunology, 2016, 28, 408-416.	5.6	39
4	The important roles of type I interferon and interferon-inducible genes in systemic lupus erythematosus. International Immunopharmacology, 2016, 40, 542-549.	3.8	35
5	pDCs Take a Deep Breath to Fight Viruses. Immunity, 2016, 44, 1246-1248.	14.3	3
6	Driving CARs into Sweet Roads: Targeting Glycosylated Antigens in Cancer. Immunity, 2016, 44, 1248-1250.	14.3	9
7	Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncolmmunology, 2017, 6, e1314424.	4.6	106
8	Mitochondria are the powerhouses of immunity. Nature Immunology, 2017, 18, 488-498.	14.5	704
9	TLR-Induced Murine Dendritic Cell (DC) Activation Requires DC-Intrinsic Complement. Journal of Immunology, 2017, 199, 278-291.	0.8	46
10	Immunometabolism in systemic lupus erythematosus. Nature Reviews Rheumatology, 2017, 13, 280-290.	8.0	190
11	Metabolites: deciphering the molecular language between DCs and their environment. Seminars in Immunopathology, 2017, 39, 177-198.	6.1	10
13	Role of cellular metabolism in regulating type I interferon responses: Implications for tumour immunology and treatment. Cancer Letters, 2017, 409, 20-29.	7.2	17
14	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and Biology, 2017, 1011, 1-85.	1.6	14
15	Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1011, 211-223.	1.6	22
16	TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nature Communications, 2017, 8, 1592.	12.8	70
17	Metabolic abnormalities and oxidative stress in lupus. Current Opinion in Rheumatology, 2017, 29, 442-449.	4.3	67
18	Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17, 608-620.	22.7	306
19	Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. Journal of Immunology Research, 2017, 2017, 1-12.	2.2	17

	CITATION R	CITATION REPORT	
#	ARTICLE IFN-1 Bid crosstalk: foe or friend to stem cells. Stem Cell Investigation, 2017, 4, 18-18.	IF	CITATIONS
20	investigation, 2017, 4, 18-18.	3.0	0
21	Lipid Droplets as Immune Modulators in Myeloid Cells. Trends in Immunology, 2018, 39, 380-392.	6.8	138
22	Interferon Gamma Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity. EBioMedicine, 2018, 30, 303-316.	6.1	184
23	TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cellular and Molecular Immunology, 2018, 15, 428-437.	10.5	116
24	Growth of <i>Mycobacterium tuberculosis</i> in vivo segregates with host macrophage metabolism and ontogeny. Journal of Experimental Medicine, 2018, 215, 1135-1152.	8.5	421
25	The mitochondrial respiratory chain: A metabolic rheostat of innate immune cell-mediated antibacterial responses. Mitochondrion, 2018, 41, 28-36.	3.4	30
26	The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Letters, 2018, 412, 236-242.	7.2	77
27	Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease. Frontiers in Immunology, 2018, 9, 2418.	4.8	31
28	Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response. Frontiers in Immunology, 2018, 9, 2489.	4.8	86
29	Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation. Frontiers in Immunology, 2018, 9, 3070.	4.8	28
30	Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway. Frontiers in Immunology, 2018, 9, 2967.	4.8	56
31	Emerging Roles of Cellular Metabolism in Regulating Dendritic Cell Subsets and Function. Frontiers in Cell and Developmental Biology, 2018, 6, 152.	3.7	39
32	Interplay between Cellular Metabolism and Cytokine Responses during Viral Infection. Viruses, 2018, 10, 521.	3.3	33
33	Examining Relationships between Metabolism and Persistent Inflammation in HIV Patients on Antiretroviral Therapy. Mediators of Inflammation, 2018, 2018, 1-14.	3.0	37
34	Operation of mitochondrial machinery in viral infection-induced immune responses. Biochemical Pharmacology, 2018, 156, 348-356.	4.4	10
35	Regulation of fatty acid synthesis in immune cells. Scandinavian Journal of Immunology, 2018, 88, e12713.	2.7	37
36	Conventional DCs from Male and Female Lupus-Prone B6.NZM Sle1/Sle2/Sle3 Mice Express an IFN Signature and Have a Higher Immunometabolism That Are Enhanced by Estrogen. Journal of Immunology Research, 2018, 2018, 1-21.	2.2	8
37	Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. Cell Metabolism, 2018, 28, 504-515.e7.	16.2	264

		CITATION REPORT		
#	Article		IF	Citations
38	Molecular Actions of PPARÎ \pm in Lipid Metabolism and Inflammation. Endocrine Reviews	, 2018, 39, 760-802.	20.1	420
39	Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Meta Frontiers in Immunology, 2018, 9, 1605.	bolism.	4.8	298
40	De Novo Fatty Acid Synthesis During Mycobacterial Infection Is a Prerequisite for the F Highly Proliferative T Cells, But Not for Dendritic Cells or Macrophages. Frontiers in Imr 2018, 9, 495.		4.8	36
41	Perturbation of Intracellular Cholesterol and Fatty Acid Homeostasis During Flavivirus I Frontiers in Immunology, 2018, 9, 1276.	nfections.	4.8	42
42	Transcriptional response to a prime/boost vaccination of chickens with three vaccine v	ariants based logy, 2018, 88, 8-18.	2.3	4
43	Molecular dissection of plasmacytoid dendritic cell activation <i>inÂvivo</i> during a v EMBO Journal, 2018, 37, .	iral infection.	7.8	45
44	Mitochondria in innate immune signaling. Translational Research, 2018, 202, 52-68.		5.0	241
45	Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasma dendritic cells. Nature Communications, 2018, 9, 2241.	acytoid	12.8	109
46	Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. I 2019, 11, 813-829.	mmunotherapy,	2.0	53
47	IFN-α-2b treatment protects against diet-induced obesity and alleviates non-alcoholic f in mice. Toxicology and Applied Pharmacology, 2019, 379, 114650.	fatty liver disease	2.8	11
48	Dendritic Cells Require PINK1-Mediated Phosphorylation of BCKDE11± to Promote Fatt for Immune Function. Frontiers in Immunology, 2019, 10, 2386.	y Acid Oxidation	4.8	20
49	Viral Infections and Interferons in the Development of Obesity. Biomolecules, 2019, 9,	726.	4.0	31
50	Quorum Sensing by Monocyte-Derived Populations. Frontiers in Immunology, 2019, 10), 2140.	4.8	21
51	Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and o tumor-expressed CD47â^'mediated †don't-eat-me' signal. Nature Immunolog	vercomes y, 2019, 20, 265-275.	14.5	193
52	Inhibition of fatty acid metabolism by etomoxir or TOFA suppresses murine dendritic co without affecting viability. Immunopharmacology and Immunotoxicology, 2019, 41, 36		2.4	13
53	Metformin Inhibits the Type 1 IFN Response in Human CD4+ T Cells. Journal of Immunc 338-348.	ology, 2019, 203,	0.8	37
54	Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Myc Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 116.	cobacterial	3.9	6
55	Inflammation research sails through the sea of immunology to reach immunometabolis International Immunopharmacology, 2019, 73, 128-145.	șm.	3.8	27

#	Article	IF	CITATIONS
56	Metabolic Control of Dendritic Cell Functions: Digesting Information. Frontiers in Immunology, 2019, 10, 775.	4.8	151
57	How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Frontiers in Cellular and Infection Microbiology, 2019, 9, 42.	3.9	149
58	Immune cell metabolism in autoimmunity. Clinical and Experimental Immunology, 2019, 197, 181-192.	2.6	25
59	Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function. Immunity, 2019, 51, 1074-1087.e9.	14.3	72
60	Differential remodeling of the electron transport chain is required to support TLR3 and TLR4 signaling and cytokine production in macrophages. Scientific Reports, 2019, 9, 18801.	3.3	18
61	The Cellular Localization of the p42 and p46 Oligoadenylate Synthetase 1 Isoforms and Their Impact on Mitochondrial Respiration. Viruses, 2019, 11, 1122.	3.3	10
62	Immunometabolism. , 2019, , 153-163.		0
63	Diversity and environmental adaptation of phagocytic cell metabolism. Journal of Leukocyte Biology, 2018, 105, 37-48.	3.3	42
64	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	28.8	190
65	Type I interferons and endoplasmic reticulum stress in health and disease. International Review of Cell and Molecular Biology, 2020, 350, 63-118.	3.2	53
66	Infection and cancer suppress pDC derived IFN-I. Current Opinion in Immunology, 2020, 66, 114-122.	5.5	16
67	System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses, 2020, 12, 1196.	3.3	5
68	Polyinosinic:polycytidylic acid in vivo enhances Chinook salmon (Oncorhynchus tshawytscha) immunity and alters the fish metabolome. Aquaculture International, 2020, 28, 2437-2463.	2.2	1
69	Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis. PLoS Pathogens, 2020, 16, e1008973.	4.7	6
70	IgG Subclasses Shape Cytokine Responses by Human Myeloid Immune Cells through Differential Metabolic Reprogramming. Journal of Immunology, 2020, 205, 3400-3407.	0.8	15
71	Deep Proteomic Deconvolution of Interferons and HBV Transfection Effects on a Hepatoblastoma Cell Line. ACS Omega, 2020, 5, 16796-16810.	3.5	2
72	Global Immunometabolic Profiling of AECOPD. Small Methods, 2020, 4, 2000483.	8.6	4
73	ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection?. Frontiers in Molecular Biosciences, 2020, 7, 578964.	3.5	26

#	Article	IF	CITATIONS
74	Shaping of Dendritic Cell Function by the Metabolic Micro-Environment. Frontiers in Endocrinology, 2020, 11, 555.	3.5	28
75	Circulation of gut-preactivated nave CD8 ⁺ T cells enhances antitumor immunity in B cell-defective mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23674-23683.	7.1	22
76	Systemic Immunometabolism: Challenges and Opportunities. Immunity, 2020, 53, 496-509.	14.3	73
77	Role of Leptin in Inflammation and Vice Versa. International Journal of Molecular Sciences, 2020, 21, 5887.	4.1	126
78	Heterogeneity of exhausted T cells in the tumor microenvironment is linked to patient survival following resection in hepatocellular carcinoma. OncoImmunology, 2020, 9, 1746573.	4.6	21
79	Basic mechanism of immune system activation by mitochondria. Immunological Medicine, 2020, 43, 142-147.	2.6	26
80	SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews, 2020, 54, 62-75.	7.2	839
81	Type I interferon sensing unlocks dormant adipocyte inflammatory potential. Nature Communications, 2020, 11, 2745.	12.8	41
82	Lipid and Lipoprotein Metabolism in Microglia. Frontiers in Physiology, 2020, 11, 393.	2.8	122
83	Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell, 2020, 181, 1080-1096.e19.	28.9	139
84	Regulation of lipid metabolism in pancreatic beta cells by interferon gamma: A link to anti-viral function. Cytokine, 2020, 133, 155147.	3.2	9
85	Dynamic rewiring of the human interactome by interferon signaling. Genome Biology, 2020, 21, 140.	8.8	25
86	Metabolic host response and therapeutic approaches to influenza infection. Cellular and Molecular Biology Letters, 2020, 25, 15.	7.0	58
87	Metabolic determinants of lupus pathogenesis. Immunological Reviews, 2020, 295, 167-186.	6.0	30
88	Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells, 2020, 9, 562.	4.1	24
89	Taurine Metabolism Aggravates the Progression of Lupus by Promoting the Function of Plasmacytoid Dendritic Cells. Arthritis and Rheumatology, 2020, 72, 2106-2117.	5.6	13
90	Identification of FABP5 as an immunometabolic marker in human hepatocellular carcinoma. , 2020, 8, e000501.		29
91	Running interference on miR-33: a new amplification loop for type I interferon in the host antiviral response. Cellular and Molecular Immunology, 2020, 17, 1109-1110.	10.5	1

#	Article	IF	CITATIONS
92	A Comprehensive Map of the Monocyte-Derived Dendritic Cell Transcriptional Network Engaged upon Innate Sensing of HIV. Cell Reports, 2020, 30, 914-931.e9.	6.4	15
93	Spermidine Suppresses Inflammatory DC Function by Activating the FOXO3 Pathway and Counteracts Autoimmunity. IScience, 2020, 23, 100807.	4.1	49
94	Dual RNA-Seq of Mtb-Infected Macrophages InÂVivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Reports, 2020, 30, 335-350.e4.	6.4	146
95	Deletion of Ppard in CD11c ⁺ cells attenuates atherosclerosis in ApoE knockout mice. FASEB Journal, 2020, 34, 3367-3378.	0.5	6
96	Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Science Advances, 2020, 6, eaay1109.	10.3	27
97	Frontline Science: AMPK regulates metabolic reprogramming necessary for interferon production in human plasmacytoid dendritic cells. Journal of Leukocyte Biology, 2021, 109, 299-308.	3.3	21
98	How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?. International Reviews of Immunology, 2021, 40, 72-107.	3.3	33
99	Metabolic interventions: A new insight into the cancer immunotherapy. Archives of Biochemistry and Biophysics, 2021, 697, 108659.	3.0	8
100	Opposing Roles of Type I Interferons in Cancer Immunity. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 167-198.	22.4	88
101	Where do plasmacytoid dendritic cells find the energy?. Journal of Leukocyte Biology, 2021, 109, 283-285.	3.3	2
102	Cancer-associated adipocytes as immunomodulators in cancer. Biomarker Research, 2021, 9, 2.	6.8	44
103	Lipid Metabolism in Tumor-Associated Natural Killer Cells. Advances in Experimental Medicine and Biology, 2021, 1316, 71-85.	1.6	9
104	ÂÂÂÂÂÂÂ type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ . Wellcome Open Research, 2021, 6, 38.	1.8	29
105	Virus Infections and Host Metabolism—Can We Manage the Interactions?. Frontiers in Immunology, 2020, 11, 594963.	4.8	69
107	Metabolism of Innate Immune Cells in Cancer. Cancers, 2021, 13, 904.	3.7	29
108	Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Frontiers in Immunology, 2021, 12, 624919.	4.8	47
109	Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nature Communications, 2021, 12, 1980.	12.8	56
110	Type I IFNs facilitate innate immune control of the opportunistic bacteria Burkholderia cenocepacia in the macrophage cytosol. PLoS Pathogens, 2021, 17, e1009395.	4.7	6

#	Article	IF	CITATIONS
111	Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors. JCI Insight, 2021, 6, .	5.0	6
112	Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. International Journal of Molecular Sciences, 2021, 22, 4190.	4.1	40
113	Immune metabolism: a bridge of dendritic cells function. International Reviews of Immunology, 2022, 41, 313-325.	3.3	8
114	Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. European Journal of Immunology, 2021, 51, 1628-1640.	2.9	8
115	IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors. Cells, 2021, 10, 999.	4.1	2
116	Control of T Cell Metabolism by Cytokines and Hormones. Frontiers in Immunology, 2021, 12, 653605.	4.8	20
117	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ . Wellcome Open Research, 2021, 6, 38.	1.8	35
119	A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nature Communications, 2021, 12, 2911.	12.8	17
120	Extracellular Acidity Reprograms Macrophage Metabolism and Innate Responsiveness. Journal of Immunology, 2021, 206, 3021-3031.	0.8	4
121	Japanese Encephalitis Virus Infected Human Monocyte-Derived Dendritic Cells Activate a Transcriptional Network Leading to an Antiviral Inflammatory Response. Frontiers in Immunology, 2021, 12, 638694.	4.8	12
122	Mitochondrial CMPK2 mediates immunomodulatory and antiviral activities through IFN-dependent and IFN-independent pathways. IScience, 2021, 24, 102498.	4.1	29
123	Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Reports, 2021, 35, 109195.	6.4	63
124	SCD2-mediated monounsaturated fatty acid metabolism regulates cGAS-STING-dependent type I IFN responses in CD4+ T cells. Communications Biology, 2021, 4, 820.	4.4	21
125	Listeria monocytogenes infection rewires host metabolism with regulatory input from type I interferons. PLoS Pathogens, 2021, 17, e1009697.	4.7	3
126	In vivo reprogramming of pathogenic lung TNFR2 ⁺ cDC2s by IFNβ inhibits HDM-induced asthma. Science Immunology, 2021, 6, .	11.9	7
127	tRNA derived fragment (tRF)-3009 participates in modulation of IFN-α-induced CD4+ T cell oxidative phosphorylation in lupus patients. Journal of Translational Medicine, 2021, 19, 305.	4.4	12
128	CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. Journal of Allergy and Clinical Immunology, 2021, 148, 16-32.	2.9	49
129	Altered expression of genes controlling metabolism characterizes the tissue response to immune injury in lupus. Scientific Reports, 2021, 11, 14789.	3.3	22

		REPORT	
#	Article	IF	CITATIONS
130	Bleomycin-Induced Lung Injury Increases Resistance to Influenza Virus Infection in a Type I Interferon-Dependent Manner. Frontiers in Immunology, 2021, 12, 697162.	4.8	6
131	Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular and Molecular Immunology, 2022, 19, 370-383.	10.5	38
132	Effects of Fatty Acid Oxidation and Its Regulation on Dendritic Cell-Mediated Immune Responses in Allergies: An Immunometabolism Perspective. Journal of Immunology Research, 2021, 2021, 1-10.	2.2	4
133	Plasmacytoid Dendritic Cells Facilitate Th Cell Cytokine Responses throughout <i>Schistosoma mansoni</i> Infection. ImmunoHorizons, 2021, 5, 721-732.	1.8	7
134	The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. Biology, 2021, 10, 856.	2.8	21
135	Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses, 2021, 13, 1839.	3.3	21
136	Functional and metabolic fitness of human CD4 ⁺ T lymphocytes during metabolic stress. Life Science Alliance, 2021, 4, e202101013.	2.8	2
137	STING-driven interferon signaling triggers metabolic alterations in pancreas cancer cells visualized by [¹⁸ F]FLT PET imaging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
140	Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions. F1000Research, 2017, 6, 456.	1.6	16
141	Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions. F1000Research, 2017, 6, 456.	1.6	18
142	Tegumentary leishmaniasis and coinfections other than HIV. PLoS Neglected Tropical Diseases, 2018, 12, e0006125.	3.0	33
143	The emerging role of ASC in dendritic cell metabolism during Chlamydia infection. PLoS ONE, 2017, 12, e0188643.	2.5	5
144	ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathogens, 2017, 13, e1006651.	4.7	75
145	Xenopus Interferon Complex: Inscribing the Amphibiotic Adaption and Species-Specific Pathogenic Pressure in Vertebrate Evolution?. Cells, 2020, 9, 67.	4.1	9
146	Human Herpesvirus-6 Reactivation, Mitochondrial Fragmentation, and the Coordination of Antiviral and Metabolic Phenotypes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. ImmunoHorizons, 2020, 4, 201-215.	1.8	39
147	FABP3 overexpression promotes vascular fibrosis in Takayasu's arteritis by enhancing fatty acid oxidation in aorta adventitial fibroblasts. Rheumatology, 2022, 61, 3071-3081.	1.9	9
148	Metabolic Profile of Innate Immune Cells. , 2022, , 83-114.		0
149	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0

#	Article	IF	CITATIONS
152	Induction of antiviral and cell mediated immune responses significantly reduce viral load in an acute foot-and-mouth disease virus infection in cattle. Genomics, 2021, 113, 4254-4266.	2.9	2
153	IRAK4 inhibitor mitigates joint inflammation by rebalancing metabolism malfunction in RA macrophages and fibroblasts. Life Sciences, 2021, 287, 120114.	4.3	11
154	Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity, 2021, 54, 2514-2530.e7.	14.3	28
155	HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow–Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. Journal of Immunology, 2021, 207, 2813-2827.	0.8	3
156	Suppression and Activation of Intracellular Immune Response in Initial Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Frontiers in Microbiology, 2021, 12, 768740.	3.5	1
157	Type I Interferon and the Spectrum of Susceptibility to Viral Infection and Autoimmune Disease: A Shared Genomic Signature. Frontiers in Immunology, 2021, 12, 757249.	4.8	17
158	Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chemistry, 2022, 376, 131860.	8.2	12
159	Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. Journal of Immunology, 2022, 208, 212-220.	0.8	11
160	CD14 Is Involved in the Interferon Response of Human Macrophages to Rubella Virus Infection. Biomedicines, 2022, 10, 266.	3.2	2
161	IFN-α blockade during ART-treated SIV infection lowers tissue vDNA, rescues immune function, and improves overall health. JCI Insight, 2022, 7, .	5.0	6
162	Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines, 2022, 10, 550.	3.2	16
163	Fatty Acid Metabolism and Cancer Immunotherapy. Current Oncology Reports, 2022, 24, 659-670.	4.0	23
165	Immune cell multiomics analysis reveals contribution of oxidative phosphorylation to B-cell functions and organ damage of lupus. Annals of the Rheumatic Diseases, 2022, 81, 845-853.	0.9	20
166	Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Frontiers in Immunology, 2022, 13, 860586.	4.8	14
167	Critical role of nitric oxide in impeding COVID-19 transmission and prevention: a promising possibility. Environmental Science and Pollution Research, 2022, 29, 38657-38672.	5.3	10
168	Hypoxia promotes the tolerogenic phenotype of plasmacytoid dendritic cells in head and neck squamous cell carcinoma. Cancer Medicine, 2022, 11, 922-930.	2.8	12
169	Development of a lipid metabolism-related gene model to predict prognosis in patients with pancreatic cancer. World Journal of Clinical Cases, 2021, 9, 10884-10898.	0.8	4
171	Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossaâ€Porthos axis in Drosophila. EMBO Journal, 2022, 41, e109049.	7.8	8

#	Article	IF	CITATIONS
172	CDP-choline Corrects Alveolar Type II Cell Mitochondrial Dysfunction in Influenza-infected Mice. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	2.9	4
189	IFNÎ ³ regulates NAD+ metabolism to promote the respiratory burst in human monocytes. Blood Advances, 2022, 6, 3821-3834.	5.2	8
190	The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology, 2022, 163, .	2.8	6
191	Interferon regulatory factor 1 (IRF1) controls the metabolic programmes of low-grade pancreatic cancer cells. Gut, 2023, 72, 109-128.	12.1	2
193	Mitochondrial cyclophilin D promotes disease tolerance by licensing NK cell development and IL-22 production against influenza virus. Cell Reports, 2022, 39, 110974.	6.4	5
194	Coronavirus disease 2019 (COVIDâ€19) update: From metabolic reprogramming to immunometabolism. Journal of Medical Virology, 2022, 94, 4611-4627.	5.0	18
195	Fatty acid metabolism in T-cell function and differentiation. International Immunology, 2022, 34, 579-587.	4.0	11
196	The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. International Immunopharmacology, 2022, 110, 108983.	3.8	19
197	Integrative understanding of immune-metabolic interaction. BMB Reports, 2022, 55, 259-266.	2.4	1
198	Dendritic cells in systemic lupus erythematosus: From pathogenesis to therapeutic applications. Journal of Autoimmunity, 2022, 132, 102856.	6.5	23
199	mTORC1 signaling in antigen-presenting cells of the skin restrains CD8+ TÂcell priming. Cell Reports, 2022, 40, 111032.	6.4	3
200	Breathe In, Breathe Out: Metabolic Regulation of Lung Macrophages in Host Defense Against Bacterial Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
201	Plasmacytoid Dendritic Cells, a Novel Target in Myeloid Neoplasms. Cancers, 2022, 14, 3545.	3.7	4
202	Mutant p53-microRNA-200c-ZEB2-Axis-Induced CPT1C Elevation Contributes to Metabolic Reprogramming and Tumor Progression in Basal-Like Breast Cancers. Frontiers in Oncology, 0, 12, .	2.8	4
203	SCD2-mediated cooperative activation of IRF3-IRF9 regulatory circuit controls type I interferon transcriptome in CD4+ T cells. Frontiers in Immunology, 0, 13, .	4.8	3
204	Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. Journal of Experimental Medicine, 2022, 219, .	8.5	12
205	Activation and Functions of Plasmacytoid Dendritic Cells. , 2022, , 25-60.		0
206	Macrophage Mitochondrial Biogenesis and Metabolic Reprogramming Induced by Leishmania donovani Require Lipophosphoglycan and Type I Interferon Signaling. MBio, 2022, 13, .	4.1	1

#	ARTICLE	IF	CITATIONS
207	Biting the hand that feeds: Metabolic determinants of cell fate during infection. Frontiers in Immunology, 0, 13, .	4.8	0
208	Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nature Communications, 2022, 13, .	12.8	23
209	Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells, 2022, 11, 4041.	4.1	7
210	Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. Journal of Leukocyte Biology, 2023, 113, 164-190.	3.3	3
211	Molecular diversity and functional implication of amphibian interferon complex: Remarking immune adaptation in vertebrate evolution. Developmental and Comparative Immunology, 2023, 140, 104624.	2.3	6
212	Regulation of DC metabolism by nitric oxide in murine GMâ€CSF cultures. European Journal of Immunology, 2023, 53, .	2.9	0
213	Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6719-6741.	2.5	14
214	IFN-Induced Protein with Tetratricopeptide Repeats 2 Limits Autoimmune Inflammation by Regulating Myeloid Cell Activation and Metabolic Activity. Journal of Immunology, 2023, 210, 721-731.	0.8	2
215	After virus exposure, early bystander naÃ⁻ve CD8 T cell activation relies on NAD+ salvage metabolism. Frontiers in Immunology, 0, 13, .	4.8	0
216	Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses, 2023, 15, 525.	3.3	2
217	Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites, 2023, 13, 328.	2.9	1
218	Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond. Annual Review of Immunology, 2023, 41, 533-560.	21.8	28
219	Metabolic regulation of dendritic cell activation and immune function during inflammation. Frontiers in Immunology, 0, 14, .	4.8	3
220	Mitochondrial bioenergetic changes in systemic lupus erythematosus immune cell subsets: Contributions to pathogenesis and clinical applications. Lupus, 2023, 32, 603-611.	1.6	5
221	Newly detected, virulent Toxoplasma gondii COUG strain causing fatal steatitis and toxoplasmosis in southern sea otters (Enhydra lutris nereis). Frontiers in Marine Science, 0, 10, .	2.5	2
223	Abnormal glucose metabolism in virus associated sepsis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
224	The roles of critical proâ€inflammatory cytokines in the drive of cytokine storm during SARSâ€CoVâ€2 infection. Journal of Medical Virology, 2023, 95, .	5.0	9
225	Lipid metabolism in dendritic cell biology. Immunological Reviews, 2023, 317, 137-151.	6.0	8

ARTICLE IF CITATIONS # Induced Immune Reaction in the Acorn Worm, <i>Saccoglossus kowalevskii</i>, Informs the Evolution 226 8.9 1 of Antiviral Immunity. Molecular Biology and Evolution, 2023, 40, . A cellular overview of immunometabolism in systemic lupus erythematosus. Oxford Open 2.8 Immunology, 2023, 4, . The development and function of human monocyte-derived dendritic cells regulated by metabolic 228 3.3 0 reprogramming. Journal of Leukocyte Biology, 0, , . T-cell senescence induced by peripheral phospholipids. Cell Biology and Toxicology, 0, , . 229 Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. 230 2.0 2 Journal of Rheumatology, 2023, 50, 1103-1113. <scp>αâ€Ketoglutarate</scp>–Dependent <scp>KDM6</scp> Histone Demethylases and <scp>Interferonâ€Stimulated</scp> Gene Expression in Lupus. Arthritis and Rheumatology, 2024, 76, 5.6 396-410. Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate 233 3.8 5 Immunity. Journal of Innate Immunity, 2023, 15, 665-679. Immunometabolism of dendritic cells in health and disease. Advances in Immunology, 2023, , . 234 Advanced nanomaterials for enhanced immunotherapy via metabolic regulation. Coordination 235 18.8 1 Chemistry Reviews, 2024, 500, 215540. Singleâ€cell profiling of bone marrow B cells uncovers early B cell developmental disorders associated 5.6 with systemic lupus erythematosus. Arthritis and Rheumatology, 0, , . CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to 237 0 9.7 potentiate antitumor immunity. Molecular Cell, 2023, 83, 4370-4385.e9. Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes. Nature, 2023, 624, 645-652. PRKAG2.2 is essential for FoxA1 ⁺ regulatory T cell differentiation and metabolic rewiring 240 10.3 0 distinct from FoxP3 ⁺ regulatory T cells. Science Advances, 2023, 9, . Role of microglia in stroke. Glia, 2024, 72, 1016-1053. 241 Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discovery, 242 4.7 1 2024, 10, . The Link Between Dysregulated Immunometabolism and Vascular Damage: Implications for the Development of Atherosclerosis in Systemic Lupus Erythematosus and Other Rheumatic Diseases. Journal of Rheumatology, 2024, 51, 234-241. 243 2.0 Does oncolytic virusesâ€mediated metabolic reprogramming benefit or harm the immune 244 0.5 0 microenvironment?. FASEB Journal, 2024, 38, . ISG15 blocks cardiac glycolysis and ensures sufficient mitochondrial energy production during 245 3.8 Coxsackievirus B3 infection. Cardiovascular Research, 2024, 120, 644-657

#ARTICLEIFCITATIONS246PI3K/AKT mediated De novo fatty acid synthesis regulates RIG-1/MDA-5-dependent type I IFN responses in
BVDV-infected CD8+T cells. Veterinary Microbiology, 2024, 291, 110034.1.90247Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in
cancer. Frontiers in Immunology, 0, 15, .4.80248Regulation of a Metabolic Gene Signature in Response to Respiratory Viruses and Type I Interferon
signaling. Journal of Molecular Pathology, 2024, 5, 133-152.1.20